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Abstract 

Despite recent reports of microbes living within tumor cells, the identification of intracellular 

microbes remains an open and important challenge. Here we introduce CSI-Microbes 

(computational identification of Cell type Specific Intracellular Microbes), a computational 

approach for the discovery of cell-type specific intracellular microbial taxa from single-cell RNA 

sequencing of host cells. It is first validated on two gold-standard datasets of human immune 

cells exposed to Salmonella. Next, CSI-Microbes is tested on Merkel cell and colorectal 

carcinoma where it identifies both reported and previously unknown tumor-specific intracellular 

microbes. Finally, CSI-Microbes is applied to analyze the intracellular microbiome of thirteen 

lung tumors where it identifies four tumors with bacterial taxa enriched in tumor cells and two 

tumors with bacterial taxa enriched in stroma or immune cells. Notably, the infected tumor cells 

down-regulate pathways associated with anti-microbial response and antigen processing and 

presentation, testifying to the functional significance of bacterial presence. 
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Introduction 

Several recent papers have pointed to the functional importance of the tumor microbiome. For 

example, bacteria of the genus Fusobacterium are enriched in colorectal carcinoma compared to 

matched normal tissue, drive tumorigenesis, influence response to chemotherapy and bind to 

multiple human immune inhibitory receptors1–6. pks+ E. coli have been shown to induce a 

mutation signature frequently found in colorectal carcinoma7. In pancreatic cancer, a subset of 

taxa from the class Gammaproteobacteria were shown to mediate tumor resistance to 

chemotherapy8. A computational analysis of the unmapped reads from whole-genome 

sequencing (WGS) and whole-transcriptome sequencing (RNA-seq) experiments across 33 

tumor types from The Cancer Genome Atlas (TCGA) cohort identified a variety of bacterial 

genera present in different tumor types and demonstrated that after filtering out potentially 

contaminant species, one can successfully build a predictor of cancer type based on tumors’ 

microbial composition9. 

 Some residents of the tumor microbiome have been shown to reside intracellularly within 

tumor and non-tumor cells in the tumor microenvironment1,10. The previously mentioned 

Fusobacterium has been shown to bind to ligands overexpressed at the surface of colorectal 

carcinoma cells, which it uses to invade these cells1,11. Another recent publication used multiple 

experimental techniques to interrogate the microbiome of seven cancer types10. It found that each 

cancer type has its own characteristic tumor microbiome and that many intratumoral bacteria 

exist intracellularly in both tumor and immune cells10. Further, it was recently reported that 

peptides derived from proteins in 41 bacterial species, including Fusobacterium nucleatum, are 

presented on the human leukocyte antigen class I and II (HLA-I and HLA-II) molecules of 

melanoma cells, which suggests that intracellular bacteria antigens can possibly be exploited 
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therapeutically12. Despite these advances, it has remained an important open challenge to identify 

which microbial taxa reside intracellularly and whether they reside exclusively or preferentially 

in tumor cells, immune cells, or cells of the non-cancerous solid tissue adjacent to the solid 

tumor (e.g., the study that identified the intracellular localization of some bacteria using staining 

also characterized the composition of the tumor microbiomes using 16S ribosomal RNA13,14 but 

did not attempt to classify which bacterial taxa resided intracellularly in which cell types).  

Here, we present a computational approach named CSI-Microbes (computational 

identification of Cell-type Specific Intracellular Microbes) that analyzes single cell RNA 

sequencing (scRNA-seq) datasets to identify intracellular microbes that are cell-type specific in a 

given tumor sample. Previous studies looking at microbial reads from scRNA-seq of host cells 

have focused on viruses15,16. To the best of our knowledge, the only previous study to analyze 

bacterial reads from scRNA-seq of host cells did so in the context of  known Salmonella 

infection using a protocol designed to capture bacterial reads17. CSI-Microbes extends upon 

these studies by demonstrating that viruses and intracellular bacteria that preferentially reside 

within one cell-type can be discovered from two commonly used scRNA-seq protocols (Smart-

seq2 and 10x) without knowing a priori the identity of the infecting virus or bacteria. It can do 

so if the input list of microbial genomes contains at least one genome with sufficient sequence 

similarity such that the microbe-derived reads can be aligned. In this discovery context, it is 

necessary to consider all microbial reads identified in the datasets, many of which are likely 

contaminants. Using user-specified cell-type annotations (such as those based on host 

transcriptomic data), CSI-Microbes identifies microbial taxa whose reads are enriched in specific 

cell types. Notably, this step controls for contaminating and extracellular microbes, whose 
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abundances is assumed not to vary significantly between cells of different types after proper 

normalization.  

We demonstrate that CSI-Microbes correctly identifies known intracellular microbes and 

their cell-type preference in datasets of immune cells exposed to the intracellular bacterium 

Salmonella enterica and cancer cells with known or previously reported tumor cell-specific 

microbes. Next, we apply it to the unexplored intracellular microbiome of non-small cell lung 

carcinomas where we identified tumor cell-specific intracellular bacteria in four of the thirteen 

tumors. By comparing infected and uninfected tumor cells, we identify a transcriptomic signature 

of immune down-regulation in infected tumors cells, which both supports our findings of 

intracellular bacteria and suggests potential mechanisms for how and why intracellular bacteria 

reside within tumor cells.  

