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Objective: Cortical thickness changes dramatically during 
development and is influenced by adolescent drinking. 

However, previous findings have been inconsistent and 
limited by region-of-interest approaches that are 

underpowered because they do not conform to the 

underlying heterogeneity from the effects of alcohol.  

Methods: Adolescents (n=657; 12-22 years at baseline) 

from the National Consortium on Alcohol and 
Neurodevelopment in Adolescence (NCANDA) who 

endorsed little to no alcohol use at baseline were assessed 
with structural MRI and followed longitudinally at four 

yearly intervals. Seven unique spatially covarying patterns 
of cortical thickness were obtained from the baseline scans 

by applying a novel data-driven method called non-

negative matrix factorization (NMF). The cortical thickness 
maps of all participants’ longitudinal scans were projected 

onto vertex-level cortical patterns to obtain participant-
specific coefficients for each pattern. Linear mixed-effects 

models were fit to each pattern to investigate longitudinal 

effects of alcohol consumption on cortical thickness.  

Results: In most NMF-derived cortical thickness patterns, 
the longitudinal rate of decline in no/low drinkers was 

similar for all age cohorts, among moderate drinkers the 
decline was faster in the younger cohort and slower in the 

older cohort, among heavy drinkers the decline was 

fastest in the younger cohort and slowest in the older 

cohort (FDR corrected p-values < 0.01).  

Conclusions: The NMF method can delineate spatially 
coordinated patterns of cortical thickness at the vertex 

level that are unconstrained by anatomical features. Age-
appropriate cortical thinning is more rapid in younger 

adolescent drinkers and slower in older adolescent 

drinkers. 

bioXriv 2021; Sun et al.; posted May 14, 2021. 

Neuromaturation occurs throughout childhood and 

adolescence while the brain undergoes dramatic 

changes in cortical gray-matter thickness and volume. 

Gray matter volume typically peaks before the teen 

years and then declines into adulthood as 

underutilized or redundant connections between 

neurons are pruned (1-3). Heavy adolescent alcohol use 

(4) is associated with faster cortical grey matter 

decline, possibly related to vulnerability during 

adolescent development (5). However, slower grey 

matter thinning has also been hypothesized on the 

premise that alcohol disrupts the process of pruning, 

which is typical in adolescence (4). 

Alcohol is the most commonly misused substance with 

24% of adolescents reporting consumption by 8th grade 

and 59% before the end of high school (6). Most 

alarming is the number of drinks consumed by 

adolescents (7). While adolescents tend to drink less 

frequently and consume less overall than adults, they 

are much more likely to binge drink (8). The prevalence 

of binge drinking increases noticeably between 12-25 

years (7) with 14% of 12th graders binging once in two 

weeks (6). 

Widespread differences in brain morphometry of 

adolescent drinkers have been identified (5, 9). 

Hypothesis-driven region of interest (ROIs) analyses 

have identified lower cortical thickness in the frontal, 

temporal, parietal, occipital, and cingulate cortices (2, 

10, 11) of adolescent binge drinkers compared to light 

or non-drinking peers (12), an effect that was further 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.17.444458doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444458
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sun et al. 

 2 

amplified among younger adolescents (13, 14). 

However, competing findings of higher cortical 

thickness in the frontal, parietal, temporal, and 

occipital regions (13, 15) have also been reported. 

Previous studies have tested mean cortical thickness in 

ROIs based on anatomical definitions. However, the 

effects of binge drinking and patterns of brain 

maturation, which may interact with binge drinking, 

do not necessarily follow anatomical boundaries along 

prescribed gyral and sulcal features. 

We addressed these challenges with a data-driven 

method called nonnegative matrix factorization (NMF) 

designed to identify patterns in cortical thickness 

variation at the vertex level, which is unconstrained by 

established anatomical borders (16). NMF is a class of 

multivariate algorithms that achieves matrix 

decomposition of an m x n input matrix (m: number of 

vertices; n: number of subjects) into two matrices with 

non-negative elements. Conceptually, NMF is similar 

to the more widely known method of independent 

component analysis (ICA).  

