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We propose a new class of models for the estimation of Geno-
type by Environment (GxE) interactions in plant-based genet-
ics. Our approach, named AMBARTI, uses semi-parametric
Bayesian Additive Regression Trees to accurately capture
marginal genotypic and environment effects along with their
interaction in a fully Bayesian model. We demonstrate that
our approach is competitive or superior to the traditional
AMMI models widely used in the literature via both simu-
lation and a real world data set. Furthermore, we intro-
duce new types of visualisation to properly assess both the
marginal and interactive predictions from the model. An
R package that implements our approach is available at
https://github.com/ebprado/ambarti.
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Introduction
The interaction between genotypes and environments (GxE)
is a key parameter in plant breeding (1). Poor understand-
ing of GxE can lead to sub-optimal selection of new geno-
types and inbred lines. Understanding the GxE interactions
is crucial for germplasm management, having strong genetic
and economic impacts on seed production and crop yield
(2). Many models have been proposed for studying GxE in
the context of Multi-Environmental Experiments (METs) (3).
One special case is the Additive Main Effects Multiplicative
Interactions Model (AMMI) (4).
The classical AMMI models combine features of Analysis of
Variance (ANOVA) with a bilinear term to represent GxE in-
teractions. In addition, AMMI models allow for estimation
of main effects of genotypes and environments, and the de-
composition of the interaction through a bilinear term. Many
extensions to the AMMI models have been proposed, includ-
ing Robust AMMI (5) and Weighted AMMI (3).
In this paper, we extend the Bayesian AMMI model of Josse
et al. (6) to allow for richer GxE interactions, and simi-
larly sidestep the model choice complexity term present in
all AMMI-type approaches. We achieve this goal by in-
cluding a new variant of the Bayesian Additive Regression
Trees (BART) (7), which we term ‘double-grow’ BART. The
new proposed method, named AMBARTI, provides a fully
Bayesian joint model, where the ‘double-grow’ BART com-
ponent is solely responsible for GxE interactions.
BART is a non parametric Bayesian algorithm that gener-
ates a set of trees and uses random splits in the range of

∗Joint first authors.

explanatory variables to produce predictions for a univariate
response. Given its flexibility to deal with non linear struc-
tures and complex interactions terms, the use of BART and
its extensions has increased with applications in many areas
including proteomic studies (8), hospital performance evalu-
ation (9), prediction of risk of credit scores (10) among many
others.
We compare our newly proposed AMBARTI model with the
traditional AMMI approaches, and we show that its perfor-
mance is superior (judged on out of sample error) in both
simulated and real-world example data. The real dataset we
use is taken from the Value of Cultivation and Usage (VCU)
experiments of the Irish Department of Agriculture, which
were conducted in the years between 2010 and 2019. Fur-
thermore, the output of AMBARTI leads us to suggest sev-
eral new forms of visualisation that we believe are easier to
interpret for non-specialists.
The paper is structured as follows. In the next section, we
describe the framework used to collect evidence from METs,
including the classic genetic equation to describe the relation-
ship between phenotypes, genotypes, and environments. We
also outline the formulation of the AMMI model in its classic
form. After, we briefly describe the standard Bayesian Addi-
tive Regression Trees model and the structure of our novel
AMBARTI approach. Following we present the main results
from the simulation experiments and real datasets, respec-
tively. Finally, we conclude with a discussion and outline
further opportunities.

Methods
GxE interactions and MET. The phenotypic expression of
a genetic character can be usually decomposed in terms of
genetic factors, environmental factors, and the interactions
between them as shown in Equation 1:

p= g+e+ (ge), (1)

where p is the phenotypic response, g is the genetic factor, e is
the environmental factor, and (ge) is the interaction between
genotypes and environments. The last term is necessary due
to the different response of genotypes across different envi-
ronments. The presence of GxE interactions implies that each
genotype may have different phenotypic responses across a
set of environments. If we produce a rank that orders the per-
formance of each genotype into each environment, we will
notice that the order of the best to worst genotype is different
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across the environments. The presence of GxE interactions is
known to be capable of having large effects on the phenotypic
response (11, 12).
The (ge) terms can be estimated in a MET design, where
several environments and genotypes are evaluated for a given
phenotype (13). In plant breeding, the need for METs is con-
stant given the fact that the germplasm generates new geno-
types every year and the pressure of diseases and other fac-
tors are dynamic. Such experiments require a complex set of
logistical activities, leading to high costs of implementation.
These trials thus have strong regulatory appeal in the seed
and biotech industries around the world (2).
Reliable information about GxE can help breeders make de-
cisions on cultivar recommendations. In this sense, models
for the study of GxE need to be able to answer questions such
as which genotypes can perform well across a set of environ-
ments and which are specifically recommended for a given
environment. The answers to these questions are crucial both
to broad breeding strategies, i.e., to obtain one or more geno-
types that perform well in a set of environments, and to target
breeding, where we determine the best genotype for a given
environment (3).