Results 

Overview of CSI-Microbes   

The inputs to CSI-Microbes are (i) a database of microbial genomes and their taxonomy tree, (ii) 

FASTQ files from scRNA-seq experiments, (iii) cell metadata, including cell type annotations 

and (iv) known covariates, such as the sequencing plate, that may be associated with differential 

contamination. CSI-Microbes performs two tests for the identification of cell-type specific 

intracellular microbes: (a) differential abundance, which compares the normalized read counts of 

microbial taxa between cell types, and (b) differential presence, which compares the number of 

cells with at least one read from microbial taxa between cell types. We use the differential 

presence test specifically for the analysis of sparse 10x scRNA-seq datasets, which have few 

microbial reads, and the differential abundance test, otherwise.  The output for each patient 
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sample is a list of candidate cell type-specific intracellular microbial taxa ranked by the statistical 

significance of their differential abundance or presence.  

The algorithm proceeds in the following steps (Fig. 1, Methods): (1) Identification: 

scRNA-seq reads are mapped non-uniquely to microbial genomes using GATK PathSeq18 after 

filtering reads aligned to the host genome and spike-in transcripts (differential abundance test 

only). (2) Analysis: For the differential abundance test, microbial reads are normalized across 

cells using spike-in sequences, log-transformed and compared across specified cell types using a 

two-sided Wilcoxon rank-sum test with minimum average log2 fold-change=.5. The statistical 

significance and the area under the receiver operating curve (AUC), which is equivalent to the U 

statistic of the Wilcoxon rank-sum test19, are used to quantify the ability of the microbial taxa to 

discriminate between cell types, for each microbial taxon. For the differential presence test, the 

number of cells with at least one UMI from the microbial taxa are compared across specific cell 

types using a two-sided Fisher’s exact test and the statistical significance and effect size (odds 

ratio) are reported20. Both tests can be applied to one or more taxa at the same level or along an 

ancestor-descendant path in the input taxonomy tree and corrected for multiple hypotheses. Both 

tests are run separately for cells given their covariate annotations (plate for Smart-seq2 and 

sample for 10x) and combined using Stouffer’s Z-score method21. (3) Validation: Post-hoc 

validation tests of contamination inspired by decontam22 are performed using spike-in reads and 

empty wells if available (Methods). These include two tests, the spike-in test and the empty wells 

test. The spike-in test, which is based on the observation that the number of reads from 

contaminating microbes are likely to correlate inversely with the sample DNA concentration, 

calculates the correlation between the spike-in reads and the reads of the taxon of interest. The 

empty wells test, which is based on the observation that contaminating sequences are more likely 
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to show up in negative controls, compares the presence of microbial taxa between empty and 

non-empty wells.  

 

 

Figure 1: Overview of the CSI-Microbes approach, which takes sequencing read files (fastq 
format) from scRNA-seq experiments (10x or Smart-seq2) and cell metadata such as cell-type 
and plate (Smart-seq2) or sample (10x) as input. The steps are (1) Identification: reads are 
mapped to the human genome and optionally spike-in sequences (Smart-seq2 only) and 
unmapped reads are mapped against a large set of microbial genomes; (2) Analysis: for 
microbial taxa with reads identified in step 1, the log2 spike-in normalized reads (Differential 
Abundance) or the number of cells with at least one UMI (Differential Presence) are compared 
between user-specified cell-types (provided as input) while controlling for covariates associated 
with contamination (also provided as input); (3) Validation: for microbial taxa, the correlation 
between the number of reads from this taxa and the reads from spike-in sequences is reported 
(Spike-in Test) and the frequency of reads from this taxa is compared between empty wells and 
wells with cells (Empty Wells Test). 

 

Applying CSI-Microbes to the Salmonella gold-standard validation scRNA-seq datasets 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2020.05.14.096230doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.096230


8 
 

We validated the differential abundance test of CSI-Microbes on a “gold-standard” Smart-seq2 

dataset that sequenced 262 human monocyte-derived dendritic cells (moDCs) that were exposed 

to either the D23580 strain or the LT2 strain of Salmonella enterica as well as 80 control cells23. 

The 262 Salmonella exposed cells were further labeled as 135 “infected” and 127 “bystander” 

cells depending on whether the presence of live, intracellular Salmonella could be detected in 

them using FACS. The identification step (step 1) found a median of 8,030 bacterial reads per 

cell that mapped to 859 bacterial genera including Salmonella. We applied the spike-in test (step 

3) to the 19 most abundant genera and found that, indeed, the number of reads from the 18 

genera other than the expected Salmonella is positively correlated with the number of spike-in 

reads, suggesting that these 18 other genera are contaminants. CSI-Microbes identified only the 

different microbial taxa along the path from the class Gammaproteobacteria (p-value=9e-6, 

AUC=.66) to the species Salmonella enterica (p-value=1e-8, AUC=.70) as differentially 

abundant between the infected and bystander cells (Fig. 2A). We observed false positives when 

comparing cells across plates, illustrating the importance of controlling for the sequencing plate 

(step 2 in CSI-Microbes, Supplementary Information).  