We analyzed NCANDA data to assess the effects of 

adolescent binge drinking and its interactions with 

multiple risk factors, particularly age (17). NCANDA 

sampled a range of adolescent developmental periods 

within a shorter timeframe by adopting an accelerated 
longitudinal study design. Subjects from 12-22 years 

were recruited at baseline and followed longitudinally 

at yearly intervals for 5 years. We used NMF in the 

first stage to delineate covarying patterns of cortical 

thickness derived from baseline scans. In the second 

stage we used regression modeling to test alcohol-

induced departures from normal developmental 

trajectories for each cortical thickness pattern. 

Consistent with prior evidence, we hypothesized that 

heavy drinking would be associated with more rapid 

age-related declines in cortical thickness (4).    

 

METHODS 

Participants 

Adolescents (n=837; 12~22 years at baseline) were 

recruited from five sites: University of California at 

San Diego (n=214), Duke University (n=176), SRI 

International (n=169), Oregon Health and Science 

University (n=152), and University of Pittsburgh 

(n=126). Exclusionary criteria included serious 

medical, mental health, or learning disorders (17). 

Only youth who did not exceed drinking thresholds 

for alcohol (drinking class=0, see below; n=657) at 

baseline were enrolled (Fig. 1A) (17). Of the 657 

participants assessed at baseline, 576 returned in 1 

year for follow-up-1, 536 for follow-up-2, and 484 for 

follow-up-3, totaling 2,628 study visits.  

Clinical and Demographic Measures 

Drinking class reflects drinking behaviors at 

baseline and yearly thereafter measured with the 

Customary Drinking and Drug Use Record (CDDR) 

(17, 18) in four drinking classes: 1) no/low drinkers, 

2) moderate drinker, 3) heavy drinkers, and 4) heavy 

drinkers. Detailed criteria for each drinking class 

are in Phillips et al (19).  

Self-identified race/ethnicity included three 

categories: African-American, Caucasian, and 

Other. 

Socioeconomic status (SES) was quantified using the 

highest years of education (range 6-20) of either 

parent (17) into low SES (6-12 years, n=47) and high 

SES (13-20 years, n=610).  

Family history of alcohol use and dependence (AUD) 

density (range 0-4) was based on AUD in first- and 

second-degree relatives using the Family History 

Assessment Module (20).  

Cumulative trauma was quantified as the sum of 

reported DSM-IV or DSM-5 Criterion-A traumatic 

events. DSM Criterion-A traumas and 

posttraumatic stress disorder (PTSD) symptoms as 

assessed separately in the subject and one parent at 

baseline as described in Phillips et al (19).  

MRI Acquisition and Longitudinal MRI Parcellation 

All NCANDA sites collected MRI data on 3T GE 

MR750 or Siemens Tim Trio scanner using 

acquisition protocols for high-resolution structural 

imaging with 1-mm isotropic voxels as described in 

Phillips et al (19).  

Longitudinal Segmentation pipeline 

Structural scans were processed using the 

FreeSurfer v6.0 longitudinal stream and 

longitudinal segmentation categorized into four 

steps: (1) cross-sectionally process, (2) create an 

unbiased template for each subject, (3) 

longitudinally process all timepoints, and (4) 

segment cortical regions. The longitudinal 

processing stream is described in Phillips et al (19). 

Spherical registration was performed to normalize 

the cortical thickness maps of 20,000 vertices in each 

subject to an average template. One participant was 

removed following failure of FreeSurfer longitudinal 

processing.  

Outlier Detection and Removal 
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Vertices whose cortical thickness was more than 3 

times the standard deviation from the mean of all 

scans (all timepoints) were removed as outliers. A 

specific vertex could be excluded but the remaining 

vertices for the same subject at other timepoints 

were retained.  

