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                                                                      Abstract 

Understanding adolescent decision-making is significant for informing basic models of 

neurodevelopment as well as for the domains of public health and criminal justice. System-based 

theories posit that adolescent decision-making is guided by activity amongst reward and control 

processes. While successful at explaining behavior, system-based theories have received 

inconsistent support at the neural level, perhaps because of methodological limitations. Here, we 

used two complementary approaches to overcome said limitations and rigorously evaluate 

system-based models. Using decision-level modeling of fMRI data from a risk-taking task in a 

sample of 2000+ decisions across 51 human adolescents (25 females, mean age = 15.00 years), 

we find support for system-based theories of decision-making. Neural activity in lateral 

prefrontal cortex and a multivariate pattern of cognitive control both predicted a reduced 

likelihood of risk-taking, whereas increased activity in the nucleus accumbens predicted a greater 

likelihood of risk-taking. Interactions between decision-level brain activity and age were not 

observed. These results garner support for system-based accounts of adolescent decision-making 

behavior.  
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Significance Statement 

Adolescent decision-making behavior is of great import for basic science, and carries equally 

consequential implications for public health and criminal justice. While dominant psychological 

theories seeking to explain adolescent decision-making have found empirical support, their 

neuroscientific implementations have received inconsistent support. This may be partly due to 

statistical approaches employed by prior neuroimaging studies of system-based theories. We 

used brain modeling—an approach that predicts behavior from brain activity—of univariate and 

multivariate neural activity metrics to better understand how neural components of psychological 

systems guide decision behavior in adolescents. We found broad support for system-based 

theories such that neural systems involved in cognitive control predicted a reduced likelihood to 

make risky decisions, whereas value-based systems predicted greater risk-taking propensity. 
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Introduction 

Adolescent decision-making has important implications for basic science (Blakemore & 

Mills, 2014; Larsen & Luna, 2018; Sharp & Wall, 2018; Yeager, Dahl, & Dweck, 2018) as well 

as public health, civic matters, and criminal justice policy (Cohen, Bonnie, Taylor-Thompson, & 

Casey, 2015; Cohen & Casey, 2014; Oosterhoff & Wray-Lake, 2020). Influential theories posit 

that adolescent decision-making is governed by psychological “systems” that compete (or in 

some cases, complement) to guide behavior (Casey, 2015; Shulman et al., 2016). While system-

based theories have enjoyed broad success at describing the psychological underpinnings of 

adolescent decision behavior, they have yielded mixed findings when used to describe the 

neurobiology underlying said behavior (e.g., Pfeifer & Allen, 2012). This discrepancy between 

psychological and neural data may be due in part to prior neuroimaging work employing brain 

mapping (predicting brain from behavior) instead of brain modeling (predicting behavior from 

brain) approaches, testing theory between- instead of within-subjects, and not considering 

multivariate neural patterns. The current neuroimaging study sought to overcome these 

methodological limitations, and to more rigorously test the validity of system-based models for 

predicting adolescent risky decision-making.  

 

A number of system-based theories have been used to explain risky decision-making and 

related motivated behaviors in adolescence (Casey, 2015; Ernst, Pine, & Hardin, 2006; Strang, 

Chein, & Steinberg, 2013). Most of these theories contain two key elements. First, they posit the 

existence of two (though some posit three) adversarial systems: A value-based system oriented 

toward immediate incentives, increasing the propensity for risk-taking, and a cognitive control 

system that restrains the former system to avoid risks. Second, these prominent theories argue the 

value-based system is primed to ‘overpower’ the cognitive-control system in adolescence (i.e., 

they interact with age), ostensibly leading adolescents to take more risks than children and adults 

– particularly in socioemotional contexts (Shulman et al., 2016; Steinberg et al., 2017). System-

based models tend to perform well at explaining adolescent behavior in observational and 

experimental studies (Botdorf, Rosenbaum, Patrianakos, Steinberg, & Chein, 2016; Ellingson, 

Corley, Hewitt, & Friedman, 2019; Steinberg et al., 2017). However, neuroscientific evidence for 

these theories is far less consistent (Flannery et al., 2017; Lee et al., 2018; van Duijvenvoorde, 

Achterberg, et al., 2016; van Duijvenvoorde, Peters, et al., 2016), prompting calls to update 

system-based theories (Casey, 2015; Pfeifer & Allen, 2012, 2016), or revise them so drastically 

as to be categorically different from existing versions (Harden et al., 2017; Romer et al., 2017). 

Without outright rejecting these possibilities, we propose an alternative interpretation for why 

system-based theories receive inconsistent neuroscientific support.  

 

 Most prior neuroscientific investigations of adolescent decision-making have relied on 

univariate brain mapping methods to compare individuals who differ in terms of age or risk-

taking behavior. Brain mapping refers to statistically predicting brain activity from stimulus or 

task characteristics, or task behavior (Kragel, Koban, Barrett, & Wager, 2018). An alternative to 
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brain mapping is brain modeling (Kragel et al., 2018), which uses neuroscientific data to predict 

cognitions and behavior (i.e., any kind of neural metric predicting behavior). Having recently 

grown in popularity, brain modeling approaches have seen broad applications, some of which 

involve within-person modeling, including prediction of food craving (Cosme & Lopez, 2020; 

Cosme, Ludwig, & Berkman, 2019), emotion regulation tendencies (Doré, Weber, & Ochsner, 

2017), negative affect (Chang, Gianaros, Manuck, & Krishnan, 2015), chronic pain (Wager et 

al., 2013) and vision (Gardner & Liu, 2019; Liu, Cable, & Gardner, 2018). While brain mapping 

has generated key discoveries in neuroscience (e.g., Kanwisher, 2017), it can be problematic for 

evaluating system-based theories. Statistically, brain modeling may be preferable to brain 

mapping because individual units of analysis (e.g., voxels or neurons) are more predictive when 

used in concert (such as in a multivariate signature) to predict task behavior, as opposed to the 

opposite (e.g., behavioral responses predicting brain activity) (Zhao et al., 2020). That is, treating 

individual voxels as the outcome of an analysis is less informative than examining how multiple 

voxels collectively predict a phenomenon of interest. Unfortunately, prior brain-mapping studies 

testing system-based theories of decision-making have largely overlooked the cumulative 

information that comes from many voxels. Another advantage of brain modeling is that it is 

better suited for trial-level, within-subject modeling, which tends to be better powered than 

classic between-subject analyses. Philosophically, system-based theories make predictions about 

how underlying neural processes drive behavior – for example, “when value-based brain activity 

is high, individuals will be more likely to take a risk” – which almost by definition aligns with 

brain modeling. Relatedly, system-based theories of decision-making are implicitly geared 

towards explaining within-subject behavior (Strang et al., 2013), yet most prior studies of 

adolescent risky decision-making have focused on between-subject differences (Flannery et al., 

2017; Rudolph et al., 2017; van Duijvenvoorde, Achterberg, et al., 2016). Understanding within-

adolescent fluctuations in decision-making carries critical translational implications for 

understanding why the same individual may be law-abiding most of the time but occasionally 

engage in destructive or maladaptive behavior. The aforementioned limitations of prior work 

motivated the present study to employ novel methodology to test the validity of system-based 

accounts for predicting adolescent decision making. 

