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Abstract
The increased detection and treatment of early stage breast cancer as well as ductal carcinoma

in situ (DCIS) has not led to significant survival benefits. Therefore, the current standard

treatment of DCIS is questionable. An informed evidence-based treatment strategy, and likely

de-escalation from the current standards requires new prognostic models built from more

comprehensive characterization with objective criteria. Parallel profiling of the molecular

landscape and micro-environment in pure DCIS remains challenging due to histological

heterogeneity and the inevitable reliance on small archived specimens. Leveraging recent

methodological advances, we characterized the mutational, transcriptional, histological and

microenvironmental landscape across multiple micro-dissected regions from 39 cases to

generate a multi-modal breast precancer atlas. The histological architecture was associated

with grade, adiposity, and intrinsic expression subtypes. Similar to previous findings, high-grade

lesions had higher mutational burden, including TP53 mutations, while low-grade lesions had

more frequent 16q losses and GATA3 mutations. Multi-region analysis revealed most somatic

alterations, including whole genome duplication events, were clonal, but genetic divergence

increased with distance between regions. In 7/12 evaluable cases, somatic mutations in putative

driver genes affected a subset of regions only. This genetic heterogeneity often accompanied

phenotypic heterogeneity and regions with low risk features (Normal-like, Luminal A) occurred

earlier than those with high-risk features (Her2-like, Basal or necrosis) according to the

phylogenetic analysis. The immune-environment was evaluated using multiplex

immuno-histochemistry to measure relative stromal and epithelial densities of B lymphocyte

(B-cell), T lymphocyte (T-cell) and regulatory T cells (T-reg) and identify 3 immune-states: Active,

Suppressed and Excluded (lower epithelial density). All states included both DCIS and adjacent

benign regions, and none associated with intrinsic subtypes. The Excluded state was enriched

in high-grade DCIS and, compared to benign areas, more likely acquired in DCIS, showing

transcriptional evidence of stronger immune-suppression and possible evasion. The breast

pre-cancer atlas therefore reveals correlated levels of phenotypic and genotypic heterogeneity,

including at sub-histological resolution. These uniquely integrated observations will help scope

future studies, prioritize candidate markers for progression risk modelling and identify functional

similarities in precursor lesions from other types of adenocarcinomas.
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Introduction

Increasing adoption of breast cancer screening and advances in imaging capabilities have

improved our ability to identify breast ductal carcinoma in situ (DCIS). Rarely diagnosed 40

years ago, DCIS now comprises nearly 20% of all breast cancer-related diagnoses [1,2].

Unfortunately, this progress has not resulted in decreased breast cancer mortality. Standard

treatment, involving surgical excision often complemented with radiation therapy (in the setting

of breast conserving surgery) and endocrine recurrence risk reduction (particularly with ER+

DCIS), therefore constitutes overtreatment, and not without treatment-related consequences for

many [2,3]. DCIS progression is particularly difficult to study longitudinally due to the current

standard of surgical excision of the lesion and the infrequent progression and/or occurrence of

new primary lesions over a long timespan(5-10% after 10 years) [4]. Clinicopathological risk

factors such as large size, dense breast, younger age, high pathological grade, presence of

comedo-necrosis or Her2 positivity have been associated with increased risk of recurrence, but

the resulting predictive models, or those relying on gene expression signatures, are currently

insufficient to safely distinguish patients to watch from patients to treat [5].

Contrary to common conceptual models, there is little evidence for the sequential accumulation

of somatic alterations during progression from in situ to invasive disease, but rather all invasive

breast cancer (IBC) intrinsic subtypes and known driver mutations have been identified in DCIS,

albeit at variable prevalence [6–11]. Moreover, both single-cell and bulk studies have shown

similar clonal make-up of synchronous invasive and in situ lesions, convoluting the idea that

clonal selection drives invasion [11,12]. The role of the immune environment has also been

investigated, highlighting the higher lymphocyte infiltration in Her2+ or Triple Negative DCIS, or

specific immunological make-up of samples at higher risk of progression [13–15]. Similarly, the

role of the basal layer, fibroblasts, adipocytes, other stromal cells or overall extracellular matrix

has identified features that are different between DCIS and IBC, likely mediated by chemokine

signalling and can be associated with known progression risk factors [16–19]. Their active

participation in the malignant transformation of the breast epithelium remains to be established

as similar mechanisms are typically involved in normal development, activity and aging of the

mammary gland [20].
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Progress in our understanding of the processes mediating DCIS onset and progression has

been considerably hindered by technical and logistical limitations. Indeed, pure DCIS lesions

are commonly small in size, formalin and paraffin embedded (which damages nucleic acids) and

can display significant histological heterogeneity [21]. As a consequence, comprehensive

molecular and cellular assays and their integrated analysis have seldom been performed in pure

DCIS cohorts. Capturing evidence of phenotypic, genetic and cellular heterogeneity, and how

they relate to each other is necessary to develop a better spatial, temporal and functional

understanding of the mechanisms at play. Recent advances in genome-wide assays, becoming

compatible with ever more challenging samples [22–25], have improved our ability to connect

histological and molecular observations and enabled such application even to individual

microbiopsies from a histological slide of pure DCIS.

Here we describe the combined, parallel histological, molecular and immunological profiling of

pre-malignant lesions from 39 patients diagnosed with DCIS, including multiple epithelial

micro-biopsies within a subset of samples. The dissection of specific epithelial lesions provided

a detailed assessment of the association of their histological architecture with intrinsic subtypes,

mutational landscape, driver mutations and immunological states. Multi-region profiling resulted

in the inference of clonal relationships, illustrating how genotypes related to phenotypes within a

specimen. To our knowledge, our report is the first multi-modal and sub-histological profiling of a

cohort of pure DCIS, illustrating spatial heterogeneity and placing diverse states of

immune-activity observed in their specific molecular and histological context.

Results

Histological and molecular characterization

We collected a total of 43 specimens (referred to as samples) from 39 patients diagnosed with

pure DCIS, including three samples from subsequent DCIS diagnosed between 14 and 70

months after the index DCIS (Figure 1A-B, Table S1). Sixty-nine percent (29/42) of the samples

were positive for estrogen receptor (ER) expression and 40% (16/40) had ERBB2 gene

overexpression or amplification (Figure S1A). Each sample was further annotated for grade and

histological architecture and the annotations were used to identify regions of interest, guide the

micro-biopsies of the epithelial areas and the immuno-histological analysis. On the basis of their

studied regions, the cohort consisted of 32 high or intermediate grade DCIS (HG-DCIS), 9
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low-grade DCIS (LG-DCIS) and 2 low-grade atypical ductal hyperplasia (ADH). The DCIS

regions could be further annotated according to their dominant histological architecture (17

cribriform, 19 solid, 3 mixed, 2 micropapillary) and the presence of necrosis (10

comedo-necrosis, 17 other). LG-DCIS were more frequently of cribriform architecture (8/9),

while HG-DCIS were frequently necrotic (25/32). The relative area of adipose tissue in each

sample varied between 4 and 91 percent as estimated by segmental classification of the whole

slide digital image (Figure 1C, Methods). The lower adipose fraction was associated with higher

mammographic breast density (p=0.0067) suggesting the sample histology was representative

of the whole breast texture. Interestingly, solid DCIS were associated with a higher adipose

fraction (median 69% vs 40%, p=0.008), suggesting a contribution of the breast

microenvironment to the growth architecture. Overall, the cohort represents a diverse set of pure

in situ lesions identified in absence of any detectable invasive component. The studied samples

are enriched for DCIS lesions and specifically annotated for their histological architecture. Each

sample was profiled using multiple assays, performed on sequential histological sections (4-7

µm) used for whole transcriptome, whole-exome and spatial immune profiling . Whenever

possible, the investigated regions were matched across assays to preserve the spatial

information in the analysis and limit the variation due to spatial heterogeneity. Spatial

heterogeneity was further addressed in 21 samples for which multiple sub-regions were profiled

independently.

The expression of genes was measured using high-throughput sequencing of RNA-seq libraries

directly prepared from the micro-biopsied regions [23] (Table S2). The samples were classified

according to the PAM50 intrinsic subtypes used for invasive breast cancer (IBC), which

identified Basal (N=5), Luminal A (N=10), Luminal B (N=6), Her2-like (N=7) and Normal-like

(N=10) samples (Figure 1D). Consistent with IBC classification, Luminal A and B were enriched

for samples from ER+ cases, while Her2-like were enriched for Her2+ cases. Similarly, Luminal

B and Her2-like were enriched in HG-DCIS, while Luminal A was almost exclusively composed

of cribriform LG-DCIS. Luminal A and Normal-like represented closely related classes and

together comprised the majority of the samples (20/38), which is not unexpected given the

higher fraction of low-grade and pure in-situ lesions in the cohort, in contrast with IBC and

previous DCIS expression profiling studies [26,27]. The PAM50 subtype of two independent

sub-regions with matching histology and grade was determined in 10 samples, and observed to

be discordant in 5 samples (Table S2B), which was associated with larger distances between
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the regions (Mann Whitney, p=0.005, Figure S1B). Interestingly, matched index and recurrent

samples from two patients had at least one region with concordant subtype. Across all samples

the distribution of probabilities for each PAM50 subtype likely captures such heterogeneity.

Normal-like were truly a mix of Normal and Luminal A, while Her2-like tended to have two main

subsets: Her2/Basal and Her2/Luminal B. This suggests that subtypes inferred from bulk

analysis, even after epithelial micro-dissection, are frequently the result of a variable mixture of

pure subtypes.

Subtype differences in mutational landscape

To determine whether any of the histological or molecular subtypes described above were

associated with specific genetic alterations, we characterized their mutational landscape. Whole

exome sequencing was carried out on micro-biopsies from 30 samples using a procedure

specifically optimized for low amount of damaged DNA [22]. Mutations and copy number

alterations (CNA) were identified in 27 and 30 samples, respectively (Table S3). The median

copy number burden - or fraction of the genome involved in CNA – was 0.14 and was 2.5 fold

higher in HG-DCIS (Mann Whitney, p=0.017, Figure 2A-B). Whole genome doubling (WGD)

events were detected in 3/8 eligible samples, all of which were low or intermediate grade

cribriform DCIS consistent with its early timing in breast carcinogenesis [28] (Table S3).

