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 33 
Abstract 34 

Cortical regionalization develops via genomic patterning along anterior-posterior (A-P) and 35 
dorsal-ventral (D-V) gradients. Here we find that normative A-P and D-V genomic patterning of 36 
cortical surface area (SA) and thickness (CT) present in typically developing and autistic toddlers 37 
with good early language outcome, is absent in autistic toddlers with poor early language outcome. 38 
Autistic toddlers with poor early language outcome are instead specifically characterized by 39 
secondary and independent genomic patterning effect on CT. Genes involved in these effects can 40 
be traced back to midgestational A-P and D-V gene expression gradients and different prenatal 41 
cell (e.g., progenitor cells, excitatory neurons), are functionally important for vocal learning and 42 
human-specific evolution, and are prominent in prenatal co-expression networks enriched for high-43 
penetrance autism risk genes. Autism with poor early language outcome may be explained by 44 
atypical genomic cortical patterning starting in prenatal development, which may detrimentally 45 
impact later regional functional specialization and circuit formation. 46 

 47 
Keywords: autism, heterogeneity, language, outcome, prenatal, cortical patterning, gradients, 48 
gene expression, surface area, cortical thickness 49 
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 51 
It is widely accepted that autism spectrum disorder (ASD) is etiologically and clinically 52 

highly heterogeneous (1). This heterogeneity is theorized to manifest as a complex multiscale 53 
cascade from a diverse genetic architecture that converges onto a common set of downstream 54 
hierarchical mechanisms linked to the domains of early social-communication and restricted 55 
repetitive behaviors (2–4). Within the context of precision medicine (5), the major priorities for 56 
the field are to best understand how this complex multiscale cascade takes place for individuals 57 
with differing clinical outcomes and to isolate what could the common set of downstream 58 
mechanisms be for such individuals (1, 4, 6).  59 

 60 
Regarding different clinical outcomes in ASD, perhaps the most understudied, yet most 61 

important distinction is between those with relatively intact and good language levels versus those 62 
who are minimally verbal or have very poor early language outcome (7–9). ASD individuals with 63 
poor language represent a sizeable proportion of the early diagnosed population and are the most 64 
in need of intervention to facilitate better outcomes (9). However, since language level is a key 65 
ingredient in helping to facilitate better outcomes, available early interventions may be least 66 
effective for these types of individuals, (10–13). A better understanding of the underlying biology 67 
behind this good versus poor language distinction may be key to developing new individualized 68 
interventions that may be more effective at facilitating better outcomes. Thus, a key question looms 69 
about whether good versus poor language in ASD represents a biologically distinct subtype with 70 
different multiscale biological cascades from genomics, up to neural phenotypes, and through to 71 
behavior. If good versus poor language signals a biologically distinct subtype, what is the common 72 
downstream explanation for how diverse genetic mechanisms lead to altered brain and behavioral 73 
phenotypic development?  74 

 75 
At the nexus of this puzzle, our prior functional imaging (fMRI) work showed that the 76 

neural systems responsible for language respond differently between good (i.e. ASD Good) and 77 
poor (i.e. ASD Poor) early language outcome subtypes (8). Linked to this functional abnormality 78 
are different large-scale patterns of activity in blood leukocyte gene co-expression modules (14). 79 
This work suggests that early cortical functional specialization for language is lacking in the ASD 80 
Poor subtype and that large-scale functional genomic signal may explain this type of pathology. 81 
This large-scale functional genomic signal can be characterized as an omnigenic (15) array of 82 
genes that are typically broadly expressed across many organs and tissues, including the brain, and 83 
are highly active during prenatal periods of development (14). This prenatal enrichment is key, 84 
since a large proportion of broadly expressed ASD-risk genes remarkably show peak expression 85 
during early prenatal periods when processes such as cell proliferation, differentiation, 86 
neurogenesis, and migration are highly prominent (16, 17). If these genes affect proliferation, 87 
differentiation, neurogenesis, and migration, it follows then that macroscale structural features of 88 
the developing cerebral cortex that are predicated on such processes, such as surface area (SA) and 89 
cortical thickness (CT) (18–22), may also be substantially altered in ASD Poor versus Good 90 
language outcome subtypes.  91 
 92 

The prenatal actions of broadly expressed genes may also be important for telling us about 93 
some emergent consequences of such perturbations on how the cortex is genomically patterned, 94 
and thus regionally and functionally differentiated. It is well established that during prenatal 95 
periods the cortex is patterned by gene expression gradients that follow anterior-posterior (A-P) 96 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2020.08.18.253443doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.253443
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

4 

and dorsal-ventral (D-V) axes (18, 22–27). This prenatal genomic patterning is the beginning of 97 
cortical arealization processes that allow different cortical regions to develop their own cellular, 98 
functional, and circuit identities (18, 23, 25, 26) and thus aid in later regional functional 99 
specialization. Indeed, in the adult brain this genomic gradient patterning is still evident and 100 
correlates with large-scale gradient patterning of structural and functional features (19, 20, 28–30). 101 
Cortical arealization or patterning may also be atypical in ASD. Functional connectome gradient 102 
organization is altered in ASD (31). Case-control comparisons of gene expression in post-mortem 103 
cortical tissue has found dysregulation of cortical patterning genes and attenuation of gene 104 
expression differences in frontal versus temporal cortex (32–34). WNT-signaling is also known to 105 
affect cortical patterning (18, 25, 26, 35) and WNT-signaling abnormalities are also identified in 106 
ASD (33, 34, 36–38), particularly within broadly expressed ASD-risk genes (17). Therefore, if 107 
broadly expressed genes prenatally impact proliferation, differentiation, neurogenesis, and 108 
migration processes differently in the ASD Good versus Poor subtypes, could this explain the lack 109 
of functional specialization seen in prior work (e.g., (8, 14))?  110 
 111 

Here we investigated these questions by examining how early variability in morphometric 112 
measures of the cerebral cortex such as cortical thickness (CT) and surface area (SA) are patterned 113 
by large-scale variability in gene expression measured in blood leukocytes. We find that CT and 114 
SA associations with large-scale gene expression patterns are different in ASD Poor versus Good 115 
early language outcome subtypes. This difference can be described as the absence of normative 116 
genomic patterning of CT and SA in the ASD Poor subtype along anterior-posterior (A-P) and 117 
dorsal-ventral (D-V) gradients, and the establishment of a second unique type of patterning of CT 118 
specific to the ASD Poor subtype. These A-P and D-V genomic patterning effects on CT and SA 119 
comprise many of the same genes involved in actual prenatal A-P and D-V gene expression 120 
gradients and prenatal cell-types predicted to be involved in SA and CT (18, 22, 39). Consequently, 121 
these atypical genomic cortical patterning effects have important functional consequences, with 122 
enrichments in genes important for vocal learning, human evolution, and known ASD-associated 123 
genomic mechanisms.   124 
 125 
 126 
Results  127 
 128 
Enlargements of cortical volume and surface area in the ASD Poor language subtype 129 
 130 

In this study we examined a cohort of n=123 toddlers (mean age in months = 27.82, SD = 131 
9.32) with and without ASD (ASD n = 76, TD n = 47) with both a T1-weighted structural MRI 132 
scan and a blood sample that was used to examine gene expression in blood leukocyte cells (see 133 
Methods for sample description and Table S1 for characterization of the sample). The n=76 ASD 134 
toddlers were split into ASD Poor (n=38) and ASD Good (n=38) early language outcome subtypes 135 
using 1 standard deviation cutoffs on Mullen expressive and receptive language T-scores as in 136 
previous studies (see Methods) (8, 14).  137 

 138 
One of the most robust findings on early structural brain development in ASD is the on-139 

average effect of early brain overgrowth in the first years of life (6, 40–42). Thus, we started by 140 
examining whether there are subtype differences on global measures such as total cortical volume 141 
(CV), SA and mean CT. Statistical models controlling for age and sex identified a group effect for 142 
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total CV and total SA, but no effect of group for mean CT (Table S2). The group effects for CV 143 
and SA were explained by enlargements in ASD Poor versus TD (Fig. 1). Upon examining regional 144 
level SA or CT effects while adjusting for global differences, we find no evidence of SA or CT 145 
group differences for any region within the GCLUST parcellation (Table S3). These results 146 
generally indicate that ASD Poor explains the on-average effect of early brain overgrowth in ASD. 147 
These effects are restricted to CV and SA and are not apparent in regional measures after global 148 
differences are accounted. 149 
 150 
Normative associations between gene expression and surface area or cortical thickness are 151 
preserved in TD and ASD Good, but are absent in ASD Poor language subtypes 152 
  153 
 To identify large-scale associations between gene expression and regional SA or CT we 154 
used weighted gene co-expression network analysis (WGCNA) to reduce expression data of 155 
14,426 genes highly expressed in blood leukocytes to 21 co-expression modules (Table S4). Co-156 
expression modules were summarized by the module eigengene and were input into a partial least 157 
squares (PLS) analysis to test for large-scale multivariate associations with SA or CT phenotypes 158 
from the GCLUST parcellation, which is sensitive to genomic effects on SA and CT A-P and D-159 
V gradients  (19, 20). This analysis allowed us to identify statistically significant multivariate 160 
relationships between gene co-expression modules and SA or CT and then allowed for examination 161 
of how the relationship manifests across brain regions and co-expression modules, and also how 162 
these relationships manifest in each group (see Methods for more details).  163 
 164 

