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Abstract
A formulation of the dataset integration problem
describes the task of aligning two or more empir-
ical distributions sampled from sources of the same
kind, so that records of similar object end up close
to one another. We propose a variant of the optimal
transport (OT)- and Gromov-Wasserstein (GW)-
based dataset integration algorithm introduced in
SCOT [Demetci et al., 2020]. We formulate a
constrained quadratic program to adjust sample
weights before OT or GW so that weighted point
density is close to be uniform over the point cloud,
for a given kernel. We test this method with one
synthetic and two real-life datasets from single-cell
biology. Weights adjustment allows distributions
with similar effective supports but different local
densities to be reliably integrated, which is not al-
ways the case with the original method. This ap-
proach is entirely unsupervised, scales well to thou-
sands of samples and does not depend on dimen-
sionality of the ambient space, which makes it ef-
ficient for the analysis of single-cell datasets in bi-
ology. We provide an open-source implementation
of this method in a Python package, woti.

1 Introduction
1.1 Dataset integration
Recent democratization and flourishing of biological assays
at the single-cell level raise important challenges in subse-
quent analysis pipelines [Lähnemann et al., 2020]. One of
those, known as data integration and comprehensively de-
scribed in [Argelaguet et al., 2021], is of particular interest
and comes in several variants, all related to tying data together
across different modalities.

Horizontal integration describes the problem of merging
two or more datasets expressed in a common feature space,
each of those containing samples gathered across distinct
sources or experiments. Each of these datasets usually con-
tains biases related to acquisition technique, data collection,
experimental variation, preprocessing as well as other factors.
In some cases, there can even be dataset-specific cell types; in
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such case, the integration procedure should ideally detect and
avoid to align these dataset-specific instances, called ”over-
correction”. Horizontal dataset integration techniques have
several applications. First, they can be used to construct
larger datasets by aggregating a collection of smaller ones,
generated across multiple sources or technologies. Simple
approaches such as matrix concatenation struggle to get rid
of dataset biases, compromising the subsequent use of visu-
alization, clustering, dimensionality reduction and prediction
techniques.

Vertical integration is the symmetric task of finding a cor-
respondence between matched or unmatched samples from
two or more datasets, expressed in different representation
spaces. A typical example is with SNARE-seq data [Chen
et al., 2019], where cells are simultaneously profiled through
RNA-seq and ATAC-seq. A common strategy is to perform
integration in a latent space in which both representation can
be mapped, for instance via matrix factorization techniques
[Cantini et al., 2019]. Then, vertical dataset integration re-
duces to horizontal dataset integration in this latent space.
The extra layer of difficulty in this approach comes from con-
structing a relevant latent space via mappings that preserve
enough information. Vertical dataset integration is typically
used to learn cell types across modalities. If mappings to the
latent space are invertible, vertical integration can be used to
translate object representations from a domain to another.

A number of approaches have been proposed to solve hori-
zontal and vertical data integration problems. In single-cell
biology, mutual nearest neighbors-based methods have be-
come popular [Adey, 2019; Barkas et al., 2019]. There also
exists techniques based on generative adversarial networks
like MAGAN [Amodio and Krishnaswamy, 2018] or varia-
tional autoencoders [Simidjievski et al., 2019]. We will focus
on a class of approaches based on integral probability metrics
like MMD-MA [Liu et al., 2019] which uses maximum mean
discrepancy, or methods using optimal transport (OT). These
OT-based methods are generally derived from a color transfer
algorithm [Ferradans et al., 2013], recently brought into the
single-cell field with SCOT [Demetci et al., 2020]. We pro-
pose a variant of this algorithm, more robust to differences
in local density. A comprehensive overview of the available
methods is given in [Argelaguet et al., 2021].