Consistent with previous studies, loss of 16q (13/30) and 17p (12/30) or gain of 1q (12/30) were

among the most frequent chromosomal alterations and, while many events were more frequent

in HG-DCIS (Figure 2C, Table S4), these hallmarks were also observed in low-grade or benign

lesions, including ADH: (1q gain: 1/9, 16q loss: 7/9, 17p loss: 3/9).

We identified between 74 and 207 coding mutations per sample. The mutational burden was

higher in HG-DCIS (Mann Whitney, p=0.003) and Her2-like subtypes (Mann Whitney, p=0.025),

recognizing that these categories are overlapping. The HG-DCIS burden (4.4 mut/Mb) was

higher than previous reports, possibly due to residual germline variants in our study [11,12]. We

identified aging-associated mutational signatures (SBS1 and SBS5) in all samples eligible for

analysis (N=13), APOBEC signature (SBS2 and SBS13) on 1 intermediate grade solid DCIS

and mismatch repair signature (SBS15 or SBS21) in 3 DCIS of variable grade and architecture

(Table S5). The APOBEC signature is therefore more rare in DCIS than IBC (~8% vs >75%), but

can be present in premalignant lesions. Interestingly, this sample also displayed clustered
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mutations (N=3 within 1,416 bp) in chromosome 17q (Figure S2), an APOBEC-driven kataegis

site frequently seen in IBC [29]. The most recurrently mutated genes were PIK3CA (44%), TP53

(31%), and GATA3 (20%), and were all affected by known somatic mutations in breast cancer at

similar rates to previous studies of pure DCIS [6,7,9–11] (Figure 2D & Table 1). TP53 mutations

were only found in HG-DCIS and associated with high CNA burden (Mann-Whitney, p=0.018),

while GATA3 mutations were only found in cribriform or ADH histologies and associated with

LG-DCIS (Fisher Exact, p=0.005). Interestingly, GATA3 mutations were identified in larger

lesions (Mann Whitney, p=0.038), consistent with a similar observation in invasive cancer and

the larger tumor size of GATA3 mutated xenograft models [30,31]. Another 9 selected genes

known to be mutated in IBC were recurrently affected by 18 mutations predicted to be

deleterious, 4 of which are known somatic mutations [7]. The result suggests that oncogenic

driver mutations are already present at the premalignant stage, including in LG-DCIS (e.g.

SF3B1 c.2098A>G) or ADH (GATA3 c.925-3_925-2del). This is consistent with previous reports

and reports of field effect mutations in normal ducts or benign lesions [32,33], though the

contribution of these mutations to the lesion progression remains to be determined.

Genetic heterogeneity and clonal diversity

The histologic assessment and expression profiling have revealed variable levels of phenotypic

heterogeneity across the samples. In order to determine whether such heterogeneity is present

at the genetic level, we measured genetic heterogeneity in two distinct ways: 1) divergence,

which measures the genetic distance between regions of a sample and, 2) clonal relationships,

which uses phylogenetic tree construction to establish evolutionary order to genetic alterations

(Table S3). We measured divergence by computing a CNA-based score on 19 pairs of

histologically matching regions in 11 samples (Table S3, Methods). With no pairs completely

independent (max score=0.16), the spatial distance separating the dissected regions was

correlated with the extent of their genetic divergence (R2=0.65, p=0.00017, Figure S3),

suggesting that, locally, genetic diversity results from wider range proliferation. Divergence was

the lowest in 1 ADH, but was not associated with grade, Her2/ER status, or adipose fraction

suggesting that local genetic heterogeneity is not associated with progression risk factors.

More precise clonal relationships between regions were evaluated using phylogenetic analysis
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in 12 samples, comparing CNA, and mutations when available (Figure 3, Figure S4, Methods).

While the majority (88.4%) of CNA were shared across all regions of a sample, 11.6% were

private to some regions, as observed in 7/12 samples. Multiple samples (3/12) contained

mutations in putative cancer driver genes that were private to one region only. These included

known and likely pathogenic mutations in ATR, PIK3CA, MET, KDM5C, suggesting that not all

driver mutations are acquired early. Interestingly, the three samples with the most private CNA

displayed discordant histological architecture or discordant PAM50 subtypes between regions,

suggesting that within a sample, genetic and phenotypic differences are linked. Furthermore, in

4/5 samples containing regions with discordant histology and 3/4 with discordant PAM50

subtypes, benign regions or regions with Normal or LumA subtypes appeared earlier than

regions with Her2 or Basal subtypes or regions with necrosis. This result suggests that in these

samples the lesion progressed with time and acquired histological and molecular features

previously associated with increased risk of progression.

Substantial heterogeneity and evolutionary patterns are evident in samples like

MCL76_061_16200 (Figure 3A-C), where a region of benign columnar alterations preceded two

cribriform regions. While all regions shared a WGD event as well as several arm-level CNA and

pathogenic mutations in GATA3 and SF3B1, the cribriform region A acquired private 5q and 8q

gains and necrotic features. While this example shows tandem genetic and histological changes

as seen across the cohort, it also illustrates that despite occurring earlier, the benign region

shares many “driver-like” alterations with both cribriform regions. Furthermore, in another

example, despite homogeneous cribriform histologies in regions of MCL76_077_15300 (Figure

3D-F) only one cribriform region lost a copy number of chromosome 8, and presented with Her2

PAM50 subtype as opposed to its Luminal A predecessor. Notably bulk studies have shown

chromosome 8 loss to be more frequent in Her2 vs Luminal A breast cancers [34]. Taken all

together we illustrate abundant genetic heterogeneity in pure DCIS of all histologies and grades

that parallels the levels of phenotypic heterogeneity and often accompanies it, even in regions

that are millimeters apart.

Regional differences in the immune micro-environment

To measure the diversity of the immune-landscape and to investigate its potential association

with molecular or histological features, we used multiplex immuno-histochemistry (mIHC) to
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measure the number and density of four cell types - T-cells (CD3+), B-cells (CD20+), T-regs

(CD3+/FOXP3+) and epithelial cells (PanCK+) - according to their proliferative status (Ki67+).

Both epithelial (PanCK+) and adjacent stromal (PanCK- proximal to epithelium) areas from

pre-malignant (N=36 regions across 32 samples) or benign and normal (N=21 across 21

samples) histologies were evaluated. Among pre-malignant regions, the high-grade epithelial

areas had lower cell density due to larger cell sizes and frequent central necrosis (median 3.8

vs 6.4 103 cells/mm2 p<0.03 – Mann-Whitney). Solid lesions had the highest fraction of

proliferating epithelial cells (median 11.5% vs 2.8% p<0.02 - Mann-Whitney, Figure 4A), and

interestingly 3/10 HG-DCIS cribriform lesions (2 Her2-like, 1 Luminal B) had markedly higher

proliferation. We next classified all regions using non-negative matrix factorization of the stromal

and epithelial cell densities, resulting in 3 immune-states characterized by their dominant

meta-markers (Figure 4B, Figure S5, Table S7): “Active” (ubiquitous high T-cells), “Suppressed”

(ubiquitous low T-cells, high B-cells and T-regs) and “Excluded” (high stromal, low epithelial

densities). We verified that regions in Excluded state had higher relative stromal cell density,

regions in Active state had denser epithelial T-cells and regions in Suppressed state had denser

epithelial T-regs and B-cells (Figure 4C-D). A larger fraction of the benign regions were found in

Active (7/21) or Suppressed state (9/21) rather than in Excluded state (4/21) and pre-malignant

regions in Excluded state were more likely high grade (7/15 vs 2/17 p=0.049). Interestingly, the

immune states of benign and pre-malignant regions were concordant in 12/19 matched cases

and discordant in 7 whose lesions were specifically in the Excluded state (Figure 4D). This

suggests that the Excluded state may be acquired in response to pre-malignant growth, while

other states may be intrinsic to various breast micro-environments. Furthermore, pre-malignant

regions in Suppressed state were more likely identified in cases younger than 55 (5/8 vs 4/24

OR=7.6 p=0.02), consistent with the younger age of DCIS patients with infiltrating PD-L1+

lymphocytes [35]. We did not observe any associations between immune states and intrinsic

subtype, ER or Her2 status, tumor size, breast density, adipose fraction or DCIS architecture

suggesting that they may be independent from traditional histopathological progression risk

factors.
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In order to identify functional differences between immune-states, we evaluated the differential

activity of Hallmark and Reactome processes among the 29 DCIS regions with available gene

expression information (Figure S6). Compared to Active and Suppressed states, the Excluded

state was associated with upregulation of Type 1 and 2 Interferon response, PD1 signaling and

proliferation-related processes as well as the repression of Calcineurin-Calnexin cycle (Figure

S6). Noting that the epithelium of DCIS in Excluded state were not completely depleted of

infiltrating lymphocytes, the upregulated processes were consistent with the higher expression

of PD1 or CTLA4 genes in DCIS in Excluded state (Figure 4H), albeit not significant, and

suggesting a likely continuum of increasing immuno-suppression from Suppressed to Excluded

states. More interestingly, the repression of the Calreticulin-Calnexin cycle was confirmed via

single-sample enrichment analysis and showed a progressive repression from Active, to

Suppressed, to Excluded states (p=0.022, ANOVA, Figure 4I). This suggests that the export of

glyco-proteins - including components of MHC1 complex - via the endoplasmic reticulum,

impacts immune-surveillance.
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Discussion

There is a compelling requirement for a DCIS atlas that delivers a relatively unbiased,

multi-modal perspective of pre-invasive breast cancer. Here, we report the multi-modal profiling

of a diverse set of pure DCIS. This comprehensive atlas both confirms previous molecular

findings and provides a higher resolution histological and spatial context to interpret them.

