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Figure S1. Karyotype of the sequenced female sika deer. The karyotype analysis shows that

the sika deer chromosome number is 2n=66.
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Figure S2. Distribution of the 25-mer frequency in the sika deer genome. The genome size of

sika deer is 2.6 Gb based on Kmer analysis with Kmer=25.
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Figure S3. Assembly strategy of the sika deer genome. PacBio long reads were de novo
assembled with wtdbg2. The chromosome-scale scaffolds were generated by using Hi-C data
after genomic error correction. A BioNano optical map and proximal species (red deer) genome

were used to check the assembly accuracy.
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Figure S4. Genome synteny analysis between sika deer and red deer. The x-axis represents

red deer chromosomes, and the y-axis represents sika deer chromosomes. These two assemblies

show significant genomic synteny.
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Figure S5. Hi-C interaction heatmap for each chromosome of the sika deer genome.
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Figure S6. Gene syntenic blocks between the sika deer genome and the three ruminant
genomes. The representative chromosome fission/separation fragment is indicated in purple,
turquoise and cyan. Gray wedges in the background highlight conserved syntenic blocks with

more than 10 gene pairs.
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Figure S7. Distribution of identified transposable elements among different mammalian

species. Data anomalies of red deer may be due to the poor quality of the genome.
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Figure S8. Circos plot of the chromosomal features of sika deer. The external green circle
represents the chromosomes of sika deer. The circles and links inside the chromosomes from
outside to inside represent the distribution of genes in the chromosomes (blue); distribution of
repeats of the genome (orange); distribution of heterozygosity (green); and segmental

duplications (length >10 kb) (red).
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Figure S9. Phylogeny and divergence time of 19 species. Maximum-likelihood (ML) tree
inferred from single-copy orthologous genes by RAXML. The x-axis is the inferred divergence

time (M year) based on the phylogenetic tree and fossils.
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Figure S10. Gene family expansion and contraction analysis. The number of expanded gene

families is in red, and the number of contracted gene families is in green.
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Figure S11. Phylogenetic tree of all UGT genes. Phylogeny structured by RAXML based on the
multiple sequence alignment of all UGT genes. These UGTs were divided into seven groups. The

star represents significantly differentially expressed genes.
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Figure S12. Expression heatmap of differentially expressed genes (DEGs) among different

treatments.
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Figure S13. Expression of UGT genes in 8 tissues of cattle. UGT genes were highly expressed

in the liver, kidney and jejunum.
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Figure S14. CYP gene expression patterns in sika deer. Five differentially expressed CYP genes were upregulated in the liver tissue

with increasing tannin intake.
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Figure S15. Potential metabolism of drugs and exogenous substances, such as tannins, in
the mammalian body. Oak leaves are rich in hydrolysable tannins. Proline-rich salivary proteins
(PRPs) found in the mouth can precipitate gallotannic acid (GA) and play a role in the defense
against GA. However, PRPs are not found in all the published genomes of cattle, sheep and our
Mhl v1.0. In the rumen, GA is hydrolyzed into gallic acid and ellagic acid, which are degraded
by rumen microbes into simple phenolic compounds. Some of these compounds can be
metabolized by the P450 enzyme and excreted from the body. Glucuronyltransferase (GT),
sulfatyltransferase (SULT), glutathione S-transferase (GST) and other enzymes produced by the
liver can catalyze the conversion of undigested phenolic compounds into glucuronates, sulfates

and other water-soluble compounds that can be excreted through the urine. Our results show that
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only the expression of UGTs increased with the tannin content in the liver.
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Figure S16. Comparison of the liver, kidney and heart in sika deer, cattle and sheep after a
tannin feeding experiment. The three tissues showed no difference between the treatment group
and the control group in sika deer. However, lesions (white arrow) occurred in the three tissues

of cattle and sheep. These results demonstrated different tannin tolerances among the 3 species.
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Figure S17. Distribution of the insertion segment of Illumina paired-end data. [llumina

sequencing data were generated with four different insert fragment sizes (200, 300, 400, and 600

bp).
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