Traditional AMMI models. A simple statistical linear model
can be used to model data from METs. The model can be
written as in Equation 2:

yij = µ+gi+ej + (ge)ij + εij , (2)

where i = 1, . . . , I , j = 1, . . . ,J , gi is the effect of genotype
i, ej is the effect of environment j, and (ge)ij represents the
interaction between genotype i and environment j.
In the specification of the Equation 2, the term (ge) can be
thought of as representing a decomposition of the residual
from a more basic linear model. In this sense, (14) and (4)
proposed a method to decompose the residual term as a sum
of multiplicative factors that includes the (ge) term. This
yields the decomposition:

(ge)ij =
Q∑
q=1

λqγiqδjq, (3)

whereQ is the number of components to be considered in the
analysis, λq is the strength of the interaction of component q,
γiq represents the importance of genotype i in component q,
and δjq represents the importance of environment j in com-
ponent q; see Appendix B for the restrictions imposed on γiq ,
δjq and λq to make the model identifiable. Hence, the com-
plete AMMI model is present in Equation 4.

yij = µ+gi+ej +
Q∑
q=1

λqγiqδjq + εij . (4)

The interaction terms in 4 are estimated by a Singular Value
Decomposition (SVD) of the matrix of means of genotypes
into environments (GE). In this sense, λq is the q-th eigen-
value of the matrix (GE), γik is the i-th element of the left sin-
gular vector and δjk is j-th element of the right singular vec-
tor obtained in the SVD (15). In practice, the classical AMMI

model can be run in R using the package agricolae (16)
or via functions programmed by the user as in (17).
The protocol for estimation of the terms in a standard AMMI
model is given by (18). This involves the following steps:

1. Obtain the grand mean and principal effects of the
genotypes and environments using ANOVA with two
factors based on a matrix of means containing the
means of each genotype into each environment.

2. Obtain the residuals from the model above that will
comprise the interaction matrix, where each row is an
environment and each column a genotype.

3. Choose an appropriate value for the number of compo-
nents Q.

4. Form the multiplicative terms that represent the
reduced-dimension interactions via an SVD of the ma-
trix of interaction residuals.

The rank of the matrix (GE) is assumed to be r = min(I−
1,J−1). Thus, the number of components Q may vary from
1, . . . , r. The term min(I − 1,J − 1) establishes the mini-
mum number of non zero eigenvectors to be obtained in the
SVD. Taking Q= r, the AMMI model would capture all the
variance related to the interaction, and it would result in over-
fitting. This problem is ameliorated by using a limited num-
ber of components Q. The number of Q is related to the
amount of total variability captured by the principal compo-
nents and, in general, is recommended to use a number of PCs
that captures at least 80% of the total variability. Usually, the
value of Q varies from 1 to 3.
AMMI models have been extensively used for evaluation of
phenotype performance of cultivars. (19) used AMMI mod-
els to assess the performance of wheat germplasm from In-
ternational Maize and Wheat Improvement Center. (20) used
AMMI models to explore Quantitative Trait Loci (QTL) re-
lated to adaptation in Wheat. (21) used AMMI to study GxE
for Wheat in the context of drought and normal conditions.
(22) used AMMI to evaluate the impact of environmental
conditions in the stability of winter Wheat. (23) used AMMI
to study the stability of early Maize genotypes in Africa. (24)
evaluated the performance of experimental maize hybrids us-
ing AMMI models, and (3) studied the performance of the
AMMI model in the context of simulated data. The appli-
cations of AMMI models can also be found in several other
species including: a) rice (25), b) barley (25–28), and c) sug-
arcane (29).

Tree-based methods and BART. Introduced by (7), BART
is a Bayesian model that uses a sum of trees to approximate
a univariate response. In BART, each tree works as a weak
learner that yields a small contribution to the final prediction.
Based on a design matrix X, BART is able to capture inter-
actions and non-linear relations. The BART model can be
written as

yi|xi,Mt,Tt,σ2 ∼ N

(
T∑
t=1

h(xi,Mt,Tt),σ2

)
, i= 1, . . . ,n,

2 | bioRχiv et al. |

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.07.442731doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.442731


DRAFT

where xi is the i-th row of the design matrix X,Mt denotes
the set of terminal node parameters of tree t, Tt is the set of
binary splitting rules that define the tree t, and h(·) = µt` is a
function that assigns the predicted values µt` ∈ Mt based
on the design matrix X and tree structure Tt. The num-
ber of trees T can be chosen so that non-linear and inter-
action effects are properly estimated, but it can also be se-
lected through cross-validation; Chipman et al. (7) recom-
mends T = 200 as a default.
Unlike other tree-based methods where a loss function is op-
timised to grow the trees, in BART the trees are grown us-
ing Markov Chain Monte Carlo (MCMC) iterations (30, 31).
The trees are either accepted or rejected via a Metropolis-
Hastings step. In addition, the trees can be modified by four
moves: grow, prune, change or swap. In the grow move, a ter-
minal node is randomly selected and then two children nodes
are created below it. When pruning, a parent of two terminal
nodes is selected at random and its children nodes are re-
moved. During the change process, a parent of two terminal
nodes is randomly picked and its splitting rule (covariate and
split point) are redefined. In the swap move, a pair of parents
of terminal nodes is chosen at random and their splitting rules
are swapped. It is important to highlight that in all moves the
splitting rule is defined by randomly selecting one covariate
and one split point.
As a fully Bayesian model, BART assumes prior distributions
on all quantities of interest. First, the node-level parameters
µt` are assumed to be i.i.d N(0,σ2