However, with only 3 known recurrences, the significance of our observations for progression

prognosis could not be formally established. Our findings provide a landscape of representative

pure DCIS identified in absence of invasive lesions. While some lesions were small, others were

quite extended (N=14 larger than 4 cm), which should capture factors that may be associated

with robust containment. The cohort therefore spans a variety of clinical, histological, phenotypic

and genotypic features. Such variety and contrast is critical to ensure this atlas’ utility in

designing larger studies, or perhaps providing more cautionary interpretation of observations

from cohorts enriched for specific risk factors.

At the heart of our study’s innovation was the ability to generate molecular profiles from limited

amounts of dissected archival tissue specimen. Similar approaches are used to study clonal

expansion in normal tissues [24,25], but generally not performed in parallel for RNA and DNA.

Importantly some limitation remains and not all assays were successful. The large variability in

success rate was not easy to predict. Likely the age of the specimen, its size, fixation conditions

and storage conditions all contribute to success variability which cannot be controlled in a

retrospective investigation. Additional limitations are analytical, such as the absence of a

matched source of normal DNA from every sample which can result in residual germline

variants, perhaps inflating the overall mutation rate observed. The use of adjacent normal or

benign tissue can also be problematic and there is ample evidence that they also accumulate

somatic mutations [36]. In our study, we clearly identified known breast cancer driver mutations

in samples from ADH or other benign alterations. Overall, while some samples are unlikely to

ever contain sufficient material for profiling or dissection of adjacent normal, as methodologies

evolve and advance, the success rate and data quality will improve to make molecular

premalignant profiling more accessible and as routine as is the case in invasive cancer.
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Our report contributes to two major advances for understanding pre-malignant lesions. First, we

characterized most samples across four important modalities all within a maximum of 50 µm

sequentially sectioned tissue. Such advances were enabled by pre-analytical improvements

allowing us to reduce the tissue requirement, to include small lesions, and to precisely match

regions of interest across each modality: histology, epithelial gene expression, DNA mutations,

and immune landscape. As a result we could isolate regions with different histological features

that may coexist within a specimen and more confidently establish their association with

expression subtypes, clonal heterogeneity or immune state. For example, the integration of

histology and expression subtypes showed clear correlation between cribriform architecture and

Luminal A subtype. By integrating histology, expression subtype and immune state we showed

that some immune-states are found in benign areas and that there is no clear association

between immune state and expression subtype. Hence, the depth and interpretability of the

analysis is considerably increased by integrating all modalities at the regional level. This has

been clearly the case in large cancer studies such as the TCGA, or, more recently through the

integrated analysis of histological and somatic features in normal, aging tissues [24,25,37].

While most studies do not typically include immuno-histochemical or other multiplexed spatial

analysis, other important advancements in this field in the past year include spatial proteomics

used to evaluate the structure of the myoepithelium in DCIS, and spatial transcriptomics used to

identify the transcriptional effect of driver mutations in DCIS, representing the emerging frontier

of premalignant tissue characterization [10,38]. It is therefore likely that additional spatial

profiling compatible with FFPE specimens will bring additional prognostic and mechanistic

insights in future DCIS studies.

The other important contribution of our study is the sub-histological analysis to compare regions

of interest from the same sample and infer phylogenetic relationships between them. While we

determined that the majority of the DCIS samples were classified as Normal-like and Luminal A

subtype, typically considered less-aggressive subtypes in breast cancer and reflective of the

known precursor stage that DCIS represents, we showed evidence for intrinsic heterogeneity in

the PAM50 probabilities, either from the distribution of probabilities within a region or from

physically separated regions. This is not entirely surprising as bulk expression subtypes are the

result of averaging heterogeneity, similar to glioblastoma subtypes [39] or IBC subtypes [40]

from single-cell analysis. Such heterogeneity, especially in DCIS, had been proposed before on

the basis of marker staining [41] and our results confirm that it may be rather common. Similarly
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to the frequency of heterogeneity between region subtypes, we identified evidence of genetic

heterogeneity in 7/12 cases, including the presence of private putative driver mutations. This

fraction may be an underestimate given the close proximity of many selected pairs. However,

the majority of putative genetic drivers, copy number hallmarks and even WGD were clonal,

shared by all regions investigated, including a few benign regions. This observation supports

evolutionary models derived from invasive cancer, including multi-sample studies, that suggest

that most driver mutations occur early followed by a phase of clonal expansion. Similar

observations were also made in early multi-regional studies in DCIS [41–43] and studies

comparing synchronous DCIS-IBC cases using single-cell sequencing [12], providing further

evidence that breast cancer genetic evolution starts in the pre-invasive stage and possibly in

benign regions. It is likely that driver alterations may even be present in adjacent histologically

normal tissue as observed in field effects studies in normal tissue and benign ducts [36,44].

Such effects support an important contribution of host factors to the initial genetic injury. Hence,

unlike previous attempts which were focused on histopathological features, including grade,

surgical margins [45,46], future DCIS prognostic models will likely need to be derived from

lifetime cancer risk models like GAIL [47] or BOADICEA [48] and incorporate host specific

factors, such as polygenic risk scores and reproductive factors, that likely contribute to the DCIS

initiation and trajectory.

The immune micro-environment of DCIS has been previously investigated, using both

quantification of tumor infiltrating lymphocytes (TIL) and more specific immuno-histochemical

approaches and revealed clear quantitative and qualitative variation in lymphocyte infiltration,

including higher TIL number and more immunosuppressive features in high risk lesions [49].

Importantly, previous studies in pure DCIS did not quantify stromal and epithelial TILs

separately. This distinction may be hard to make in IBC, where both compartments interact at

the invasive front and pathologist subjectivity can have a major impact [50,51]. However, this

separation can be more clearly established in the analysis of DCIS and was critical in the

identification of the Excluded immune state in our atlas. While the Active and Suppressed states

have been observed before and could readily be identified in our data, the identification of the

Excluded state required the use of an analytical method (NMF) to account for the strong

correlations that can exist between TILs type and compartments. The inclusion of adjacent

benign areas was also important to interpret the significance of the immune-states, as the

Excluded state appeared more likely in reaction to the DCIS growth and increased grade. The
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Excluded state exhibited features of immune evasion and could represent a more advanced

level of immuno-suppression than the Suppressed state, with the consequence of a topological

exclusion from the duct. The downregulation of components of the Calreticulin-Calnexin cycle in

the epithelium in Excluded state could impact MHC-I export or maturation providing an evasion

mechanism, and contrasting with evasion mediated by MHC-I genetic loss observed in IBC

[52,53]. It would be interesting to determine whether the immune states identified can explain

the variability of response to local injection of anti-PD1 antibody in DCIS patients, and whether

any of the states would elicit, or prevent, the desired ductal infiltration by T-cells [54].

As illustrated by our study and recent advances in the profiling of normal tissues [24,25],

histopathology and molecular pathology are becoming more integrated fields, generating deeper

and broader datasets at increased cellular and spatial resolution, from the most challenging

human samples. Future studies of early transformation and pre-cancer biology such as the one

presented here will likely benefit the most from such approaches which capture heterogeneity at

scale and can help reconcile analog (optical) and digital (genomics and multiplex) observations.

As a result, such multi-dimensional integration may help identify common factors mediating

epithelial transformation and progression across multiple glands and organs.
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Material and Methods

Sample collection and preparation

FFPE blocks were obtained from UCSD or UVM Pathology Departments after surgical biopsy,

excision or mastectomy. The study was reviewed and approved by each institutional review

board and they granted a waiver of consent. All specimen blocks were de-identified and

sectioned sequentially for the following purpose: Hematoxylin-Eosin (H&E) staining (N=1; 4 µM

glass slide), Laser Capture Microdissection (LCM; N=3; 7 µM glass slide coated with

polyethylene naphthalate – ThermoFisher #LCM0522), multiplex or regular

immunohistochemistry (N≥3 4 µM glass slide) and a final H&E staining (N=1; 4 µM glass slide).

The H&E slides were scanned at high resolution and reviewed and annotated by the study

pathologist. The LCM slides were stored at -20ºC in an airtight container with desiccant until

ready for dissection (1 day to 3 months). The LCM sections were thawed and stained with

eosin, sections were kept in xylene and dissected within 2 hours of staining. LCM was

performed using the ArcturusXM Laser Capture Microdissection System (ThermoFisher).

Matching regions from 6 adjacent sections were collected on capsure Macro Cap (for DNA, N=3

slides) or HS caps (for RNA, N=3 slides), region size, and unambiguous match permitting.

Post-dissection, all caps were covered and stored at -20ºC with desiccant. DNA extraction and

QC: The membrane and adhering tissue were peeled off the caps using a razor blade and the

peeled membrane was incubated in proteinase K digestion reaction overnight for 16 h at 56°C

to maximize DNA yield after cell lysis The DNA was extracted using the QIAamp DNA Micro Kit

(Qiagen) and the elution was done in 20 µL. The extracted DNA was quantified by fluorometry

(HS dsDNA kit Qbit – Thermofisher).

RNA-Sequencing and analysis

Library Preparation: RNA sequencing was performed using SMART-3Seq, a 3’ tagging strategy

specifically designed for degraded RNA directly from FFPE LCM specimen [23]. LCM dissected

SMART-3Seq libraries were prepared using the standard protocol for FFPE tissue on Arcturus

HS LCM Cap and the individual library SPRI purification option. All FFPE LCM dissected

libraries were amplified using 19 PCR cycles during indexing to minimize over-amplification of

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443641doi: bioRxiv preprint 

https://paperpile.com/c/xNEywF/EjUO
https://doi.org/10.1101/2021.05.11.443641
http://creativecommons.org/licenses/by-nc/4.0/


high abundance mRNAs in each library. Libraries were individually analyzed for size distribution

on an Agilent 2200 TapeStation with High Sensitivity D1000 reagent kits to verify average library

size of 190 bp and stored at -20 C until sequencing. When all libraries were ready for

sequencing, 1 µL of each library was then used to create two library pools used for sequencing

and quantified by Qubit 2.0 Fluorometer HS DNA assay. Library pools were sequenced with a

1% PhiX spike-in control library and sequenced on an Illumina HiSeq4000, a run type of single

read 75 (SR75) and dual index sequencing.