Data Harmonization Across Sites  

Harmonization of data from multiple sites/scanners 

was achieved by ComBat, a tool that models 

expected imaging features as linear combinations of 

the biological variables and scanner/site effects 

whose error term is further modulated by site-

specific scaling factors (21). ComBat applies 

empirical Bayes to improve the estimation of site 

parameters by effectively removing unwanted 

sources of scanner/site variability while 

simultaneously increasing the power and 

reproducibility of subsequent statistical analyses of 

multi-site cortical thickness studies (21). The 

ComBat tool was used to harmonize cortical 

thickness values by removing scanner/site effects 

while preserving inherent biological associations 

such as age, sex, drinking class etc.  

NMF Decomposition 

The spatial patterns in cortical thickness were 

estimated using NMF (16), which factors the data by 

positively weighting cortical thickness values that 

covary within the template and yields a highly 

specific and reproducible pattern-based 

representation. The goal of NMF is to find patterns 

of structural covariance that are common to all 

participants, such that a combination of these 

patterns with non-negative values approximates the 

original data. To achieve this goal, we first organized 

the cortical thickness data into a non-negative m x n 

matrix X with m vertices and n participants. We 

then represented the membership of the vertex-wise 

cortical thickness values to the patterns of 

structural covariance by a m x v matrix W where 

each row corresponds to the cortical thickness of a 

vertex and each column corresponds to a pattern. We 

also represented the contribution of each pattern to 

the whole cortical thickness map per participant 

with a v x n matrix C where each row corresponds to 

a pattern and each column corresponds to a 

participant. The NMF algorithm minimized the 

difference between the raw data X and the recon

structed sample represented by the product of W and 

C (Fig. 1B). Since matrix decomposition is generally 

not exactly solvable, we approximate it numerically 

with NMF. The cortical thickness values in the data 

matrix X that tend to covary are positively weighted, 

thus minimizing the reconstruction error and 

aggregating variance. The non-negativity constraint 

results in a non-overlapping pattern-based 

representation of whole-brain cortical thickness, 

which boasts advantageous specificity (16).  

NMF was applied to cortical thickness maps from 

the baseline scans of 657 no/low drinkers to obtain 

basis vectors, which represent covariance patterns 

of cortical thickness to capture normal growth in 

adolescents with minimal drinking problems at 

baseline. The cortical thickness maps of all 

participants’ longitudinal scans were projected onto 

the basis vectors to obtain the participant-wise 

coefficients for each basis vector. NMF analysis was 

conducted with MATLAB scripts.  

Solution Selection 

The NMF algorithm provides many possible 

solutions to the input matrix decomposition. Each 

solution contains a different number of covarying 
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Figure 1. Analyses pipeline and non-negative matrix factorization (NMF) solutions. (A) 
Analyses pipeline. (B) NMF aims to find the solution that minimizes the difference between 

the raw data X and the reconstructed sample represented by the product of W and C. In 
matrix X, each row corresponds to a cortical vertex and each column corresponds to a 

subject. In matrix W, each row corresponds to the cortical thickness value of a vertex and 

each column corresponds to an NMF pattern. In matrix C, each row corresponds to a NMF 
pattern and each column corresponds to a subject. (C) The optimal number of NMF patterns 

is 7 based on peaks of the split-sample reproducibility analyses results (D) The optimal 

solution of 7 NMF patterns. Pattern 1 contains voxels in angular gyrus, supramarginal gyrus, 
inferior frontal areas, and superior/middle/inferior temporal regions; pattern 2 in superior and 

middle frontal regions; pattern 3 in frontopolar regions; pattern 4 in postcentral regions and 
superior parietal lobule; pattern 5 in anterior/middle cingulate cortex and bilateral insula; 

pattern 6 in posterior cingulate areas, lingual gyrus, cuneus, calcarine sulcus, and primary 

visual cortex; and pattern 7 in parahippocampal gyrus. LL = left hemisphere lateral view; LM 
= left hemisphere medial view; RM = right hemisphere medial view; RL = right hemisphere 

lateral view.
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patterns. A solution with too many patterns may 

overfit the data by modeling noise fluctuations, 

while too few patterns may combine distinct 

patterns and thus undermine the model from 

expressing the underlying heterogeneity. We 

determined the appropriate number of patterns in 

the range of 2 to 100 based on reproducibility when 

the data was split into two sex- and age-matched 

halves (at baseline scan) (16). We calculated 

reproducibility across patterns by measuring the 

overlap between the independently estimated 

patterns from the inner product for the two splits 

using a combinatorial optimization algorithm 

known as the Hungarian Algorithm (22).  