µ), where σµ = 0.5/k
√
T

and 1 ≤ k ≤ 3. Second, the sample variance σ2 is assumed
to be distributed as IG(ν/2,νλ/2), where IG(·) denotes an
Inverse Gamma distribution. Third, to control how shal-
low/deep a tree may be, each non-terminal node has a prior
probability of α(1+d)β of being observed, where α ∈ (0,1),
β ≥ 0, and d corresponds to the depth of the node; (7) recom-
mends α= 0.95 and β = 2 as default values. These hyperpa-
rameter values tend to select trees which are not too deep so
as to avoid over-fitting.
Finally, the structure of the BART model for a continuous
response can be summarised as follows. First, all Tt are
initialised as stumps. Then, each tree is modified, one at
a time, using one of the four moves previously described
(grow, prune, change or swap). Next, the newly proposed tree
T ∗t is compared to its previous version Tt via a Metropolis-
Hastings step taking into account the partial residuals rt =
y−

∑T
k 6=th(X,Mk,Tk) and the structure/depth of Tt and

T ∗t . After that, the predicted values for each terminal node
` of the tree t are generated and then σ2 is updated. For a
binary outcome, the idea of data augmentation (32) can be
used; see (10) and (33) for more details.
Due to its flexibility and excellent performance on regres-
sion and classification problems, BART has been applied
and extended to credit modelling (34), survival analysis (35),
proteomic biomarker analysis (36), polychotomous response
(37) and large datasets (8, 38, 39). More recently, works
exploring the theoretical aspects of BART have been devel-
oped by Linero and Yang (39), Ročková and van der Pas
(40), Ročková and Saha (41). In practice, there are many

R packages (42) to fit BART, such as BartMachine (43),
BART (44) and dbarts (7).

AMBARTI. To insert the BART model inside an AMMI ap-
proach, we make some fundamental changes to the way the
trees are grown and structured. As a first step, we can write
the sum of trees inside the Bayesian version of the AMMI
model

yij |xij ,Θ∼ N

(
µ+gi+ej +

T∑
t=1

h(xij ,Mt,Tt),σ2

)
,

(5)
where yij denotes the response variable for genotype i and
environment j, Θ = (µ,gi,ej ,Mt,Tt,σ2), µ is the grand
mean, and gi and ej denote the effects of genotypes and envi-
ronments, respectively. The component

∑T
t=1h(xi,Mt,Tt)

is the same as presented in the previous section and xij con-
tains dummy variables that represent the levels of gi and ej .
In order to get the posterior distribution of the new parame-
ters, we assume that µ∼ N(m,σ2

m), gi ∼ N(0,σ2
g) and ej ∼

N(0,σ2
e) as well as that σ2

g ∼ IG(ag, bg) and σ2
e ∼ IG(ae, be).

At first look our model is similar to the semi-parametric
BART proposed by (45). However, our approach differs in
that i) we do not partition the covariates into two distinct
subsets, as the dummy variables (gi and ej) that are used in
the linear predictor are also contained in xij ; ii) most impor-
tantly, we replace the growing move with a ‘double grow’
(and equivalently ‘double prune’) step so that we guarantee
the trees will include at least one gi and one ej as split-
ting criteria and; iii) unlike (45), we do not use the residu-
als r = y−

∑T
t=1h(X,Mt,Tt) to update the linear predic-

tor estimates, but rather the response variable itself, which is
analogous to the two-stage estimation idea from the classi-
cal AMMI model. In (45), the trees use the partial residuals
rather than the response variable to both generate the node-
level predictions and update the main effects. However, in
the classical AMMI, the estimation of the main effects (g and
e) is carried out taking into account the response variable and
then the bilinear/interaction term is estimated via an SVD by
using the residuals. That is, in the AMMI model the estima-
tion of the model components is carried out in two stages,
which does not occur in (45). In this sense, as AMBARTI
is a combination of BART and AMMI, we estimate the main
effects as AMMI and the interactions via BART also using a
two-stage estimation.
The idea of the ‘double’ moves is to force the trees to exclu-
sively work on the interactions between gi and ej . This re-
moves the chance that they split on a single gi or ej variable,
which would lead to confounding with the main marginal ge-
nomic or environment effects. For example, in the double
grow, rather than randomly selecting one covariate and one
split point when growing a tree, a variable g∗ is chosen and
then another variable e∗ is randomly selected and both de-
fine the splitting rules of the corresponding tree. The dummy
variables g∗ and e∗ represent the sets of all possible combi-
nations of gi and ej , respectively. To illustrate this, suppose
that I = 10. In this case, during a ‘double grow’ move, there
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will be 2I−1 − 1 = 511 dummy variables g∗, as there are
10, 45, 120, 210 and 126 possible combinations of gi’s when
choosing them in sets of length 1, 2, 3, 4 and 5, respectively.
An appealing advantage of AMBARTI over AMMI is that
it does not require the specification of the number of com-
ponents Q in the bilinear sum and does not require com-
plex orthonormality constraints on the interaction structure;
see Appendix B for the constraints of the AMMI model. In
a Bayesian context, these constraints can lead to complex
prior distributions choices for implementation of AMMI (as
in 6, 46). Furthermore, although AMBARTI adds a com-
putational cost to the BART model, we have found this to be
negligible for standard MET datasets that usually have values
of I and J up to the low tens or hundreds.
An additional advantage of using a fully Bayesian approach
as in AMBARTI is that we have access to full posterior dis-
tributions of each parameter. As the model is fitted jointly,
we are thus able to ascertain the general levels of uncertainty
in each gi or ej component, which may assist with future
experimental designs. Similarly, the interaction term is also
estimated probabilistically, and so may avoid interpretation
errors associated with, e.g., biplots from a traditional AMMI
model.
The AMBARTI model can be fitted as follows. First, the
parameter estimates gi and ej are sampled taking into ac-
count the response variable y (not the residuals). Then,
one at a time, the trees are updated via partial residuals
rt = y− µ̂− ĝi− êj −

∑T
k 6=th(X,Mk,Tk). Hence, the ter-

minal node parameters are generated and the sample variance
is updated. In the end, posterior samples associated with µ,
gi, ei, σg , σe, Tt, ŷ are available, which allow for the calcu-
lation of credible intervals and evaluation of the significance
of the parameter estimates; see Algorithm 1 in Appendix A
for more details.