Transcriptome analysis: Read count data was obtained using a dedicated analysis workflow

https://github.com/danielanach/SMART-3SEQ-smk. Briefly, sequencing reads were trimmed

using cutadapt 1.18, UMIs were processed using the umi_homopolymer.py script in the

SMART-3SEQ tools (https://github.com/jwfoley/3SEQtools), aligned using STAR 2.6.1a,

deduplicated using the dedup.py script from https://github.com/jwfoley/umi-dedup and read

counts were calculated using featureCounts 1.6.3 [55,56]. Count data was then merged and

filtered to remove samples with fewer than 55,000 counts and genes with fewer than 10 read

counts across all samples. Filtered count data was then loaded into Seurat version 3.2.3 and

processed using the SCTransform() function version 0.3.2 to regress out the high mitochondrial

content variability across the samples [57]. Batch correction was then performed using ComBat

to remove variation attributable to the sequencing center (UCSD vs UVM) [58]. PAM50 subtype

probabilities were calculated from the SCTransform and batch normalized data using the genefu

package [59]. Gene set enrichment analysis (GSEA) was performed as in [60] and

single-sample GSEA as in [61]. Gene sets from the REACTOME and Hallmark collections in

MSigDB were used to compare the excluded to the non-excluded groups, a permutation test

was performed to assess the significance of the GSEA results [62,63]. ANOVA was used to

compare the ssGSEA results between the three mIHC groups. FDR of less than 0.1 and

p-values of less than 0.05 were considered significant.

Whole exome sequencing and primary analysis

LIbrary preparation: DNA was sheared down to 200 base pairs (bp) using Adaptive Focused

Acoustics on the Covaris E220 (Covaris Inc) following manufacturer recommendations with 10

μL Low EDTA TE buffer supplemented with 5 μL of truSHEAR buffer using a microTUBE-15.

Libraries were prepared using the Accel-NGS 2S PCR-Free DNA Library Kit (Swift Biosciences).
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Ligated and purified libraries were amplified using KAPA HiFi HotStart Real-time PCR 2X

Master Mix (KAPA Biosystems). Samples were amplified with 5 μL of KAPA P5 and KAPA P7

primers. The reactions were denatured for 45 seconds (sec) at 98°C and amplified 13-15 cycles

for 15 sec at 98°C, for 30 sec at 65°C, and for 30 sec at 72°C, followed by final extension for 1

min at 72°C. Samples were amplified until they reached Fluorescent Standard 3, cycles being

dependent on input DNA quantity and quality. PCR reactions were then purified using 1x

AMPure XP bead clean-up and eluted into 20 μL of nuclease-free water. The resulting libraries

were analyzed using the Agilent 4200 Tapestation (D1000 ScreenTape) and quantified by

fluorescence (Qubit dsDNA HS assay).

Capture and Sequencing: Samples were paired and combined (12 μL total) to yield a capture

“pond” of at least 350 ng, and supplemented with 5 μL of SureSelect XTHS and XT Low Input

Blocker Mix. The hybridization and capture was performed using the Human All Exon V7 panel

(S31285117) paired with the Agilent SureSelect XT HS Target Enrichment Kit following

manufacturer’s recommendations. Post-capture amplification was performed on the beads in a

25 μL reaction: 12.5 μL of nuclease-free water, 10 μL 5x Herculase II Reaction Buffer, 1 μL

Herculase II Fusion DNA Polymerase, 0.5 μL 100 millimolar (mM) dNTP Mix and 1 μL

SureSelect Post-Capture Primer Mix. The reaction was denatured for 30 sec at 98°C, then

amplified for 12 cycles of 98°C for 30 sec, 60°C for 30 sec and 72°C for 1 min, followed by an

extension at 72°C for 5 minutes and a final hold at 4°C. Libraries were purified with a 1x

AMPure XP bead clean up and eluted into 20 μL nuclease free water in preparation for

sequencing. The resulting libraries were analyzed using the Agilent 4200 Tapestation (D1000

ScreenTape) and quantified by fluorescence (Qbit – ThermoFisher). All libraries were

sequenced using the HiSeq 4000 sequencer (Illumina) for 100 cycles in Paired-End mode.

Libraries with distinct indexes were pooled in equimolar amounts. The sequencing and capture

pools were later deconvoluted using program bcl2fastq [19].

Sequencing reads processing and coverage quality control: Sequencing data was analyzed

using bcbio-nextgen (v1.1.6) as a workflow manager [20]. Samples prepared with identical

targeted panels were down-sampled to have equal number of reads using seqtk sample (v1.3)

[21]. Adapter sequences were trimmed using Atropos (v1.1.22), the trimmed reads were

subsequently aligned with bwa-mem (v0.7.17) to reference genome hg19, then PCR duplicates

were removed using biobambam2 (v2.0.87) [64–66]. Additional BAM file manipulation and
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collection of QC metrics was performed with picard (v2.20.4) and samtools (v1.9) [67]. The

summary statistics of the sequencing and coverage results are presented in Table S8.

Identification of somatic mutation and copy number alterations

Variant calling: Single nucleotide variants (SNVs) and short insertions and deletions (indels)

were called with VarDictJava (v1.6.0), and Mutect2 (v2.2) [68,69]. Variants were required to fall

within a 10 bp boundary of targeted regions that overlapped with RefSeq genes (v

109.20190905). A pool of normal DNA was created using whole exome sequencing data of

blood of 18 unrelated individuals and was used to eliminate artifacts and common germline

variants. Only variants called by both algorithms were considered. These variants were then

subjected to an initial filtering step with default bcbio-nextgen tumor-only variant calling filters

and the following parameters were used: position covered by at least 5 reads, mapping quality

more than 45, mean position in read greater than 15, number of average read mis-matches less

than 2.5, microsatellite length less than 5, tumor log odds threshold more than 10, Fisher strand

bias Phred-scaled probability less than 10 and VAF more than 0.1 [70]. Functional effects were

predicted using SnpEff (v4.3.1) [71]. All samples were re-evaluated for the presence of COSMIC

(v91) database mutations which have been previously observed in at least 15 patients and fall

within 137 known breast cancer driver genes (Table S9) [7].

Germline variant filtering: In absence of matched normal tissue for DCIS samples, somatic

mutations were prioritized computationally using the approach from the bcbio-nextgen

tumor-only configuration then additionally subjected to more stringent filtering [70]. Briefly,

common variants (MAF>10-3 or more than 9 individuals) present in population databases - 1000

genomes (v2.8), ExAC (v0.3), or gnomAD exome (v2.1) - were removed unless in a tier 1 gene

from the cancer gene consensus and present in either COSMIC (v91) or clinvar (20190513)

[7,72–75]. Variants were removed as likely germline if found at a variant allelic fraction (VAF)

greater or equal to 0.9 in non-LOH genomic segments – as determined by CNA analysis

(below). Lastly, variants were also removed as potential germline (or artifact) if found in more

than two patients in the pool of normal (described above).

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443641doi: bioRxiv preprint 

https://paperpile.com/c/xNEywF/rA4S
https://paperpile.com/c/xNEywF/chVP+VekJ
https://paperpile.com/c/xNEywF/9Mo2
https://paperpile.com/c/xNEywF/ivBR
https://paperpile.com/c/xNEywF/NdgM
https://paperpile.com/c/xNEywF/9Mo2
https://paperpile.com/c/xNEywF/bXK5+HDco+NdgM+JIMK+WWhf
https://doi.org/10.1101/2021.05.11.443641
http://creativecommons.org/licenses/by-nc/4.0/


Single-sample CNA calling: CNVkit [76] was used for calling somatic copy number alterations

(CNA) to measure both overall CNA burden, arm and gene level CNA and identify LOH as

previously described in [22]. Allele-specific copy number calling algorithm, ASCAT, was used on

a select number of samples for which there was sufficient coverage and the algorithm

converged on a solution, in order to identify whole-genome doubling events as well as confirm

CNA identified by CNVkit [77]. Default parameters were used with ASCAT with the exception of

a segmentation penalty of 100 and a gamma of 1.

Multi-region CNA segmentation: To generate harmonized segmentation breakpoints between

regions belonging to the same sample, multi-region segmentation as performed with the R

CopyNumber (v1.26.0) package [78]. Outliers in CNVkit bin-level log2 copy ratios were detected

and modified using Median Absolute Deviation Winsorization with the winsorize() function,

segments were then called using the multipcf() function with a gamma of 40.

Mutational signatures: Mutational signatures were called on merged region samples using a

single-sample variation of SigProfiler with default parameters to decompose into known

single-base substitutions (SBS) reported in COSMIC [79,80].

Analysis of the clonal evolution and genetic heterogeneity

Measurement of genetic divergence :Divergence was measured on each pair of related regions,

and , using the following equation:𝑎 𝑏

𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒
𝑎,𝑏

=
𝑘=0

𝑛

∑ 𝑐𝑜𝑝𝑦 𝑟𝑎𝑡𝑖𝑜 𝑎
𝑘

− 𝑐𝑜𝑝𝑦 𝑟𝑎𝑡𝑖𝑜 𝑏
𝑘| | *  ( 

𝑏𝑖𝑛𝑠
𝑘

𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑛𝑠  )

Where is the copy number segment, is the total segments, and is the number of bins𝑘 𝑛 𝑏𝑖𝑛𝑠

covered by a segment from the CNVkit input file. The term was used as a weighted 
𝑏𝑖𝑛𝑠

𝑘

𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑛𝑠  

correction factor for the number of bins contributing to a segment. For samples with more than 2

regions, the maximum divergence between any two regions was used to represent the sample.

CNA-based phylogenetic reconstruction: Construction of phylogenetic trees was performed

similarly to the methodology outlined in [81]. Briefly, for each sample the log2 copy ratios from

multi-sample copy number segments with at least 12 probes (see above), were translated into a
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matrix containing -1 for loss (log2 copy ratio<-0.6), 0 for neutral (-0.4<= log2 copy ratio <=0.3)

and undetermined for anything else. This matrix was then used to generate Maximum

Parismony trees using phangorn using default parameters [82].