 

 

Methods 

Overview. The current study is, to the best of our knowledge, the first within-subject, brain 

modeling investigation of system-based theories of adolescent decision-making. Using functional 

magnetic resonance imaging (fMRI), we predicted trial-by-trial risky decision-making in healthy 

adolescents as a function of brain activity from value-based and cognitive control systems, the 

first premise posited by system-based models. We then tested to see if the two systems interacted 

with age, testing the second premise posted by system-based models. Critically, we examined 

two versions of value-based and cognitive control systems: a ‘classic’ univariate version and a 

newly posited ‘switchboard’ multivariate version. The classic variant of the theory assumes that 
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the value-based system that prioritizes immediate rewards is primarily housed in the nucleus 

accumbens (NAcc) whereas the cognitive control system is located in lateral prefrontal cortex 

(lPFC) (Shulman et al., 2016). This variant is clearly modular, in that it posits that psychological 

functions are represented in isolated brain regions, or modules, that independently and locally 

perform their respective function. While evidence exists to suggest that some degree of 

modularity may be present in the brain (Kanwisher, 2017), this assumption is inconsistent with 

much other work in cognitive neuroscience that shows psychological processes are encoded in 

distributed, multivariate signatures (Chang et al., 2015; Huth, Heer, Griffiths, Theunissen, & 

Gallant, 2016; Parkinson, Kleinbaum, & Wheatley, 2017). To that end, we additionally tested a 

‘switchboard’ version of the model wherein we predict risky behavior as a function of 

multivariate neural signatures of value and cognitive control (via the use of multivoxel pattern 

analysis; MVPA). The advantage of this approach is that it does not hypothesize the localization 

of mental function to any given region of interest (ROI) but instead assumes that mental 

functions are encoded in distributed patterns. Another way to summarize the two variants of the 

model is that the functional units of the classic model lie in particular ROIs, whereas the 

functional units of the switchboard model are comprised by patterns of activity that cut across 

brain regions. We used multilevel logistic regression to examine how linear combinations of 

these brain metrics predicted within-person risky behavior. Last, for thoroughness we also 

implemented a between-subjects version of the brain model (predicting risky behavior as a 

function of brain metrics using only between-subjects information) while considering between-

subject variables including age and sex as predictors, in addition to a traditional univariate 

analysis. 

 

Procedures and Measures 

 Participants. The N = 51 participants (Mean age = 15.00 years, SD = 3.66, range = 9.11 - 

22.60, 25 females) in the current study were part of a broader longitudinal study investigating the 

impact of early life experiences on the neural bases of socioemotional development. This age 

range is consistent with recent scientific advances that suggest adolescence in human 

development may last nearly fifteen years (Kinghorn, Shanaube, Toskas, Cluver, & Bekker, 

2018). Participants in the current set of analyses were those who provided usable data from an 

fMRI scanning session and did not have a history of early social deprivation. Ethnically, eight 

participants identified as Hispanic/Latinx (15.7%). Racially, twenty-six participants identified as 

white (51%), six participants (11.8%) identified as Asian/Asian American, one participant (2%) 

identified as Native Hawaiian/Other Pacific Islander, seven participants (13.7%) identified as 

African American, no participants (0%) identified as Native American/Alaskan Native, four 

participants (7.8%) identified as being mixed race, four participants identified as belonging to an 

unlisted race (7.8%), and three participants (5.9%) declined to report their race. Sample size was 

dictated by the number of participants willing to participate in this wave of data collection. 

Participants were compensated $50 (USD) for participating in fMRI scanning. The research was 

completed at the University of California, Los Angeles (UCLA). All participants under 18 years 
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provided informed assent and their parents provided informed consent; all participants 18+ years 

provided informed consent. All research practices were approved by the Institutional Review 

Board at the University of California, Los Angeles. Data and analysis code are publicly available 

on the Open Science Framework (OSF; osfi.io/fphn4). 

 

Experimental Design 

 

Risky Decision-Making Paradigm. Participants completed the Yellow Light Game (YLG) 

while undergoing fMRI scanning (Figure 1A; Op de Macks et al., 2018). An adaptation of a 

widely used adolescent risk-taking task (the stoplight game; Chein, Albert, O’Brien, Uckert, & 

Steinberg, 2011; M. Gardner & Steinberg, 2005; Peake, Dishion, Stormshak, Moore, & Pfeifer, 

2013), the YLG is a computerized driving simulation in which participants drive along a straight 

road and encounter a series of intersections. Consistent with prior studies, participants in our 

study were told the objective of the game was to drive through the set of intersections as quickly 

as possible. The traffic light at each intersection turned yellow for 1000ms prior to crossing each 

intersection and participants were faced with a choice to brake (‘stop’) or drive through the 

intersection (‘go’). A choice to brake at the intersection resulted in a delay of 2500ms. A choice 

to accelerate through the intersection resulted in one of two outcomes -- (i) participants would 

drive straight through the intersection with no delay, or (ii) a car from the cross-street would 

crash into them resulting in a 5000ms delay. A 10000ms delay was imposed if participants failed 

to respond on a trial. Participants made their choices by pressing one of two buttons on a button 

box using their index and middle fingers.  

 

 Participants completed three runs of the task, consisting of 15 trials each (n = 45 total 

trials). Unbeknownst to participants, five intersections per run were set to result in a crash if 

participants chose to accelerate through them, meaning that the probability of crashing was equal 

to ⅓. Participants were not made aware of this probability. Each run had specific intersections 

that were rigged to crash and the order in which runs were administered was counterbalanced 

across participants. Buttons indicating ‘go’ and ‘stop’ were also counterbalanced between 

subjects amongst the index and middle fingers. The task was self-paced but typically took 

participants approximately 2.5 minutes to complete each run. Participants completed two, 10-

trial practice runs prior to scanning in order to eliminate any potential confounds associated with 

learning. The YLG was programmed in Java and ran off Apache Tomcat, a program that creates 

a HTTP web-server environment. 

 

 fMRI Data Acquisition. Imaging data were acquired on a 3T Siemens Prisma scanner 

using a 32-channel head coil and a parallel image acquisition system (GRAPPA). A high 

resolution T1-weighted, magnetization-prepared rapid acquisition gradient echo (MPRAGE) 

image was acquired for registration to functional runs (TR = 2400ms, TE = 2.22ms, flip angle = 

8°, FoV = 256mm2, 0.8mm3 isotropic voxels, 208 slices). Functional images were acquired using 
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a T2* EPI BOLD sequence. Thirty-three axial slices were collected with a TR of 2000ms and a 3 

x 3 x 4 mm3 voxel resolution (TE = 30ms, flip angle = 75°, FoV = 192mm2). Participants 

completed the YLG by using a head-mounted on the coil to view an LCD back projector screen.  

 

fMRI Analysis  

The following sections describe our approach to analyzing the fMRI data using both 

univariate activity estimates of the NAcc and lPFC and multivariate pattern expression values for 

reward and cognitive control signatures (signature definitions described below). We first 

describe our preprocessing steps and then outline the single trial analysis procedure used to 

produce both univariate activity estimates and multivariate metrics for each trial during the task. 

Because we were interested in within-subject variability in decision-making, we estimated 

univariate and multivariate values for each trial across all subjects. Single-trial metrics were used 

for both the within-person (in disaggregate form) and between-person (in aggregate form) 

analyses, for consistency. We also detail how we conducted the traditional univariate analysis of 

the YLG.  