Simulation Study
Here we compare AMMI and AMBARTI using the Root
Mean Square Error (RMSE) for predicted values ŷ and for the
interaction term on out of sample data. Our simulation exper-
iment was carried out considering two scenarios. In the first,
we simulated from the AMMI model with Q= {1,2,3}, and
then fitted AMBARTI and AMMI. In the second scenario, we
simulated from the AMBARTI equation and then fitted three
AMMI models with different number of components to de-
scribe the interactions (i.e., Q = {1,2,3}) and AMBARTI.
In both scenarios, we fitted the models to a training set with
I×J observations and evaluated the performance on an out-
of-sample test set of the same size.
For both scenarios, we set I = J = {10} or I = J = {25},
µ= 100 and generated gi and ej from N(0,σ2

g) and N(0,σ2
e),

respectively, where σg = σe ∈ {1,5}. The parameters γik
and δjk were generated from N(0,1) and then the orthornor-
mality constraints were applied following the idea presented
in Appendix B. In addition, for Q = 1, we consider λ =
({8},{12}); for Q = 2, λ = ({12,8},{12,10}) and; for
Q = 3, λ = {12,10,8}. In the simulation from the AM-
BARTI equation, we set T = 200 trees and generated each

tree by using the ‘double grow’ move considering 2I−1− 1
possible covariates for gi and 2J−1−1 for ej
Finally, the AMMI model used in the simulations is pre-
sented in Equation 4, which represents a Completely Ran-
domised Trial Design (CRTD). In constrast, the AMBARTI
model used is shown in Equation 5.

Simulation results. We start with the harshest test for the
AMBARTI model. Figure 1 shows the RMSE values for
ŷ based on the out-of-sample sets of both models consider-
ing 10 Monte Carlo repetitions. The datasets considered in
this Figure were simulated considering I = 10 genotypes and
J = 10 environments, with different values of Q ∈ {1,2,3},
and two values for the genotypic and environmental variances
σg ∈ {1,5} and σe ∈ {1,5}, respectively.
As the data were simulated from the AMMI equation, we
would expect the AMMI model performs exceedingly well,
and this is what we see in general considering all the results
of Figure 1. More specifically, we can see in the first upper
panel that AMBARTI has higher RMSEs compared to AMMI
for all values of Q. In addition, it is possible to note that
there is no clear effect of σg or σe on the RMSEs. However,
even with the AMMI presenting the best results, AMBARTI
demonstrates highly competitive performance, with RMSE
values around 17% higher than that of the AMMI model.
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Fig. 1. Out-of-sample RMSE for ŷ based on the results of AMMI and AMBARTI for
data simulated from the AMMI model with I = J = 10. The different panels contain
10 Monte Carlo repetitions and represent different combinations of the simulated
parameters for the creation of the dataset. Unsurprisingly, AMMI performs very well
here, with AMBARTI having RMSE values around 17% higher.

Figure 2 shows the results of the second simulation scenario,
where the data were simulated from the AMBARTI equation.
Again, different combinations of parameters were used in the
simulation of the training and out-of-sample sets. The upper
panels show results for I = 10 genotypes and J = 10 envi-
ronments; the lower ones for I = 25 and J = 25. Further-
more, three AMMI models were fitted considering Q = 1,
Q = 2 and Q = 3. In this case, the AMMI model, even with
high values of Q, performs very poorly with RMSE values
3 times higher on average than that of AMBARTI. In this
comparison, it is worth mentioning that more complex possi-
bilities of interactions may be obtained when simulating from
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AMBARTI compared to AMMI.
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Fig. 2. Out-of-sample RMSE for ŷ based on the results of AMMI (with varying Q)
and AMBARTI for data simulated from the AMBARTI model with I = J = 10 and
I = J = 25. The different panels contain 10 Monte Carlo repetitions and represent
different combinations of the simulated parameters for the creation of the dataset.
The AMMI RMSE values are on average 3 times higher than that of AMBARTI.

The next important comparison to be made between AM-
BARTI and AMMI is related to the interaction term (i.e., the
bilinear term for AMMI and the BART component for AM-
BARTI). Such tests are shown in Figures 3 and 4, where we
show the RMSE performance just on the interaction compo-
nent.
Figure 3 presents the RMSEs associated solely with the in-
teraction terms from AMMI and AMBARTI when the data
are simulated from AMMI (which has a bilinear structure
for the interactions). The results are presented considering
10 genotypes and 10 environments with different combina-
tions of genotypic and environmental variances. The perfor-
mance of AMMI is optimal compared to AMBARTI, though
the difference between the two is lessened with more com-
plex AMMI model structures (i.e. Q= 3).
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Fig. 3. Out of sample RMSE related to the interaction term of AMMI models for
data simulated from AMMI. The different panels show the different parameter values
used in the simulation. The performance of AMMI here is optimal, with AMBARTI
performing slightly worse than AMMI when Q = 3.