For SA, PLS identified one statistically significant latent variable (LV) pair (SA LV1: d = 165 
3.99, p = 0.0001, split-half pucorr = 0.01, pvcorr = 0.06), which explains 36% of the covariance 166 
between SA and gene expression. A highly similar result was obtained with a PLS on vertex-wise 167 
data (Fig. S1). However, a PLS model using vertex-wise data explained far less percentage of 168 
covariance than the GCLUST parcellated PLS model (Fig. S2). This indicates that the PLS model 169 
on GCLUST parcellated features is more sensitive for highlighting associations between gene 170 
expression and SA. To decompose how this multivariate relationship manifests across co-171 
expression modules and groups, in Fig. 2A we show which co-expression modules have ‘non-172 
zero’ relationships in each group. These ‘non-zero modules’ are the co-expression modules of 173 
highest importance, as they have 95% confidence intervals (CIs) estimated by bootstrapping that 174 
do not include a correlation of 0 and are thus indicative of stable co-expression modules highly 175 
contributing to the SA LV1 relationship. In contrast, co-expression modules that we dub as ‘zero 176 
modules’ are those whereby the 95% CIs include a correlation of 0 and thus do not reliably 177 
contribute to the overall SA LV1 relationship.  178 
 179 

Non-zero modules for SA LV1 account for a good majority of all genes analyzed (68%) 180 
and were highly enriched for broadly expressed genes (enrichment odds ratio (OR) =3.48, p = 181 
1.90e-71; Table S5). These two observations are compatible with predictions from the omnigenic 182 
theory of complex traits, in which variance in complex traits like ASD are exerted en-masse by a 183 
large majority of genes that impact the primary tissue of relevance and by genes that are broadly 184 
expressed across many organs and tissues, but which also have impact on the brain (15). These 185 
effects are also in line with similar results observed for large-scale gene expression associations 186 
with functional imaging phenotypes in ASD early language outcome subtypes (14).  187 

 188 
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Fig. 2A also shows that non-zero modules are highly similar for ASD Good and TD groups, 189 
whereas hardly any non-zero modules are present for ASD Poor. This similarity between ASD 190 
Good and TD can be quantified as a significant positive correlation in the PLS correlations values 191 
for these groups (Fig. 2C) (r = 0.55, p = 0.008). This result indicates that the SA LV1 relationship 192 
manifests similarly in TD and ASD Good groups. In contrast, there is a lack of correlation between 193 
ASD Poor and the other groups (ASD Poor-ASD Good: r = 0.27, p = 0.23; ASD Poor-TD: r = -194 
0.41, p = 0.06) (Fig. 2C). Therefore, SA LV1 can be described as a large-scale SA-gene expression 195 
relationship that likely reflects a normative phenomenon present in TD and which is also preserved 196 
in the ASD Good subtype. However, this normative SA-gene expression relationship is absent in 197 
the ASD Poor subtype.  198 
 199 

PLS analysis applied to GCLUST CT data isolated 2 statistically significant LV pairs (CT 200 
LV1: d = 4.30, p = 0.0001, split-half pucorr = 0.04, pvcorr = 0.01; CT LV2: d = 3.09, p = 0.0001, 201 
split-half pucorr = 0.02, pvcorr = 0.05), explaining 37% and 19% of the covariance between CT and 202 
gene expression respectively. PLS analysis on vertex-wise data produced similar results (Fig. S1), 203 
but again was not as good as the PLS on GCLUST parcellated features, as indicated by percentage 204 
of covariance explained (Fig. S2). Similar to SA LV1, non-zero modules for CT LV1 comprise a 205 
large majority of all genes examined (65%), are enriched for broadly expressed genes (OR= 2.96, 206 
p = 4.43e-43; Table S5), and thus is compatible with predictions about omnigenic effects exerted 207 
by broadly expressed genes. The relationships are also highly similar for ASD Good and TD, but 208 
not ASD Poor (Fig. 2D, F), which indicates that CT LV1 mostly pertains to a normative 209 
relationship preserved across TD and ASD Good, but which is absent in ASD Poor.  210 

 211 
Atypical association between gene expression and cortical thickness, specific to ASD Poor 212 
language subtype 213 

 214 
In contrast to CT LV1, the non-zero modules for CT LV2 are almost exclusively relevant 215 

for the ASD Poor subtype, comprise about 48% of all genes examined, do not show specific 216 
enrichment for broadly expressed genes (Table S5), and do not show strong correlations between 217 
groups (Fig. 3A-B). These results indicate that CT LV2 captures a relationship that is specific to 218 
ASD Poor. Furthermore, because PLS LVs are orthogonal to each other, CT LV2 is an independent 219 
relationship capturing effects that appear primarily in the ASD Poor subtype. While CT LV2’s 220 
non-zero modules appear to be somewhat overlapping to CT LV1, the way these modules can 221 
affect CT are sometimes opposite to the directionality shown for CT LV1. For example, superior 222 
parietal cortex in CT LV1 has negative BSR values (Fig. 2E), while in CT LV2, the BSR values 223 
are strong and positive (Fig. 3C). This reversal in BSR values indicates different directionality of 224 
the gene expression-CT relationship. In other brain regions such as language-sensitive left 225 
hemisphere perisylvian, middle temporal, and inferior parietal cortex, CT LV1 shows brain 226 
bootstrap ratios (BSRs) that are close to 0 in CT LV1 (Fig. 2E) indicating little to no importance 227 
of these regions for LV1. However, the BSRs in CT LV2 for these regions are very strong (either 228 
blue or red colored BSRs in Fig. 3C), indicating that these regions are of strong importance for the 229 
CT LV2 relationship. These observations further indicate how CT LV2 captures a specific and 230 
independent type of genomic association with CT that is present primarily in ASD Poor.   231 
 232 
Anterior-posterior and dorsal-ventral gradient patterning of surface area and cortical thickness 233 
are atypical in the ASD Poor language subtype 234 
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 235 
We next investigated how large-scale genomic variability patterns SA and CT cortical 236 

phenotypes. The patterning of PLS BSR values (Fig. 4A) can be used to answer this question. 237 
Brain BSRs can be interpreted as pseudo Z-statistics computed for each brain region and indicate 238 
the importance of each brain region for the LV in question and also indicating the directionality 239 
through which gene expression is associated with SA and CT. It is visually evident from Fig. 4A 240 
that BSR patterning is not uniform across cortical regions and varies considerably along A-P and 241 
D-V axes. With a 2-cluster solution previously identified by Chen and colleagues (19, 20) to be 242 
the genetically parcellated A-P and D-V axes of SA and CT (Fig. 4B), we confirm that BSRs 243 
highly differ along these A-P and D-V clusters (Fig. 4D). This indicates that the relationship 244 
between gene expression and SA or CT at one pole of the A-P or D-V axes is different relative to 245 
the other pole.  246 

 247 
Perhaps even more striking than these differences between binary A-P and D-V partitions 248 

is that BSRs also covary along continuous A-P and D-V genetic similarity gradients. After ordering 249 
regions by genetic similarity gradients discovered by Chen and colleagues (19, 20) (Fig. 4C) we 250 
find that BSRs are highly correlated with the ordering along this axis of genetic similarity between 251 
regions (Fig. 4E). This indicates that large-scale blood leukocyte gene co-expression relationships 252 
with SA and CT reveal how the cortex is genomically patterned to promote the development of 253 
cortical regionalization and areal identity (18). Because SA LV1 and CT LV1 are normative effects 254 
primarily relevant for TD and ASD Good, but not ASD Poor, these results indicate that normative 255 
genomic patterning of the cortex does not occur in the ASD Poor subtype. Conversely, CT in ASD 256 
Poor subtype may be patterned in a different way given that CT LV2 was primarily relevant to this 257 
subtype and given that the BSR patterning is reversed for CT LV2 compared to CT LV1 (Fig. 3E 258 
and G versus Fig. 3F and H). Given evidence of focal laminar patches throughout the cortex in 259 
ASD (43), it will be important for future work to investigate further how such phenomena may be 260 
relevant to atypical CT patterning, particularly in the ASD Poor subtype. 261 

 262 
The use of the GCLUST parcellation does not appear to bias the emergence of these A-P, 263 

D-V, or genetic similarity gradients. In a vertex-wise PLS we find that the patterning of brain BSRs 264 
follow the same types of gradients for SA LV1, CT LV1, and CT LV2 (Fig. S3). Unlike the 265 
genomic patterning effects, we also found that patterning of the group differences in effect size for 266 
CT and SA do not follow similar A-P and D-V gradients (Fig. S4). This result suggests that these 267 
cortical patterning effects are not simply effects that can be seen as on-average group differences 268 
in SA or CT, or biases due to the parcellation scheme, and point more towards the specific 269 
importance of how the underlying genomic mechanisms act to pattern SA and CT across the cortex.  270 
 271 
Genes involved in gradient patterning of surface area and cortical thickness follow similar 272 
gradients of gene expression during prenatal development 273 
 274 