We next validated the differential presence test of CSI-Microbes on a 10x dataset in 

which the authors sequenced 3,485 human peripheral blood mononuclear cells (PBMCs) that 

were exposed to Salmonella enterica serovar Typhimurium strain SL134424. Using flow 

cytometry, the authors determined that ~3% of the exposed PBMCs, including 90% of the 

monocytes, were infected with live red fluorescent protein (RFP)-expressing intracellular 

Salmonella. We applied CSI-Microbes to look for differentially present microbes between the 

monocytes and non-monocytes, which identified the path from the phylum Proteobacteria to the 
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genus Salmonella. This was achieved even though only 29 UMIs mapped to bacterial genomes in 

this dataset (Fig. 2B).  

We validated our findings of differential abundance and differential presence in the 

respective Salmonella datasets using two alternative mapping approaches (step 1). First, we 

reproduced our findings at the genera level in both datasets using the k-mer tool CAMMiQ25 

instead of the alignment-based approach PathSeq. Second, we directly mapped unaligned reads 

to the Salmonella strain genome used in each experiment using the error-tolerant and ambiguity-

character-tolerant aligner SRPRISM26 (Supplementary Information and Supplementary Fig. 1 

and 2). The SRPRISM analysis of the Smart-seq2 dataset testifies to the importance of aligning 

reads to the entire microbial genome, instead of specific regions like the commonly used 16S 

rRNA loci, which contain only ~9% of the total reads mapped to the Salmonella strain genomes 

(Supplementary Information).  

In these two gold-standard datasets, CSI-Microbes identified enrichments at different 

levels of the NCBI Taxonomy tree. In the Smart-seq2 dataset, it identified microbial taxa from 

the class Gammaproteobacteria to the species Salmonella enterica while in the 10x dataset, it 

found the path from the phylum Proteobacteria to the genus Salmonella (but not the species 

Salmonella enterica). To programmatically report the highest resolution microbial taxa, CSI-

Microbes analyzes microbial reads from the class to the species level while performing 

hierarchical false discovery rate (hFDR) correction to limit the number of hypotheses27,28. 
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Figure 2: (A) Overview of the results from CSI-Microbes on the Smart-seq2 dataset 23. The 
volcano plot shows the microbial taxa found to be more differentially abundant (p-value < .05 
and AUC > .5) in infected cells compared to bystander cells (Supplementary Table 1). The 
taxonomy illustration shows that all differentially abundance microbial taxa (shown on the left) 
are either Salmonella enterica or its taxonomic ancestors. The box plot shows that there are 
significantly more normalized reads mapped to Salmonella enterica in infected cells compared 
to bystander cells, which have significantly more normalized reads than control cells, which 
were not exposed to Salmonella enterica and contain almost no reads mapped to Salmonella 
enterica. (B) Overview of the results from CSI-Microbes on sample GSM3454529 (exposed to 
Salmonella enterica) from the 10x dataset24. The odds ratio plot shows that Salmonella and its 
taxonomic ancestors (see taxonomy illustration) but not Mycoplasma wenyonii are more 
differentially present in monocytes compared to non-monocytes (p-value < .05 and odds ratio > 
1) (the taxonomic ancestors of Mycoplasma wenyonii, which received identical scores, were 
excluded for space purposes, and are listed in Supplementary Table 1). The third panel shows 
that UMIs from Salmonella were identified more frequently in monocytes compared to non-
monocytes. 
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Application of CSI-Microbes to Merkel cell and colon carcinomas  

We next validated CSI-Microbes in the context of cancer by analyzing two 10x scRNA-seq 

datasets from two tumor types previously reported to have tumor cell-specific intracellular 

microbes. Previous reports have estimated that ~80% of Merkel cell carcinomas are driven by the 

clonal integration of the Merkel polyomavirus29. We applied CSI-Microbes to identify 

differentially present microbes between tumor and non-tumor cells from two Merkel cell 

tumors30, which were confirmed to have integration of the Merkel polyomavirus by the original 

authors. In both patients, CSI-Microbes identifies the species Human polyomavirus 5, for which 

the only fully sequenced genome comes from the “no rank” child taxon Merkel polyomavirus, to 

be differentially present in tumor cells (patient 2586-4 pre-treatment: p-value=710-9, odds 

ratio=5.3, post-treatment: p-value=.04, odds ratio=6; patient 9245-3: p-value=1010-64, odds 

ratio=12.8) (Supplementary Table 2 and Supplementary Fig. 3).  

The bacterial species Fusobacterium nucleatum has previously been reported to 

preferentially reside within colorectal carcinoma cells and to a lesser extent, stromal cells1. We 

applied the differential presence test of CSI-Microbes to compare tumor and non-tumor cells 

from a recently published 10x dataset of six colorectal carcinomas, which were not evaluated for 

the presence of bacteria by the authors31. In the tumor sample from patient SC028 (the only 

sample with UMIs aligned to Fusobacterium), CSI-Microbes identified the genus Fusobacterium 

(p-value=.028, odds ratio=2.7) to be more differentially present in the tumor cells compared to 

non-tumor cells in patient SC028 (Fig. 3A). We observed that the two cells with the most UMIs 

from Fusobacterium (24 and 16 UMIs respectively) were stromal cells, suggesting the presence 

of intracellular Fusobacterium in a small percentage of stromal cells as has been previously 

suggested1. CSI-Microbes also identified the bacterial species Hathewaya histolytica (p-
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value=.01, odds ratio=3.6) (previously called Clostridium histolyticum) to be differentially 

present in the tumor cells from patient SC019 (Fig. 3B and Supplementary Table 3). 