Study Design of NCANDA 

The goal of NCANDA was longitudinal study of age-

related developmental brain changes associated 

with adolescent alcohol use. An accelerated 
longitudinal design was selected because it enabled 

studying our age range of interest in shorter time 

than a single cohort design (23) while investigating 

both within-subject and within-cohort structural 

brain changes. Within-person age change represents 

the difference between a subject’s age at each scan 

and their mean age across individual timepoints. 

Positive within-person age changes correspond to 

later visits while negative within-person age 

changes correspond to earlier visits by the same 

subject. Cohort-age represents the difference 

between a subject’s mean age across visits and the 

mean age of the entire sample across timepoints, 

thus centering cohort-age at the sample mean. 

Positive and negative cohort-ages refer to older and 

younger subjects respectively as compared to the 

sample mean. Each participant’s cohort-age 

remained constant across timepoints.  

Statistical Analyses 

Following previously implemented approaches for 

structured multi-cohort longitudinal designs (23), 

we modeled the developmental trajectories of 

cortical thickness using a linear mixed-effects (LME) 

approach. In all models, participant identity was 

included as a random intercept to account for within-

subject covariance across time. Drinking class, 

within-person age change, cohort-age, sex, self-

identified ethnicity, SES, family history of AUD 

density, and cumulative lifetime trauma were 

included as fixed effects variables. We investigated 

the main effect of drinking class; the two-way 

interactions between drinking class and each of the 

other fixed effects variables; and three-way 

interactions between drinking class, within-person 

age change and cohort-age (without two-way 

interactions), on each of the NMF-derived patterns. 

The dependent variable for each regression model 

was the mean cortical thickness for all vertices 

contained in a given pattern. We also tested the 

main effects of within-person age change and cohort-

age as well as their two-way interaction. 

All statistical analyses were conducted in R using 

lme4 for fitting LME models. The sjPlot package was 

used to plot the significant main and interaction 

effects. The false discovery rate (FDR) method (24) 

with a q-value threshold of 5% was applied to correct 

for multiple comparisons corresponding to each 

NMF pattern.   

 

RESULTS 

Clinical and Behavioral Results 

See Table 1 for sample demographic and alcohol use 

characteristics stratified by study visit. See Table S1 

for demographic characteristics organized by site at 

the baseline visit. 

NMF Patterns 

We found the most prominent peak in split-sample 

reproducibility for the solution with 7 NMF patterns 

(Fig. 1C). Results associated with a smaller 9-

pattern peak are reported in the Supplementary 

Materials. The results of the two solutions are 

concordant. 

Nearly all patterns were symmetric bilaterally. As 

shown in Fig. 1D, pattern-1 contains voxels in 

angular gyrus, supramarginal gyrus, inferior frontal 

areas, and superior/middle/inferior temporal 

regions; pattern-2 is related to superior and middle 
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Table 1. Demographics at baseline and follow-ups 

Variable 
Baseline 
(n=657) 

Follow-
up 1 

(n=576) 

Follow-
up 2 

(n=536) 

Follow-
up 3 

(n=484) 