 

Preprocessing 

Prior to preprocessing, functional images were visually inspected for artifacts and 

biological abnormalities. No images contained obvious artifacts or biological abnormalities that 

warranted exclusion from further analysis. fMRI data were preprocessed and analyzed using the 

fMRI Expert Analysis Tool (FEAT, version 6.00) of the FMRIB Software Library package (FSL, 

version 5.0.9; fsl.fmrib.ox.ac.uk). Preprocessing consisted of the following steps: We used the 

brain extraction tool (BET) to remove non-brain tissue from functional and structural runs, 

spatially realigned functional volumes to the middle image to correct for head motion using 

MCFLIRT, and high-pass filtered the data with a 100-s cutoff. We used fsl_motion_outliers to 

identify volumes that exceeded a 0.9mm frame displacement (FD) threshold for head motion 

(Siegel et al., 2014), though most participants failed to record any volumes exceeding this 

threshold (Table 1-1; Figure 1-1). No participant had more than 10% of their volumes in a given 

run exceed the aforementioned framewise displacement threshold and thus, no participants were 

excluded on the basis of head motion in our sample. Spatial smoothing was not conducted during 

preprocessing and was instead applied later when extracting data from single trial activity 

estimates because the extent of smoothing depended on the type of information that was being 

extracted from the single trial (average ROI activation warrants greater smoothing than pattern 

expression analysis). We prewhitened the data to correct for autocorrelated residuals across time. 

Functional data were registered to each subject’s high resolution MPRAGE scan with FSL’s 

boundary-based registration (Greve & Fischl, 2009) while maintaining the 3 x 3 x 4 mm voxel 

size. To preserve the fine-grained spatial resolution of the data, we did not register the functional 

runs to standard MNI space at this stage but did so for the traditional group analyses (See Table 

7). As detailed below, masks and neural signatures were defined in standard space and then 

transformed to subject space. 
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Within-Subject Analyses 

Single Trial Activity Estimation. We used a least squares analytic framework to obtain 

trial-level estimates of the BOLD signal (i.e., a beta-series; Rissman, Gazzaley, & D’Esposito, 

2004). Here we opted to use the least squares single (LSS; Figure 1B) method, due to its 

advantageous statistical properties over the least squares all (LSA) estimator, especially 

considering the fast timing of the YLG (Mumford, Davis, & Poldrack, 2014; Mumford, Turner, 

Ashby, & Poldrack, 2012). Accordingly, a fixed-effects General Linear Model (GLM) was 

created for the decision period on each trial of the YLG game within each participant. A decision 

period was defined as the time between the onset of the yellow light (i.e., when the light at the 

traffic intersection switched from green to yellow as the car approached the intersection) and 

when participants pressed a button to signify their decision. A GLM was modeled for the i-th 

decision period (target decision) such that the target decision received its own regressor, all other 

decision periods were modeled in a single, separate nuisance regressor, and outcomes of all 

decisions (delays due to the braking, successful passes after running the light, or crashes) were 

modeled in another regressor. 

 

Head motion was statistically controlled for across all GLMs by adding FSL’s extended 

motion parameters (6 regressors for x, y, z, pitch, roll, yaw directions, their squares, and their 

derivatives, comprising 24 regressors) in addition to regressors for single volumes that exceeded 

a frame displacement threshold of 0.9mm (i.e., censoring). The first temporal derivative of all 

task and motion regressors were also entered into the model in order to account for slice timing 

and motion effects, respectively. Parameter estimates from each trial-specific GLM were used to 

create a linear contrast image comparing the target decision period to the implicit baseline 

(unmodeled events). We then used the unthresholded z-statistics of this contrast to extract 

univariate and multivariate estimates of the BOLD signal in regions of interest.  

 

            Extracting Univariate ROI Activity from Single Trial Estimates (Classic Model).  Masks 

were defined to extract univariate activity from the NAcc and lPFC. Both masks were defined 

using the Harvard-Oxford probabilistic atlas as rendered in FSL’s viewer (fslview) on the 

MNI152 NLIN 6th generation T1 template image at 2 mm3 voxel resolution 

(avg152T1_brain.nii.gz; Brett, Johnsrude, & Owen, 2002). This atlas contains probabilistic 

masks to various bilateral structures that articulate the probability that a given voxel within the 

mask falls in the specified brain region. We created a bilateral NAcc mask by merging the atlas’ 

left and right nucleus accumbens probabilistic images into a nifti volume and thresholding the 

image at p = .25. We selected the nucleus accumbens due to prior empirical and theoretical 

accounts of this region’s importance in adolescent risk-taking (Galvan et al., 2006; Steinberg, 

2010). The .25 threshold was selected with the goal of creating a mask that was relatively 

inclusive but did not also possess clear outlying voxels (i.e., voxels with a very low probability 

of landing in the accumbens). A similar procedure was used to create a bivariate lPFC mask by 
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selecting and merging left and right interior frontal gyrus masks (both the pars opercularis and 

pars triangularis) and thresholding the image at p = .50. We chose a .50 threshold for this mask 

because lPFC activation reported in prior adolescent neuroimaging studies tends to be spatially 

broad. However, we also created another version of this mask by thresholding at p = .25 in order 

to be consistent with the NAcc mask and found broadly consistent results (masks shown in 

Figure 2).  

 

 Once our masks were defined, we transformed the masks into the native space for each 

single trial activity map using FLIRT (i.e., whole brain zstat) and then extracted activity 

estimates using the nilearn software package (Abraham et al., 2014). We used the package’s 

NiftiMasker() function to mask each single trial activity estimate with the aforementioned 

NAcc mask and then again with the aforementioned lPFC mask and extract the mean of all 

voxels within each respective mask (Figure 1C). It was at this step that we applied smoothing to 

the extracted data (6 mm, fwhm), as the NiftiMasker()function allows one to smooth a 

masked image when extracting data. This step produced a set of NAcc and lPFC activation 

estimates for each trial on the task across all subjects (i.e., each subject had as many NAcc and 

lPFC activation estimates as they did decisions in the YLG). 

  

            Computing Pattern Expression from Single Trial Estimates (Switchboard). We used 

pattern expression analyses to quantify the extent to which whole-brain patterns of brain activity 

corresponded to neural signatures of cognitive control and value-based computations (Figure 

1C). Such an analysis allows one to determine how strongly a given pattern of brain activity is 

expressed as a function of a neural signature of interest (Chang et al., 2015; Kragel et al., 2018; 

Wager et al., 2013). Neural signatures are thought to be the fingerprints of brain activity that 

encode a particular psychological process or state of interest. In practice, they are frequently 

defined as maps of the brain containing weights that quantify the strength and direction of 

association between each voxel and the psychological process of interest.  

 

The first step in this analysis involved defining neural signatures of cognitive control and 

value-based computation. To this end, we used Neurosynth, a web-based platform that automates 

meta-analysis over a large set of published fMRI studies (Yarkoni, Poldrack, Nichols, Van 

Essen, & Wager, 2011), to retrieve meta-analytic maps (uniformity) for the terms ‘value’ (470 

studies) and ‘cognitive control’ (598 studies). We chose these terms based on system-based 

theories such that ‘value’ references one system which drives adolescents to make risky 

decisions in service of acquiring immediate hedonic rewards whereas ‘cognitive control’ 

references a second system which modulates the drive towards immediate rewards (Shulman et 

al., 2016; Steinberg, 2013). A benefit of using meta-analytic maps as neural signatures is that 

they ‘allow the data to speak for themselves’ by allowing us to select voxels weights that are 

most strongly associated to our psychological processes of interest (in contrast to approaches that 

posit singular ROIs that might exclude meaningful voxels). To our knowledge, the majority of 
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data used to calculate these analytic maps come from traditional univariate studies, though we 

note that the high volume of studies should theoretically allow for identification of the most 

sensitive voxels. To ensure the robustness of results, we used both the uniformity and association 

maps (reported in Table 3). While a review of the differences between these two types of images 

is beyond the scope of this paper (see Neurosynth.org/faq), we briefly note here that association 

maps provide greater selectivity about the relationship between a voxel and a given term by 

incorporating information about base rates. To be comprehensive, we re-ran all analyses with the 

Neurosynth term ‘reward’ and observed nearly identical results. Maps of the two signatures 

(uniformity) are depicted in Figure 3.  