Interestingly, Hathewaya histolytica has been reported to be strongly enriched in the colonic 

tissue of patients with ulcerative colitis compared to controls32.  

 

 

Figure 3: Overview of significant results from CSI-Microbes on colorectal carcinoma 10x 
dataset31. (A) The odds ratio plot shows Fusobacterium and its taxonomic ancestors to be more 
differentially present in tumor cells compared to non-tumors in the tumor sample from SC028 
(see Supplementary Table 3 for more details). Although not statistically significantly, the 
barplot shows the difference between the percentage of tumor and non-tumor cells with at least 
one UMI from Fusobacterium nucleatum. (B) The odds ratio plots shows that Hathewaya 
histolytica and its taxonomic ancestor are more differentially present in tumor cells compared to 
non-tumor cells from SC019. UMIs from Hathewaya histolytica are found in a higher percentage 
of tumor cells compared to non-tumor cells. 
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Application of CSI-Microbes to lung cancer  

Next, we applied CSI-Microbes to identify differentially abundant microbes from a large, 

recently published lung cancer Smart-seq2 scRNA-seq dataset with spike-in sequences33. We 

analyzed 13 lung cancer tumors where at least 10 tumor cells and 10 non-tumor cells were 

sequenced in the same plate, comprising in total ~11,000 cells from 50 sequencing plates. We 

first compared the microbial reads (from the identification step of CSI-Microbes) to a previous 

analysis of the lung microbiome using 16S rRNA10. We identified at least one unambiguous read 

to 16 of the 17 species with complete genomes that were reported to be enriched in lung cancer, 

suggesting that Smart-seq2 data may provide sufficient coverage of the tumor microbiome 

(Methods). Next, using the authors’ cell-type annotations (tumor, immune, stroma and 

epithelial), we applied CSI-Microbes to identify multiple tumors where microbial taxa are 

differentially abundant in tumor cells compared to immune cells (TH231, TH236, TH238, 

TH266; see Fig. 4A,B for examples and Supplementary Table 4 for the complete list) and 

stromal cells (TH236, TH266). We also detected two tumors with taxa that are differentially 

abundant in stromal cells (TH231; Fig. 4C) or immune cells (TH220) compared to the tumor 

cells. Notably, all four tumor samples containing tumor cells enriched with bacterial taxa are 

from tumors that had undergone at most one prior drug treatment. In contrast, the tumor sample 

with bacterial taxa enriched in immune cells came from a patient who had six prior lines of 

treatment including immunotherapy.  

CSI-Microbes identified the species Cutibacterium acnes to be differentially abundant in 

the tumor cells compared to the immune cells in four of the thirteen tumors (TH231, TH236, 

TH238, TH266). Cutibacterium acnes was excluded from a previous experimental exploration of 

the lung tumor microbiome10 because it was identified in a large percentage of the tissue-free 
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negative controls, which indicated that it is a contaminant. Consistent with this finding, we 

identify reads from C. acnes in nearly every single cell analyzed. However, C. acnes is 

significantly more abundant in tumor cells compared to immune cells in all four tumors (and is 

not significantly more abundant in non-tumor cells in any other tumor). Notably, C. acnes has 

been previously reported to exist intracellularly in epithelial cells and to be a commensal in the 

lung and skin as well as an opportunistic pathogen34–36. Thus, unlike bulk sequencing-based 

computational methods, CSI-Microbes can consider all microbes while implicitly controlling for 

contaminants by comparing normalized microbial reads between cells of the same patient. CSI-

Microbes identifies another member of the Cutibacterium genus, Cutibacterium granulosum, 

which was reported to be enriched in lung cancer10, as differentially abundant in tumor cells in 

patient TH266 (uncorrected p-value = .04, Fig. 4B). Additional taxa that are differentially 

abundant in tumor cells include the genera Corynebacterium (TH236 and TH238) (Fig. 4A) and 

Staphylococcus (TH236) and the family Micrococcaceae (TH238) (Fig. 4A). In patient TH231, 

where CSI-Microbes found C. acnes to be enriched in tumor cells, it also identified the genus 

Leptotrichia to be enriched in stroma cells, which were further classified as melanocytes by the 

original authors, compared to non-stroma cells (Fig. 4C). In patient TH220, CSI-Microbes 

identified both the Micrococcus and Corynebacterium genera and the Alphaproteobacteria class 

to be enriched in immune cells compared to tumor cells in patient TH220. We did not find any 

bacterial taxa to be differentially abundant between macrophages/monocytes and any other cell 

type.  
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Figure 4:  Key results from CSI-Microbes analysis of lung cancer (A) CSI-Microbes identified 
multiple bacterial taxa (all descendants of the Actinobacteria class) to be enriched in tumor cells 
compared to immune cells in patient TH238 (AUC > .5 and p-value < .05).  (B) CSI-Microbes 
identified two species from the Cutibacterium genus (C. acnes and C. granulosum) to be 
enriched in tumor cells compared to immune cells in patient TH266. (C) CSI-Microbes identified 
the bacterial genus Leptotrichia to enriched in stroma cells compared to non-stroma cells in 
patient TH231. The boxplot shows that there are more reads to Leptotrichia in stroma cells 
compared to epithelial, immune and tumor cells.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2020.05.14.096230doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.096230