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.443561doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443561
http://creativecommons.org/licenses/by/4.0/


1.2 Optimal transport
OT problem between discrete distributions can be pictured as
follows [Peyré et al., 2019]. We are given a set of n ”ware-
houses” {xi}i≤n and a set of m ”factories” {yj}j≤m. The
cost matrix C ∈ (R+)n×m contains pairwise transport costs
between warehouses and factories: Cij is the cost required to
move one unit of goods from warehouse i to factory j. Each
warehouse contains an amount of goods wi ∈ R+, and each
factory requires a quantity of goods vj ∈ R+, we assume∑n
i=1 wi =

∑m
j=1 vj . A transport plan between warehouses

and factories is uniquely defined by a matrix P ∈ (R+)n×m,
where Pij is the quantity of goods sent from warehouse i
to factory j. A plan is said to be valid if 1TmPi = wi and
1Tn (P

T )j = vj for all i ≤ n, j ≤ m. The total cost of a
transport plan is then defined as

c(P ) =

n,m∑
i,j

CijPij = 〈C,P 〉F (1)

where 〈. , .〉F denotes the Froebenius inner product. A trans-
port plan P ∗ is said to be optimal if it is valid and minimizes
the cost defined in Eq. 1 over all valid plans.

If factories represent the reference distribution and ware-
houses the source one, we get an intuition behind OT-based
dataset integration: a transport plan describes a way to dis-
place the whole mass from the source distribution onto the
reference one. The OT plan intuitively favors a natural dis-
placement, with well-preserved local topology as trajectory
of masses will typically not cross. Nonetheless, the method
is very prone to overfitting, as it can align any distribution
onto any other one even if there is no relation between the
two. Empirical distributions with similar underlying mani-
fold (for instance, two point clouds where points are shaped
as a ring) but different local density also tend to be incorrectly
integrated, as shown in section 3.

The optimal transport solution can be approximated us-
ing an entropic regularizer, and computed efficiently with
the help of Sinkhorn’s algorithm [Cuturi, 2013; Peyré et al.,
2019].

1.3 Gromov-Wasserstein problem
In the general case, defining a cost matrix between two
datasets may be challenging: for instance, they can live in
different spaces, or one can be a rotation of the other. In these
cases, the OT approach is in general unusable. The Gromov-
Wasserstein (GW) problem is a natural extension of OT that
can overcome these limitations, at the cost of extra hypothe-
ses and computation time. Let X ∈ Rn×dX and Y ∈ Rm×dY
be two datasets living in two metric spaces, and CX ∈ Rn×n
(resp. CY ∈ Rm×m) containing pairwise distances between
points in X (resp. Y ).

For a transport plan P , we define the transport cost with
respect to P as in [Peyré et al., 2019],

εCX ,CY (P ) =

n,m∑
i,i′,j,j′

|CXi,i′ − CYj,j′ |2Pi,jPi′,j′ .

We can get an intuition of why this cost is relevant. The
only way to make it small is to find a transport plan P so that

Pi,j is large if and only if for all i′, j′, if Pi′,j′ is large then the
distance between xi and xi′ is close to the distance between
yj and yj′ . Given two histograms v ∈ Rn and w ∈ Rm, the
weighted Gromov-Wasserstein distance between X and Y is
then defined as

GW (v, w,CX , CY ) = min
P∈U(v,w)

εCX ,CY (P ).

This problem is non-convex in this form, but can be rewrit-
ten as a quadratic assignment problem [Loiola et al., 2007].
It is NP-hard in the general case, but admits an entropic reg-
ularization and can be solved quite efficiently.

1.4 Contributions
We propose a dataset integration method based on unbalanced
OT/GW dataset integration, that adjusts weights wi and vj in
source and target empirical distributions before applying OT
or GW. This allows for correcting local density disparities in
cloud points with similar effective support shape but different
local density. We challenge our approach against the balanced
technique on three pairs of synthetic and biological datasets.
We then discuss limitations of the method, and cases when it
is appropriate to use it. We provide an implementation of the
method in a Python package, woti (weighted optimal trans-
port integration).

2 Material and methods
Notebooks for carrying out computational analyses and pro-
ducing figures are available on woti’s GitHub 1.

2.1 Datasets
Our method was compared to SCOT [Demetci et al., 2020] on
three pairs of datasets of various dimensions d: two synthetic
datasets (d = 3), two single-cell datasets in cell cycle space
(d = 2) and one SNARE-seq dataset split in two parts, gene
expression (d > 104) and chromatin accessibility (d = 19).
Theoretically, dimensionality does not play a role when inte-
grating datasets using OT and GW but in practice, defining
a relevant cost between points in high dimensional spaces is
highly challenging - and beyond this paper’s scope.