Mutation-based phylogenetic reconstruction: To allow the analysis of clonal relationships

between regions of the same sample, the coverage depth of each allele at any remaining

mutated position in any region was extracted using Mutect2 joint variant caller on the sets of

aligned reads from each region. In order to call a mutation either absent or present in a region,

we used a Bayesian inference model specifically designed for multi-region variant calling [83].

Treeomics (v1.7.10) was run with the default parameters except for e=0.02. The tree solution

which matched the CNA-based reconstruction was then integrated into a single tree for Figures

3 and S4.

Multiplex Immuno-histochemistry

Staining: Tissue sections were prepared from formalin-fixed paraffin embedded tissue blocks

and cut to 4 micrometers serial sections and mounted on Superfrost Plus (VWR). The procedure

for multiplex immunohistochemistry (mIHC) was followed by a manufacturer’s protocol for

Opal7-color automation IHC kit (Akoya Bioscience), and the staining was performed with

Autostainer DISCOVERY ULTRA (Ventana). Antibodies used in mIHC are anti-CD3 (clone

2GV6, Ventana), anti-CD20 (clone L26, Ventana), anti-Ki67 (clone 30-9, Ventana), anti-FOXP3

(clone SP97, Spring), anti-pan cytokeratin (CK; clone AE1/AE3, DAKO), anti-CD117 (clone c-kit,

DAKO). The molecular markers of immune panel (CD3, CD20, Ki67, CKs, FOXP3 and CD117)

were visualized with Opal520, Opal540, Opal570, Opal620, Opal650 and Opal690, respectively.

DAPI counterstaining was performed with Discovery QD DAPI (Roche). ProLong Diamond

Antifade Mounting (ThermoScientific) was used for mounting the coverslip. Detailed staining

conditions and autostainer’s protocols are reported in our recent report [84].

Visualization and analysis: Tissue samples stained with mIHC were scanned with multispectral

imaging microscopy (Vectra 3, Akoya Bioscience). Scanned multispectral images were unmixed

on inForm software (ver.2.4.0, Akoya Bioscience) to acquire the fluorescence signal from each

marker [84]. Imaging analysis was performed on inForm software by identifying tumor (CK+

area) and stroma (CK- area proximal to the epithelium), each nucleated cell and its cell type.
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Alternatively, QuPath software [85] was also used to perform similar imaging analysis on

unmixed images converted to multi-layered TIFF format by inForm software [84]. Scanned

image areas were aggregated into up to three histological regions per sample: main

pre-invasive lesion, alternate pre-invasive lesion, benign or normal epithelium. In each region,

the stromal and epithelial densities of each cell type and state was calculated, including when

cells were not present (density=0). Regularized marker densities into distribution deciles were

then used to classify samples using non-negative matrix factorization (Table S7). The

immune-states were assigned and named after the hierarchical clustering of the H matrix

(meta-marker values).

Whole slide image digital analysis

High resolution whole slide images of H&E stains were loaded into a QuPath (v2.3) project [85].

One analysis area was defined for each specimen, avoiding location of biopsies as well as dust

or marked areas. The analysis areas were segmented into superpixels (sigma=5 µm,

spacing=50 µm, maxIterations=10, regularization=0.25) and each superpixel was annotated with

both Hematoxylin and Eosin Intensity features (size=2 µm, tile size=25 µm). The mean, median,

min, max and standard deviation values were then smoothed (Haralick distance=1, Haralick

bins=32). Multiple training areas were annotated from each of the following classes: adipose,

stroma, inflammation, epithelium (normal and atypical), void, necrosis, blood vessels. Multiple

areas across 2 to 4 samples were used to train a Random Tree classifier. The classifier was

then applied to all superpixels included in the analysis area. The accuracy of the classifier was

assessed both visually and with multiple test areas for each class. Superpixels of the same

class were merged into single annotations and the resulting areas recorded. Separate

classifiers were used for images from different institutions, to mitigate possible variation staining,

scanning or image format. The fraction of adipose area was compared to breast density using

Mann-Whitney test comparing dense & heterogeneously dense breast to other lower densities,

or comparing solid DCIS to non-solid DCIS lesions.
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Data Availability

The raw RNA and DNA sequencing data has been deposited in dbGAP phs002225. High

resolution whole slide images of the H&E stains and corresponding annotations can be viewed

on the JPL LabCAS portal (digital object identifiers included in the Table S1).

Acknowledgments

We are grateful to Drs. Michael Campbell, Christina Yau and Kathleen Curtius for helpful

conversations, Drs. Alfredo Molinolo, Oluwole Fadare, Sharmeela Kaushal, Valeria Estrada and

Mrs Kimberly Mcintyre for their support and assistance in the tissue collection, preparation and

dissection, Mrs Eliza Jeong, Marcy Andersen and Nicole Lee for their assistance retrieving

clinical information. We thank the technical assistance of the Vermont Integrative Genomics

Resource Massively Parallel Sequencing Facility with the combined support of the University of

Vermont Cancer Center, Lake Champlain Cancer Research Organization, UVM College of

Agriculture and Life Sciences, and the UVM Larner College of Medicine. We acknowledge the

work of all working groups from the NCI Consortium for the Molecular Characterization of

Screen Detected Lesions (MCL), in particular Christopher Amos, Daniel Crichton, Heather

Kincaid, Kirsten Anton, Luca Cinquini, David Liu for their assistance in the data management

and sharing. Figure 1 was created with BioRender.com and printed with permission.

Funding

This work is supported by funding from the National Institute of Health (U01CA196406,

U01CA196406-03S1, U01CA196383, R01DE026644, T32GM008806, T15LM011271), the

National Cancer Institute (P30CA023100) and the California Tobacco Related Disease

Research Program pre-doctoral fellowship to DN (28DT-0011). The funding bodies had no role

in the design of the study; collection, analysis, and interpretation of data; or in the writing of the

manuscript.

Conflict of Interest

The authors declare no conflict of interest

Authors Contributions

JLS, GS, GLH, LJE, SDB, OH designed the study, FH, AM, SDB, DLW, BLS, TOK selected and

annotated the specimen. JS, KJ, HZ, HM, MFE, JG generated the data, OH, DN, AO, HM

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443641doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443641
http://creativecommons.org/licenses/by-nc/4.0/


analyzed the data, OH and DN wrote the manuscript. All authors reviewed and approved the

manuscript.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443641doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443641
http://creativecommons.org/licenses/by-nc/4.0/


References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

2. Bleyer A, Welch HG. Effect of three decades of screening mammography on breast-cancer
incidence. N Engl J Med. 2012;367:1998–2005.

3. Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer
screening: an independent review. Lancet. 2012;380:1778–86.

4. Sprague BL, Vacek PM, Herschorn SD, James TA, Geller BM, Trentham-Dietz A, et al.
Time-varying risks of second events following a DCIS diagnosis in the population-based
Vermont DCIS cohort. Breast Cancer Res Treat. 2019;174:227–35.

5. Gorringe KL, Fox SB. Ductal Carcinoma In Situ Biology, Biomarkers, and Diagnosis. Front
Oncol. 2017;7:248.

6. Pang J-MB, Savas P, Fellowes AP, Mir Arnau G, Kader T, Vedururu R, et al. Breast ductal
carcinoma in situ carry mutational driver events representative of invasive breast cancer. Mod
Pathol. 2017;30:952–63.

7. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the Catalogue
Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47:D941–7.

8. Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al. Supervised risk
predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. American Society of Clinical
Oncology (ASCO); 2009;27:1160–7.

9. Lin C-Y, Vennam S, Purington N, Lin E, Varma S, Han S, et al. Genomic landscape of ductal
carcinoma in situ and association with progression. Breast Cancer Res Treat. 2019;178:307–16.

10. Nagasawa S, Kuze Y, Maeda I, Kojima Y, Motoyoshi A, Onishi T, et al. Genomic profiling
reveals heterogeneous populations of ductal carcinoma in situ of the breast. Commun Biol.
2021;4:438.

11. Pareja F, Brown DN, Lee JY, Da Cruz Paula A, Selenica P, Bi R, et al. Whole-Exome
Sequencing Analysis of the Progression from Non-Low-Grade Ductal Carcinoma In Situ to
Invasive Ductal Carcinoma. Clin Cancer Res. 2020;26:3682–93.

12. Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, et al. Multiclonal Invasion in
Breast Tumors Identified by Topographic Single Cell Sequencing. Cell. 2018;172:205–17.e12.

13. Gerdes MJ, Gökmen-Polar Y, Sui Y, Pang AS, LaPlante N, Harris AL, et al. Single-cell
heterogeneity in ductal carcinoma in situ of breast. Mod Pathol. 2018;31:406–17.

14. Pruneri G, Lazzeroni M, Bagnardi V, Tiburzio GB, Rotmensz N, DeCensi A, et al. The
prevalence and clinical relevance of tumor-infiltrating lymphocytes (TILs) in ductal carcinoma in
situ of the breast. Ann Oncol. 2017;28:321–8.

15. Campbell MJ, Baehner F, O’Meara T, Ojukwu E, Han B, Mukhtar R, et al. Characterizing the

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443641doi: bioRxiv preprint 

http://paperpile.com/b/xNEywF/IuFm
http://paperpile.com/b/xNEywF/o2dj
http://paperpile.com/b/xNEywF/o2dj
http://paperpile.com/b/xNEywF/uuI0
http://paperpile.com/b/xNEywF/uuI0
http://paperpile.com/b/xNEywF/2Lkq
http://paperpile.com/b/xNEywF/2Lkq
http://paperpile.com/b/xNEywF/2Lkq
http://paperpile.com/b/xNEywF/QW1S
http://paperpile.com/b/xNEywF/QW1S
http://paperpile.com/b/xNEywF/oorG
http://paperpile.com/b/xNEywF/oorG
http://paperpile.com/b/xNEywF/oorG
http://paperpile.com/b/xNEywF/NdgM
http://paperpile.com/b/xNEywF/NdgM
http://paperpile.com/b/xNEywF/2huE
http://paperpile.com/b/xNEywF/2huE
http://paperpile.com/b/xNEywF/2huE
http://paperpile.com/b/xNEywF/miqn
http://paperpile.com/b/xNEywF/miqn
http://paperpile.com/b/xNEywF/PSlO
http://paperpile.com/b/xNEywF/PSlO
http://paperpile.com/b/xNEywF/PSlO
http://paperpile.com/b/xNEywF/6G0Q4
http://paperpile.com/b/xNEywF/6G0Q4
http://paperpile.com/b/xNEywF/6G0Q4
http://paperpile.com/b/xNEywF/wwM6
http://paperpile.com/b/xNEywF/wwM6
http://paperpile.com/b/xNEywF/IAcP
http://paperpile.com/b/xNEywF/IAcP
http://paperpile.com/b/xNEywF/7U8p
http://paperpile.com/b/xNEywF/7U8p
http://paperpile.com/b/xNEywF/7U8p
http://paperpile.com/b/xNEywF/bGvn
https://doi.org/10.1101/2021.05.11.443641
http://creativecommons.org/licenses/by-nc/4.0/


immune microenvironment in high-risk ductal carcinoma in situ of the breast. Breast Cancer Res
Treat. 2017;161:17–28.