16 
 

 
 To study the transcriptomic state associated with the presence of intracellular bacteria in 

the lung cancer cohort that we analyzed, we performed a differential expression analysis between 

the tumor cells from patients TH231, TH236, TH238 and TH266 (termed “infected” because 

CSI-Microbes identified microbial taxa that are differentially abundant in tumor cells in each of 

these samples) and the tumor cells from the other patients (termed “uninfected”) (Fig. 5A and 

Supplementary Table 5 and Methods). The most down-regulated gene in infected tumor cells 

compared to uninfected tumors cells is S100A9 (FDR-corrected p-value=1e-62, AUC=.09, where 

for down-regulated genes 0 indicates perfect discrimination).  S100A9 binds to S100A8 to form a 

heterodimer calprotectin, which has antimicrobial properties due to its ability to sequester metal 

ions such as zinc, manganese and iron that are essential nutrients for microbes37. The down-

regulation of S100A9 thus may explain how bacteria such as C. acnes can survive inside these 

tumor cells.  

Next, we performed a gene set enrichment analysis (GSEA) of the differentially 

expressed genes between the infected and uninfected cancer cells and clustered similar gene sets 

using Enrichment Map38 (Fig. 5B and Supplementary Table 6 and Methods). The largest 

cluster of gene sets down-regulated in infected tumor cells contains predominately gene sets 

associated with processing and presentation of antigens as well as those associated with 

hematopoietic differentiation and response to external stimulus. This cluster is connected to the 

chemotaxis cluster, which includes gene sets associated with chemotaxis of leukocytes, 

granulocytes, and neutrophils. We observed at least three additional and unconnected down-

regulated gene sets that we could associate with anti-microbial response, including humoral 

immune response mediated by antimicrobial peptides, transition metal ion homeostasis and cell 

killing. Additional immune response gene sets including response to interferon gamma and 
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response to interferon beta as well as interleukin-12 production are also down-regulated in the 

infected tumor cells. The largest cluster of up-regulated gene sets includes many gene sets 

associated with microtubules, which have previously been shown to be modulated by 

intracellular pathogens39. The association of intracellular bacteria with the down-regulation of 

the antigen presentation system in tumor cells, which has been previously observed in one 

Salmonella dataset23 (see also Supplementary Information) is particularly relevant given the 

recent finding that peptides derived from bacteria can be present on the HLA class I and II 

molecules in melanoma12.  

 

 

Figure 5: (A) Volcano plot of the differentially expressed genes (Supplementary Table 5) 
between the infected and uninfected tumors cells where blue genes (AUC < .45 and p-value < 
10e-6) are significantly down-regulated in infected tumor cells and red genes (AUC > .55 and p-
value < 10e-6) are significantly up-regulated in infected tumor cells. (B) Enrichment map of the 
significantly enriched gene sets (FDR q-value < .02) (Supplementary Table 6) where blue nodes 
represent gene sets that are down-regulated in infected tumor cells and red nodes represent 
gene sets that are up-regulated in infected tumor cells. Gene sets are connected via edges if 
there are many genes in common between the two gene sets. Similar gene sets are clustered 
and manually named using common terms. 
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Discussion 

We developed and validated a first of its kind computational tool for the discovery of cell-type-

specific intracellular microbes from single-cell transcriptomics data. Our approach can be 

applied to many existing scRNA-seq datasets without additional wet lab experiments because our 

framework of differential presence and abundance controls for contamination. Our bioinformatic 

approach is complementary to and extends existing wet-lab approaches for identifying 

intracellular microbes in the tumor microenvironment. Complementing HLA peptidomics, single 

cell transcriptomic analysis identifies not only likely intracellular bacteria but also their cell-type 

of residence. CSI-Microbes simultaneously searches all taxa in the input database while a 

staining-based approach like RNAscope40, which can identify cells containing intracellular 

bacteria with high confidence, is limited to using probes that are either specific to a small, pre-

determined set of taxa (requiring a priori knowledge) or generic to all bacteria like 16S (hiding 

the identity of the intracellular bacteria). Intracellular microbes reported by CSI-Microbes can 

provide the a priori knowledge needed by approaches like RNAscope, which can and should be 

used to experimentally validate scRNA-seq-based findings. We also expect our approach to 

improve as additional tumor resident microbes are fully sequenced because many species found 

to be present in the tumor microbiome using 16S rRNA sequencing10 lack complete reference 

genomes (Methods).  

Beyond our specific approach, we suggest that scRNA-seq is particularly well-suited for 

identifying intracellular bacteria for three reasons. First, in contrast to bulk sequencing 

approaches, scRNA-seq protocols provide many “replicates” (in the form of single cells) from 

the same individual often from multiple batches, which can be used to identify and control for 

contaminating microbes. Second, scRNA-seq protocols are designed to sequence the RNA inside 
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of single cells, which includes the RNA from any intracellular microbes (although many existing 

protocols, including those analyzed in this study, may under sample microbial RNA for various 

technical reasons). Third, scRNA-seq contains information on host transcriptomic changes 

associated with the presence of intracellular microbes. The findings of intracellular bacteria 

within tumor cells reported here and by others10,12 raise questions concerning the putative 

functional roles of these intracellular microbes: are they simply “innocent bystanders” and 

opportunistic pathogens or do they play important functional roles in tumorigenesis and response 

to treatment? By analyzing both human and microbial reads, we found the down-regulation of 

antigen processing and presentation in both moDCs infected with intracellular Salmonella 

(Supplementary Information) as already suggested23 and infected tumor cells in NSCLCs. These 

findings both provide additional support for our results and point to a potential win-win 

relationship between intracellular bacteria and the tumors that host them: intracellular bacteria 

down-regulate the antigen processing and presentation system of the host cell, which helps the 

tumor evade the immune system. 