Drinking Class 
  Low/No 
  Moderate 
  Heavy 

 
657 
0 
0 

 
482 
68 
26 

 
383 
93 
60 

 
299 
105 
80 

Sex 
  Females 
  Males 

 
329 
328 

 
288 
288 

 
265 
271 

 
246 
238 

Age at Scan (Years) 
   Mean 
   SD 

 
15.6 
2.3 

 
16.8 
2.3 

 
17.7 
2.3 

 
18.7 
2.3 

Self-declared Ethnicity 
   Caucasian 
   African American 
   Other 

 
483 
92 
82 

 
428 
77 
71 

 
401 
73 
62 

 
359 
63 
62 

Socioeconomic Status 
   6-12 years 
   13-20 years 

 
47 
610 

 
37 
539 

 
37 
499 

 
36 
448 

Family History Alcohol Density 
   Mean Score 
   SD 

 
0.20 
0.46 

 
0.00 
0.05 

 
0.17 
0.40 

 
0.16 
0.35 

Cumulative Traumatic Events 
   Mean 
   SD 

 
1.01 
1.04 

 
1.01 
1.05 

 
1.00 
1.03 

 
1.00 
1.05 

 

No/Low  Moderate   Heavy No/Low  Moderate   Heavy No/Low Moderate     Heavy

No/Low  Moderate   Heavy No/Low   Moderate  Heavy No/Low  Moderate  Heavy

Within-Person Age Change (Years)

Cohort-Age (Years)

-2.17 0.16 2.49
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Figure 2. Three-way interactions between drinking class, cohort-age and within-person age change. The rates 

of within-person age-related cortical thickness declines are similar across age cohorts in no/low drinkers, 

faster from the younger cohort and slower from the older cohort in moderate drinkers, and fastest from the 

younger cohort and slowest from the older cohort in heavy drinkers in all patterns (β-values = 0.065~0.182, t-

values = 2.842~8.002, q-values < 0.01) except for pattern 7 (β-value = 0.011, t-value = 0.724, q-value = 

0.469). 
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Table 2. Main effects of drinking class, within-person age change, and cohort-age per NMF pattern. 

 

Pattern β SD df t p q 

 Main effect of drinking class    

1 -0.152 0.081 1699.0 -1.873 0.061 0.143 

2 -0.215 0.078 1696.3 -2.752 0.006 0.042 

3 -0.110 0.092 1715.3 -1.194 0.233 0.326 

4 -0.180 0.090 1713.1 -2.014 0.044 0.143 

5 0.032 0.062 1711.0 0.520 0.603 0.704 

6 -0.086 0.070 1705.9 -1.221 0.222 0.326 

7 0.001 0.050 1670.6 0.023 0.982 0.982 

 Main effect of within-person age change   

1 -1.382 0.032 1617.0 -42.812 <0.001 <0.001 

2 -0.766 0.031 1615.5 -24.647 <0.001 <0.001 

3 -1.373 0.037 1620.6 -37.328 <0.001 <0.001 

4 -1.096 0.036 1618.4 -30.649 <0.001 <0.001 

5 -0.956 0.025 1617.8 -38.644 <0.001 <0.001 

6 -0.963 0.028 1616.1 -34.401 <0.001 <0.001 

7 -0.241 0.020 1611.1 -12.166 <0.001 <0.001 

 Main effect of cohort-age    

1 -0.702 0.069 658.5 -10.219 <0.001 <0.001 

2 -0.396 0.067 657.2 -5.933 <0.001 <0.001 

3 -0.826 0.073 659.7 -11.342 <0.001 <0.001 

4 -0.672 0.071 657.4 -9.468 <0.001 <0.001 

5 -0.596 0.049 657.1 -12.050 <0.001 <0.001 

6 -0.638 0.057 656.0 -11.177 <0.001 <0.001 

7 -0.127 0.049 656.9 -2.574 0.010 0.010 

 
Note: the regression models is “y ~ cohort-age + within-person age change + drinking class + sex + ethnicity + SES + family history of AUD density + life trauma + 
(1|participant ID)”. y is the mean cortical thickness of a pattern. β, fixed-effect regression coefficient; SD, standard deviation; df, degree of freedom; t, t value; p, 
uncorrected p value; q, FDR corrected p value. 
 