In Figure 4, the values of RMSE are presented for datasets
simulated from AMBARTI. In the margins of the figure, the

parameters used in the simulations can be found. The RMSE
values show that AMMI performs worse than AMBARTI in
all scenarios, and in the same cases AMMI RMSEs are three
times higher on average than those of AMBARTI.
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Fig. 4. Out of sample RMSE related to interaction term of AMBARTI and AMMI
models for data simulated from AMBARTI. The different panels show the differ-
ent parameter values used for the simulation. It appears that the AMMI structure,
even with Q= 3 cannot capture the interaction behaviour present in the AMBARTI
model.

In summary, the information presented in Figures 3 and 4
shows that the AMMI model fails for the complex inter-
actions that can be obtained in the AMBARTI simulated
datasets. From a quantitative genetics/biological perspective,
there is no reason for the structure of interactions between
genotype and environments be modelled strictly by a bilin-
ear structure, as more complex structures can be assumed to
be present in nature. In this sense, AMBARTI may be a more
suitable model to estimate the interaction structure in the real-
world applications.

Case study: Innovar wheat data
In addition to the simulated datasets, real datasets were used
to evaluate the performance of AMMI and AMBARTI. A set
of Value of Cultivation and Usage (VCU) experiments con-
ducted in Ireland between the years of 2010 and 2019 were
considered, and such experiments evaluated the performance
of genotypes of wheat Triticum aestivum L. across the coun-
try for regulatory purposes (i.e., registration of new varieties).
Here, our phenotypic response variable is the production of
wheat in tonnes per hectare. The design of experiments used
was that of a block design with 4 replicates. VCUs alongside
Distinctness, Uniformity and Stability (DUS) are the most
important kind of regulatory Multi Environmental Trials con-
ducted around the world.
The data were kindly provided by the Irish Department of
Agriculture, Food, and Marine. Both genotypes and envi-
ronments were anonymised. These historical VCUs form
part of the Horizon2020 EU project Innovar project database
(www.h2020innovar.eu). The project aims to build
and improve technical solutions for cultivar recommendation
based on genomic and phenomic parameters. The models
were fitted for all years available (summarised in Table 1),
but for brevity we show detailed plots only for the year 2015.
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We compare the models by evaluating the estimated values
of the genotype and environment effects, and the predictions
of interaction behaviour evaluated as: ˆ(ge)ij = yij− ĝi− êj .
To fit both models, we average the response variable across
the replicates. This is a common practice in the analysis of
GxE experiments with AMMI models (6, 46). However, this
preprocessing is not needed for AMBARTI. To validate the
models, we sample at random two replicates and then calcu-
late the RMSE for ŷ.
The estimates of the genotype effects gi and environment
effects ej are shown in Figure 5 and 6, respectively. Here,
both models provided similar parameter estimates when we
compare the posterior means and the point estimates from the
classical AMMI. The advantages of the posterior distribution
can be highlighted here once they indicate that the range of
possible true values for the main effect of genotypes or envi-
ronments can be much different from the point estimated ob-
tained by AMMI models (that consider main effects as fixed
effects).
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−0.5

0.0

0.5

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18

AMBARTI AMMI (Q = 1) AMMI (Q = 2) AMMI (Q = 3)

Fig. 5. Parameter estimates of genotype effects for the Irish dataset for 2015. The
boxplots represent the posterior distribution obtained via AMBARTI. The point esti-
mates obtained via AMMI are given for different values of Q.

−1
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1

2

e1 e2 e3 e4 e5 e6 e7 e8 e9

AMBARTI AMMI (Q = 1) AMMI (Q = 2) AMMI (Q = 3)

Fig. 6. Parameter estimates of environment effects for the Irish dataset for 2015.
The boxplots represent the posterior distribution obtained via AMBARTI. The point
estimates obtained via AMMI are given for different values of Q.

Year AMMI AMBARTI
2010 0.50 0.48
2011 0.45 0.42
2012 0.37 0.30
2013 0.44 0.42
2014 0.46 0.43
2015 0.38 0.33
2016 0.42 0.38
2017 0.41 0.39
2018 0.56 0.55
2019 0.45 0.40

Table 1. RMSE for ŷ on out-of-sample data considering all years in the historical
Innovar data. The values of RMSE obtained with AMBARTI are smaller than the
ones obtained via AMMI models (Q = 3) for all years considered.

A more complete comparison across all years is shown in Ta-
ble 1. In this table, we calculated the predicted values ŷ on
the ‘out-of-sample’ data (i.e., on the two replicates randomly
selected). We can see that RMSEs obtained with AMBARTI
are smaller than the ones returned by the AMMI model for all
years, thus highlighting that the AMBARTI model can more
accurately estimate the marginal effects along with interac-
tion component.
Regarding the computational time, AMBARTI took about 6
minutes on average to run, considering 50 trees, 1000 iter-
ations as burn-in and 1000 iterations as post burn-in. This
time was registered in a MacBook Pro 2.3 GHz Dual-Core
Intel Core i5 with 8GB memory. AMMI took just sec-
onds. This difference could be reduced by optimising the
AMBARTI implementation using routines in C++ similar to
those for BART implementations in R packages BART (44)
and dbarts (7). However, we believe AMBARTI’s superior
performance and posterior estimation of uncertainties out-
weighs the longer computational time.

