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Abstract—In recent years, more biomedical studies have 
begun to use multimodal data to improve model performance. 
As such, there is a need for improved multimodal explainability 
methods. Many studies involving multimodal explainability 
have used ablation approaches. Ablation requires the 
modification of input data, which may create out-of-distribution 
samples and may not always offer a correct explanation. We 
propose using an alternative gradient-based feature attribution 
approach, called layer-wise relevance propagation (LRP), to 
help explain multimodal models. To demonstrate the feasibility 
of the approach, we selected automated sleep stage classification 
as our use-case and trained a 1-D convolutional neural network 
(CNN) with electroencephalogram (EEG), electrooculogram 
(EOG), and electromyogram (EMG) data. We applied LRP to 
explain the relative importance of each modality to the 
classification of different sleep stages. Our results showed that 
across all samples, EEG was most important, followed by EOG, 
and EMG. For individual sleep stages, EEG and EOG had 
higher relevance for classifying awake and non-rapid eye 
movement 1 (NREM1). EOG was most important for classifying 
REM, and EEG was most relevant for classifying NREM2-
NREM3. Also, LRP gave consistent levels of importance to each 
modality for correctly classified samples across folds and 
inconsistent levels of importance for incorrectly classified 
samples. Our results demonstrate the additional insight that 
gradient-based approaches can provide relative to ablation 
methods and highlight their feasibility for explaining 
multimodal electrophysiology classifiers. 
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Sleep Staging, Electrophysiology 

I. INTRODUCTION 
A growing number of biomedical studies have begun to 

incorporate data from multiple modalities [1]–[4]. This 
growth has occurred because complementary modalities 
increase data richness and can improve classifier performance 
[2]. However, multimodal data can also increase the difficulty 
of model interpretation, and many multimodal studies have 
not incorporated explainability methods that could provide 
insight into the relative contributions of each modality [3]. 

A few studies have applied explainability methods to 
identify the relative importance of each modality to classifiers 
trained on multimodal data. This includes approaches such as 
forward feature selection (FFS) [1], impurity [4], and ablation 
[4][5]. However, some of these methods are incompatible with 
high-performing deep learning frameworks. FFS requires 
retraining classifiers repeatedly, so it is not practical for 
computationally intensive deep learning classifiers. 
Furthermore, impurity methods can only be applied to 
decision tree-based models. Unlike FFS and impurity, 
ablation can be applied to nearly all types of classifiers, is easy 
to implement, and is not computationally intensive. However, 
ablation methods do have some weaknesses. 

Ablation, like perturbation, requires that the data input to 
the classifier be modified. This modification can create 
samples that are out of the data distribution upon which the 
classifier was trained [6]. Moreover, in deep learning 
classifiers with automated feature extraction, ablation can 
cause extracted features that are outside the distribution of 
other extracted features within the dataset. Furthermore, the 
goal of ablation is to identify how the performance of a model 
decreases when the information originally found in a modality 
is no longer available. As such, it is necessary to be cautious 
while adapting such methods to new application domains [7]. 
In domains like electrophysiology (EP) analysis, a value of 
zero for a modality is abnormal and would likely not bear 
adequate resemblance to real-life samples. This could affect 
explainability results, as out-of-distribution or abnormal 
samples may not correctly assess what a classifier has learned. 

Gradient-based feature attribution (GBFA) methods [8] offer 
an alternative to ablation for multimodal time-series 
explainability. These methods do not require data 
modification and are applicable to many deep learning 
frameworks. Additionally, they can provide much more 
detailed explanations than ablation. Specifically, ablation can 
show which modalities were important to the classification of 
a class, and GBFA methods can show which modalities were 
important to both the correct and incorrect classification of 
samples belonging to a class. Layer-wise relevance 
propagation (LRP) is a popular gradient-based method [9]. 
Here, we propose the use of gradient-based feature attribution 
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methods, and specifically LRP, for insight into classifiers 
trained on multimodal data. To demonstrate the viability of 
this approach, we train a 1-dimensional (1D) convolutional 
neural network (CNN) for automated sleep stage classification 
with electroencephalogram (EEG), electrooculogram (EOG), 
and electromyogram (EMG) data from a popular online 
dataset [10]. We perform automated sleep stage classification 
because it is a representative multimodal classification task 
with clinical needs for model explainability [5]. We apply 
LRP in a global manner to show the relative importance of 
each modality to the classification of each sleep stage. 