Table 3. Interaction effects among drinking class, within-person age change, and cohort-age per NMF-derived pattern. 

Pattern β SD df t p q 

 Drinking class x within-person age change interaction 1 

1 0.031 0.075 1615.1 0.416 0.678 0.790 

2 -0.033 0.073 1613.5 -0.458 0.647 0.790 

3 0.126 0.086 1618.6 1.475 0.140 0.327 

4 0.096 0.083 1616.5 1.156 0.248 0.433 

5 -0.002 0.058 1615.8 -0.033 0.973 0.973 

6 0.162 0.065 1614.1 2.480 0.013 0.093 

7 -0.073 0.046 1609.2 -1.592 0.112 0.327 

 Drinking class x cohort-age interaction 2   

1 0.237 0.036 1687.5 6.629 <0.001 <0.001 

2 0.135 0.035 1686.5 3.887 <0.001 <0.001 

3 0.238 0.041 1702.9 5.817 <0.001 <0.001 

4 0.249 0.040 1700.3 6.271 <0.001 <0.001 

5 0.134 0.028 1699.3 4.847 <0.001 <0.001 

6 0.213 0.031 1693.4 6.867 <0.001 <0.001 
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7 0.031 0.022 1663.6 1.386 0.166 0.166 

 Within-person age change x cohort-age interaction 3 

1 0.161 0.012 1597.5 13.339 <0.001 <0.001 

2 0.046 0.012 1596.8 3.757 <0.001 <0.001 

3 0.167 0.014 1598.5 11.990 <0.001 <0.001 

4 0.153 0.014 1596.5 11.233 <0.001 <0.001 

5 0.106 0.009 1596.1 11.227 <0.001 <0.001 

6 0.140 0.011 1595.1 13.340 <0.001 <0.001 

7 0.012 0.008 1597.0 1.534 0.125 0.125 

 Drinking class x within-person age change x cohort-age interaction 4 

1 0.161 0.024 1621.7 6.810 <0.001 <0.001 

2 0.065 0.023 1620.7 2.842 <0.001 <0.001 

3 0.182 0.027 1626.5 6.786 <0.001 <0.001 

4 0.166 0.026 1624.4 6.347 <0.001 <0.001 

5 0.094 0.018 1623.9 5.152 <0.001 <0.001 

6 0.163 0.020 1621.1 8.002 <0.001 <0.001 

7 0.011 0.015 1614.6 0.725 0.469 0.469 

 
Note: regression models are  
1, y ~ cohort-age + within-person age change * drinking class + sex + ethnicity + SES + family history of AUD density + life trauma + (1|participant ID);  
2, y ~ within-person age change + cohort-age * drinking class + sex + ethnicity + SES + family history of AUD density + life trauma + (1|participant ID);  
3, y ~ within-person age change * cohort-age + drinking class + sex + ethnicity + SES + family history of AUD density + life trauma + (1|participant ID);  
4, y ~ within-person age change : cohort-age : drinking class + sex + ethnicity + SES + family history of AUD density + life trauma + (1|participant ID).  
y is the mean cortical thickness of a pattern. β, fixed-effect regression coefficient; SD, standard deviation; df, degree of freedom; t, t value; p, uncorrected p value; q, 
FDR corrected p value. 
 

frontopolar frontal regions; pattern-3 is associated 

with regions; pattern-4 is associated with 

postcentral regions and superior parietal lobule; 

pattern-5 is mainly associated with anterior/middle 

cingulate cortex and bilateral insula; pattern-6 is 

associated to posterior cingulate areas, lingual 

gyrus, cuneus, calcarine sulcus, and primary visual 

cortex; and pattern-7 is related to parahippocampal 

gyrus. 

Main Effect of Cohort-Age 

Older cohort-age was associated with lower cortical 

thickness in all 7 patterns (β-values= -0.826~-0.127, 

t-values= -12.050~-2.574, q-values < 0.01; Table 2, 

Fig. S1). 