Because cortical regionalization begins in early prenatal periods from A-P and D-V 275 
gradient patterning of gene expression (18, 22, 24, 27), we next assessed whether genes from SA 276 
and CT non-zero modules encompass many of the same genes that play important prenatal roles 277 
in the genomic gradient patterning of the cortex. Using the prenatal RNA-seq data from the 278 
Development PsychENCODE dataset, we used sparse PCA (44) to identify A-P (PC1) and D-V 279 
(PC2) gene expression gradients and the most important genes contributing to those gradients from 280 
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12 regions of prenatal cortical tissue sampled from 12-24 weeks post-conception (e.g., 281 
midgestation) (Fig. 5A-C). Remarkably, SA LV1 and CT LV1 non-zero modules are highly 282 
enriched for genes that comprise the prenatal A-P and D-V gradients (Fig. 5D). Enrichments were 283 
also seen for CT LV2, but unlike SA LV1 and CT LV1, the enrichments were apparent for both 284 
zero and non-zero modules (Fig. 5D). These results suggest that the genes responsible for the 285 
normative SA LV1 and CT LV1 relationships are also genes in prenatal periods that act to initialize 286 
the regionalization and patterning of cortex along A-P and D-V axes. Since SA LV1 and CT LV1 287 
relationships are largely absent in the ASD Poor subtype, this result suggests that the atypical 288 
genomic patterning of SA and CT in this subtype could stem from perturbations in earlier prenatal 289 
development. 290 
 291 
Genes expressed in prenatal progenitor cell types explain surface area associations, while genes 292 
expressed in later differentiated excitatory neurons explain cortical thickness associations  293 
 294 

The evidence that SA and CT non-zero modules are enriched for genes that are important 295 
for midgestational A-P and D-V expression gradients leaves open the question of what prenatal 296 
cell types might explain such effects. The radial unit hypothesis (22) suggests that symmetric cell 297 
division in progenitor cell types (e.g., radial glia) in the ventricular zone leads to a substantial 298 
proliferation of radial units that then each become their own cortical columns and thus, leads to 299 
substantial expansion of SA. Variation in this proliferative process in different parts of the 300 
ventricular zone protomap regulates regional differences in SA (18, 22, 45). Therefore, progenitor 301 
cells are the primary cell types expected to explain SA effects. Programmed cell death could also 302 
be another mechanism regulating SA (18) and could implicate microglia involvement in SA. In 303 
contrast, CT is likely regulated by asymmetric cell division leading to more neurons within 304 
particular cortical columns (22) as well as intermediate progenitor cell types (18). CT is also 305 
heavily influenced by dendritic arborization (39). While arborization changes over development 306 
due to a variety of factors such as experience-dependent pruning, CT and the trajectory it follows 307 
over development is also known to be heavily influenced by genetic factors even in middle-aged 308 
adults, suggesting that individual differences in CT have a genetic and neurodevelopmental origin 309 
(21, 46). These ideas would support the prediction that relatively later differentiated cell types 310 
(compared to progenitor cells), such as excitatory neurons, could explain CT effects. 311 

 312 
Given that cell type markers from midgestational periods are available (47), we next asked 313 

if specific prenatal cell type markers are enriched for genes from SA and CT non-zero modules. 314 
In striking agreement with the prediction that progenitor cells explain SA effects (18, 22), we find 315 
that SA LV1 non-zero modules show enrichments for all progenitor cells types - ventricular and 316 
outer radial glia (vRG, oRG), cycling progenitors in S and G2M phases of cell cycle (PgS, 317 
PgG2M), and intermediate progenitors (IP). Several non-neuronal cells also show SA LV1 318 
enrichments, including oligodendrocyte precursors (OPC), endothelial cells (End), and microglia 319 
(Mic) (Fig. 5E; Table S6). In contrast to these cell type enrichments, there is little evidence of 320 
enrichment of genes specific to later differentiated excitatory (ExM, ExN, ExM-U, ExDp1, 321 
ExDp2) and inhibitory (InCGE, InMGE) neurons.  322 

 323 
For CT LV1 and LV2 we identify enrichments for vRG and  IP progenitor cell types that 324 

are compatible with hypothesized effects of IP cells on CT (18). However, CT LV1 and LV2 325 
primarily show a different cell type enrichment profile from SA LV1, through the marked presence 326 
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of enrichments with several types of excitatory neurons (Fig. 5F-G; Table S6). This result indicates 327 
a striking contrast between the SA LV1 enrichment profile of primarily progenitor cell types and 328 
are compatible with the radial unit and protomap hypotheses (22), differential SA and CT GWAS 329 
enrichments (21), and other viewpoints regarding contributors to CT (39). These results also 330 
highlight effects of non-neuronal cell types such as microglia cells. Microglia enrichments are 331 
present and particularly strong for SA LV1 and CT LV1 non-zero modules. This effect may have 332 
implications for programmed cell death and pruning explanations (48) and which may be relevant 333 
to ideas behind ASD-relevant broadly expressed genes and their particularly strong effects on non-334 
neuronal cell types such as microglia (17). 335 
 336 
Non-zero modules are enriched for genes involved in vocal learning 337 

 338 
The results so far suggest that SA and CT non-zero modules are highly prenatally relevant 339 

for establishing cortical patterning and regionalization and implicate several cell types that may be 340 
of mechanistic importance to different ASD early language outcome subtypes. However, are the 341 
SA and CT non-zero modules also functionally relevant for processes that are essential for 342 
language development? Our prior work showed that PLS non-zero modules associated with 343 
speech-related fMRI response (14) were highly enriched for differentially expressed genes in Area 344 
X from a songbird model of vocal learning (49). To test if similar enrichments held up for SA and 345 
CT non-zero modules we ran enrichment tests with vocal learning DE genes from Hilliard and 346 
colleagues (49). Remarkably, we find similar types of enrichments between DE songbird vocal 347 
learning genes and PLS non-zero modules in SA LV1 (OR = 2.02, p = 1.05e-4) and CT LV1 (OR 348 
= 1.90, p = 9.61e-4), but not zero modules (p >0.08) (Fig. 6A-C; Table S6). For CT LV2, 349 
enrichments were present at FDR q<0.05 (but not FDR q<0.01) for both non-zero (OR = 1.62, p = 350 
0.006) and zero modules (OR = 1.61, p = 0.017). These effects suggest that many genes responsible 351 
for vocal learning in songbirds are conserved and highly represented specifically within SA and 352 
CT non-zero modules that are relevant for groups with relatively intact language (e.g., TD and 353 
ASD Good). 354 

 355 
Genes within surface area non-zero modules are specifically enriched in human-specific genes 356 
 357 

Language is a uniquely human ability and there is some evidence that genes implicated in 358 
human-specific evolution are also relevant for autism (50–53). In prior work we found that PLS 359 
non-zero modules associated with speech-related fMRI response (14) were enriched for 360 
differentially expressed genes in the cortex of humans versus non-human primates (i.e. ‘human-361 
specific’ genes). Given that cortical SA is a phenotype that is dramatically expanded in human 362 
evolution, and much more so than CT, we investigated the hypothesis of whether SA non-zero 363 
modules would be specifically enriched for human-specific genes. Using 3 lists of human 364 
differentially expressed genes in prenatal, early postnatal, and adulthood periods (52), we find that 365 
SA LV1 non-zero modules are specifically enriched for prenatal and adulthood human-specific 366 
genes (prenatal OR = 1.86, p = 1.93e-3; adulthood OR = 1.97, p = 1.02e-5) (Fig. 6D; Table S6). 367 
In contrast, no such enrichments are found with genes relevant to CT LV1 or LV2 (Fig. 6E-F). In 368 
addition to differentially expressed genes we also examined genes that are targets of human-369 
accelerated regions (HAR) or human-gained (HGE) or lossed enhancer (HLE) regions (53). 370 
However, no enrichments for SA or CT were identified for HAR, HGE and HLE genes (Fig. 6D-371 
F). These results expand on the notion that human-specific genes are of relevance to ASD by 372 
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showing that the normative genomic mechanisms associated with SA are also genes of importance 373 
for human-specific evolution. Given that the SA LV1 relationship is absent in ASD Poor, this 374 
suggests that the loss of such normative associations may allow for early SA expansion and 375 
possibly early brain overgrowth for ASD Poor.  376 
 377 
Non-zero modules are enriched for ASD-associated genes that affect prenatal development 378 
 379 
 Next, we asked whether SA and CT non-zero modules were relevant for known autism-380 
associated genomic mechanisms. SA LV1 and CT LV1 non-zero or zero modules are not enriched 381 
for rare de novo protein truncating variants (54) or other genes that are annotated as autism-382 
associated in SFARI Gene (55). However, CT LV2 non-zero modules were enriched for SFARI 383 
ASD genes (Table S6). Thus, at the level of ASD-risk gene mutations, CT LV2 was the only 384 
feature showing enrichments with non-zero modules. This could be compatible with the nature of 385 
CT LV2 being mostly specific to the ASD Poor subtype. 386 
 387 

At the level of genes with evidence of ASD-dysregulated expression from post-mortem 388 
cortical tissue, we find that both CT LV1 and LV2 non-zero modules were enriched for ASD 389 
upregulated genes (56). In contrast, genes from cortically downregulated co-expression modules 390 
(33) were highly enriched with genes from SA LV1 non-zero modules (Table S6). This result 391 
shows an interesting contrast between CT and genes that show upregulated expression versus SA 392 
and genes that show downregulated expression in ASD.  393 