 

Once the neural signatures were defined, we transformed each signature into the native 

space of each single trial activity map (i.e., whole brain zstat), and extracted multivariate patterns 

from both the transformed neural signatures and activity estimates using NiftiMasker().  

Multivariate patterns were minimally smoothed (1mm fwhm; Weaverdyck, Lieberman, & 

Parkinson, 2020) and then the dot product between voxels in the two patterns (activity estimate, 

neural signatures) was taken (we re-ran all analyses with a greater smoothing kernel–4mm 

fwhm–and obtained highly similar results). This resulted in two pattern expression estimates per 

trial, one quantifying the expression of value patterns in brain activity during a given decision 

and another quantifying the expression of cognitive control patterns in brain activity during the 

same decision. Barring missing decision data (see Figure 4), each subject had 90 pattern 

expression estimates - 45 for value and 45 for cognitive control, each corresponding to a decision 

during the yellow light game.  

 

Notably, we were aware of previous work using pattern expression analyses with a 

preprocessing stream that involved normalizing images to standard space (Chang et al., 2015; 

Wager et al., 2013). We note that our decision to keep images in subject space for pattern 

expression calculation is not necessarily at odds or incompatible with these prior studies, best 

practices for pattern expression analyses, or even the broader MVPA literature. Unlike these 

prior studies, our goal was not to create a biomarker or construct a neural signature that can be 

applied across an entire population (Weaverdyck et al., 2020). Because our focus was on intra-

individual fluctuations in activity and links to decision-making behavior, it was appropriate to 

refrain from normalizing to preserve fine-grain spatial information. 

 

Between-Subject Analyses 

Aggregation of Trial-Level Data for Between-Subjects Analysis. In order to conduct 

between-subject analyses, we aggregated the trial-level univariate and pattern expression data. 

We did this by taking the average of the aforementioned brain activity metrics for each subject.  

 

Group-Level Brain Mapping Analysis. We conducted traditional, group-level brain 

mapping (mass univariate) analyses to serve as a comparison point and complement our 
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between-subject analyses (Chein et al., 2011; Op de Macks et al., 2018; Telzer, Ichien, & Qu, 

2015). To this end, we first submitted each participant’s run-level data to a fixed GLM analysis 

in FSL. For this purpose, the YLG was modeled consistent with other prior univariate studies by 

including a regressor for ‘Go’ decisions, a regressor for ‘Stop’ decisions, and a regressor for 

outcomes (regardless of type, e.g., successful pass, crash). This differed from the LSS analysis in 

that all events from each condition of interest (‘Go’ decisions, ‘Stop’ decisions, outcomes) are 

put into a single regressor for that condition, whereas the LSS analysis assigns a target decision 

trial (regardless of type) its own regressor, and all other decisions and outcomes are modeled as 

two separate nuisance regressors. The same pre-processing decisions steps were taken as in all 

other analyses (e.g., slice timing correction via adding temporal derivatives, adding extended 

motion parameters, censored volumes, etc.). The only exception was that we smoothed our data 

for this model (6mm, fwhm), and non-linearly registered high resolution anatomical images to 

the MNI152 template image (10 mm warp resolution), and used the subsequent transformation 

matrix to register the functional images to standard space. 

 

Parameter estimates from this GLM were used to create linear contrast images comparing 

the ‘Go’ and ‘Stop’ conditions (‘Go’ - ‘Stop’, ‘Stop-Go’). Random effects, group-level analyses 

were performed on this contrast using FSL’s FLAME1 module. A cluster defining threshold of Z 

= 3.1 was used in conjunction with a familywise error rate of p < 0.05 and Random Field Theory 

cluster correction to address the problem of multiple comparisons. An additional whole-brain 

analysis regressed age (mean centered) on these contrasts but found no age effects.  

 

Statistical Analysis 

 

Overview. Our analytic approach consisted of two parts. The first set of analyses 

examined neural systems underlying within-subject variability in decision-making, using both 

classic and switchboard models. The second set of analyses examined between-subject 

variability in decision-making. Here, we again compared classic and switchboard dual-systems 

models. A detailed description of both approaches follows below. For thoroughness, we also 

report a traditional between-subjects univariate analysis of the YLG in Table 7. 

 

Within-Subjects: Modeling Trial-Level Influences of Brain on Behavior. We executed our 

within-subjects test of the classic and switchboard models with a series multilevel logistic 

regression models. For each theory (classic, switchboard), we conducted a multilevel logistic 

regression model including trial-level estimates of brain activity and subject level controls (age, 

gender). The form and specification of the statistical models for both variants follow. 

 

Trial-level, Classic:  

 

Logit(Decisionij) = π0j + π1j(NAccij) + π2j(lPFCij) 
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Trial-level, Switchboard: 

 

Logit(Decisionij) = π0j + π1j(Value PEij) + π2j(Cognitive Control PEij)  

 

 

 Decisions (1 = risky (‘Go’), 0 = safe (‘Stop’)) at the i-th trial for the j-th individual were 

modeled as a function of a subject-specific intercept (π0j), and brain activity metrics. The brain 

activity metrics in the classic model were average activations in the ventral striatum (NAccij) and 

lateral prefrontal cortex (lPFCij) at the i-th trial for the j-th individual. Said activity metrics in the 

switchboard model were pattern expression (PE) estimates for value (Value PEij) and cognitive 

control (Cognitive Control PEij) for the i-th trial for the j-th individual. Subject-specific 

parameters for all within-person predictors (π1j & π2j) correspond to the subject-specific expected 

change in the log odds of making a risky decision given a one unit increase in the predictor (e.g., 

average univariate brain activity, pattern expression score) holding the other predictors constant. 

All trial-level predictors were standardized using the grand mean. Re-running main analyses 

while standardizing trial-level predictors within-person produced statistically significant results 

with comparable parameter estimates (magnitude and sign).  

 

 As noted above, we controlled for the following between subject variables: gender 

(dummy coded, 0 = male, 1 = female) and age. The form of the between-subjects component of 

the model for both classic and switchboard follows (i.e., this component of the model was the 

same for both classic and switchboard models).  

 

π0j = γ00 + γ01(Genderj) + γ02(Agej) + u0j 

π1j = γ10 + u1j 

π2j = γ20 + u2j 

 

 This component of the model reflects how all trial-level parameters are allowed to vary 

randomly between subjects (indicated by the uj’s, random effects) while showing the main effect 

of between subject predictors (γ01 & γ02). The other gammas in the model (γ10 & γ20) represent 

the fixed effect of the trial-level predictors (i.e., the portion of trial-level effects that are common 

to all participants). Random coefficient regression models were implemented with the ‘lme4’ 

package in R (Bates, Mächler, Bolker, & Walker, 2014) and significant tests were obtained using 

the ‘lmerTest’ package (Kuznetsova, Brockhoff, & Christensen, 2017). Here we note that this 

analytic framework affords us greater statistical power than we would focusing on a model 

exclusively testing between-subjects differences because we have many decisions nested within 

individuals. Because our predictors of interest occurred at the level of the decision, we were able 

to reach approximately 80% statistical power to detect a meaningful trial-level effect (Astivia, 

Gadermann, & Guhn, 2019; Schoeneberger, 2016). We also tested permutations of these models 
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that allowed age to interact with the trial-level brain activity metrics, effectively testing the 

possibility that the strength of the two neural systems changes with age.  
 