Synthetic datasets
We build two 3D synthetic spiraling datasets unbalanced on
purpose. A spiraling shape is interesting for several reasons.
First, the underlying shape is continuous which is a good
stress test for integration methods. Also, the spiraling pattern
can fool integration techniques (some ”internal” samples are
mapped to the ”external” regions for reasons of mass avail-
ability). Source spiral contains 500 points split in 4 clusters,
and reference spiral 1000 points in one cluster. Spirals are
then randomly translated in space, and noise is added.

Ewing sarcoma single-cell datasets
RNA-seq datasets were gathered from [Aynaud et al., 2020]
for Ewing sarcoma patient-derived xenografts (PDX), and
from [Miller et al., 2020] for Ewing sarcoma cell lines. All
raw datasets were preprocessed using standard methods as

1https://github.com/Risitop/WOTi
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follows. Cells with less than 200 genes expressed, as well
as genes expressed in less than 3 cells were discarded. Then,
cells with raw counts below 15,000 or above 50,000 or ex-
pressing more than 15% mitochondrial genes were taken out.
Cell counts were then normalized to 10,000 counts per cell,
before being log-transformed by the function log(1+x). The
10,000 genes with higher variance were kept. All datasets
were then smoothed by neighborhood averaging using 10
closest neighbors, using 50 components of PCA for the near-
est neighbors computation. The G1/S and G2/M scores for
each cell were computed using Ewing sarcoma-specific sig-
natures of cell cycle phases [Aynaud et al., 2020]. We
chose CHLA9 Ewing sarcoma cell line scRNASeq dataset
(n = 3752) from [Miller et al., 2020], as the reference one,
because the differences in cell cycle phases comprised the
most important source of transcriptomic heterogeneity in this
dataset, which was clear in the simplest 2D PCA projection.
PDX352 patient-derived xenograft profiled using scRNASeq
(n = 1937) was chosen as the source dataset among those
published in [Aynaud et al., 2020], for its high proportion of
non-proliferative cells and with a clear cyclic structure corre-
sponding to proliferating cells.

Multi-omics SNARE-seq dataset
Chromatin accessibility and gene expression datasets were
generated with SNARE-seq [Chen et al., 2019] technol-
ogy, using a mixture of human cell lines (BJ, H1, K562
and GM12878) [Chen et al., 2019] . Every cell was ana-
lyzed in both of the assays, and is consequently present in
both datasets. Chromatin accessibility records were prepro-
cessed using [Chen et al., 2019] guidelines including noise
reduction then dimensionality reduction using the cisTopic
[González-Blas et al., 2019] R package, resulting in a 1047×
19 matrix. RNA-seq data was normalized to one count per
cell for appropriate scaling in the latent space. Counts matrix
was log-normalized, then the 1000 top variable genes were
kept. Matrix was then Z-score-normalized, and divided by
100. Eventually, a 19-components PCA was carried out in or-
der to match chromatin accessibility dimension. After these
steps, datasets were randomly unbalanced by selecting at ran-
dom a fraction of samples from each cluster. In the chromatin
accessibility data, 20% of cells are taken out from cluster 0,
60% from cluster 1 and 80% from cluster 2. In the gene ex-
pression dataset, 80% of cells are taken out from cluster 0,
20% from cluster 1 and 60% from cluster 2.

2.2 Kernel density uniformization
We propose a density uniformization method to adjust sam-
ple weights before unbalanced OT or GW so that, for a given
kernel, empirical point density variance is close to be con-
stant over the distribution. Let X = {xi}i≤n be a dataset
consisting of n samples in a space X endowed with a positive
semi-definite kernel K : X × X −→ R+. Let us further
assume for all i ≤ n,

∫
X K(xi, x)dx = 1. For every x ∈ X ,

we define the empirical point density at x as

wα(x) =
n∑
i=1

αiK(xi, x) (2)

with α ∈ Rn. We constraint α to the probability simplex so
that

∑n
i=1 αiK(xi, .) is the PDF of a distribution, meaning

α � 0 (coordinate-wise comparison) and αT1n = 1. We can
write an expression for the empirical variance of wα over the
dataset,

v(α) =
1

n

n∑
i=1

(wα(xi)− µα)2 (3)

with µα = 1
n

∑n
j=1 wα(xj).