16. Allen MD, Marshall JF, Jones JL. αvβ6 Expression in myoepithelial cells: a novel marker for
predicting DCIS progression with therapeutic potential. Cancer Res. 2014;74:5942–7.

17. Delort L, Cholet J, Decombat C, Vermerie M, Dumontet C, Castelli FA, et al. The Adipose
Microenvironment Dysregulates the Mammary Myoepithelial Cells and Could Participate to the
Progression of Breast Cancer. Front Cell Dev Biol. 2020;8:571948.

18. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular
characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32.

19. Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D, et al. Regulation of in situ to
invasive breast carcinoma transition. Cancer Cell. 2008;13:394–406.

20. Unsworth A, Anderson R, Britt K. Stromal fibroblasts and the immune microenvironment:
partners in mammary gland biology and pathology? J Mammary Gland Biol Neoplasia.
2014;19:169–82.

21. Sinha VC, Piwnica-Worms H. Intratumoral Heterogeneity in Ductal Carcinoma In Situ:
Chaos and Consequence. J Mammary Gland Biol Neoplasia. 2018;23:191–205.

22. Nachmanson D, Steward J, Yao H, Officer A, Jeong E, O’Keefe TJ, et al. Mutational profiling
of micro-dissected pre-malignant lesions from archived specimens. BMC Med Genomics.
2020;13:173.

23. Foley JW, Zhu C, Jolivet P, Zhu SX, Lu P, Meaney MJ, et al. Gene expression profiling of
single cells from archival tissue with laser-capture microdissection and Smart-3SEQ. Genome
Res. 2019;29:1816–25.

24. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, et al. Tumor
evolution. High burden and pervasive positive selection of somatic mutations in normal human
skin. Science. 2015;348:880–6.

25. Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ, et al. Somatic
mutant clones colonize the human esophagus with age. Science. 2018;362:911–7.

26. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast
tumours. Nature. 2012;490:61–70.

27. Lesurf R, Aure MR, Mørk HH, Vitelli V, Oslo Breast Cancer Research Consortium
(OSBREAC), Lundgren S, et al. Molecular Features of Subtype-Specific Progression from
Ductal Carcinoma In Situ to Invasive Breast Cancer. Cell Rep. 2016;16:1166–79.

28. Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W, Armenia J, et al. Genome
doubling shapes the evolution and prognosis of advanced cancers. Nat Genet.
2018;50:1189–95.

29. D’Antonio M, Tamayo P, Mesirov JP, Frazer KA. Kataegis Expression Signature in Breast
Cancer Is Associated with Late Onset, Better Prognosis, and Higher HER2 Levels [Internet].

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443641doi: bioRxiv preprint 

http://paperpile.com/b/xNEywF/bGvn
http://paperpile.com/b/xNEywF/bGvn
http://paperpile.com/b/xNEywF/emzA
http://paperpile.com/b/xNEywF/emzA
http://paperpile.com/b/xNEywF/WffC
http://paperpile.com/b/xNEywF/WffC
http://paperpile.com/b/xNEywF/WffC
http://paperpile.com/b/xNEywF/nrpy
http://paperpile.com/b/xNEywF/nrpy
http://paperpile.com/b/xNEywF/slb5
http://paperpile.com/b/xNEywF/slb5
http://paperpile.com/b/xNEywF/JP0e
http://paperpile.com/b/xNEywF/JP0e
http://paperpile.com/b/xNEywF/JP0e
http://paperpile.com/b/xNEywF/tCBG
http://paperpile.com/b/xNEywF/tCBG
http://paperpile.com/b/xNEywF/yHeo
http://paperpile.com/b/xNEywF/yHeo
http://paperpile.com/b/xNEywF/yHeo
http://paperpile.com/b/xNEywF/EjUO
http://paperpile.com/b/xNEywF/EjUO
http://paperpile.com/b/xNEywF/EjUO
http://paperpile.com/b/xNEywF/rL5e
http://paperpile.com/b/xNEywF/rL5e
http://paperpile.com/b/xNEywF/rL5e
http://paperpile.com/b/xNEywF/SF06
http://paperpile.com/b/xNEywF/SF06
http://paperpile.com/b/xNEywF/1IOt
http://paperpile.com/b/xNEywF/1IOt
http://paperpile.com/b/xNEywF/RkMX
http://paperpile.com/b/xNEywF/RkMX
http://paperpile.com/b/xNEywF/RkMX
http://paperpile.com/b/xNEywF/4kv6
http://paperpile.com/b/xNEywF/4kv6
http://paperpile.com/b/xNEywF/4kv6
http://paperpile.com/b/xNEywF/pdpl
http://paperpile.com/b/xNEywF/pdpl
https://doi.org/10.1101/2021.05.11.443641
http://creativecommons.org/licenses/by-nc/4.0/


Cell Reports. 2016. p. 672–83. Available from: http://dx.doi.org/10.1016/j.celrep.2016.06.026

30. Afzaljavan F, Sadr AS, Savas S, Pasdar A. GATA3 somatic mutations are associated with
clinicopathological features and expression profile in TCGA breast cancer patients. Sci Rep.
2021;11:1679.

31. Emmanuel N, Lofgren KA, Peterson EA, Meier DR, Jung EH, Kenny PA. Mutant GATA3
Actively Promotes the Growth of Normal and Malignant Mammary Cells. Anticancer Res.
2018;38:4435–41.

32. Kader T, Hill P, Zethoven M, Goode DL, Elder K, Thio N, et al. Atypical ductal hyperplasia is
a multipotent precursor of breast carcinoma. J Pathol. 2019;248:326–38.

33. Kader T, Elder K, Zethoven M, Semple T, Hill P, Goode DL, et al. The genetic architecture of
breast papillary lesions as a predictor of progression to carcinoma. NPJ Breast Cancer.
2020;6:9.

34. Cai Y, Crowther J, Pastor T, Abbasi Asbagh L, Baietti MF, De Troyer M, et al. Loss of
Chromosome 8p Governs Tumor Progression and Drug Response by Altering Lipid Metabolism.
Cancer Cell. 2016;29:751–66.

35. Thompson E, Taube JM, Elwood H, Sharma R, Meeker A, Warzecha HN, et al. The immune
microenvironment of breast ductal carcinoma in situ. Mod Pathol. 2016;29:249–58.

36. Danforth DN Jr. Genomic Changes in Normal Breast Tissue in Women at Normal Risk or at
High Risk for Breast Cancer. Breast Cancer . 2016;10:109–46.

37. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw
KRM, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat
Genet. 2013;45:1113–20.

38. Risom T, Glass DR, Liu CC, Rivero-Gutiérrez B, Baranski A, McCaffrey EF, et al. Transition
to invasive breast cancer is associated with progressive changes in the structure and
composition of tumor stroma [Internet]. bioRxiv. 2021 [cited 2021 Apr 28]. p.
2021.01.05.425362. Available from:
https://www.biorxiv.org/content/10.1101/2021.01.05.425362v1.full-text

39. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell
RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science.
2014;344:1396–401.

40. Roden DL, Baker LA, Elsworth B, Chan C-L, Harvey K, Deng N, et al. Single cell
transcriptomics reveals molecular subtype and functional heterogeneity in models of breast
cancer [Internet]. bioRxiv. 2018 [cited 2021 Apr 28]. p. 282079. Available from:
https://www.biorxiv.org/content/10.1101/282079v1.full

41. Allred DC, Wu Y, Mao S, Nagtegaal ID, Lee S, Perou CM, et al. Ductal carcinoma in situ and
the emergence of diversity during breast cancer evolution. Clin Cancer Res. 2008;14:370–8.

42. Sun R, Hu Z, Curtis C. Big Bang Tumor Growth and Clonal Evolution. Cold Spring Harb

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443641doi: bioRxiv preprint 

http://paperpile.com/b/xNEywF/pdpl
http://dx.doi.org/10.1016/j.celrep.2016.06.026
http://paperpile.com/b/xNEywF/38Vg
http://paperpile.com/b/xNEywF/38Vg
http://paperpile.com/b/xNEywF/38Vg
http://paperpile.com/b/xNEywF/qGxi
http://paperpile.com/b/xNEywF/qGxi
http://paperpile.com/b/xNEywF/qGxi
http://paperpile.com/b/xNEywF/3XUd
http://paperpile.com/b/xNEywF/3XUd
http://paperpile.com/b/xNEywF/XT2F
http://paperpile.com/b/xNEywF/XT2F
http://paperpile.com/b/xNEywF/XT2F
http://paperpile.com/b/xNEywF/6IXUj
http://paperpile.com/b/xNEywF/6IXUj
http://paperpile.com/b/xNEywF/6IXUj
http://paperpile.com/b/xNEywF/rMZN
http://paperpile.com/b/xNEywF/rMZN
http://paperpile.com/b/xNEywF/ebaR
http://paperpile.com/b/xNEywF/ebaR
http://paperpile.com/b/xNEywF/EFCW
http://paperpile.com/b/xNEywF/EFCW
http://paperpile.com/b/xNEywF/EFCW
http://paperpile.com/b/xNEywF/FIXv
http://paperpile.com/b/xNEywF/FIXv
http://paperpile.com/b/xNEywF/FIXv
http://paperpile.com/b/xNEywF/FIXv
https://www.biorxiv.org/content/10.1101/2021.01.05.425362v1.full-text
http://paperpile.com/b/xNEywF/3PAn
http://paperpile.com/b/xNEywF/3PAn
http://paperpile.com/b/xNEywF/3PAn
http://paperpile.com/b/xNEywF/OcrD
http://paperpile.com/b/xNEywF/OcrD
http://paperpile.com/b/xNEywF/OcrD
https://www.biorxiv.org/content/10.1101/282079v1.full
http://paperpile.com/b/xNEywF/q70p
http://paperpile.com/b/xNEywF/q70p
http://paperpile.com/b/xNEywF/4wdB
https://doi.org/10.1101/2021.05.11.443641
http://creativecommons.org/licenses/by-nc/4.0/


Perspect Med [Internet]. 2018;8. Available from: http://dx.doi.org/10.1101/cshperspect.a028381

43. Polyak K. Is breast tumor progression really linear? Clin. Cancer Res. 2008. p. 339–41.

44. Zeng Z, Vo A, Li X, Shidfar A, Saldana P, Blanco L, et al. Somatic genetic aberrations in
benign breast disease and the risk of subsequent breast cancer. NPJ Breast Cancer. 2020;6:24.