II. METHODS 
Here we provide a description of our methods. Using 

multimodal data, we trained a CNN to discriminate between 
each sleep stage and applied LRP to explain the decisions of 
the classifier. The dataset, preprocessing, and classifier that 
we used here are the same as those which we presented in [7]. 
The key innovation of this work is its explainability approach. 

A. Description of Data 
We used the Sleep Telemetry dataset from the Sleep-EDF 

Database [10] on Physionet [11]. The dataset included 44, 
approximately 9-hour recordings from 22 subjects. Each 
subject had a recording following the administration of a 
placebo and temazepam. The dataset consisted of EEG, EOG, 
and EMG with a sampling rate of 100 Hertz (Hz), as well as a 
polysomnogram of the sleep stage at each time point. Sleep 
stages included: awake, movement, rapid eye movement 
(REM), non-REM 1 (NREM1), NREM2, NREM3, and 
NREM4. A marker at 1 Hz intervals indicated whether an 
error occurred in the sleep telemetry device. 

B. Description of Data Preprocessing 
We separated each recording into 30-second segments and 

obtained the corresponding label from the polysomnogram. 
We discarded movement samples and samples that 
corresponded with recording errors and consolidated the 
NREM3 and NREM4 stages into NREM3 [12]. We then z-
scored each modality within each recording. The dataset had 
42,218 samples and was very imbalanced. Awake, NREM1, 
NREM2, NREM3, and REM stages composed 9.97%, 8.53%, 
46.8%, 14.92%, and 19.78% of the dataset, respectively. 

C. Description of CNN 
We adapted a 1D-CNN architecture originally developed 

for EEG-based sleep stage classification to our multimodal 
dataset [13]. The architecture, model hyperparameters, and 
training approach are described in [7]. We used a 10-fold cross 
validation approach in which training, validation, and test sets 
were composed of 17, 2, and 3 randomly assigned subjects, 
respectively. To measure classifier performance, we generated 
a confusion matrix showing the distribution of sample 
classification across all folds. Further details on the precision, 
recall, and F1 score of the classifier are included in [7]. 

D. Description of Explainability Approach 
We used LRP to explain the relative importance of each 

modality [9]. LRP provides local explanations for the 
classification of each individual sample. In LRP, a sample is 
fed into the neural network and classified. A total relevance of 
1 is assigned to the output node for its respective class, and 
that total relevance is propagated back through the network 
via LRP relevance rules until a portion of that total relevance 
is assigned to each of the points in the input sample. Both 

positive and negative relevance can propagate through the 
network. Positive relevance shows the features that support 
the sample being assigned to the class to which it is assigned. 
Negative relevance identifies the features that support the 
sample being assigned to other classes. We used the ε and αβ 
relevance rules [14]. The ε-rule has a parameter, ε, that enables 
relevance to be filtered when propagated through the network. 
Increasing ε causes smaller relevance values to be filtered out, 
reducing the noise in the explanation. The αβ-rule has two 
parameters, α and β, which control the degree to which 
positive and negative relevance are propagated through the 
network, respectively. While the ε-rule allows both negative 
and positive relevance to propagate, the αβ-rule can enable 
only positive relevance to be propagated when α equals 1 and 
β equals 0. We used the ε-rule with an ε of 0.01 and 100 and 
the αβ-rule with an α of 1 and a β of 0.  

To obtain a “global” explanation, we combined the local 
explanations for all samples in the test set of each fold. We 
then calculated the percent of absolute relevance assigned to 
each modality in each fold to identify their relative 
importance. We did this for all test samples and for each 
classification group (e.g. awake classified as awake or 
NREM1 classified as NREM2). 

III. RESULTS AND DISCUSSION 
Here we describe and discuss the LRP results. We also 

discuss the study limitations and potential future work.  

A. Explainability Results 
Figures 1 and 2 show LRP results for all samples and for 

each classification group, respectively. When all classes were 
considered, all LRP rules indicated that EEG was the most 
important modality, followed by EOG, and EMG. For an ε of 
100, when low relevance values were filtered out, the EEG 
and EOG showed an increase in importance while EMG 
importance decreased. Interestingly, both the ε-rule (ε=100) 
and the αβ-rule gave more importance to EMG than the ε-rule 
(ε=0.01). These results are comparable to the ablation results 
in [7], though the importance of EOG and EMG appears 
greater for LRP than for ablation. 