The kernel uniformization problem can then be stated as
minimizing v(α) over the probability simplex,

min
α∈R n

n∑
i=1

(wα(xi)− µα)2

s.t. α � 0

αT1n = 1

(4)

Eq. 3 can be rewritten as a quadratic form,

v(α) = αT (K −M)T (K −M)α (5)

with Kij = K(xj , xi) and M =

µ1 . . . µn
...

. . .
...

µ1 . . . µn


n×n

where

µi = 1
n

∑n
j=1K(xi, xj).

Eq. 4 defines a quadratic program constrained on a sim-
plex, also known as standard quadratic optimization prob-
lem [Bomze, 1998] that cannot be solved analytically, mo-
tivating the usage of interior point methods. We used the
Python implementation of osqp [Stellato et al., 2020] to
carry out the computation, using a Gaussian kernel based on
the Euclidean distance matrix (variance-normalized). We re-
duced the dimension to 3 using PCA for the 19-dimensional
SNARE-seq dataset because of the bad scaling of distance-
based kernels to higher dimensions. All computation times
have been recorded on a desktop computer running Arch
Linux, equipped with a 12/24 cores Ryzen 9 3900x, 32GB
of DDR4 RAM. Computation was not GPU-accelerated.

2.3 Weighted dataset integration
OT or GW can in the discrete case be used as an integra-
tion technique for vectorized datasets, originally proposed
for histogram color transfer in image processing [Ferradans
et al., 2013]. Let X and Y be two matrices of Rn×dX and
Rm×dY representing two datasets containing respectively n
and m samples. Distance information is necessary to carry
out OT or GW. For OT, let CXY ∈ Rn×m be the matrix
containing pairwise distances between X and Y . For GW,
let CX ∈ Rn×n and CY ∈ Rm×m be two matrices con-
taining pairwise distances in X and in Y . Let P ∗ be the
optimal transport plan from X to Y , computed either using
OT or GW, assuming samples from X (resp. Y ) are associ-
ated either to uniform weights, or weights obtained via the
uniformization procedure described in subsection 2.2. We
denote these weights by αX and αY . The idea is then to
consider each row in diag(αX)−1P ∗ as a probability distri-
bution. Namely, (αX)−1i P ∗ij is interpreted as a probability,
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P(xi corresponds to yj). We can then derive an expression
for the predicted position of xi in Y representation as the
weighted mean point x′i = (αX)−1i

∑n
j=1 P

∗
ijyj , or

X ′ = diag(αX)−1P ∗Y (6)

for projecting the whole X dataset onto Y representation.
OT and GW can be computed with the help of the Python

package pot [Flamary and Courty, 2017]. It notably features
C-accelerated implementations of both Wasserstein and GW
distances with very good performance, associated to compu-
tation times typically between one and ten seconds for all
datasets we use.

2.4 Assessing integration quality

Assessing integration quality is a non-trivial task, especially
when there is no matching between datasets samples. A good
integration should not necessarily align all source samples on
all reference samples, but rather only align records of similar
objects while keeping records of different objects far from
one another.

For low dimensional datasets, visual inspection is often
sufficient for assessing integration quality, especially when
differences are striking between methods. For higher dimen-
sion datasets such as SNARE-seq (d = 19) though, visual
inspection is not reasonable. However, source and reference
datasets are coupled in the latter case which means each bio-
logical cell has been analyzed in both domain, and appears in
both datasets. Both dataset contains three well resolved clus-
ters corresponding to different cell lines, that can be separated
using a sklearn [Pedregosa et al., 2011] implementation of
the k-means algorithm [MacQueen, 1967]. Then, k-nearest
neighbors model can be trained on the reference dataset, and
then predict samples from the integrated source dataset. If in-
tegrated clusters are pure and mapped on the right class, the
classifier should have a good predictive power. Classifier ac-
curacy is therefore chosen as a first indicator for integration
quality.