We focus on cancer-specific intracellular microbes, but we note that CSI-Microbes can 

be applied to identify intracellular microbes in other diseases. Although many intracellular 

bacteria preferentially invade one cell-type41, many other intracellular microbes may either not 

be cell-type-specific or sufficiently enriched in one cell-type to be identified by our tests. We 

note that the combination of our spike-in test and empty wells test could be used to identify a 

more general class of intracellular microbes although we did not pursue this approach because 

none of the datasets analyzed contained more than a small number of empty wells. In such future 

applications, our results underscore the importance of using spike-in sequences, empty wells, and 
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multiple cell-types in the same plate to further enhance the detection accuracy of intracellular 

bacteria from sequencing data. 

We expect that the performance of CSI-Microbes will improve as scRNA-seq technology 

advancements continue to increase the number of cells and sequencing depth and overcome 

some of the technical reasons, such as the exclusive use of polyA capture, that causes many 

existing protocols to under sample prokaryotic RNA molecules17. The use of polyA tail selection 

to enrich for polyadenylated eukaryotic mRNAs selects against prokaryotic RNA molecules, that 

have shorter polyA tails when polyadenylated and are less likely to be polyadenylated42. It was 

shown nearly thirty years ago that polyadenylation is carried out by the polymerase PAP1 in E. 

coli, which is a member of the Enterobacteriaceae family43. Although it is not known whether 

all bacterial taxa have polyadenylated RNAs, we hypothesize that any taxon with an orthologue 

of PAP1 will have some polyadenylated mRNA. It is also largely unknown which bacterial 

genes are polyadenylated as there are only a small number of Enterobacteriaceae genes have 

been shown to be polyadenylated in E. coli44. Using our results from aligning the unmapped 

Smart-seq2 reads against the genome of Salmonella, which is also a member of the family 

Enterobacteriaceae, we can add to the list of likely polyadenylated genes in this family 

(Supplementary Table 1).  

In summary, CSI-Microbes is a powerful in silico approach for analyzing the intracellular 

tumor microbiome. We have shown that it identifies both known and previously reported cell-

type-specific intracellular bacteria and viruses as well as multiple instances of tumor-specific 

intracellular bacteria in NSCLCs associated with a transcriptional signature of immune and anti-

microbial response down-regulation. 
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Methods 

Data Availability 

In this study, we analyzed publicly available FASTQ files from the following datasets: 

 

Sample 

Type 

Patients 

analyzed 

(total) 

Cells 

analyzed 

Approach Reference Spike-

ins 

Empty 

Wells 

Dendritic 

cells 

(exposed to 

Salmonella) 

1 (1) 342 Smart-

seq2 

NCBI BioProject 

PRJNA43732823 

Yes 

(ERCC) 

2 

PBMCs 

(exposed to 

Salmonella) 

1 (1) 3,485 10x NCBI BioProject 

PRJNA50343724 

NA NA 

Merkel cell 

carcinoma 

2 (2) 12,754 10x NCBI BioProject 

PRJNA483959 

(patient 2586-4), 

PRJNA484204 

(patient 9245-3)30 

NA NA 

Colorectal 

carcinoma 

6 (29) 27,414 10x ArrayExpress E-

MTAB-841031 

NA NA 

Non-small 

cell lung 

carcinoma  

13 (30) 10,562 Smart-

seq2 

NCBI BioProject 

PRJNA59186033 

Yes 

(ERCC) 

0 

 

For technical reasons, 10x scRNA-seq experiments do not use spike-in sequences or 

empty wells. We excluded 23 of the 29 colorectal carcinomas31 (the Korean cohort) from our 

analysis because the raw reads were not publicly available. We excluded 17 of the 30 non-small 

cell lung carcinomas (NSCLCs)33 from our analysis because either these patients did not have 

cells sequenced using spike-in sequences (2 patients) or these patients did not have at least one 

sequencing plate with at least ten tumor cells and ten non-tumor cells (15 patients).  
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Code Availability 

CSI-Microbes is logically partitioned into two modules, one module for the “identification” step 

and one module for the “analysis” and “validation” steps. A reproducible Snakemake45 

(https://snakemake.readthedocs.io/) workflow for identifying microbial reads from scRNA-seq 

datasets, which includes code to download the data from the datasets above, is available on 

GitHub (https://github.com/ruppinlab/CSI-Microbes-identification) although the identification 

module has some dependencies to the NIH Biowulf server. A reproducible Snakemake workflow 

for analyzing microbial reads to identify differentially abundant or differentially present 

microbes is available on GitHub (https://github.com/ruppinlab/CSI-Microbes-analysis). To 

facilitate reproduction of our analyses, we have uploaded CSI-Microbes-analysis v0.2.0 (the 

version used in this study) along with the relevant input files (generated by CSI-Microbes-

identification v0.2.0) to Zenodo (https://doi.org/10.5281/zenodo.4695248).  