Modeling Between-Subject Brain-Behavior Associations. Using the aggregated univariate 

activity (i.e., the average of each subjects’ trial-level brain activity metrics) and aggregated 

pattern expression estimates (obtained via averaging over estimates within each subject), we 

sought to examine between subject brain-behavior associations. To do so, we conducted two 

multiple regression analyses. The first analysis examined the contribution of univariate NAcc 

and lPFC activity on the percentage of risky decisions during the task, while controlling for age 

and gender. The second analysis swapped out the univariate predictors for the multivariate 

pattern expression metrics. 

 

Results 

 Baseline Models and Descriptive Data Visualizations. Individual decisions across all 

subjects are plotted in Figure 4. This figure highlights the variability in risky behavior both 

within and between subjects. Additionally, we ran two ‘baseline’ multilevel logistic regression 

models on the trial-level risky decision-making data from the YLG. The first model was an 

empty model, modeling trial-level decisions only as a function of an intercept, effectively 

estimating the unconditional likelihood of making a risky decision on the task (Table 1). The 

second model included gender and age as predictors (‘covariate-only model’) so as to examine 

the effects of these variables unconditioned on the brain activity data (Table 1)—neither were 

related to risky decision likelihoods.  

 

 Within Subjects Results. Results from our within-subject models are summarized in 

Tables 2-4, and Figure 5. Each are described in greater detail below.  

 

Classic. Using the classic system-based model, we found that trial-level univariate NAcc 

and lPFC activity were independently associated with decision tendencies in the yellow light 

game in a manner consistent with theory. Within-person increases in NAcc activity were 

associated with an increased likelihood of making a risky decision, whereas within-person 

increases in lPFC activity were associated with a decreased likelihood of making a risky 

decision. The magnitudes of the effects were comparable: a one unit increase in NAcc activity 

was associated with a 15.03% increase in the expected odds of making a risky decision, while a 

one unit increase in lPFC activity corresponded with a 13.67% decrease in the expected odds of 

making a risky decision (calculated using coefficients reported in Table 2, Column A). Notably, 

these results remained highly similar when using an alternate, more conservative lPFC mask 

(results still significant, same direction, comparable effect sizes; Table 2, Column B). Age did 

not interact with either NAcc or lPFC activity (Table 4, Column A). 
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 Switchboard. Results from the switchboard system-based model are summarized in Table 

3. These results are partially consistent with system-based theories, in that cognitive control 

pattern expression estimates were significantly associated with risky decision-making on the 

YLG. A one unit increase in cognitive control pattern expression corresponded with a 11.57% 

decrease in the expected odds of making a risky decision (obtained from Table 3, Column A). 

Sensitivity analyses indicated this effect was robust to variations in neural signatures (e.g., when 

using uniformity and association maps, unique voxels in uniformity maps, see Table 3, Columns 

B-C) and these effects were not present when using theoretically orthogonal neural signatures 

(‘vision’ and ‘auditory’, see Table 5). Collectively these results indicate that multivariate pattern-

based activity related to cognitive control encodes meaningful information about risk-taking 

tendencies. Simultaneously, and inconsistently with system-based theories, value-based pattern 

expression estimates were not significantly associated with risky decision propensities 

(coefficient: .051, (SE = .048, ns), from Table 3B). To ensure our value-based results were not 

driven via the selection of an erroneous pattern, we re-ran analyses using Neurosynth’s ‘reward’ 

term and obtained near-identical results (reward coefficient: .043 (SE = .048, ns)). Importantly, 

multivariate patterns and univariate activity metrics were modestly correlated (correlations 

ranged between approximately .09 and .4), and overlap between the lPFC and cognitive control 

multivariate signature—the only system that was significant in both model variants—was 

minimal (only 7.9% of the voxels in the cognitive control signature were also present in the lPFC 

mask). We reiterate here that univariate activity metrics and multivariate pattern expression 

scores represent different aspects of brain activity, and these descriptive statistics emphasize this 

point. As with the classic model, age did not interact with either value or cognitive control 

patterns.  

 

 We conducted post-hoc analyses to interrogate the lack of a relationship between value-

based pattern expression estimates and risky behavior. We first examined whether multivariate 

signatures within the NAcc were associated with behavior given that univariate signals within 

this region were, operating under the logic that value-based patterns may be more localized to a 

given region than cognitive control. We re-ran the pattern expression analyses with the value-

based neural signature, but this time only included voxels in the NAcc in our mask. Again, this 

analysis showed a non-association between value-based pattern expression scores in the NAcc 

and risky decision-making (coefficient = 0.000, ns). Given this result and the nature of pattern 

expression analysis, it was puzzling why univariate activity in the NAcc tracked with behavior 

(especially when considering a bulk of the pattern was comprised of NAcc voxels, see Figure 3), 

but value-based signatures—even if localized to the NAcc—did not. This led us to believe that 

perhaps it was the homogeneity of multivariate activity in NAcc that related to risky decision 

tendencies. Multivariate patterns necessarily encode spatial variability, but it could that 

homogeneity or uniformity of activity are more strongly predictive of behavior, suggesting that 

pattern expression estimates that inherently capture this variability may be poor predictors of 

behavior. To test this, we re-extracted multivariate patterns from the NAcc and lPFC and 
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computed Gini coefficients for each region for each trial. Traditionally used in macroeconomics 

but recently applied in neuroscience (Guassi Moreira, McLaughlin, & Silvers, 2019; Guest & 

Love, 2017), Gini coefficients in this context can describe the extent to which brain activity in a 

given region is homogenous (uniform) or heterogeneous. Indeed, as shown in Table 6, a lower 

Gini coefficient in the NAcc (i.e., more uniform activation) was associated with an increased 

propensity to take risks on the YLG, suggesting a strong, one-dimensional encoding of value 

signatures during decision-making.  

 

 Between Subject Results. Results from between subject analyses indicate that none of the 

between-subject brain activity metrics (univariate or pattern based) were related to proportion of 

risky decisions (univariate NAcc: b = 0.223, SE = 0.316, p > .250; univariate lPFC: b = -0.209, 

SE = 0.270, p > .250; value pattern expression: 8.725e-5, SE = 1.823e-4, p > .250; cognitive 

control pattern expression: -1.435e-4, SE = 1.219e-4, p = .245). A traditional brain mapping 

(mass univariate) analysis of the YLG showed significant anterior cingulate cortex (ACC) 

activity for the ‘Go > Stop’ contrast in addition to significant amygdala and dorsal striatal 

activity (Figure 6; Table 7). 

 

Discussion 

 

 The current study employed a brain modeling philosophy (Kragel et al., 2018) in 

conjunction with within-subject multilevel logistic regression to test system-based theories of 

adolescent decision-making. In doing so, we also expanded upon traditional neuroscientific 

implementations of system-based theories by examining the role of multivariate neural signals. 