New visualisations for AMBARTI main effects and in-
teractions. One of the key outputs of the standard AMMI
model is the biplot (47), which assists in the determination
of key GxE interactions and may be used for cultivar recom-
mendation. However, these plots display only the interaction
measure, thus missing the key marginal effects that may also
come into play. For example, a certain genotype and envi-
ronment may have a strong positive interaction, but if this
genotype is consistently poor in all environments this may
not be clear in the biplot. Instead, we introduce new types of
plots that enables this full consideration.
Our first new plot is based on a heat map adapted to display
both the GxE interactions (along with the marginal effects)
and the predicted yields from the AMBARTI model. In Fig-
ure 7, we display the GxE interactions in the centre of the plot
and the marginal effects for both environment and genotype
as separate bars in the margins. The ordering applied to Fig-
ure 7 is in terms of the marginal effects for both environment
and genotype, and displays low values in red to high values
in blue. As both the GxE interactions and marginal effects
are on the same scale and are centred around zero, we dis-
play them using only one legend and use a divergent colour
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palette. This allows for quick identification of the GxE in-
teractions and to observe which of the environments or geno-
types are the most or least optimal.

Fig. 7. GxE interactions and main effects for the AMBARTI model sorted by the
main effects for the Innovar data in 2015. We can clearly see that environments 1,
4, 5, and 6 provide superior yields for almost all genotypes studied. Furthermore,
environment 1, for example, seems to interact particularly strongly in a negative way
with genotype 2.

In Figure 8, we show the ordered heat map of the predicted
yields (as opposed to their component parts shown in Figure
7) for each combination of environment and genotype for the
AMBARTI model. In this case, we use the same ordering as
that in Figure 7 with high values being generally displayed in
the top left, moving to low values at the bottom right, with the
units for the plot being the same as that of the phenotype (i.e.
yield/production of grains in tonnes per hectare). For this
plot, we use the same diverging colour palette as in Figure
7 as, when combined with the ordering, this gives a clear
identification as to which environment and genotype produce
high or low yields.

Fig. 8. Predicted yields from the AMBARTI model for the Innovar data in 2015.
Values are sorted by the main effects. We can see that the interaction effect of
environment 3 with genotype 12 seems particularly strong.

In Figure 9, we show a bipartite plot of the information dis-
played in Figure 7, but showing only the extremes of the high
and low values. In this case, we display just the top 2% and
the lowest 2% of the interactions. We employ the same di-
verging colour palette as Figure 7 except in this case, both the

colour and size of each node represents the marginal effects
and the colour and width of each edge represents the interac-
tion value. Larger values of the marginal effects will result
in larger nodes (and vice-versa), whereas the magnitude of
the interactions determine the width of the edges. The aim
of this plot is to allow the reader to easily and quickly iden-
tify which of the environments are the most and least optimal
for each genotype and to also identify where there are clear
interactions.
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g18
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1.5

AMBARTI
Interaction/
Main Effects

Fig. 9. Bipartite network plot showing the top (in blue) and bottom (in red) 2% GxE
interactions and main effects. We can see that environment 3 has strong positive
and negative interactions with genotypes 13 and 12 respectively.

The visualisation perspective proposed here helps construct
easily interpretable agronomic recommendations. In this
sense, Figure 7 can help users with no background in statis-
tics identify that the best genotypes considering yield are the
ones in the top left corner: g16,g5,g17,g7. These genotypes
will have a tendency to have a better acceptance by farmers,
considering solely the yield in tonnes per hectare assuming
higher yields are economically preferred. Figure 7 shows us
that environments e1,e6,e4,e5 are related to higher marginal
effects and should be considered preferential to crop the list
of wheat genotypes evaluated.
Figure 7 is also useful to establish combinations of genotypes
and environments that should be avoided when the interac-
tion is negative, indicating that a given genotype does not
perform well in a given environment. This negative inter-
action increases the risk of low yield and consequent eco-
nomic impacts. Combinations to be avoided exist even for
environments and genotypes with high marginal effects. For
instance, the combination of g2,e1 should be avoided even
though g2 and e1 have high marginal effects. This is an im-
portant information for regulators who may be responsible
for a variety’s commercialisation approval or agents that pro-
mote credit or insurance for farmers given to risks that the
negative interaction implies. Farmers who produce a geno-
type not indicated for their environment can end having a
worse score or risk. On the other hand, Figure 8 is also useful
to spot the combinations of genotypes and environments that
should be encouraged once the signal of the interactions is
positive.
In adaptability breeding, the breeder seeks to find the best
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genotype for a specific environment or a small set of en-
vironments. In broad target strategies, the aim is to find
genotypes that perform well across several environments.
For example, in Figure 7, g5 has high marginal effect and
performs well (and interacts positively) with environments
e1,e6,e4,e5,e7,e9. Similarly g16, the best genotype con-
sidering marginal effects, performs well in environments
e4,e5,e8,e3,e7,e9. Genotypes which present better perfor-
mance across several environments are classified as high sta-
bility genotypes. They tend to be preferred by breeders be-
cause they allow optimisation of processes in the chain of
seed production.