 

Smart-seq2 datasets preprocessing  

Raw FASTQ files were trimmed using fastp46 v0.20.1 with the arguments “--

unqualified_percent_limit 40 --cut_tail --low_complexity_filter --trim_poly_x”. The trimmed 

FASTQ files were aligned to the reference human genome (GRCh38 gencode release 34) and 

any applicable spike-in sequences using STAR47 2.7.6a_patch_2020-11-16 with the arguments “-

-soloType SmartSeq --soloUMIdedup Exact --soloStrand Unstranded --outSAMunmapped 

Within”.  

 

10x datasets preprocessing 
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Raw FASTQ files were aligned to the reference human genome using CellRanger48 v5.0.1 

(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-

cell-ranger). The annotated polyA and template sequence oligonucleotide (TSO) sequences were 

trimmed, the unmapped reads were converted to the FASTQ file format trimmed and filtered 

using FASTP as described above before being converted to BAM files.  

 

Alignment of unmapped reads to microbial genomes 

The unaligned reads were assigned to microbial taxa using PathSeq18 v4.1.8.1 

(http://software.broadinstitute.org/pathseq/) with the arguments “--filter-duplicates false --min-

score-identity .7”. We constructed the reference microbial genome database by downloading the 

set of complete viral, bacterial and fungal genomes from RefSeq release 20149. We subsampled 

at least one genome from each species including any genomes annotated as either “reference 

genome” or “representative genome” as well as the genomes of the three Salmonella strains used 

in the analyzed datasets. To mitigate vector contamination, we identified regions of suspected 

vector contamination (including “weak” matches) in the genomes using 

Vecscreen_plus_taxonomy  (https://github.com/aaschaffer/vecscreen_plus_taxonomy) with the 

UniVec Database (ftp://ftp.ncbi.nlm.nih.gov/pub/UniVec/.) and filtered any reads that aligned to 

these regions50. The alternative microbial read identification on the Salmonella datasets was 

performed using CAMMiQ v0.1 (https://github.com/algo-cancer/CAMMiQ) using only the 

above set of genomes aggregated at the genus level.  

 

Differential abundance quantification 
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We define the abundance of a particular microbe in each cell to be the number of unambiguous 

reads assigned to the relevant genome(s) by PathSeq  The abundances are normalized using the 

computeSpikeFactors function from scran51 v1.16.0 (https://github.com/MarioniLab/scran), 

which computes the library size factors using the sum of the spike-in sequences. To limit the 

number of hypotheses, we only test microbial taxa with counts per million microbial reads > 10 

in at least 50% of the cells from a cell-type. The logged normalized read counts are compared 

across cell-types using the findMarkers function from scran v1.16.0 with arguments 

“test=’wilcox’, lfc=0.5, block=’plate’”. The findMarkers function from scran v1.16.0 makes 

inconsistent assumptions about how to distribute the values of the null distribution depending on 

whether the user specifies “direction = ‘up’” or “direction = ‘down’” (a one-sided test) or the 

user specifies “direction = ‘any’” when the parameter lfc is greater than zero 

(https://github.com/MarioniLab/scran/issues/86). The assumption for the one-sided test models 

our intent so we ran the comparison twice, once using with “direction=’up’” and once with 

“direction=’down’”, selected the result with the smaller p-value for each microbial taxa and 

converted the one-sided p-value to the two-sided p-value by taking the minimum of 1 and 2*p-

value as described in a standard reference52 (page 79). 

 

Differential presence quantification 

We define the presence of a particular microbial taxon in each cell to be 1 if there are > 0 UMIs 

assigned unambiguously to the relevant genome(s) by PathSeq. We only analyze microbial taxa 

that are present in at least five cells total and at least 1% of the cells of a cell-type. We compare 

the presence of microbial taxa between two cell-types using the fisher.test implementation in R 
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of Fisher’s exact test with default parameters, which reports the two-sided p-value and the 

conditional Maximum Likelihood Estimate (MLE).  

 

False discovery rate correction 

We used two different approaches for correcting p-values for multiple hypotheses. For the CSI-

Microbes results from the Salmonella dataset, we run CSI-Microbes separately for each 

taxonomic level and correct for the number of taxa tested at that taxonomic level using the 

Benjamini-Hochberg procedure53. For the CSI-Microbes results from the cancer datasets, we 

leveraged the finding from the Salmonella dataset that CSI-Microbes can detect differentially 

abundant classes. For each class, we construct the taxonomic tree using RefSeq v201 and 

calculate the FDR for members of that class using the hFDR.adjust function from the structSSI 

package54 (https://github.com/cran/structSSI). hFDR.adjust implements the “outer-nodes” 

method of Yekutieli27, which is the method from that paper that is theoretically best suited for 

testing parent-child taxa in a taxonomic tree. To account for the multiple class hypotheses, we 

multiply the class-specific hFDR by the number of classes analyzed by CSI-Microbes to give the 

overall hierarchical FDR (hFDR). We compared the hFDR approach described above with FDR 

correction at the species level for the differential abundance of Salmonella enterica in the 

Salmonella Smart-seq2 dataset and find that the hFDR approach reports a more significant FDR-

corrected p-value than the species-corrected FDR approach (1.58e-8 vs. 2.54e-8).  