Main Effect of Within-Person Age Change 

Older within-person age was associated with lower 

cortical thickness in all 7 patterns (β-values= -

1.382~-0.241, t-values= -42.812~-12.166, q-values < 

0.001; Table 2, Fig. S2). 

Main Effect of Drinking Class 

Higher drinking class, indicative of heavier 

drinking, was associated with lower cortical 

thickness in pattern-2 (β-value= -0.215, t-value= -

2.752, q-value=0.042; Table 2, Fig. S3) but not the 

other patterns (β-values= -0.180~0.001, t-values= -

2.014~0.023, q-values > 0.1). 

Interaction of Within-Person Age Change and Cohort-
Age  

Significant interaction between within-person age 

change and cohort-age was found in all patterns (β-

values=0.046~0.167, t-values=3.757~13.340, q-

values < 0.001) except for pattern-7 (β-value=0.012, 

t-value=1.534, q-value=0.125). As shown in Table 3, 

Fig. S4, older cohorts had a slower rate of within-

person age-related cortical thickness decline as 

compared to younger cohorts. 

Interaction of Drinking Class and Cohort-Age  

Significant interactions were found in all patterns 

(β-values=0.134~0.249, t-values=3.887~6.867, q-

values < 0.001) except pattern-7 (β-value=0.031, t-
value=1.386, q-value=0.166). As shown in Table 3, 

Fig. S5, higher drinking class was associated with a 

slower rate of cohort-age-related cortical thickness 

decline. 

Interaction of Drinking Class and Within-Person Age 
Change  

No significant result was found in any pattern (β-

values= -0.073~0.162, t-values= -1.592~2.480, q-

values > 0.09; Table 3).  
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Interaction of Drinking Class, Cohort-age and Within-
Person Age Change 

Significant three-way interactions were found in all 

patterns (β-values=0.065~0.182, t-
values=2.842~8.002, q-values < 0.01) except for 

pattern-7 (β-value=0.011, t-value=0.725, q-

value=0.469). As shown in Table 3 and Fig. 2, the 

longitudinal rate of cortical thickness decline in 

no/low drinkers was similar for all age cohorts, 

decline among moderate drinkers was faster in the 

younger cohort and slower in the older cohort, 

decline among heavy drinkers was fastest in the 

younger cohort and slowest in the older cohort. 

Interaction of Drinking Class and Other Variables 

There was no significant interaction between 

drinking class and the other variables including sex, 

cumulative trauma, self-identified ethnicity, SES, 

family history of AUD. 

 

DISCUSSION 

We investigated the longitudinal effects of alcohol 

use on cortical development in a large adolescent 

sample. We applied NMF, a multivariate data-

driven method, to cluster vertices into 7 covarying 

patterns of cortical thickness. Significant decline in 

cortical thickness that was modulated by cohort-age 

and longitudinal progression (within-person age 

change) in 6 of 7 cortical thickness patterns. 

Participants in older cohorts, relative to younger 

cohorts, experienced slower declines in cortical 

thickness over longitudinal visits. Adolescents who 

engaged in heavier drinking exhibited lower cortical 

thickness in superior and middle frontal regions, 

and experienced slower cohort-age associated 

declines in cortical thickness across widely 

distributed brain areas including frontal, parietal, 

temporal and cingulate cortices. Of particular 

interest, the longitudinal rate of cortical thickness 

decline was similar for all age cohorts among no/low 

drinkers in widely distributed regions over study 

visits. However, moderate and heavy drinking 

differentially disrupted the trajectory of cortical 

thinning across age cohorts. Specifically, cortical 

thinning among moderate drinkers was faster in the 

younger cohort and slower in the older cohort, 

whereas cortical thinning among heavy drinkers 

was fastest in the younger cohort and slowest in the 

older cohort (Figure 2). 