We also sought to understand the importance of each 
modality for the correct or incorrect classification of each 
class. The results in Figure 2 fit with sleep scoring guidelines, 
as EEG can be used for classifying all stages while EOG and 
EMG are useful for classifying between awake, REM, and 
NREM samples [12]. The diagonal of Figure 2 shows the LRP 

 
Figure 1. LRP-based global explainability. Plot shows explainability 
results for all folds. Blue, yellow, and red boxes are for EEG, EOG, and 
EMG, respectively. Within each trio, from left to right are relevance 
results for the LRP ε-rule (0.01), ε-rule (100), and α-β-rule. 
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results for correctly classified samples. For the awake stage, 
the CNN relied mostly on EEG and EOG data. For correctly 
classifying NREM1, the CNN model placed importance either 
more on EOG than EEG (ε=100) or about equally on EEG and 
EOG (ε=0.01 and αβ-rule). However, EMG was the least 
relevant in correctly classifying NREM1 for all relevance 
rules (column 2, row 2). For correctly classifying NREM2 
(row 3, column 3) and NREM3 (row 4, column 4), EEG had 
more than 3 times as much relevance as EOG and EMG for all 
rules. This is consistent with sleep scoring guidelines, as EEG 
in NREM samples is often very distinct [12]. For correctly 
classifying REM sleep stages, EOG had the most relevance (ε 
rule with ε=100 and α-β rule). However, for ε-rule (ε=0.1), 
EEG and EOG were equally relevant for REM classification. 
EMG was the least relevant for REM classification across all 
rules (row 5, column 5). Our results corroborate the well-
documented importance of EOG in classifying awake and 
REM. EOG is important because it tracks eye movements 

which are more common during awake and REM stages. We 
also noticed that the relevance across folds of the test samples 
that the CNN correctly classified had lower variance than the 
that of the misclassified samples. The lower variance of the 
correctly classified samples indicates that the features learned 
by the CNN for correct classification are likely similar across 
all 10 folds, which could indicate that the architecture is 
learning generalizable features or that the subjects randomly 
assigned to each test group are comparable. However, that the 
CNN seems to have greater variance in relevance across folds 
for the incorrectly classified samples could indicate that they 
are making different mistakes in each fold or identifying 
different ungeneralizable patterns in the training data. 

B. Limitations and Future Work 
LRP is one of a broad class of GBFA methods. It is 

possible that other related methods could provide better 
explanations. Some metrics have been developed for 

 
Figure 2. LRP Results for Each Classification Group. Plot shows explainability results for all folds. Blue, yellow, and red boxes are for EEG, EOG, and 
EMG, respectively. Within each trio, from left to right are relevance results for the LRP ε-rule (0.01), ε-rule (100), and α-β-rule. Note that the number of 
samples in each classification group is included in the title of each panel. 
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quantifying the quality of explanations produced by different 
explainability methods [15], and those metrics could 
potentially be applied to identify the methods that provide the 
highest quality explanations for multimodal EP time-series. 
Furthermore, when we output LRP results, we used each rule 
for propagating relevance through the whole network. 
Previous studies have shown that using different rules in 
different parts of a CNN can improve explanations, especially 
in deeper networks [14].  Also, we adapted a CNN architecture 
originally developed for EEG-based sleep stage classification. 
As such, the architecture was not necessarily developed to 
extract features optimally from EOG and EMG, which could 
cause the explainability results to show that EEG is most 
important. Examining model architectures that might better 
extract EOG or EMG features could be helpful. Additionally, 
although our classification performance was below the state 
of the art, our novel explainability approach, rather than our 
classifier, was the focus of our study. Using LRP with a better 
classifier could provide more generalizable explanations and 
could contribute to novel biomarker identification. Further, 
local LRP explanations, rather than global explanations, 
would provide higher resolution insights that might better 
enable the identification of novel multimodal biomarkers. 

IV. CONCLUSION 
In this study, we implement a gradient-based model-
introspection technique for insight into the importance of 
each modality in multimodal EP data. This offers an 
alternative to the popular ablation approaches that have 
previously been used to find the relative importance of each 
modality to a classifier. Because of its well-characterized 
clinical guidelines, we used sleep stage classification as a test 
bed and trained a classifier to discriminate between sleep 
stages using multimodal data. We further implemented LRP, 
a popular gradient-based explainability method, to identify 
the relative importance of each modality to the CNN. Our 
results corroborate documented findings on the importance of 
EEG and EOG in classifying awake and NREM1, EOG for 
REM, and EEG for NREM2-NREM3. They also show that 
the CNN gave consistent levels of importance to each 
modality for correctly classified samples across folds and 
inconsistent importance for incorrectly classified samples. As 
such, our study demonstrates the additional insight that 
GBFA methods can provide relative to ablation, highlights 
their viability for explaining multimodal EP classifiers, and 
suggests their utility for other multimodal classification 
problems. 
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