 

Normalization model 

We extend the model used by decontam22 to include host and spike-in sequences such that we let 

the total sample RNA (T) be a mixture of 3 components: human RNA (H), spike-in RNA (S) and 
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microbial RNA (M). We can further divide the microbial RNA into contaminating microbial 

RNA (cM) and true microbial RNA (tM). One previously observed pattern of contaminants is the 

frequency of contaminating microbial RNA (cM) is likely to be inversely correlated with the 

human RNA concentration22. We note that the frequency of spike-in RNA is also likely to be 

inversely correlated with the human RNA concentration and therefore the frequency of spike-in 

RNA should be correlated with the frequency of contaminant RNA. Therefore, spike-in based 

normalization should remove any differences in the frequency of contaminating sequences 

between cells.  

 

Comparison to 16S tumor microbiome findings 

We compared our findings of presence of bacterial taxa as numerical identifiers in NCBI’s 

Taxonomy tree28 to previously published findings10. To do this comparison, we had to i) map the 

published findings to numerical taxa and to assess which of the taxa they found are in our 

reference database. One of the key advantages of their 16S method is that it can find taxa for 

which there is no complete genome. In principle, CSI-Microbes can also use sub-genomic 

sequences in the reference database, but we chose not to use partial genomes. 

In the previous study10, microbial species were presented by name, which can lead to 

ambiguities because there are many synonyms and the preferred genus-species name may change 

over time. We were able to identify NCBI Taxonomy IDs for 1,783 of the identified species. 739 

of these 1,783 species have at least one completely sequenced genome and were included in our 

microbial database. These species included 17 of the species reported to be enriched in lung 

cancer10. 
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Differential expression between infected and uninfected tumor cells 

We start with four groups of infected tumor cells (one group per patient) and seven groups of 

uninfected tumor cells (one group per patient except for TH225 and TH226, which we exclude 

because they have only ten and eleven cancer cells respectively). We first identified genes that 

are differentially expressed with an average minimum log2 fold-change=.5 between one group of 

infected tumor cells and one group of uninfected tumor cells, which provides 28 pair-wise 

comparisons (these comparisons are independent because we use a non-overlapping subset of 

uninfected tumor cells from each patient). We calculate a set of differentially expressed genes for 

each group of infected tumor cells by taking the median value of the Holm-corrected p-value for 

each gene (using the argument ‘pval.type=”some”’ for the function findMarkers from scran51). 

Finally, the differentially expressed genes for tumor cells from each infected tumor are combined 

using Stouffer’s Z score method21. We follow the procedure described earlier for computing the 

two-sided p-value.  

 

Gene set enrichment analysis 

We performed pathway enrichment analysis and visualization as previously suggested55. To 

perform GSEA between the infected and uninfected tumor cells, we first performed differential 

expression analysis as described above except that we used LFC=0 to limit the number of genes 

with p-value=1 and thereby the number of tied genes. Next, we ranked genes by multiplying the -

log10(p-value) by -1 (AUC > 0.50 for Wilcoxon rank sum test) or 1 (AUC ≤ .50). Finally, we 

performed gene set enrichment analysis using the ranked genes list and the GSEAPreranked 

function of the GSEA tool56 v4.1.0 (http://www.gsea-msigdb.org/gsea/index.jsp) with default 

settings and seed=149  with the gene ontology biological processes gene set from the molecular 
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signature database (MSigDB)56–59 v7.3 (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp). We 

visualized the enriched gene sets using Enrichment Map38 v3.3.1 

(https://enrichmentmap.readthedocs.io/) with parameters: FDR q-value < .02 (node cutoff) and 

Jacard Overlap Combined Index (k constant=0.5) > .375 (edge cutoff). Clustering was performed 

on the graph using MCL Cluster from clusterMaker260 via AutoAnnotate61 and annotated using 

WordCloud: Adjacent Words from AutoAnnotate61. Annotations were manually reviewed and 

edited where appropriate.  
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Supplementary Table 1: Results from both 10x and Smart-seq2 Salmonella datasets including 

read counts of protein coding genes (minimum 5 reads) from LT2 and D23580 genomes and the 

output of CSI-Microbes for all microbial taxa from the 10x dataset (minimum 5 cells with at 

least one UMI) and the Smart-seq2 dataset (minimum 10 CPM in least 50% of either infected or 

bystander cells). 

Supplementary Table 2: Output of CSI-Microbes between tumor and non-tumor cells on 

patients from the Merkel cell carcinoma 10x cohort30. 

Supplementary Table 3: Output of CSI-Microbes between tumor and non-tumor cells on 

patients from the colorectal carcinoma 10x cohort31. 

Supplementary Table 4: Output of CSI-Microbes between tumor and non-tumor cells on 

patients from the lung cancer Smart-seq2 cohort33. 

Supplementary Table 5: Complete list of differentially expressed genes between infected and 

uninfected lung tumor cells. 

Supplementary Table 6: Up and down-regulated gene sets in infected tumor cells compared to 

uninfected tumor cells using GSEA. 
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