 394 
Non-zero modules from SA LV1, CT LV1, and CT LV2 are also enriched for co-395 

expression modules that are highly transcriptionally active during prenatal periods and which 396 
contain many high-penetrance ASD-related mutations (Fig. 7A-C; Table S6). This is compatible 397 
with the idea that broadly expressed genes can interact and impact key ASD-risk genes, 398 
particularly in prenatal periods (16, 17). Downstream targets of highly penetrant genes like FMR1 399 
and CHD8 were also enriched in non-zero modules from SA LV1, CT LV1, and CT LV2. 400 
However, not all of these enrichments are specific to autism-associated genes. Genes differentially 401 
expressed in schizophrenia (56) were also significantly enriched in non-zero modules across SA 402 
LV1, CT LV1, and CT LV2.   403 

 404 
Finally, we examined enrichments with cell type specific differentially expressed genes in 405 

autism (57). Here we found that only SA LV1 non-zero modules are enriched for differentially 406 
expressed genes in microglia cells (Fig. 7D). No other comparisons for DE cell types were 407 
statistically significant. See Fig. 7 and Table S6 for a summary of autism-associated enrichments. 408 
The fact that non-zero modules are devoid of enrichments in most DE genes from specific cell 409 
types is compatible with the notion that these genes are of primary relevance for early prenatal 410 
periods and will not be a highly discoverable DE signal in post-mortem ASD tissue. 411 
 412 
 To aid future work examining specific genes of interest, we focused on identifying high-413 
confidence ASD-risk genes (annotated as the ‘high-confidence’ category 1 list in SFARI Gene) 414 
that are also SA-and prenatally-relevant progenitor and A-P patterning genes (i.e. the intersection 415 
of SFARI ASD, SA non-zero modules, PC1 A-P genes, prenatal progenitor cell types, and ASD 416 
prenatal co-expression modules). SON and BAZ2B were identified and these genes play roles in 417 
splicing, cell cycle, transcriptional regulation, and chromatin remodeling. For CT LV1 genes, we 418 
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next searched for high-confidence ASD-risk genes that were also prenatally-relevant excitatory 419 
and D-V patterning genes (i.e. the intersection of SFARI ASD, CT LV1 non-zero modules, PC2 420 
D-V genes, prenatal excitatory cell types, and ASD prenatal co-expression modules). Here we find 421 
ASD ‘high-confidence’ genes of ATRX, AUTS2, and BCL11A. In a similar search within CT LV2 422 
non-zero modules of prenatal relevance to excitatory neurons and D-V patterning, we identified  423 
ATRX, AUTS2, BCL11A, CACNA1E, and MEIS2 as high-confidence ASD-risk genes. A common 424 
theme of all these CT-relevant genes is their role in chromatin modification and remodeling (with 425 
the exception of CACNA1E) and their links to syndromes causing intellectual disability. 426 
Additionally, with the exceptions of BCL11A and CACNA1E, all SA- and CT-relevant high-427 
confidence genes listed here fall into the broadly expressed gene list, highlighting the importance 428 
of these high-impact genes in ASD biology (16).  429 
 430 
 431 
Discussion 432 
 433 

These findings represent a significant enhancement to the mechanistic and clinical 434 
precision of our understanding of the prenatal brain basis behind different types of ASD. The 435 
evidence here solidifies the idea that the ASD Poor subtype is biologically distinct (8, 14) by 436 
revealing how large-scale functional prenatal genomic signal is differentially associated with 437 
structural cortical phenotypes such as CT and SA.  438 

 439 
Going beyond the idea of whether these subtypes are biologically distinct, we also need an 440 

explanation for how diverse genetic mechanisms affecting ASD individuals may converge onto a 441 
common atypical downstream biological process and to understand when this process manifests 442 
as different during development. The current work gives the first insights into how to answer this 443 
question for the critical ASD Poor subtype. The prenatal genomic patterning of the cerebral cortex 444 
is the key explanation behind how diverse genetic mechanisms impacts brain development for the 445 
ASD Poor subtype. Normative genomic patterning gradients emerge in the first and second 446 
trimesters of prenatal development along A-P and D-V axes and allow cortical areas to develop 447 
distinct cellular, functional and circuit-level identities (18, 22–27). Prenatal cortical arealization 448 
processes are critical for circuit-formation, maturation of distinct types of neurophysiological 449 
response, and the development of regional and network-level functional specialization that occurs 450 
with postnatal experience (18, 58). These processes are explained by genetic variation and manifest 451 
after birth as patterned effects in CT and SA phenotypes measured with structural MRI data (19, 452 
20). This normative prenatal genomic cortical patterning effect is absent in the ASD Poor subtype. 453 
In addition to the lack of normative genomic cortical patterning of SA and CT, CT in ASD Poor 454 
is patterned in a unique manner (e.g., CT LV2) and potentially indicative of a separate route 455 
through which genomic pathology affects CT and penetrates up through to the poor language 456 
clinical phenotype. 457 

 458 
There are some caveats and limitations that are necessary to address in order to interpret 459 

the present findings. First, the sample size of this study is moderate to above average for what is 460 
typical in most toddlerhood brain imaging and gene expression studies (59, 60) and this is the first 461 
to relate MRI phenotypes such as SA and CT in toddlerhood to large-scale gene expression 462 
activity. Thus, future work replicating these findings with larger samples is needed. Within the 463 
context of gene expression studies of brain tissue, sample sizes are typically much smaller than the 464 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2020.08.18.253443doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.253443
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

12 

current work and deal with RNA quality that is much lower than what is typical in studies using 465 
blood samples. Additionally, postmortem brain tissue studies typically have much larger age 466 
ranges spanning toddlerhood to adulthood, suggesting that there is much larger age-related 467 
heterogeneity in studies of brain tissue compared to blood. Thus, a relative strength of the current 468 
work compared to postmortem brain tissue studies is the restricted age range to the early toddler 469 
years, which helps enhance sensitivity for very early developmental effects. Combining these two 470 
caveats with the rare ability to make stratifications, the current study is ahead of the norms typical 471 
for the context of gene expression studies in ASD patients. Second, it is notable that we did not 472 
compare ASD Poor to a non-ASD comparison group with language and/or developmental delay 473 
(LD/DD). In prior work, we have shown how the developmental clinical trajectories for a non-474 
ASD LD/DD group are in fact different from the ASD Poor group, suggesting that ASD Poor is 475 
developmentally and behaviorally distinguished from LD/DD (8). We also showed in prior work 476 
that speech-related fMRI response in ASD Poor was distinctly different from a non-ASD LD/DD 477 
comparison group (8), which again supports the idea that ASD Poor is not simply just a reflection 478 
of LD or DD. In the current study we did not possess enough concurrent blood samples and MRI 479 
data from enough LD/DD subjects for a sufficient comparison group. Future work should attempt 480 
to collect this data as a further comparison to ASD Poor to better understand if the atypical genomic 481 
cortical patterning effects are indeed specific to ASD Poor. Third, it is important to clarify that 482 
while there is some utility in using blood gene expression to relate to neurodevelopmental 483 
mechanisms in autism, there are limitations in how far it can go in highlighting mechanisms that 484 
can only be identified in brain tissue. For example, brain-specific genes cannot be adequately 485 
assessed in blood and thus, the findings here do not represent the contributions of such important 486 
genomic mechanisms and how they might affect neural phenotypes like cortical patterning. 487 
Furthermore, using blood will not be able to capture tissue-specific effects regarding different 488 
isoforms, splicing, and/or epigenetic mechanisms. Despite these limitations, complex traits are 489 
theorized to be largely underpinned by omnigenic effects and include genes that are broadly 490 
expressed across several tissues other than the tissue of relevance (15). Applied to autism, it is 491 
known that the genomic landscape of autism includes many genes that are broadly expressed 492 
across many tissues and have strong regulatory impact (16). Given the inaccessibility of brain 493 
tissue in living patients, blood may be a key in-vivo window into how some of these types of 494 
broadly expressed and regulatory genomic mechanisms affect complex cortical phenotypes in an 495 
omnigenic fashion (14).  496 

 497 
In conclusion, in the face of large heterogeneity in the ASD population, the current work 498 

indicates that individuals with poor versus good early language outcome are explained by distinct 499 
genomic mechanisms that cascade to shape cortical phenotypes and later clinical outcomes. A 500 
common downstream impact of the diverse genomic mechanisms discovered in this work is the 501 
emergent effect of atypical genomic patterning of the cerebral cortex in the ASD Poor subtype. 502 
This atypical genomic cortical patterning effect points to early prenatal periods and the importance 503 
of an omnigenic signal driven by broadly expressed genes. The functional consequences of 504 
atypical genomic patterning of the cortex may be the curtailed development of molecular cortical 505 
arealization processes that prohibit canonical circuit-formation and later regional functional 506 
specialization that is likely necessary for facilitating better outcomes in such individuals.  507 
  508 
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Materials and Methods 509 
 510 
Participants 511 
 512 