We found that features of brain activity predicted behavior in a manner consistent with system-

based theories. We observed this in two variants of the model—a classic implementation 

assuming modularity among ROIs, and a novel variant that included information for multivariate 

signatures. These findings have a number of ramifications for neuroscientific models of 

adolescent decision-making.  

 

 Implications for System-Based Theories of Adolescent Decision-Making. We observed 

that value-based and cognitive control systems generally predicted behavior in a manner 

consistent with system-based theories: univariate estimates of NAcc and lPFC activity were 

directly and inversely, respectively, associated with the probability of making risky decision, 

while cognitive control pattern expression was predictive of a reduced likelihood to make a risky 

decision. Our between subject analyses, along with traditional mass univariate brain mapping 

analyses, failed to show any such trends. Two broad conclusions follow from these results. First, 

these findings support the utility of brain modeling techniques for testing system-based theories 

of decision-making in developmental neuroscience and beyond, reinforcing that brain modeling 

and brain mapping philosophies are not simply inverse functions of the other that yield 

equivalent results (Kragel et al., 2018). Second, and perhaps more importantly, these results 
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suggest features of system-based theories of decision-making carry evidentiary value, despite 

compelling arguments to the contrary (Pfeifer & Allen, 2012). The present findings suggest that 

system-based theories may offer interim frameworks for relatively young fields such as cognitive 

neuroscience as they continue to incrementally extend theory on the basis of novel evidence 

(Baddeley, 2012; Pfeifer & Allen, 2016). Even as these theories are eventually replaced by 

stronger accounts that consider more nuanced relationships between cognitive control and value 

systems as well as other biological influences (Davidow et al., 2018; Harden et al., 2017), their 

use as ‘baseline’ models may actually facilitate novel theoretical insights so long as they are not 

subscribed to too rigidly. Furthermore, that features of system-based models have evidentiary 

value is not tantamount to saying they are optimal (indeed, a comparison of model fit statistics 

between system-based models and empty or covariate-only models in the present study suggests 

otherwise), but rather points to the need to develop and test more nuanced quantitative models of 

the neurodevelopment of decision-making behavior. Relatedly, we failed to observe interactions 

between brain activity metrics and age, a major tenet of developmental system-based models. 

This null finding underscores our call for greater nuance in quantitative models of decision-

making neurodevelopment: clear age-related behavioral differences in risk-taking behavior 

(Defoe, Dubas, & Romer, 2019; Duell et al., 2017) are necessarily encoded in brain activity, yet 

current modeling approaches have been unable to consistently link age differences in the 

association between neurobiology and behavior. 

 

 Modularity and Population Coding in System-Based Theories of Decision-Making. On a 

more granular level, our results speak to two long-discussed concepts in neuroscience: 

modularity and population coding (Erickson, 2001). These two concepts are respectively 

reflected by univariate and multivariate analyses in neuroimaging data. Most system-based 

theories of adolescent decision-making originate from disciplines within psychological science 

that espoused modularity at the psychological level (Steinberg et al., 2008). Although it is not a 

given that psychological modularity necessitates neural modularity, this assumption has been 

preserved in many neuroscientific implementations of system-based theories (Shulman et al., 

2016; Strang et al., 2013), despite evidence in adults that multivariate patterns reflect meaningful 

information about decision-making (Hampton & O’Doherty, 2007). Our univariate and 

multivariate results, somewhat surprisingly, respectively provide support for both modularity and 

population coding (Cosme & Lopez, 2020) – specifically, results revealed that univariate NAcc 

and lPFC activity was associated with decision behavior, and also that pattern expression of a 

multivariate cognitive control (but not value) signature predicted decisions. The former 

(evidence of modularity) is surprising, given the limited support for neural modularity that prior 

studies have found (Erickson, 2001), whereas the latter (population coding) is notable because no 

prior studies, to our knowledge, have found evidence of such in the context of brain modeling 

decision behavior (i.e., using multivariate metrics to model behavior/cognition).  
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These findings carry notable implications. Although our results suggest that modularity 

may be a feature of adolescent decision behavior, we cannot conclude with certainty what 

activation in those modules (i.e., NAcc and lPFC) reflects. While such activation could index 

computations related to value and cognitive control, respectively, it is more difficult to infer 

psychological processes from ROI-based activity than from multivariate signatures, which tend 

to be more specific in what they reflect (Poldrack, 2006; Wager et al., 2013). Our data are 

roughly consistent with an amplifier model, which would allow for reconciliation of our classic 

and switchboard results. In such a model, multivariate patterns may code for the psychological 

process of interest and the modules observed here act as ‘volume’ knobs that amplify their 

magnitude. In other words, the multivariate patterns code for a given psychological process 

whereas the univariate activity of the modules controls the intensity of the process. Indeed, such 

multidimensional coding schemes appear to support decision behaviors in monkeys (Zhang, 

Chen, & Monosov, 2019), and similar findings from human samples in other domains (eating 

behavior) further hint at the neural plausibility of a modular-population hybrid scheme (Cosme 

& Lopez, 2020). Further work could also examine whether there is a qualitative shift between 

coding schemes across development (Gee et al., 2013). Though we found no such evidence in 

our own data, future work could broaden age ranges to include young children and adults to 

determine the extent to which system-based models explain decision making at different 

developmental stages. Overall, it is clear that additional work is needed to characterize the 

relative contributions of neural modules and population codes in system-based theories of 

decision-making, involving the use of different behavioral tasks, different multivariate 

signatures, and evaluation of decision behaviors in different contexts. 

 

 Building on System-Based Theories of Adolescent Decision-Making. Our findings 

suggest system-based models provide at least some explanatory utility, but it is critical that 

future work improves upon existing models in several key ways. One future step will be to 

determine the algebraic form of influential system-based theories. As we noted before, existing 

neuroscientific system-based theories of human decision-making in linguistic terms without 

specifying a computational model (i.e., they are explained qualitatively, instead of with an 

algebraic equation). This means one could posit a number of algebraic forms that satisfy 

qualitative requirements of system-based theories that each carry very different implications. We 

assumed a linear relationship between the log odds of a risky choice and metrics of brain 

activity, but an alternate statistical model may be more appropriate. Future studies could test a 

set of candidate algebraic formulations of system-based decision-making theories (e.g., 

estimating latent value and linking to decision likelihoods, etc.). This could facilitate cross-study 

and cross-discipline comparison by setting an objective framework that supports falsifiability. 

Future work must also directly address our null findings involving value-based pattern 

expression values. While we tested ‘reward’ and ‘value’ patterns and obtained null results with 

both, it is possible an alternative untested pattern computed in a different manner (i.e., not 

relying on meta-analytic maps) would yield positive results. To rigorously test this possibility, 
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we recommend future studies systematically create and test patterns that vary iteratively on 

psychological processes relevant for system-based theories (Chang et al., 2015; Wager et al., 

2013). This process should also involve understanding how such maps change with development, 

as it may be unrealistic to assume a reward signature derived in one age group is readily 

applicable to all ages. Taking such an approach would also have the benefit of providing insights 

into what specific psychological features these patterns encompass – for example, by examining 

subcomponents of cognitive control (e.g., working memory). Finally, it is worth noting that 

interactions between each system and age were null, defying a core feature of system-based 

theories, suggesting that more bottom-up exploratory work is needed to better understand how 

the dynamic potency of each system changes with age. Ideally, such work would involve 

repeated sampling at both the decision- and subject-level (i.e., longitudinal assessments). 