45. Silverstein MJ. The University of Southern California/Van Nuys prognostic index for ductal
carcinoma in situ of the breast. Am J Surg. 2003;186:337–43.

46. Mannu GS, Wang Z, Broggio J, Charman J, Cheung S, Kearins O, et al. Invasive breast
cancer and breast cancer mortality after ductal carcinoma in situ in women attending for breast
screening in England, 1988-2014: population based observational cohort study. BMJ.
2020;369:m1570.

47. Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting
individualized probabilities of developing breast cancer for white females who are being
examined annually. J Natl Cancer Inst. 1989;81:1879–86.

48. Lee A, Mavaddat N, Wilcox AN, Cunningham AP, Carver T, Hartley S, et al. BOADICEA: a
comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk
factors. Genet Med. 2019;21:1708–18.

49. Gil Del Alcazar CR, Huh SJ, Ekram MB, Trinh A, Liu LL, Beca F, et al. Immune Escape in
Breast Cancer During In Situ to Invasive Carcinoma Transition. Cancer Discov.
2017;7:1098–115.

50. Kos Z, Roblin E, Kim RS, Michiels S, Gallas BD, Chen W, et al. Pitfalls in assessing stromal
tumor infiltrating lymphocytes (sTILs) in breast cancer. NPJ Breast Cancer. 2020;6:17.

51. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, et al. Assessing
Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and
Proposal for a Standardized Method From the International Immunooncology Biomarkers
Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasive Breast
Carcinoma and Ductal Carcinoma In Situ, Metastatic Tumor Deposits and Areas for Further
Research. Adv Anat Pathol. 2017;24:235–51.

52. Cornel AM, Mimpen IL, Nierkens S. MHC Class I Downregulation in Cancer: Underlying
Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers [Internet]. 2020;12.
Available from: http://dx.doi.org/10.3390/cancers12071760

53. Garrido MA, Rodriguez T, Zinchenko S, Maleno I, Ruiz-Cabello F, Concha Á, et al. HLA
class I alterations in breast carcinoma are associated with a high frequency of the loss of
heterozygosity at chromosomes 6 and 15. Immunogenetics. 2018;70:647–59.

54. Campbell MJ, McCune E, Bolen J, VandenBerg S, Chien J, Wong J, et al. Abstract 961:
Intralesional injection of anti-PD-1 (pembrolizumab) results in increased T cell infiltrate in high
risk DCIS. Cancer Res. American Association for Cancer Research; 2018;78:961–961.

55. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443641doi: bioRxiv preprint 

http://paperpile.com/b/xNEywF/4wdB
http://dx.doi.org/10.1101/cshperspect.a028381
http://paperpile.com/b/xNEywF/LKuf
http://paperpile.com/b/xNEywF/tvEr
http://paperpile.com/b/xNEywF/tvEr
http://paperpile.com/b/xNEywF/VODI
http://paperpile.com/b/xNEywF/VODI
http://paperpile.com/b/xNEywF/HmUn
http://paperpile.com/b/xNEywF/HmUn
http://paperpile.com/b/xNEywF/HmUn
http://paperpile.com/b/xNEywF/HmUn
http://paperpile.com/b/xNEywF/OlJV
http://paperpile.com/b/xNEywF/OlJV
http://paperpile.com/b/xNEywF/OlJV
http://paperpile.com/b/xNEywF/6bQe
http://paperpile.com/b/xNEywF/6bQe
http://paperpile.com/b/xNEywF/6bQe
http://paperpile.com/b/xNEywF/RpKT
http://paperpile.com/b/xNEywF/RpKT
http://paperpile.com/b/xNEywF/RpKT
http://paperpile.com/b/xNEywF/IoPA
http://paperpile.com/b/xNEywF/IoPA
http://paperpile.com/b/xNEywF/Uy72
http://paperpile.com/b/xNEywF/Uy72
http://paperpile.com/b/xNEywF/Uy72
http://paperpile.com/b/xNEywF/Uy72
http://paperpile.com/b/xNEywF/Uy72
http://paperpile.com/b/xNEywF/Uy72
http://paperpile.com/b/xNEywF/fEx6
http://paperpile.com/b/xNEywF/fEx6
http://paperpile.com/b/xNEywF/fEx6
http://dx.doi.org/10.3390/cancers12071760
http://paperpile.com/b/xNEywF/Sigh
http://paperpile.com/b/xNEywF/Sigh
http://paperpile.com/b/xNEywF/Sigh
http://paperpile.com/b/xNEywF/KZiK
http://paperpile.com/b/xNEywF/KZiK
http://paperpile.com/b/xNEywF/KZiK
http://paperpile.com/b/xNEywF/FOaP
https://doi.org/10.1101/2021.05.11.443641
http://creativecommons.org/licenses/by-nc/4.0/


universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

56. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning
sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

57. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al.
Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888–902.e21.

58. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq
data using regularized negative binomial regression. Genome Biol. 2019;20:296.

59. Gendoo DMA, Ratanasirigulchai N, Schröder MS, Paré L, Parker JS, Prat A, et al. Genefu:
an R/Bioconductor package for computation of gene expression-based signatures in breast
cancer. Bioinformatics. 2016;32:1097–9.

60. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

61. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA
interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature.
2009;462:108–12.

62. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The
Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46:D649–55.

63. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP.
Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

64. Didion JP, Martin M, Collins FS. Atropos: specific, sensitive, and speedy trimming of
sequencing reads. PeerJ. 2017;5:e3720.

65. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM
[Internet]. arXiv [q-bio.GN]. 2013. Available from: http://arxiv.org/abs/1303.3997

66. Tischler G, Leonard S. biobambam: tools for read pair collation based algorithms on BAM
files. Source Code Biol Med. 2014;9:13.

67. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

68. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, et al. VarDict: a
novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic
Acids Res. 2016;44:e108.

69. Van der Auwera GA, O’Connor BD. Genomics in the Cloud: Using Docker, GATK, and WDL
in Terra. “O’Reilly Media, Inc.”; 2020.

70. Guimera RV. bcbio-nextgen: Automated, distributed next-gen sequencing pipeline.
EMBnet.journal. 2011;17:30.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443641doi: bioRxiv preprint 

http://paperpile.com/b/xNEywF/FOaP
http://paperpile.com/b/xNEywF/Yhdn
http://paperpile.com/b/xNEywF/Yhdn
http://paperpile.com/b/xNEywF/QADP
http://paperpile.com/b/xNEywF/QADP
http://paperpile.com/b/xNEywF/0zX0
http://paperpile.com/b/xNEywF/0zX0
http://paperpile.com/b/xNEywF/KhY6
http://paperpile.com/b/xNEywF/KhY6
http://paperpile.com/b/xNEywF/KhY6
http://paperpile.com/b/xNEywF/Ieis
http://paperpile.com/b/xNEywF/Ieis
http://paperpile.com/b/xNEywF/Ieis
http://paperpile.com/b/xNEywF/ZYJf
http://paperpile.com/b/xNEywF/ZYJf
http://paperpile.com/b/xNEywF/ZYJf
http://paperpile.com/b/xNEywF/m7Wg
http://paperpile.com/b/xNEywF/m7Wg
http://paperpile.com/b/xNEywF/JFcU
http://paperpile.com/b/xNEywF/JFcU
http://paperpile.com/b/xNEywF/lCEI
http://paperpile.com/b/xNEywF/lCEI
http://paperpile.com/b/xNEywF/IJCV
http://paperpile.com/b/xNEywF/IJCV
http://arxiv.org/abs/1303.3997
http://paperpile.com/b/xNEywF/fH0L
http://paperpile.com/b/xNEywF/fH0L
http://paperpile.com/b/xNEywF/rA4S
http://paperpile.com/b/xNEywF/rA4S
http://paperpile.com/b/xNEywF/chVP
http://paperpile.com/b/xNEywF/chVP
http://paperpile.com/b/xNEywF/chVP
http://paperpile.com/b/xNEywF/VekJ
http://paperpile.com/b/xNEywF/VekJ
http://paperpile.com/b/xNEywF/9Mo2
http://paperpile.com/b/xNEywF/9Mo2
https://doi.org/10.1101/2021.05.11.443641
http://creativecommons.org/licenses/by-nc/4.0/


71. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating
and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of
Drosophila melanogaster strain w1118; iso-2; iso-3. Fly . 2012;6:80–92.

72. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA,
Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature.
2012;491:56–65.

73. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of
protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

74. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving
access to variant interpretations and supporting evidence. Nucleic Acids Res.
2018;46:D1062–7.

75. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational
constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

76. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number Detection
and Visualization from Targeted DNA Sequencing. PLoS Comput Biol. 2016;12:e1004873.

77. Van Loo P, Nordgard SH, Lingjærde OC, Russnes HG, Rye IH, Sun W, et al. Allele-specific
copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010;107:16910–5.