This study was approved by the Institutional Review Board at University of California, San 513 
Diego. Parents provided written informed consent according to the Declaration of Helsinki and 514 
were paid for their participation. Identical to the approach used in our earlier studies (8, 14, 36, 515 
61–66) toddlers were recruited through two mechanisms: community referrals (e.g., website) or a 516 
general population-based screening method called Get SET Early (67) that allowed for the 517 
prospective study of ASD beginning at 12 months based on a toddler’s failure of the CSBS-DP 518 
Infant-Toddler Checklist (68, 69). All toddlers were tracked from an intake assessment around 12 519 
months and followed roughly every 12 months until 3–4 years of age. All toddlers, including 520 
normal control subjects, participated in a series of tests collected longitudinally across all visits, 521 
including the Autism Diagnostic Observation Schedule (ADOS; Module T, 1, or 2) (70), the 522 
Mullen Scales of Early Learning (71), and the Vineland Adaptive Behavior Scales (72). All testing 523 
occurred at the University of California, San Diego Autism Center of Excellence (ACE).  524 

 525 
Stratification of ASD Poor versus ASD Good was made on the basis of Mullen EL and RL 526 

T-scores. An ASD toddler was classified as ASD Poor if both Mullen EL and RL T-scores at the 527 
final outcome assessment was below 1 standard deviation of the T-score norm of 50 (i.e. T<40). 528 
ASD Good labels were made if the toddler had either Mullen EL or RL T-scores within 1 standard 529 
deviation or above the normative T-score of 50 (i.e. T ≥ 40). A total of n=123 toddlers had T1 530 
structural MRI and gene expression data available. From these 123 toddlers, n=76 ASD individuals 531 
were examined and were split into the 2 language outcome subtypes - ASD Poor n=38 (32 male, 532 
6 female; mean age at MRI scan = 29.01 months, SD at MRI scan = 7.22, range = 12-50 months), 533 
ASD Good n=38 (28 male, 10 female; mean age at MRI scan = 29.02 months, SD at MRI scan = 534 
9.55, range = 14-46 months) and TD n=47 (25 male, 22 female; mean age at MRI scan = 25.91 535 
months, SD at MRI scan = 10.44, range = 13-46 months). ASD subtypes and TD did not 536 
statistically differ in age at the time of scanning (F(2,120) = 1.62, p = 0.20). For more demographic 537 
and phenotypic information, please see Table S1. 538 

 539 
Blood sample collection, leukocyte capture, RNA extraction, quality control, and samples 540 
preparation 541 
 542 

Four to six milliliters of blood was collected into EDTA-coated tubes from toddlers on 543 
visits when they had no fever, cold, flu, infections or other illnesses, or use of medications for 544 
illnesses 72 hours prior blood draw. Blood samples were passed over a LeukoLOCKTM filter 545 
(Ambion, Austin, TX, USA) to capture and stabilize leukocytes and immediately placed in a -20°C 546 
freezer. Given the role of the immune system in autism (73, 74) as well as interactions between 547 
the brain and the immune system (75), immune cells in blood like leukocytes were specifically 548 
examined. This choice also allows for constraint on the cell types for which RNA might arise from 549 
in blood, since whole blood is a bulk sample and RNA could potentially come from many different 550 
cell types (e.g., leukocytes, platelets). Total RNA was extracted following standard procedures and 551 
manufacturer’s instructions (Ambion, Austin, TX, USA). LeukoLOCK disks (Ambion Cat #1933) 552 
were freed from RNA-later and Tri-reagent (Ambion Cat #9738) was used to flush out the captured 553 
lymphocyte and lyse the cells. RNA was subsequently precipitated with ethanol and purified 554 
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though washing and cartridge-based steps. The quality of mRNA samples was quantified by the 555 
RNA Integrity Number (RIN), values of 7.0 or greater were considered acceptable (76), and all 556 
processed RNA samples passed RIN quality control. Quantification of RNA was performed using 557 
Nanodrop (Thermo Scientific, Wilmington, DE, USA). Samples were prepped in 96-well plates at 558 
the concentration of 25 ng/µl. 559 

 560 
Gene expression and data processing 561 
 562 

RNA was assayed at Scripps Genomic Medicine (La Jolla, CA, USA) for labeling, 563 
hybridization, and scanning using the Illumina BeadChips pipeline (Illumina, San Diego, CA, 564 
USA) per the manufacturer’s instruction. All arrays were scanned with the Illumina BeadArray 565 
Reader and read into Illumina GenomeStudio software (version 1.1.1). Raw data was exported 566 
from Illumina GenomeStudio, and data pre-processing was performed using the lumi package (77) 567 
for R (http://www.R-project.org) and Bioconductor (https://www.bioconductor.org) (78). Raw and 568 
normalized data are part of larger sets deposited in the Gene Expression Omnibus database 569 
(GSE42133; GSE111175). 570 

 571 
A larger primary dataset of blood leukocyte gene expression was available from 383 572 

samples from 314 toddlers with the age range of 1-to-4 years old. The samples were assayed using 573 
the Illumina microarray platform on three batches. The datasets were combined by matching the 574 
Illumina Probe ID and probe nucleotide sequences. The final set included a total of 20,194 gene 575 
probes. Quality control analysis was performed to identify and remove 23 outlier samples from 576 
the dataset. Samples were marked as outlier if they showed low signal intensity (average signal 577 
two standard deviations lower than the overall mean), deviant pairwise correlations, deviant 578 
cumulative distributions, deviant multi-dimensional scaling plots, or poor hierarchical clustering, 579 
as described elsewhere (62). The high-quality dataset included 360 samples from 299 toddlers. 580 
High reproducibility was observed across technical replicates (mean Spearman correlation of 0.97 581 
and median of 0.98). Thus, we randomly removed one of each of two technical replicates from the 582 
primary dataset. From the subjects in the larger primary dataset, n=123 also had MRI data and thus 583 
a total of n=105 from the Illumina HT12 platform along with n=18 from the Illumina WG6 584 
platform were used in this study. Batch was not asymmetrically distributed across one subgroup 585 
more than another, as chi-square analyses on the contingency table between subgroup and batch 586 
show no effect (χ2(4) = 0.84, p = 0.93). ASD subtypes and TD toddlers also did not statistically 587 
differ in age at the time of blood sampling (F(2,120) = 1.27, p = 0.28). The 20,194 probes were 588 
then collapsed to 14,426 genes based on picking the probe with maximal mean expression across 589 
samples. Data were quantile normalized and then adjusted for batch effects, sex, and RIN. This 590 
batch, sex, and RIN adjusted data were utilized in all further downstream analyses. We also 591 
checked for differences in proportion estimates of different leukocyte cell types (i.e. neutrophils, 592 
B cells, T cells, NK cells, and monocytes) using the CellCODE deconvolution method (79), but 593 
found no evidence of differences across groups for any cell type (see Table S7).  594 

 595 
Weighted Gene Co-Expression Network Analysis 596 
 597 

We reduced the number of features in the gene expression dataset from 14,426 genes down 598 
to 21 modules of tightly co-expressed genes. This data reduction step was achieved using weighted 599 
gene co-expression network analysis (WGCNA), implemented within the WGCNA library in R 600 
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(80). Correlation matrices estimated with the robust correlation measure of biweight 601 
midcorrelation were computed and then converted into adjacency matrices that retain the sign of 602 
the correlation. These adjacency matrices were then raised to a soft power of 16 (Fig. S5). This 603 
soft power was chosen by finding the first soft power where a measure of R2 scale-free topology 604 
model fit saturates. The soft power thresholded adjacency matrix was then converted into a 605 
topological overlap matrix (TOM) and then a TOM dissimilarity matrix (e.g., 1-TOM). The TOM 606 
dissimilarity matrix was then input into agglomerative hierarchical clustering using the average 607 
linkage method. Gene modules were defined from the resulting clustering tree, and branches were 608 
cut using a hybrid dynamic tree cutting algorithm (deepSplit parameter = 4) (Fig. S5). Modules 609 
were merged at a cut height of 0.2, and the minimum module size was set to 100. Only genes with 610 
a module membership of r > 0.2 were retained within modules. For each gene module, a summary 611 
measure called the module eigengene (ME) was computed as the first principal component of the 612 
scaled (standardized) module expression profiles. We also computed module membership for each 613 
gene and module. Module membership indicates the correlation between each gene and the module 614 
eigengene (see Table S4). Genes that could not be clustered into any specific module are left within 615 
the M0 module, and this module was not considered in any further analyses. Further WGCNA 616 
analyses were run separately within each group in order to check for preservation of detected 617 
modules across groups at a soft power threshold of 16. These analyses all indicated high levels of 618 
preservation (Zsummary>10) (81) for all detected modules for each pairwise group comparison 619 
(Fig. S6). 620 