 

Limitations and future directions. The current study has several limitations that point 

directly to future directions in this line of research. The first is that the effect sizes found from 

key results are somewhat modest. Though not a traditional ‘limitation’ per se, this points to the 

possibility that other untested computational signals in the brain may also contribute to decision 

behavior. Another limitation is that the present results were obtained in a single, moderately-

sized sample and ought to be replicated (Helmer et al., 2020; Marek et al., 2020). That said, our 

concerns about samples size are partially assuaged by the fact that we leveraged multilevel 

models to maximize statistical power when examining brain-behavior associations 

(Schoeneberger, 2016). Three additional limitations also exist regarding generalizability. First, in 

terms of adolescent decision-making, prior work shows adolescent decision behaviors are prone 

to tremendous diversity across the world and even within individuals (Steinberg et al., 2017), 

forcing us to consider that these results, even ignoring other limitations, may not reflect a 

‘common ground truth’ among all humans or even within a single human (to the extent such a 

‘ground truth’ actually exists). Second, it is possible that a different pattern of results would 

emerge for decision behaviors in other contexts (e.g., moral, financial decisions). Third, it is 

unclear whether these findings are specific to adolescence or generalize to general decision-

making processes across the lifespan. A final limitation is that we did not compare our 

implementation of system-based theories to alternative theories. While this is mainly because 

system-based theories have dominated the field and alternative approaches have been relatively 

atheoretical (Pfeifer & Allen, 2012, 2016), we look forward to future work aimed at rigorously 

comparing alternate explanations.  

 

Concluding Remarks. System-based theories of adolescent decision-making have drawn 

tremendous scholarly interest, yet the veracity of their neuroscientific implementation has been 

the subject of much debate. This investigation was the first to our knowledge to test system-

based theories of adolescent decision-making using a methodological approach that is more 

consistent with the core tenets of such theories (i.e., brain modeling). We found evidence that 

system-based theories are indeed predictive of adolescent risk-taking behaviors, showing that 
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univariate and multivariate brain activity metrics of cognitive control and value-based processes 

predict trial-by-trial risky decision tendencies. We did not, however, observe evidence that these 

neural systems interacted with age, at odds with a key element of system-based theories. Overall, 

this work contributes knowledge about the neural bases of adolescent decision behavior.   

Table 1. Log-odds of risky choice from Empty and Covariate-Only models. Table 1-1 lists head 

motion statistics for fMRI data. 

 

 Empty Covariate-Only 

Term Estimate 

Intercept 0.527 (0.087)*** 0.599 (0.119)*** 

Trial Number - -0.009 (0.047) 

Age - 0.104 (0.085) 

Gender - -0.144 (0.169) 

Variance Component Estimate 

Var(Intercept) 0.282 0.268 

Var(Trial Number) - 0.006 

Fit Statistic Statistic 

AIC 2887.1 2892.8 

BIC 2898.5 2932.8 

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Sex was 

dummy coded (0 = male, 1 = female). Standard errors of parameter estimates are printed in 

parentheses. Var() refers to a variance component of a given random effect from the model. 
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Table 2. Log-odds of risky choice from within-subjects analysis of classic system-based models 

Term  A – Estimate  B – Estimate 

Intercept 0.580 (0.121)*** 0.575 (0.121)*** 

NAcc 0.140 (0.063)* 0.135 (0.064)* 

lPFC -0.147 (0.057)* -0.123 (0.058)* 

Age 0.105 (0.086) 0.104 (0.086) 

Gender -0.084 (0.172) -0.077 (0.172) 

Variance 

Component 

A – Estimate B – Estimate 

Var(π0ij) 0.267 0.267 

Var(π1ij) 0.041 0.043 

Var(π2ij) 0.024 0.024 

Fit Statistic A – Statistic B – Statistic 

AIC 2888.7 2888.7 

BIC 2951.5 2951.5 

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Gender 

was dummy coded (0 = male, 1 = female). NAcc refers to univariate ventral striatum activity; 

lPFC refers to univariate lateral prefrontal cortex activity. Var() refers to a variance component 

of a given random effect from the model. Results come from a multilevel logistic regression 

model, with log-odds of a risky choice as the dependent variable. The ‘A’ column references 

results using an lPFC mask thresholded at .25; the ‘B’ column references results using an 

alternate, more conservative mask (thresholded at .50) that covered less cortical area. 
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Table 3. Log-odds of risky choice from within-subjects analysis of switchboard system-based 

models 

Term A – Estimate B – Estimate C – Estimate 

Intercept 0.581 (0.123)*** 0.510 (0.122)*** 0.619 (0.122)*** 

Value PE 0.051 (0.048) 0.008 (0.054) -0.004 (0.052) 

Cognitive Control PE -0.123 (0.047)** -0.119 (0.060)* -0.154 (0.055)** 

Age 0.113 (0.087) 0.134 (0.079)’ 0.122 (0.087) 

Gender -0.104 (0.181) 0.054 (0.181) -0.176 (0.174) 

Variance Component A – Estimate B – Estimate C – Estimate 

Var(π0ij) 0.259 0.253 0.284 

Var(π1ij) 0.000 0.006 0.010 

Var(π2ij) 0.003 0.039 0.022 

Fit Statistic A – Statistic B – Statistic C – Statistic 

AIC 2894.3 2892.6 2888.1 

BIC 2957.1 2955.4 2950.9 

 

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Value PE 

refers to value-based pattern expression; Cognitive Control PE refers to cognitive control pattern 

expression. Var() refers to a variance component of a given random effect from the model. 

Results come from a multilevel logistic regression model, with log-odds of a risky choice as the 

dependent variable. The ‘A’ column references results using Neurosynth association maps for 

pattern expression analysis; the ‘B’ column references results using Neurosynth uniformity 

maps; the ‘C’ column references results from a pattern expression analysis using only unique 

voxels among the value and cognitive control Neurosynth uniformity maps (i.e., common voxels 

between the two masks were removed).  
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Table 4. Models testing interactions with age 

Term  A – Estimate  B – Estimate 

Intercept 0.583 (0.121)*** 0.508 (0.122)*** 

NAcc (A) | Value PE 

(B) 

0.120 (0.063)’ 0.007 (0.054) 

lPFC (A) | Cognitive 

Control PE (B) 

-0.139 (0.057)* -0.117 (0.061)’ 

Age 0.107 (0.087) 0.120 (0.086) 

Gender -0.088 (0.171) -0.056 (0.182) 

NAcc (A) | Value PE 

(B) x Age 

-0.090 (0.063) 0.004 (0.056) 

lPFC (A) | Cognitive 

Control PE (B) x Age 

0.045 (0.057) 0.019 (0.062) 

Variance Component A – Estimate B – Estimate 

Var(π0ij) 0.266 0.252 

Var(π1ij) 0.033 0.006 

Var(π2ij) 0.022 0.036 

Fit Statistic A – Statistic B – Statistic 

AIC 2890.8 2896.5 

BIC 2965.0 2970.7 

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Gender 

was dummy coded (0 = male, 1 = female). NAcc refers to univariate ventral striatum activity; 

lPFC refers to univariate lateral prefrontal cortex activity. Var() refers to a variance component 

of a given random effect from the model. Results come from a multilevel logistic regression 

model, with log-odds of a risky choice as the dependent variable. The ‘A’ column references 

results from the classic model (lPFC threshold = 0.25); the ‘B’ column references results from 

the switchboard model (association maps). In order to be concise, differing terms for each model 

(any term involving a metric of brain activity) are included in the same line of the first column, 

separated by ‘|’.  
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Table 5. Log-odds of risky choice from models with additional Neurosynth patterns to gauge 

uniqueness of cognitive control pattern expression findings 

Term Estimate 

Intercept 0.569 (0.120)*** 

Vision PE 0.096 (0.054)’ 

Auditory PE 0.075 (0.050) 

Age 0.072 (0.083) 

Gender -0.072 (0.168) 

Variance Component Estimate 

Var(π0ij) 0.292 

Var(π1ij) 0.027 

Var(π2ij) 0.011 

Fit Statistic Statistic 

AIC 2888.4 

BIC 2951.2 

 

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Gender 

was dummy coded (0 = male, 1 = female). The alternate maps correspond to the terms listed in 

the table (‘Vision’, ‘Auditory’). ‘PE’ refers to pattern expression. Association maps for each 

term were used. Var() refers to a variance component of a given random effect from the model. 