Discussion
We have introduced a new model named Additive Main Ef-
fects Bayesian Additive Regression Trees Interaction (AM-
BARTI). AMBARTI is a fully Bayesian semi-parametric ma-
chine learning approach that estimates main effects of geno-
types and environments and interactions with an adapted re-
gression tree-like structure. This approach to interactions al-
lows the treatment of more complex structures than the ones
considered by traditional models.
Given the fact that GxE interactions are the result of a tangled
myriad of genetics, proteomics, biochemical, environmental
and additional factors, the flexibility of AMBARTI in dealing
with more complex interactions can be seen as an important
improvement in the understanding of the complexities asso-
ciated to GxE phenomenon. Given the complexities of GxE
interactions, a bilinear term is perhaps an oversimplification.
AMBARTI allows the possibility of reasoning other than the
ones obtained by models which consider the genotypic and
environmental effects as linear and the interaction GxE in the
maximum as bilinear. This makes AMBARTI a useful candi-
date to expand understanding of experimental data in quanti-
tative genetics.
The main novelty in AMBARTI comes from its semi-
parametric structure which enables the uncertainty to be
shared between the main effects and the interaction trees.
More specifically, we design the trees so that they can only
incorporate the interaction terms by forcing each branch of
a tree to split on both a genotype and an environment. We
have shown in simulation experiments that this yields sim-
ilar estimates to traditional models for the marginal effects,
and superior estimates for the interaction terms, which are
no longer restricted to be linear in a restricted dimensional
space. This removes the need for, e.g., the arbitrary selection
of the Q parameter in a standard AMMI formulation.
A second novelty is that we have introduced new displays
that simultaneously allow for interpretation of the marginal
and joint effects. We have created both a heatmap and a bi-
partite network-style plot of the results, which we hope will
enable those using the output of AMBARTI models to make
more informative decisions about which genotype and envi-
ronments are most compatible.
We believe that there are many possible extensions of the
AMBARTI approach. Other more advanced methods, such as
PARAFAC (48, 49), are available for higher dimensional in-

teractions (such as with time). These are different versions of
tensor regression (50) and, in theory, there is no reason why
the AMBARTI approach cannot be used for higher dimen-
sional tensor-type interactions, though this is not currently
possible in our code. Similar enhancements for multivariate
outputs and time-series like-structure seem promising, and
we hope to explore these in future work.

Appendix A - AMBARTI implementation
In this section, we detail the AMBARTI model. Firstly, the
likelihood function associated to yij is

yij |xij ,Θ∼ N

(
µ+gi+ej +

T∑
t=1

h(xij ,Mt,Tt),σ2

)
,

where yij denotes the response variable for genotype i and
environment j, Θ = (µ,gi,ej ,Mt,Tt,σ2), µ is the grand
mean, xij is the row of the design matrix X associated to ob-
servations with genotype i and environment j, and h(·) = µt`
is a function that assigns the predicted values µt` ∈Mt to
observations that belong to Pt`, with Pt` denoting the set of
rules that define the node ` of the tree t. In order to obtain the
posterior distributions needed for the model, we assume the
following prior distributions:

µ∼ N(m,σ2
m),

µt`|Tt ∼ N(0,σ2
µ),

gi|Tt ∼ N(µg,σ2
g),

ej |Tt ∼ N(µe,σ2
e),

σ2
g ∼ IG(ag, bg),
σ2
e ∼ IG(ae, be),
σ2 ∼ IG(a,b).

The prior distribution on the tree structure depends on the
number of terminal and internal nodes, and is given by

p(Tt) =
∏
`∈AI

[
α(1 +dt`)−β

]
×
∏
`∈AT

[
1−α(1 +dt`)−β

]
,

where AI and AT denote the sets of indices of the inter-
nal and terminal nodes, respectively, and dt` represents the
depth of the node ` of the tree t. Furthermore, let Rt =
y−

(
µ+ g + e +

∑T
k 6=th(X;Tk,Mk)

)
denote the vector of

the partial residuals, where g ∈ RI and e ∈ RJ are vectors
containing the random effects gi and ej . Below, we present
the full conditional of µ.

p(µ|−)∝ p(y|gi,ej ,xij ,Mt,Tt,σ2)p(µ),

∝ exp
(
− 1

2σ2
m∗

(µ−µ∗)2
)
,

which is a

N

∑i

∑
j

[
yij− ŷ∗ij

]
/σ2 +m/σ2

m

n/σ2 + 1/σ2
m

,
1

n/σ2 + 1/σ2
m

 ,
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where ŷ∗ij = g + e +
∑T
t=1h(xij ;Tt,Mt). Hence, the full

conditional of gi is given by

p(gi|−)∝ p(y|gi,ej ,xij ,Mt,Tt,σ2)p(gi),

∝ exp
(
− 1

2σ2
g∗

(gi−g∗i )2
)
,

which is a

N

(∑
j [yij− µ̂− êj− µ̂ij ]/σ2

ngi/σ
2 + 1/σ2

g

,
1

ngi/σ
2 + 1/σ2

g

)
,

where µ̂ij =
∑T
t=1h(xij ,Tt,Mt) and ngi is the number of

observations that belong to gi; similarly to nej . To be able to
estimate the linear and interaction components in a two-stage
approach like the AMMI model, we assume that

∑
j µ̂ij =∑

i µ̂ij = 0, for i = 1, . . . , I and j = 1, . . . ,J . Similarly, the
full conditional of ej can be written as

p(ej |−)∝ p(y|gi,ej ,xij ,Mt,Tt,σ2)p(ej),

∝ exp
(
− 1

2σ2
e∗

(
ej−e∗j

)2
)
,

which is a

N

(∑
i [yij− µ̂− ĝi− µ̂ij ]/σ2

nej/σ
2 + 1/σ2

e

,
1

nej/σ
2 + 1/σ2

e

)
.