 621 
MRI Data Acquisition and Analyses 622 

 623 
Imaging data were collected on a 1.5 Tesla General Electric MRI scanner during natural 624 

sleep at night; no sedation was used. Structural MRI data was collected with a T1-weighted IR-625 
FSPGR sagittal protocol (TE = 2.8 ms, TR = 6.5 ms, flip angle = 12 degrees, bandwidth = 31.25 626 
kHz, FOV = 24 cm, slice thickness = 1.2 mm). Cortical surface reconstruction was performed 627 
using FreeSurfer v5.3 (http://surfer.nmr.mgh.harvard.edu/) (82–84), which uses routinely acquired 628 
T1-weighted MRI volumes (85), includes tools for estimation of brain morphometry measures such 629 
as cortical thickness and surface area (86, 87), and enables inter-subject alignment via nonlinear, 630 
surface-based registration to an average brain, driven by cortical folding patterns (88). FreeSurfer 631 
has been validated for use in children (89) and used successfully in large pediatric studies (90, 91). 632 
Total cortical volume, surface area (SA) and mean cortical thickness (CT) were computed based 633 
on the Desikan-Killiany parcellation. Regional SA and CT values were computed from a 12-region 634 
parcellation reported by Chen and colleagues (19, 20) based on genetic similarity in monozygotic 635 
twins. This parcellation scheme, known as GCLUST, is highly relevant for our purposes here, 636 
since the parcellations are based on genetic patterning and has also been effectively utilized in 637 
developmental samples (46). Thus, GCLUST should help increase statistical power while also 638 
minimizing multiple comparisons. The GCLUST parcellation is also important as it can be used 639 
to leverage information about genetic similarity gradients (e.g., rank ordering of regions by fuzzy 640 
clustering) in further analyses. The 2-cluster anterior-posterior (A-P) or dorsal-ventral (D-V) 641 
partitions discovered by Chen and colleagues (19, 20) are also relevant in further analyses for A-642 
P and D-V gradient questions. For all 12 regions of the SA and CT GCLUST parcellation, global 643 
effects were controlled for by dividing SA values by the mean SA, and for CT we subtracted mean 644 
CT from each region, as was done in prior papers using this parcellation scheme (19, 20). 645 

 646 
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MRI-Gene Expression Association Analysis 647 
 648 

To assess multivariate MRI-gene expression relationships we used partial least squares 649 
(PLS) analysis (92, 93). PLS is widely used in the neuroimaging literature, particularly when 650 
explaining multivariate neural responses in terms of multivariate behavioral patterns of variation 651 
or a design matrix. Given that the current dataset is massively multivariate both in terms of MRI 652 
and gene expression datasets, we used PLS to elucidate how variation in SA or CT covaries with 653 
gene expression as measured by module eigengene values of co-expression modules. PLS allows 654 
for identifying such relationships by finding latent MRI-gene expression variable pairs (LV) that 655 
maximally explain covariation in the dataset and which are uncorrelated with other MRI-gene 656 
expression LV pairs. The strength of such covariation is denoted by the singular value (d) for each 657 
brain-gene expression LV, and hypothesis tests are made via using permutation tests on the 658 
singular values. Furthermore, identifying brain regions that most strongly contribute to each LV 659 
pair is achieved via bootstrapping, whereby a brain bootstrap ratio (BSR) is created for each region, 660 
and represents the reliability of that region for contributing strongly to the LV pattern identified. 661 
The brain BSR is roughly equivalent to a Z-statistic and can be used to threshold data to find voxels 662 
that reliably contribute to an LV pair. 663 

 664 
The PLS analyses reported here were implemented within the plsgui MATLAB toolbox 665 

(www.rotman-baycrest.on.ca/pls/). Here we ran 2 separate PLS analyses - one on SA and another 666 
on CT. Neuroimaging data entered into the PLS analyses come from the 12 region GCLUST 667 
parcellations for SA and CT. Because the TD group differed in the proportion and males versus 668 
females compared to the ASD groups, we used a linear model to remove the effect of sex from the 669 
SA and CT data. This SA and CT data with the sex effect removed was input into the PLS analysis. 670 
For gene expression data, we input module eigengene values for all 21 co-expression modules. For 671 
statistical inference on identified MRI-gene expression LV pairs, a permutation test was run with 672 
10,000 permutations. To identify reliably contributing regions for MRI-gene expression LVs and 673 
to compute 95% confidence intervals (CIs) on MRI-gene expression correlations, bootstrapping 674 
was used with 10,000 resamples. Gene co-expression modules whereby 95% CIs do not encompass 675 
0 are denoted as ‘non-zero’ association modules. All other modules where 95% CIs include 0 are 676 
denoted as ‘zero’ modules. Additionally, we ran 10,000 split-half resamples whereby the 677 
correlation between brain or gene expression saliences (Ucorr, Dcorr) were computed between the 678 
two split-halves. These correlations between split-half saliences were then compared to the null 679 
distribution from 10,000 permutations to compute p-values (pucorr, pdcorr), which statistically test 680 
the reliability of salience patterns in split-half resamples (94). 681 

 682 
From the PLS results we tested whether groups show similar correlation patterns across 683 

modules. To test this question, we computed Pearson correlations on the PLS correlation values 684 
for all pairwise group comparisons. Groups with similar PLS correlations will show statistically 685 
significant correlations. We also used the brain bootstrap ratios (BSR) from the PLS analysis to 686 
identify whether BSRs covary along the genetic similarity gradients and A-P and D-V partitions 687 
discovered by Chen and colleagues (19, 20). Pearson correlations were used to identify correlations 688 
with genetic similarity gradients, while independent-samples t-tests were used to compare A-P and 689 
D-V partitions. 690 

 691 
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All PLS analyses were computed on vertex-wise data as well as GCLUST parcellated data. 692 
This analysis used the same parameters (10,000 permutations, 10,000 bootstrap resamples) as the 693 
GCLUST analysis and was computed on the sex and mean SA or CT adjusted vertex-wise data. 694 
A-P and D-V distinctions were assessed on vertex-wise brain BSR data with violin-boxplots (Fig. 695 
S3) separated by A-P or D-V partitions. Genetic similarity gradient organization was assessed by 696 
first computing the median BSR for each GCLUST parcel and then computing the correlation 697 
between median BSR and the genetic similarity gradient rank ordering from GCLUST. Similarity 698 
in gene co-expression module PLS correlations between GCLUST and this vertex-wise analysis 699 
were also computed as Pearson correlations from the PLS correlation values for each module and 700 
group. Finally, to assess which model (GCLUST or vertex-wise) was a better model, we assessed 701 
which model had the highest percentage covariance explained. Comparison between GCLUST and 702 
vertex-wise PLS results can be seen in Fig. S1-S3.  703 
 704 
Gene Set Enrichment Analyses 705 
  706 
 We analyze enrichment between genes from PLS non-zero and zero modules and a host of 707 
other gene lists defined by a variety of criteria (see below for details). For these gene set enrichment 708 
analyses, we utilized custom R code written by MVL 709 
(https://github.com/mvlombardo/utils/blob/master/genelistOverlap.R) that computes 710 
hypergeometric p-values and enrichment odds ratios. The background pool for these enrichment 711 
tests was always set to 14,426. After all enrichment tests were computed, results are interpreted 712 
only if the enrichment was statistically significant after FDR correction for multiple comparisons 713 
at a threshold of FDR q<0.01. 714 

 715 
 Prenatal Gene Expression Gradients and Cell Types 716 
 717 

To assess gradients in prenatal gene expression we utilized RNA-seq data from the 718 
Development PsychENCODE dataset (http://development.psychencode.org) (24). The data 719 
utilized was already preprocessed as described by Li and colleagues (24) (e.g., normalized, batch 720 
effects removed) and summarized to RPKM. Sample data from all 12 available cortical regions 721 
from 12-22 weeks post-conception were utilized in order to capture the midgestational window of 722 
interest. Before running the analysis we removed low expressing genes with log2(RPKM) below 723 
2. The primary analysis to identify expression gradients was an adjustment-for-confounds 724 
principal components analysis (AC-PCA) (44) which allowed for adjustment due to repeat 725 
measurements from the same donor across sampled brain regions. Rank ordering of regions by A-726 
P and D-V axes were utilized to statistically confirm that PC1 and PC2 components follow A-P 727 
and D-V gradients. Subsets of the most important genes for the top two principal components were 728 
identified with a sparse AC-PCA analysis, whereby the sparsity parameter, c2, was selected based 729 
on a grid search with 10-fold cross validation. These PC1 and PC2 gene sets were used in 730 
enrichment tests with PLS non-zero or zero modules.   731 

 732 
We also examined enrichments between PLS non-zero and zero modules and prenatal cell 733 

types identified from single cell RNA-seq on midgestational prenatal brain tissue (47). These cell 734 
types included several classes of progenitor cells (ventricular radial glia, vRG; outer radial glia, 735 
oRG; cycling progenitors (S phase), PgS; cycling progenitors (G2/M phase), PgG2M; intermediate 736 
progenitors, IP), excitatory neurons (migrating excitatory, ExN; maturing excitatory, ExM; 737 
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maturing excitatory upper enriched, ExM-U; excitatory deep layer 1, ExDp1; excitatory deep layer 738 
2, ExDp2), inhibitory neurons (interneuron CGE, InCGE; interneuron MGE, InMGE), and other 739 
non-neuronal cell types (oligodendrocyte precursors, OPC; pericytes, Per; endothelial cells, End; 740 
microglia, Mic).  741 