78. Nilsen G, Liestøl K, Van Loo P, Moen Vollan HK, Eide MB, Rueda OM, et al. Copynumber:
Efficient algorithms for single- and multi-track copy number segmentation. BMC Genomics.
2012;13:591.

79. Islam SMA, Ashiqul Islam SM, Wu Y, Díaz-Gay M, Bergstrom EN, He Y, et al. Uncovering
novel mutational signatures by de novo extraction with SigProfilerExtractor [Internet]. Available
from: http://dx.doi.org/10.1101/2020.12.13.422570

80. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire
of mutational signatures in human cancer. Nature. 2020;578:94–101.

81. Kim S, Kim S, Kim J, Kim B, Kim SI, Kim MA, et al. Evaluating Tumor Evolution via Genomic
Profiling of Individual Tumor Spheroids in a Malignant Ascites from a Patient with Ovarian
Cancer Using a Laser-aided Cell Isolation Technique [Internet]. Available from:
http://dx.doi.org/10.1101/282277

82. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.

83. Reiter JG, Makohon-Moore AP, Gerold JM, Bozic I, Chatterjee K, Iacobuzio-Donahue CA, et
al. Reconstructing metastatic seeding patterns of human cancers. Nat Commun. 2017;8:14114.

84. Mori H, Bolen J, Schuetter L, Massion P, Hoyt CC, VandenBerg S, et al. Characterizing the
Tumor Immune Microenvironment with Tyramide-Based Multiplex Immunofluorescence. J
Mammary Gland Biol Neoplasia. 2020;25:417–32.

85. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443641doi: bioRxiv preprint 

http://paperpile.com/b/xNEywF/ivBR
http://paperpile.com/b/xNEywF/ivBR
http://paperpile.com/b/xNEywF/ivBR
http://paperpile.com/b/xNEywF/bXK5
http://paperpile.com/b/xNEywF/bXK5
http://paperpile.com/b/xNEywF/bXK5
http://paperpile.com/b/xNEywF/HDco
http://paperpile.com/b/xNEywF/HDco
http://paperpile.com/b/xNEywF/JIMK
http://paperpile.com/b/xNEywF/JIMK
http://paperpile.com/b/xNEywF/JIMK
http://paperpile.com/b/xNEywF/WWhf
http://paperpile.com/b/xNEywF/WWhf
http://paperpile.com/b/xNEywF/5LEp
http://paperpile.com/b/xNEywF/5LEp
http://paperpile.com/b/xNEywF/rJZY
http://paperpile.com/b/xNEywF/rJZY
http://paperpile.com/b/xNEywF/AiKE
http://paperpile.com/b/xNEywF/AiKE
http://paperpile.com/b/xNEywF/AiKE
http://paperpile.com/b/xNEywF/5ehl
http://paperpile.com/b/xNEywF/5ehl
http://paperpile.com/b/xNEywF/5ehl
http://dx.doi.org/10.1101/2020.12.13.422570
http://paperpile.com/b/xNEywF/g2Bn
http://paperpile.com/b/xNEywF/g2Bn
http://paperpile.com/b/xNEywF/Ktd5
http://paperpile.com/b/xNEywF/Ktd5
http://paperpile.com/b/xNEywF/Ktd5
http://dx.doi.org/10.1101/282277
http://paperpile.com/b/xNEywF/yIT9
http://paperpile.com/b/xNEywF/9tvf
http://paperpile.com/b/xNEywF/9tvf
http://paperpile.com/b/xNEywF/7XA3
http://paperpile.com/b/xNEywF/7XA3
http://paperpile.com/b/xNEywF/7XA3
http://paperpile.com/b/xNEywF/EXOZ
https://doi.org/10.1101/2021.05.11.443641
http://creativecommons.org/licenses/by-nc/4.0/


QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7:16878.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443641doi: bioRxiv preprint 

http://paperpile.com/b/xNEywF/EXOZ
https://doi.org/10.1101/2021.05.11.443641
http://creativecommons.org/licenses/by-nc/4.0/


Figures & Tables

Figure 1: Study design and cohort overview (A) Archival sample processing and analysis
workflow including histology (H&E and mIHC) and microbiopsy-derived whole exome (WXS)
and whole transcriptome (Smart-3SEQ) profiling. (B) Study cohort overview including
histological characteristics (colored rows), data type (grey rows) and number of histological
regions (bar chart) investigated. (C) Estimate of the fraction of adipose area in H&E images in
epithelium of the mIHC images according to each histological architecture. (D) Sample
classification according to the probabilities of each PAM50 expression subtype. For 10 eligible
samples, the intrinsic subtype of a spatially distinct region is indicated. Two patients with
recurrence (r) and index (i) samples are indicated at the bottom.
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Figure 2. Pure DCIS genomic landscape (A-B) CNA burden (fraction of base pairs involved in
copy number gain or loss) as a function of grade (A) and (B) histological architecture. (C)
Smoothed frequency (y-axis) of CNA gains (top) and losses (bottom) smoothed along the
genome (x-axis) for HG-DCIS (N=22 - dark colors) and LG-DCIS (N=5 light colors). (D)
Oncoprint diagram displaying the mutational status of driver genes commonly altered in breast
cancer. Genes were included if they were mutated in at least 2 patients or located in a CNA
segment present in at least 6 patients, and ordered by frequency of alteration. The variant allele
fraction (VAF) of mutations (right panel) and histological characteristics (bottom panel) are
indicated.
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Table 1. Frequency of PIK3CA, TP53 and GATA3 driver mutations in previously reported

(Pang et al., Lin et al., Nagasawa et al., Pareja et al.) and current pure DCIS cohort.
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Figure 3. Clonal relationships of multi-region DCIS. Multi-region phylogenetic reconstruction
using both CNA and somatic mutations for MCL76_061_16200 (A-C) and MCL76_077_15300
(D-F). For each case, the spatial annotation of the microdissected regions on the H&E images
(A,D), corresponding copy number profiles (B,E) and phylogenetic trees (C,F) are displayed.
Copy number profile plots show bins (grey dots) and segment (orange) log2 copy number ratio
(y-axis). The phylogenetic tree leaves (single dissected region) are colored according to
histological type and the branches (hamming distances based on CNA segments) annotated
with corresponding specific somatic alterations or their total number (CNA: regular, genes: italic
font). The tree root corresponds to an inferred normal diploid ancestor. PAM50 subtype of the
region is indicated when available. Annotations and trees are available for 10 additional
samples in Figure S4.
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Figure 4. Characterization of the immune landscape. (A). Estimates of the fraction of Ki67+
cytokeratin positive cells in epithelium of the mIHC images according to each histological
architecture. (B) Classification of benign and premalignant regions into 3 immune states
according to Meta-Marker (MM) values derived from a non-negative matrix factorization
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(described in Figure S5). Each state is named after Meta-Marker composition: Active (Ac:
MM1&MM2 high TC densities), Suppressed (Sup: MM3 high BC and TREG densities) or
Excluded (Ex: MM4 high - low epithelial densities). (C-F) Distribution of relative stromal total
immune-cell density (C), epithelial cell density scores for T-cells (D), B-cells (E), or T-reg (F)
between the 3 immune states. Density scores are obtained from median decile of the cell
densities. (G) Immune-state comparison in 20 samples (rows) with matching benign (left
column) and premalignant (right column) regions. (H) Expression of immune checkpoint
receptors genes, PDCD1 and CTLA-4 in each immune state. (I) GSEA normalized enrichment
score (NES) for a Reactome gene set across immune states.
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Supplemental Figures:

Figure S1: Pure DCIS characterization (A) Estimation of Her2 status. The DNA-based log2

copy number ratio (x-axis) and RNA-based expression level (y-axis) of ERBB2 gene are
displayed for 26 samples with both data available. (B) PAM50 discordance between regions in
relationship with spatial distance between regions.
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Figure S2. Likely kataegis event in MCL76_067_16600 in chromosome 17. Along the

genome coordinate (x-axis), the relative distance between proximal mutations (y-axis) as well as

their substitution type (colors) are indicated.
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Figure S3. Genetic divergence in multi-region DCIS. CNA-based genetic divergence (y-axis)
of each pair of histologically concordant regions (dot) as a function of the minimum physical
distance between them (x-axis), colored by their histology. Linear regression line fit of DCIS
samples shown in solid dark gray line, with 95% confidence interval estimate based on
bootstrapping in light gray.
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Figure S4. Phylogenetic trees for multi-region DCIS samples. (A-J) Clonal reconstruction
using CNA and somatic mutations in 25 related regions across 10 samples. In each panel, top
left: a table describing the name, nuclear grade and histological architecture of each region in a
sample is shown, (necrosis is indicated with N); top right: shows an H&E image of the sample
with dissected regions drawn on the image; bottom left: Copy number profiles for each region in
the sample, genomic coordinates are indicated on the X-axis and the log2 copy ratio on the
Y-axis. Bins are indicated in dark-grey and segments in orange; bottom right: Phylogenetic tree
for the sample with leaf nodes indicating a single dissected region colored by histology. The tree
is rooted to a normal diploid ancestor. Branch lengths are hamming distances based on CNA
segments. Branches are labeled with 1) CNA-based branch length, and, when available, 2)
arm-level CNA losses (blue) and gains (red) and 3) somatic mutation number (italic) with
mutations in breast cancer driver genes indicated (black: high coverage, grey: low coverage).
CNA smaller than arms, or on driver genes are not displayed.
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Figure S5. Composition of the NMF Meta-markers (columns MM1-4) according to the densities
scores (red scale) of each cell type (BC: B-cells, TC: T-cells, TREG: regulatory T-cells),
proliferative state (p: Ki67+, np: KI67-, t: total) and regional location (Epi: Epithelium, Str:
Stroma).Estimates of the fraction of Ki67+ cytokeratin positive cells in epithelium of the mIHC
images according to each histological architecture.
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Figure S6: Gene sets significantly deregulated in epithelium of regions in the Excluded
immune state. All Hallmark (H) and Reactome (R) genesets were tested. Genesets with an
absolute normalized enrichment score greater than 2 and with FDR less than 0.05 are
represented.
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