The full conditional of σ2
g is given by

p(σ2
g |−)∝ p(g|σ2

g)p(σ2
g),

which is an

IG

(
I

2 +ag,

∑I
i=1 g

2
i

2 + bg

)
.

The full conditional of σ2
e is written as

p(σ2
e |−)∝ p(e|σ2

e)p(σ2
e),

which is an

IG

(
J

2 +ae,

∑J
j=1 e

2
j

2 + be

)
.

In addition, we present the full conditional of the trees. This
distribution is utilised to compare the previous tree to the
current one, as in BART the splitting rules are created by
randomly selecting a covariate and a split point. Below, we
present the full conditional of Tt as

p(Tt|Rt,σ2)∝ p(Tt)
∫
p(Rt|Mt,Tt,σ2)p(Mt|Tt)dMt,

∝ p(Tt)p(Rt|Tt,σ2),

∝ p(Tt)
bt∏
`=1

[(
σ2

σ2
µnt`+σ2

)1/2
exp

(
σ2
µ

[
nt`R̄`

]2
2σ2(σ2

µnt`+σ2)

)]
,

where R̄` =
∑

(i,j)∈Pt`(r
(t)
ij − µ̂− ĝi − êj)/nt`, r

(t)
ij ∈ Rt

and nt` is the number of observations that belong to Pt`. To
sample from this expression, the Metropolis-Hastings algo-
rithm is used, because a closed-form distribution is not ob-
tained in this case.
As all µt` are i.i.d, it is possible to write p(Mt|Tt,Rt,σ2) =∏bt
`=1 p(µt`|Tt,Rt,σ2). Similarly to the original BART, the

full conditional of µt` in the AMBARTI model also depends
only on the information provided by all trees, except by Tt,
via partial residual as Rt. Hence, the full conditional of µt`
can be written as

p(µt`|−)∝ p(Rt|Mt,Tt,σ2)p(µt`),

∝ exp
(
− 1

2σ2
∗

(µt`−µ∗t`)
2
)
,

which is a

N

σ−2∑
(i,j)∈Pt` r

(t)
ij

nt`/σ2 +σ−2
µ

,
1

nt`/σ2 +σ−2
µ

 .
Finally, after generating all predicted values for all trees, σ2

can be updated based on

p(σ2|−)∝ p(y|g,e,X,Mt,Tt,σ2)p(σ2)

∝ (σ2)−(n+ν
2 +1) exp

(
−S+νλ

2σ2

)
, (6)

where S =
∑I
i=1
∑J
j=1(yij − ŷij)2 and ŷij = µ + g +

e +
∑T
t=1h(xij ;Tt,Mt). The expression in Eq. (6) is an

IG((n+ν)/2,(S+νλ)/2).

Algorithm 1: AMBARTI Algorithm
Update µ, gi and ej ;
for t in 1:T do

Compute
Rt = y−

(
µ+ g + e +

∑T
k 6=th(X;Tk,Mk)

)
;

Propose a new tree T ∗t based on Tt by growing,
pruning, changing or swapping;

Accept the proposed tree with probability

α(Tt,T ∗t ) = min
{

1, p(Rt|T ∗
t ,σ

2)p(T ∗
t )

p(Rt|Tt,σ2)p(Tt)

}
;

Update the node-level parameters µt` from
p(µt`|−);

Update σ2 sampling from p(σ2|−).
end

Appendix B - Orthonormality constraints of
the AMMI model
We recall the AMMI model is overparameterised, so con-
straints need to be imposed so that the parameters can be
estimated (6). In this section, we show how to apply the
orthonormality constraints on γiq and δjq when simulating
from the AMMI model.
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Let γ be an I×Qmatrix, δ a J×Qmatrix, and consider that
γiq and δjq are elements in row i and column q of the corre-
sponding matrices. In this sense, the following constraints are
considered: i)

∑I
i=1 γiq =

∑J
j=1 δjq = 0, for q = 1, . . . ,Q;

ii) γ> γ = δ> δ = Iq , where Iq represents an identity matrix
of dimension q; iii) λ1 ≥ λ2 ≥ ·· ·λq−1 ≥ λq ≥ 0 and; iv)
γiq ≥ 0, for all q = 1, . . . ,Q.
To illustrate our the strategy to meet the constraints pre-
sented above, we take the γiq as an example, but this also
works for δjq . First, we create S an I ×Q matrix, where
siq ∼ N(0,σ2

x = 1). Here, siq could be sampled from other
distributions, such as Gamma or Beta. In addition, we define
M as an I×Q matrix with each element being the mean of
the corresponding q column of S. Hence, we know that

B = S−M
⇒ 1>I B = 0
;B>B = I,

where 1I is a column vector of dimension I containing ones,
B is, by construction, a full rank matrix and B>B is sym-
metric. However, we find a matrix A such that C = BA⇒
C>C = I. That is, we know that

D = C>C = I

⇒ (BA)>BA= I

⇒A>B>BA= I

⇒B>B =A−>A−1

⇒B>B = (AA>)−1

⇒ (B>B)−1 =AA>

⇒ (B>B)−1 =A2 (by symmetry)

⇒ (B>B)−1/2 =A.

In the end, we have that γ =B(B>B)−1/2.
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