 742 
Tissue-specific enrichments 743 
 744 

To better understand how genes expressed in blood leukocytes could be brain-relevant we 745 
annotated gene co-expression modules based on enrichments in genes known from expression 746 
across multiple tissues to be either broadly expressed or brain-specific. Both of these categories 747 
contain genes that are expressed in cortical tissue, but differ in the pattern of expression across 748 
other non-neuronal tissues. To define these lists we downloaded transcript per million (TPM) 749 
normalized gene expression from 10,259 samples across 26 tissues from the GTEx dataset 750 
(https://www.gtexportal.org) (95, 96). In addition to brain and nerve tissue, the dataset included 751 
transcriptome data from 24 non-neuronal tissues, including: Adipose, Adrenal Gland, Blood 752 
Vessel, Breast, Blood, Skin, Colon, Esophagus, Heart, Liver, Lung, Salivary Gland, Muscle, 753 
Ovary, Pancreas, Pituitary, Prostate, Small Intestine, Spleen, Stomach, Testis, Thyroid, Uterus, 754 
and Vagina. We next defined a gene expressed in a tissue if it met two criteria. First, the gene TPM 755 
expression level was ≥ 3 in at least half of the samples from the tissue. Second, the median 756 
expression of the gene was equal or larger than its 25-percentile expression in GTEx cortex 757 
samples. The second criterion was included to account for the differences in the base expression 758 
level of the genes and their dosage dependent translation and function. Broadly-expressed genes 759 
were defined as genes that were expressed in ≥ 50% of non-neuronal tissues (i.e., tissues other than 760 
brain and nerve). The broadly-expressed and brain-specific genes included genes that were 761 
expressed in the adult cortex based on GTEx dataset.  762 

 763 
Vocal learning enrichments 764 
 765 

To test for enrichment between PLS non-zero modules and gene sets of functional 766 
relevance for language processes, we examined genes that are differentially expressed in a song 767 
bird vocal learning model. Song birds are often used as animal models relevant for the vocal 768 
learning component of language (49, 97, 98). We investigated enrichments with differentially 769 
expressed genes taken from a microarray dataset of Area X of song birds (49). To identify 770 
differentially expressed (DE) genes between singing versus non-singing birds, we re-analyzed this 771 
dataset (GEO Accession ID: GSE34819) using limma (99), and DE genes were identified if they 772 
passed Storey FDR q<0.05 (100). These DE genes were also used for enrichment tests in our prior 773 
work examining gene expression relationships with language-relevant functional neural 774 
phenotypes measured with fMRI (14). 775 

 776 
Human-specific enrichments 777 
 778 

Given the uniquely human nature of language, we also tested hypotheses regarding 779 
enrichments with genes that are transcriptionally different in the cortical tissue between humans 780 
and other non-human primates across prenatal, early postnatal and adult periods (52). In addition, 781 
we also examined enrichments with genes linked to human accelerated regions (HAR), human-782 
gained enhancers (HGE) in prenatal and adult tissue, and human-lossed enhancers (HLE) (53).  783 
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 784 
Autism-associated enrichments 785 
 786 

Ample evidence suggests that prenatal periods are critical for ASD (6, 16, 101–103). To 787 
test enrichment with prenatal ASD-associated co-expression modules, we utilized co-expression 788 
modules from a study that analyzed the Allen Institute BrainSpan dataset (104). Parikshak and 789 
colleagues analyzed only cortical regions from BrainSpan and identified M2 and M3 as prenatally 790 
active and enriched for rare protein truncating variants with high penetrance for ASD (101). We 791 
also tested enrichments with gene lists known to be associated with ASD, either from genetic 792 
evidence or evidence from cortical transcriptomic dysregulation. In particular, we examined a list 793 
of 102 rare de novo protein-truncating variants (dnPTV) associated with ASD (54), genes listed as 794 
ASD-associated in SFARI Gene (https://gene.sfari.org) in categories S, 1, 2, and 3 (downloaded 795 
on July 16, 2020) (55), and DE genes and cortical co-expression modules measured from ASD 796 
post-mortem frontal and temporal cortex tissue (33, 56). To contrast ASD DE genes to genes that 797 
are DE in other psychiatric diagnoses that are genetically correlated with autism, we also use DE 798 
genes in schizophrenia (SCZ DE) and bipolar disorder (BD DE) from the same study that identified 799 
ASD DE genes (56). To go beyond DE genes identified in bulk tissue samples, we also examined 800 
ASD DE genes identified in specific cell types - particularly, excitatory (ASD Excitatory) and 801 
inhibitory (ASD Inhibitory) neurons, microglia (ASD Microglia), astrocytes (ASD Astrocyte), 802 
oligodendrocytes (Oligodendrocyte), and endothelial (ASD Endothelial) cells (57). Finally, we 803 
also tested for enrichments with known downstream targets of highly penetrant mutations known 804 
to be associated with ASD – FMRP and CHD8. For each, we had lists of downstream targets for 805 
two independent studies (105–108), where the overlap for FMRP targets was 3.71% and 27.61% 806 
for CHD8 targets. 807 
 808 
Data and code availability 809 
 810 

Analysis code is available at https://github.com/IIT-811 
LAND/genomic_cortical_patterning_autisms. Data are publicly available from the NIH National 812 
Database for Autism Research (NDAR). Raw and normalized blood gene expression data are also 813 
deposited in Gene Expression Omnibus (GSE42133; GSE111175). RNA-seq data from the 814 
Development PsychENCODE dataset can be found here: http://development.psychencode.org. 815 
GTEx data can be found here: https://www.gtexportal.org. Microarray data from the songbird 816 
vocal learning model can be found in Gene Expression Omnibus (GSE34819). 817 
  818 
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Figures 1320 
 1321 

 1322 
Fig. 1: Subtype differences in total cortical volume (A) and total surface area (B).  Standardized 1323 
effect sizes (Cohen’s d) are shown for each pairwise group comparison. The asterisk indicates 1324 
statistically significant pairwise group comparisons that survive FDR q<0.05. Panel C shows the 1325 
data for mean cortical thickness, which was not statistically significant between-groups. 1326 
Abbreviations: SA, surface area; CT, cortical thickness; Good, ASD Good language subtype; 1327 
Poor, ASD Poor language subtype, TD, typically-developing. 1328 
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 1331 

 1332 
Fig. 2: Normative associations between gene expression and surface area or cortical thickness 1333 
are absent in ASD Poor. Panel A show PLS correlations for each gene co-expression module 1334 
(rows) and each group (columns). Modules with a black outline are ‘non-zero’ modules where the 1335 
correlation between gene expression and surface area (SA) is significantly non-zero, as indicated 1336 
by 95% bootstrap confidence intervals not encompassing a correlation of 0. These non-zero 1337 
modules are the strongest contributors to the PLS relationship. All non-outlined cells are ‘zero’ 1338 
modules that are not sufficiently correlated to SA in a non-zero way (e.g., 95% bootstrap 1339 
confidence intervals include a correlation of 0. Panel B shows brain bootstrap ratios (BSRs) for 1340 
each brain region in the GCLUST parcellation. Regions with red BSRs have correlations that 1341 
manifest in the directionality shown in heatmaps in panel A. Brain regions with blue BSRs have 1342 
correlations where the directionality is flipped relative to the heatmaps in panel A. Stronger BSRs 1343 
indicate regions that are more important in driving the SA LV1 relationship. Panel C shows 1344 
similarity in PLS correlations between groups. In these scatterplots each dot is a co-expression 1345 
module and the x and y-axes indicate the PLS correlations for different groups. Dots colored in 1346 
dark red and dark blue indicate the non-zero modules (red for positive correlations, blue for 1347 
negative correlations), while grey dots indicate zero modules. The scatterplots with the orange 1348 
outline indicates that the PLS SA LV1 relationship manifests similarly for TD and ASD Good. 1349 
Panels D-F are the same as panels A-C except they show the association between gene co-1350 
expression modules at cortical thickness (CT LV1). 1351 
 1352 
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 1354 

 1355 
Fig. 3: Multivariate gene co-expression relationships with SA and CT. Panels A-C show brain 1356 
bootstrap ratios (BSR) for SA LV1 (A), CT LV1 (B), and CT LV2 (C) for all 12 regions from the 1357 
GCLUST SA and CT parcellations. Regions that are increasingly colored red and blue are regions 1358 
that most reliably contribute to the PLS relationship. Panel D shows which co-expression modules 1359 
are ‘non-zero’ modules (dark red or dark blue) or ‘zero’ modules (white). Non-zero modules are 1360 
co-expression modules where the correlation between gene expression and SA or CT is 1361 
significantly non-zero, as indicated by 95% bootstrap confidence intervals not encompassing a 1362 
correlation of 0. These non-zero modules are the strongest contributors to the PLS relationship. 1363 
All white cells indicate ‘zero’ modules that are not sufficiently correlated in a non-zero way (e.g., 1364 
95% bootstrap confidence intervals include a correlation of 0).  Non-zero modules in dark red can 1365 
be interpreted as positive correlations with brain regions in panels A-C colored in red. However, 1366 
for brain regions colored in blue, the correlations in non-zero modules colored in dark red are 1367 
interpreted as negative correlations. These interpretations about the directionality of the 1368 
correlation are reversed when it comes to non-zero modules colored in dark blue. The final two 1369 
columns show which modules are enriched for broadly expressed or brain-specific genes. Panels 1370 
E-G show similarity in PLS correlations for all pairwise comparisons for SA LV1 (E), CT LV1 (F), 1371 
and CT LV2 (G). In these scatterplots each dot is a co-expression module and the x and y-axes 1372 
indicate the PLS correlations for different groups. Dots colored in dark red and dark blue indicate 1373 
the non-zero modules, while grey dots indicate zero modules. Scatterplots with the orange outline 1374 
indicate similar relationships for TD and ASD Good for SA LV1 and CT LV1. 1375 
 1376 
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 1378 