Results come from a multilevel logistic regression model, with logodds of a risky choice as the 

dependent variable. 
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Table 6. Models with predicting decision activity from trial-level Gini coefficients  

Term Estimate 

Intercept 0.629 (0.121)*** 

NAcc Gini -0.115 (0.048)* 

lPFC Gini 0.057 (0.047) 

Age 0.080 (0.088) 

Gender -0.198 (0.172) 

Variance Component Estimate 

Var(π0ij) 0.270 

Var(π1ij) 0.009 

Var(π2ij) 0.004 

Fit Statistic Statistic 

AIC 2894.1 

BIC 2956.9 

 

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Gender 

was dummy coded (0 = male, 1 = female). Var() refers to a variance component of a given 

random effect from the model. Results come from a multilevel logistic regression model, with 

log-odds of a risky choice as the dependent variable. 
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Table 7. Brain regions which showed significant activation Go > Stop and Stop > Go. 

 

Region     x   y   z    Z   k 

Go > Stop       

Occipital Pole  L  -18  -90   0 7.51 13177a 

Striatum  R   10    6   8 4.22 a 

pSTS  L  -52 -36  28 5.18 491 

ACC  R  12 10  42 5.15 406 

Amygdala  L  -30 -10 -14 5.60 372 

Amygdala  R  30 -12 -12 5.86 229 

Insular Cortex  L -56    4  12 4.49 216 

SPL  R  24  -52  56 5.34 146 

 

Stop > Go       

TPJ  R  50 -56    42 4.97 566 

TPJ  L -46 -60    46 4.52 204 

Note. R refers to right and L refers to left. x, y, and z refer to MNI coordinates; Z refers to the z-

statistic at those coordinates (local maxima); pSTS refers to posterior superior temporal sulcus; 

ACC refers to anterior cingulate cortex; IOG refers to inferior occipital gyrus; ACC refers to 

anterior cingulate gyrus; SPL refers to superior parietal lobule; TPJ refers to temporoparietal 

junction. Regions that share the same superscript are part of the same cluster. 
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Figure 1. Schematic of Data Collection, Processing, and Analysis. Figure 1-1 visualizes head 

motion metrics for fMRI data. 

 

 

Note. Panel A depicts data acquisition of the Yellow Light Game while participants were 

undergoing fMRI scanning. Panel B depicts the Least Squares Single (LSS) modeling 

implemented as a preprocessing step. Panel C is a schematic of extracting the set of univariate 

and multivariate metrics from Panel B’s resulting beta-series.  
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Figure 2. Nucleus Accumbens and Lateral Prefrontal Cortex Masks Used to Extract Univariate 

Activation Estimates 

 

 

Note. NAcc refers to ventral striatum (NAcc); lPFC refers to lateral prefrontal cortex. Thresholds 

were applied to probabilities values from the Harvard-Oxford cortical and subcortical atlases. 

Masks are depicted in MNI standard space and projected onto an average of all subjects high 

resolution anatomical images.  
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Figure 3. Multivariate signatures of Value (top row) and Cognitive Control (bottom row) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Both signatures obtained from Neurosynth. Uniformity signatures are depicted here. 

Voxels weights differed between each mask (i.e., a hypothetical voxel could be included in both 

signatures, but its weight likely varied between signatures. This is important to note because 

these maps were used as multivariate signatures, which ultimate meant that the same brain 

regions included in both masks possessed a different multivariate signature.  
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Figure 4. Visualizing risky and safe decisions on the yellow light game for all participants 

 

Note. Red squares represent risky decisions, black squares represent safe decisions, white 

squares represent no decision (i.e., failure to respond). Columns correspond to decision (trial) 

number, arranged chronologically; Rows correspond to subjects (arranged in order of descending 

rate of risky decisions). Entries into the matrix represent whether a given subject made a risky or 

safe decision on a given trial. 
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Figure 5. Associations between univariate and multivariate brain activity and probability of 

making a risky decision 

 

 

 

Note. ‘NAcc Univariate’ refers to the trial-level univariate NAcc activity estimates; ‘lPFC 

Univariate’ refers to the trial-level univariate lPFC activity estimates; ‘Cog Control Pat Exp’ 

refers to trial-level cognitive control pattern expression estimates; ‘Value Pat Exp’ refers to trial-

level value-based pattern expression estimates. Fixed effects of brain activity metrics from both 

models are shown in the left panel. Subject specific random effects of associations between risky 

decision-making probability and univariate NAcc and univariate lPFC activity are depicted in the 

middle panel. Subject specific random effects of associations between risky decision-making 

probability and, value-based pattern expression, and cognitive control pattern expression values 

are depicted in the right panel.  
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Figure 6. Results from the Go > Stop (top row) and Stop > Go (bottom row) contrasts.  

 

Note. XYZ refer to voxel coordinates in MNI standard space. Clusters rendered here were 

obtained using a cluster-defining-threshold of Z = 3.1, correct for multiple comparisons at p < 

.05 using Random Field Theory. Clusters are rendered on ‘bg_image’, FSL’s average of all 

subjects’ high resolution anatomical images. 
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Table 1-1. Head motion statistics 

 

 n Volumes > 0.9mm 

(mean, SD) 

Most extreme displacement 

(mean, SD)  

% n Volumes < 0.9mm  

 

% Extreme displacements 

< 1.8mm 

Run 1 0.0816, 0.5714 0.3270, 0.2894 97.96% 100% 

Run 2 0.2653, 0.8845 0.5013, 0.7125 87.76% 95.92% 

Run 3 0.3265, 1.1617 0.4342, 0.4876 91.84% 95.92% 

 

Note. ‘n Volumes > 0.9mm’ reflects the average number of volumes exceeding the 0.9mm frame 

displacement threshold across subjects; ‘Most extreme displacement’ reflects the average of the 

most extreme frame displacements across subject. ‘% n Volumes < 0.9mm’ indicates the 

percentage of subjects whose data did not have a single volume exceeding our 0.9mm frame 

displacement cut-off. ‘% Extreme displacements < 1.8mm’ indicates the percentage of subjects 

whose most extreme frame displacement value did not exceed 1.8mm, corresponding to twice 

the value of our 0.9 mm threshold.  
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Figure 1-1. Most extreme frame displacements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Values are randomly jittered along the x-axis. Frame displacement values are in millimeter 

units. The dotted line corresponds to our frame displacement cutoff of 0.9.  
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