Though, this evaluation metric present an obvious limi-
tation: it does not take into account how well clusters are
merged. In particular, if a cluster C1 is not merged with its
corresponding cluster C ′1 but closer to it than to any other,
classifier accuracy will be high but the integration is not
achieved. To deal with this issue, we furthermore used the
sum of cluster-wise Wasserstein distance (optimal transport
cost) as a second integration indicator. It was evaluated in the
3D space where clusters were identified, from integrated X ′
to reference Y datasets, normalized by cluster size ck with
k ∈ [[1; 3]],

dW(X ′, Y ) =
∑
k∈K

1

ck
W(X ′k, Yk).

Integration quality can then be represented on a plane
where x-axis corresponds to classifier accuracy (higher is bet-
ter), and y-axis corresponds to cluster-wise Wasserstein dis-
tance (lower is better).

3 Results
3.1 Solving the quadratic program uniformizes

density
We demonstrate the effectiveness of density correction on our
six datasets. We compare empirical KDE variance over the
dataset using equal weights (with αi = n−1 for every sam-
ple), and using weights minimizing Eq. 4. Tab. 1 shows vari-
ance without and with adjusted weights. We see the method
decreases KDE variance by orders of magnitude, even if the
effectiveness varies from one dataset to another. Computa-
tion time varies from 250ms for spiral datasets to 140s for
CHLA9. Time is related to dataset size, which conditions the
quadratic program dimensionality.

We can visualize an example of density uniformization in
Fig. 1. Each cell is represented as a point in a 2D linear sub-
space of the gene expression space. The x-axis corresponds
to the mean expression of G1/S-phase genes and the y-axis
corresponding to the expression of G2/M-phase genes. Non-
proliferating cells are located on the bottom-left region of the
plot, and replicating cells travel around the loop in the anti-
clockwise direction.

Middle pane of Fig. 1 presents the choice for optimal ker-
nel coefficients in each dataset. The average coefficient is
the inverse of dataset size, 2.6 × 10−4. As expected, sam-
ples in populated regions are associated to below-average co-
efficients while samples in sparse regions like loop borders
are associated to above-average coefficients. This suggests
the importance for the reference dataset to be of high quality,
without outliers as they would be associated to high coeffi-
cients and probably fool downstream methods. Right pane of
Fig. 1 shows density-corrected kernel density estimation on
each dataset. We can see KDE variability between the nodes
is greatly diminished as expected.

Dataset SpA SpB PDX CHLA RNA ATAC
Before 686 2267 3956 7.79 28472 258
After 16 37 0.16 0.003 82 10

Table 1: KDE variance over each dataset with equal weights (be-
fore) and optimal weights (after). SpA/SpB refers to spiral synthetic
datasets (spirals) A and B.

3.2 Integration improvement on synthetic
unbalanced datasets

We first use two synthetic 3D spiraling datasets to assess the
effectiveness of weighted OT integration (WOTi) versus bal-
anced OT integration (OTi). Results are presented in Fig. 2.
Left-hand plot presents a PCA view of both datasets in their
initial state. The reference spiral B (grey) simulates a high
quality dataset (uniform distribution along the manifold, high
number of samples) while the source spiral A (colored) simu-
lates a low quality dataset (non-uniform repartition along the
manifold, fewer cells). A good integration should map the
piece-wise spiral onto the reference one in the corresponding
regions, preserving color gradient and clusters.

OTi fails in all these tasks (middle pane). Many points fall
outside the reference, yellow and blue points are merged in
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Figure 1: Density correction applied on a single-cell dataset (CHLA9) in G1/S G2/M space. Left: KDE with equally weighted kernels.
Middle: Quadratic program solution. Right: KDE with kernels weighted according to the quadratic program solution.

Figure 2: OT based integration of two synthetic 3D datasets (PCA representation), source points are colored based on their initial position in
the spiral. Left: Raw datasets. Middle: OT integration. Right: Weighted OT integration.

the center and clusters are indistinguishable. WOTi takes an
extra 2s of time for preprocessing weights, but yields a sig-
nificant improvement in integration quality (right pane). All
source points but a dozen fall on the reference distribution,
color gradient is respected and the four initial clusters clearly
appear. WOTi outperforms OTi on this synthetic example in
all aspects, except for the two extra seconds of preprocessing
time.