 1379 
Fig. 4: Cortical patterning along genetic similarity gradients. Panel A shows brain BSR maps for 1380 
SA LV1 (top), CT LV1 (middle), and CT LV2 (bottom). Panel B shows the coarse 2-cluster 1381 
anterior-posterior (A-P) and dorsal-ventral (D-V) genetic similarity partitions identified by Chen 1382 
and colleagues (19, 20). Panel C shows the rank ordering of regions by hierarchical genetic 1383 
similarity discovered by Chen and colleagues (19, 20). The rank ordering here defines a genetic 1384 
similarity gradient for how SA or CT varies across brain regions. Areas rank numbered close 1385 
together are more genetically similarity than regions numbered farther apart. Panel D shows how 1386 
brain BSRs are differentiated along A-P and D-V axes (SA LV1, top; CT LV1, middle; CT LV2, 1387 
bottom). Panel E shows how brain BSRs vary along genetic similarity gradients (SA LV1, top; CT 1388 
LV1, middle; CT LV2, bottom).  1389 
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 1393 

 1394 
Fig. 5: Enrichment between PLS non-zero modules and genes involved in prenatal A-P and D-1395 
V expression gradients and prenatal cell types. Panels A shows cortical brain areas sampled from 1396 
12-24 weeks post-conception from the Development PsychENCODE RNA-seq dataset from Li and 1397 
colleagues (24). AC-PCA (44) was utilized to isolate anterior-posterior (A-P) (PC1, panel B) and 1398 
dorsal-ventral (D-V) (PC2, panel C) expression gradients. Panel D shows -log10 p-values for 1399 
enrichment tests of non-zero and zero modules for SA LV1, CT LV1, and CT LV2 for genes isolated 1400 
from PC1 and PC2. Panels E-F show enrichments in prenatal cell types for SA LV1 (E), CT LV1 1401 
(F), and CT LV2 (G). Abbreviations: A-P, anterior-posterior; D-V dorsal-ventral; PC, principal 1402 
component; OR, enrichment odds ratio; vRG, ventricular radial glia; oRG, outer radial glia; PgS, 1403 
cycling progenitors (S phase); PgG2M, cycling progenitors (G2/M phase); IP, intermediate 1404 
progenitors; ExM, maturing excitatory; ExN, migrating excitatory; ExM-U, maturing excitatory 1405 
upper enriched; ExDp1, excitatory deep layer 1; ExDp2, excitatory deep layer 2; InCGE, 1406 
interneuron caudal ganglion eminence; InMGE, interneuron medial ganglion eminence; OPC, 1407 
oligodendrocyte precursor cells; End, endothelial cells; Per, pericytes; Mic, microglia.   1408 
 1409 
 1410 
  1411 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2020.08.18.253443doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.253443
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

39 

 1412 

 1413 
Fig. 6: Enrichments between PLS non-zero modules and songbird vocal learning or human-1414 
specific genes. Panels A-C indicate enrichments between differentially expressed songbird vocal 1415 
learning genes and non-zero and zero modules for SA LV1 (A), CT LV1 (B), AND CT LV2 (C). 1416 
Panels D-F indicate enrichments between human-specific genes and non-zero and zero modules 1417 
for SA LV1 (D), CT LV1 (E), and CT LV2 (F). Asterisks marks enrichments at FDR q<0.01. 1418 
Abbreviations: DE, differentially expressed; OR, enrichment odds ratio; SA, surface area; CT, 1419 
cortical thickness; LV, latent variable pair; HS, human-specific; HAR, human-accelerated region; 1420 
HGE, human-gained enhancer; HLE, human-lossed enhancer. 1421 
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 1425 

 1426 
Fig. 7: Enrichment between PLS non-zero modules and autism-associated genes. Panels A-C 1427 
indicate enrichments between different autism-associated gene lists and non-zero and zero 1428 
modules for SA LV1 (A), CT LV1 (B), AND CT LV2 (C). Panels D-F indicate enrichments between 1429 
differentially expressed genes in specific cell types in autism and non-zero and zero modules for 1430 
SA LV1 (D), CT LV1 (E), and CT LV2 (F). Asterisks marks enrichments at FDR q<0.01. 1431 
Abbreviations: DE, differentially expressed; OR, enrichment odds ratio; SA, surface area; CT, 1432 
cortical thickness; LV, latent variable pair; dnPTVs, de novo protein truncating variants.  1433 
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Supplementary Figures 1434 
 1435 

 1436 
Fig. S1: PLS results on vertex-wise data and comparison to GCLUST. Panels A-D show 1437 
GCLUST and vertex-wise (All Vertices) PLS results for SA LV1. Panels E-H show results for CT 1438 
LV1, while panels I-L show results for CT LV2. BSR maps are shown the two leftmost columns, 1439 
while the heatmaps showing the correlations for each module and group are shown in the middle 1440 
columns. Black outlines represent non-zero modules. Panel M shows the correlation between 1441 
GCLUST and vertex-wise PLS correlations in each group.  1442 
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 1445 

 1446 
Fig. S2: Percentage of covariance explained in GCLUST and vertex-wise PLS models. This plot 1447 
shows the percentage of covariance explained from SA LV1, CT LV1, and CT LV2 in the GCLUST 1448 
and vertex-wise PLS models. 1449 
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 1452 

 1453 
Fig. S3: A-P, D-V, and genetic similarity gradients for SA and CT in vertex-wise PLS model. 1454 
Panel A shows brain bootstrap ratios (BSRs) for vertex-wise PLS SA LV1 (top), CT LV1 (middle), 1455 
and CT LV2 (bottom). Panel B shows the SA A-P and genetic similarity gradients from Chen et 1456 
al., (19, 20) for the GCLUST parcellation. Panel C shows a violin-boxplot of the SA LV1 BSRs 1457 
from all vertices within the anterior and posterior clusters (left), and a scatterplot of the median 1458 
BSR from each GCLUST region, ordered by the genetic similarity rank ordering of brain regions 1459 
(right). For the A-P difference, the Cohen’s d effect size is cited to quantify how large the difference 1460 
is. All p-values for this A-P distinction in SA LV1 and all other D-V comparisons CT LV1, CT LV2 1461 
have p<2.2e-16. Panel D shows the D-V clusters for CT as well as the CT genetic similarity 1462 
gradient from the Chen et al., (19, 20) GCLUST parcellation. Panels E and F show the D-V (left) 1463 
and genetic similarity gradient effect (right) for CT LV1 (top) and CT LV2 (bottom).    1464 
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 1467 

 1468 
Fig. S4: Lack of A-P and D-V gradients in effect size of group comparisons. Panel A shows each 1469 
pairwise group comparison for differences in SA. Panel B shows each pairwise group comparison 1470 
for differences in CT. Coloring reflects the standardized effect size for the group differene 1471 
(Cohen’s d). Panel C shows a depiction of the A-P and D-V partitions defined by Chen and 1472 
colleagues (19, 20). Panel D shows how the genetic similarity gradient defined by Chen and 1473 
colleagues (19, 20) manifests via numbered ordering of brain regions along that gradient. Panels 1474 
E-G show scatter-boxplots for the GCLUST A-P (top) or D-V (bottom) clusters. Panels H-J show 1475 
the correlations between Cohen’s d effect size and the genetic similarity gradient rank ordering of 1476 
brain regions for SA (top) and CT (bottom). 1477 
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 1480 
 1481 

 1482 
Fig. S5: Soft power and TOM dendrogram from WGCNA analysis. On the left of this figure we 1483 
show the soft power plot for the main WGCNA analysis including data from all groups. A 1484 
horizontal red line depicts soft power topology model fit R2 of 0.9, where the chosen soft power of 1485 
16 is located. On the right of this figure is the TOM dendrogram with modules labeled at the 1486 
bottom.  1487 
 1488 
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 1491 

 1492 
Fig. S6: Module preservation when WGCNA analysis is run separately on each group. This 1493 
figure shows the module preservation Zsummary statistic for WGCNA analyses run separately on 1494 
each group in order to show that networks are highly preserved (Zsummary>10) across groups.  1495 
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Supplementary Tables S1-S5 1496 
 1497 

Table S1: Summary of clinical and demographic variables. 1498 
 1499 

Table S2: Statistics from hypothesis tests on group differences in cortical volume, surface area, 1500 
and cortical thickness. 1501 

 1502 
Table S3: Statistics from hypothesis tests on GCLUST regional group differences in surface 1503 
area and cortical thickness. 1504 
 1505 

Table S4: WGCNA module assignments for each gene and module membership scores. 1506 
 1507 

Table S5: Enrichment odds ratios and p-values for tests of enrichment between zero and non-1508 
zero modules and broadly expressed or brain-specific gene sets. 1509 

 1510 
Table S6: Table annotating overlap of each gene with gene sets used in enrichment analyses. 1511 
 1512 
Table S7: ANOVA stats from CellCODE deconvolution of leukocyte cell types. 1513 
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