3.3 Integration improvement of cell-cycle
trajectory in a single-cell dataset

Integrating cells in the cell cycle space has several applica-
tions. It can be used to correct the loop shape of an aver-
age quality dataset with respect to a high quality reference
dataset, or to infer cell cycle state of cells in a semi-supervised
fashion with label transfer methods if the reference dataset is
labeled. Here, we integrate a Ewing sarcoma PDX352 dataset
of 1937 cells with a majority of non-proliferating cells onto
a Ewing sarcoma cell lines dataset CHLA9 mainly composed
of proliferating cells (Fig 3) A good integration should result
on mapping non-proliferating cells (located on the bottom-
left of a cell cycle plot, dark blue points) of PDX onto non-

proliferating cells of CHLA9, while preserving the distribu-
tion of proliferating cells in PDX over the cell cycle loop.

Fig. 3 presents integration results. Left-hand pane shows
data before integration, the colored dataset being the source
PDX352, and the grey dataset being the reference CHLA9
dataset. Middle pane displays integration performed with the
state-of-the-art OTi, and integration by WOTi stands on the
right-hand pane. Source cells are colored with respect to their
position in the initial PDX352 dataset. Dark blue points cor-
respond to non-proliferating cells (low cell cycle genes ex-
pression), yellow points to cells expressing cell cycle genes
at high level. A good integration technique must maintain
the initial loop shape and color pattern, i.e. map proliferating
and non-proliferating cells in both datasets. When perform-
ing OTi (middle pane), we see the integrated PDX cell cycle
loop shape perfectly overlaps with CHLA9 one. We observe
most non-proliferative cells (dark blue) are incorrectly pro-
jected onto a proliferative state in the cell cycle loop, while
they should stay clustered in the bottom-left corner, as a result
of high unbalance in distributions between datasets. WOTi
(right-hand pane) allows non-proliferating cells to be cor-
rectly maintained to the bottom-left part of the plot, and to
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Figure 3: OT based integration of single-cell Ewing sarcoma datasets in the cell cycle space. Cells are colored by the average cell cycle genes
expression in PDX dataset, scaled to unity interval. Left: Raw datasets. Middle: OT integration. Right: Weighted OT integration.

Figure 4: Comparison of both OT integration methods on coupled SNARE-seq data consisting of chromatin accessibility (ATAC-seq) and
gene expression (RNA-seq) records, in PC space. Points are colored with depending on which cluster a cell belongs to in ATAC representation.
Left: Datasets before integration. Middle left: OT integration. Middle right: Weighted OT integration. Right: Performance of optimal
transport integration methods with (WOTi) and without (OTi) density correction, on 100 i.i.d. samplings for datasets unbalance.

recover a loop coloring resembling the initial dataset, inte-
grated with cells in CHLA9 dataset. Furthermore, PDX initial
loop shape overlaps correctly on CHLA9, with points nicely
distributed in all CHLA9 areas and a high density cluster rep-
resenting non-proliferative cells.

3.4 Integration improvement in multi-omics data
Unsupervised vertical dataset integration is a challenging task
requiring to map similar samples between two representa-
tions. It does not only require a robust alignment technique,
but also clever cross-representation projections to construct a
meaningful common space for integration to take place. In
our multi-omics dataset, performing a 19-components PCA
on gene expression data, and reducing chromatin accessibility
data to a 19 dimensional space was enough to recover close
corresponding clusters - this is not the general case. Both
OT integration methods deliver equally good results in the
balanced case, with a near-perfect integration (not shown in
figures, see Supplementary materials and also results from
[Demetci et al., 2020]). We challenge the methods by ran-
domly unbalancing clusters in both datasets.

We assess integration quality on Fig. 4, both visually (three

first plots) with visual inspection of clusters merging, and
quantitatively (fourth plot). In the latter representation, the
x-axis represents a k-NN classifier accuracy over the source
dataset in the task of cluster classification, when trained on
the reference dataset (higher is better). The y-axis represents
the sum of Wasserstein distances between source and refer-
ence clusters (lower is better). The random unbalance proce-
dure has been carried out 100 times, giving these point clouds.

OTi strikingly suffers from the unbalance in cluster sizes
between data modalities. Orange and purple dots pollute the
cyan cluster, and data is considered less integrated with re-
spect to both metrics (Fig. 4, left pane) than the datasets be-
fore integration. In the other hand, WOTi yields much better
results. Visual inspection reveals cluster structure is well pre-
served, and points typically overlap well onto the right cluster
despite class disequilibrium. Classifier accuracy is similar to
the one before integration, while distance between clusters is
greatly reduced.

In this case, building the latent space was quite easy using
PCA projections, but can be way harder for other datasets.
Once this was done, our method effectively integrates 19D
data, generally mapping cells on their corresponding cluster.
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Computation time for OT is less than 1s for each dataset. Pre-
processing the weights takes 2.5s for chromatin data, and 0.9s
for RNA-seq data.

4 Discussion
We present a variation of the OT dataset integration tech-
nique, originally designed for histogram color transfer but
finding applications in a variety of domains, notably in
single-cell with SCOT. We address the problem of integrat-
ing datasets with similar effective support but different lo-
cal density. These types of datasets are frequent in real-life
applications, such as single-cell biology. We propose a way
to choose sample weights for the unbalanced OT problem so
that dense regions are associated to lower weights and vice-
versa. We demonstrate the effectiveness of this approach on
three pairs of datasets of various dimensions. In particular,
we demonstrate our method outperforms original OT integra-
tion for all datasets when local density is unbalanced, with
reasonable computation time.

Choosing between OT and GW is a concern that must be
addressed in every real-case application. OT is appliable only
when a relevant metric can be defined between samples of
different datasets, and will typically avoid any kind of trans-
formation, which can help in the case of symmetrical datasets
for instance (SNARE-seq is such a case). On the other hand,
GW is typically invariant with respect to isometries and can
be applied event when both datasets to integrate do not share
the same data space.

Though, WOTi does not solve all limitations of OT dataset
integration. For instance, it cannot deal with datasets in which
only a subset of samples represent objects of the same type. In
this case, the method will overfit and align all source records
onto the reference ones, even if some of them should not be
aligned at all. Using distance-based cost matrices also does
not scale well with high dimensional data, so designing a
ground cost suitable to high dimension data for performing
OT integration is still an open question, recently addressed
in [Huizing et al., 2021]. Solving a quadratic problem in the
probability simplex in a very efficient way is challenging in
high dimension, but we did not find this to be a decisive ob-
stacle as applications for which we use WOTi do not exceed
5000 sample points. With such dataset size, standard inte-
rior point methods are efficient enough to yield reasonable
computation time (from a second to a minute). Alternative
formulations and strategies must exist though, to at least ap-
proximate the result in a more efficient manner in our par-
ticular case. Finally, vertical dataset integration using WOTi
highly depends on the latent space construction which is still
an unsolved question in general, probably highly dependent
on the application field.

The question of outliers is a serious concern when perform-
ing density uniformization, not addressed yet. Indeed, it is
easy to show that using a variance-normalized distance ma-
trix to define kernel density is not robust to distant outliers.
In the limit case, the normalized distance matrix tends to rep-
resent a two-points setup with the outlier as one point, and all
the other points degenerated into one location. The solution is
there to put a weight of 1/2 on the outlier, and a weight of 1

2n

on all the other points. This is of course very detrimental, and
must be for now addressed upstream by outlier filtering, using
one of the available and computationally tractable methods.

Although, dataset integration using OT is a promising
method which can yield high quality results, as with single-
cell datasets in the cell cycle space or SNARE-seq multi-
omics data; we showed choosing weights is a key part of the
problem. If making all weights equal is a tempting (and easy)
approach, we demonstrate it fails with unbalanced datasets
that are usual when dealing with real-life data. Performing
balanced OT integration can in these cases lead to severe
overfitting. We believe developing algorithms to choose sam-
ple weights like in WOTi is a critical step to ensure meaning-
ful dataset integration, and we are looking forward to seeing
more approaches to do so.
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