Our results confirms that heavy drinking speeds-up 

the cortical thinning process, which is typical of 

adolescent brain development, particularly in 

younger adolescents and attenuates this process in 

older individuals (14). The present study is the 

largest to date to investigate cortical gray matter 

changes related to adolescent alcohol use and the 

first study to deploy an advanced data-driven 

multivariate method that is capable of identifying 

coordinated patterns of cortical thickness that are 

unconstrainted by anatomical boundaries (16). A 

small number of patterns are more sensitive at 

capturing statistically significant results compared 

to region-of-interest methods, which are unable to 

provide spatially targeted results, and whole brain 

vertex-wise analysis (14), which must survive 

stringent corrections for multiple comparisons. 

Consequently, both methods suffer from Type II 

error. More importantly, the patterns we identified 

are closely related to meaningful functional 

networks that recapitulate established patterns in 

large normative adolescent samples (16). Pattern-1 

(Fig. 1D) is aligned with the frontoparietal network 

(FPN; also known as central executive network, 

CEN) and parts of the temporal cortex. The FPN is 

known for coordinating goal-directed behaviors in a 

rapid, accurate, and flexible manner (25). Prior 

evidence supports that adolescent binge drinking is 

linked to reduced prefrontal activation during 

executive processing (26, 27), weaker frontoparietal 

connectivity (28), and impaired executive function, 

which is reliant on FPN (29). Pattern-5, which 

includes the anterior and middle cingulate cortices 

and bilateral insula, are part of the salience network 

(SN). The SN plays a crucial role in consciously 

integrating autonomic feedback and responses with 

internal goals and external demands (30). Pattern-5 

comports with evidence that adolescent binge 

drinking is linked to impaired response inhibition, 

which is heavily reliant on SN (31, 32). Adolescents 

who engage in binge drinking require increased 

effort when inhibiting prepotent responses to 

alcohol-related stimuli by engaging bilateral 

anterior insula and inferior frontal gyrus, both of 

which are core components of the SN (33, 34), as well 

as intact FPN function. The posterior cingulate 

cortex and precuneus within pattern-6 and the 

anterior cingulate cortex within pattern-5 are key 

components of the default mode network (DMN). 

The DMN is involved in self-referential processing, 

theory of mind (ToM), memory, and learning (35), 

which is active in the absence of goal-directed 

activity. Notably, the DMN is dysregulated in 

adolescents with family history of AUD (36) and 

adolescent binge drinkers have heightened 

connectivity between DMN regions, which impedes 

the maturation of affective and self-reflective neural 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.17.444458doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444458
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sun et al. 

 3 

systems and undermines the development of 

complex social and emotional behaviors (37, 38). 

Thus, our findings in FPN, SN, and DMN, networks 

integral to adolescent brain development (39-41), 

are consistent with evidence that adolescent alcohol 

exposure alters network activity and reconfigures 

network connectivity (42, 43). Our NMF-derived 

findings may guide hypothesis-driven investigations 

of alcohol effects on adolescent brain development. 

The longitudinal rate of cortical thickness decline 

was similar for all age cohorts in no/low drinkers. 

However, moderate and heavy drinking 

differentially disrupted this trajectory of cortical 

thinning across age cohorts. Specifically, cortical 

thinning was faster in the younger cohort and slower 

in the older cohort among moderate drinkers, and 

fastest in the younger cohort and slowest in the older 

cohort among heavy drinkers in 6 patterns (Table 3, 

Fig. 2). The typical pattern of (within-person) age-

related cortical thinning, which is more rapid in 

younger cohorts than older cohorts, is more 

disparate in moderate drinkers, and most disparate 

in heavy drinkers. Greater frequency and intensity 

of alcohol use appears to effect older cohorts by 

inducing more powerful neurotoxic effects in early 

adolescence and/or more profoundly delaying brain 

maturation via pruning in late adolescence. By 

contrast, alcohol adversely effects younger cohorts 

by delaying cortical maturation in early adolescence 

and/or eliciting severe neurotoxic effects in late 

adolescence. Relatedly, Squeglia et al (4) reported 

faster grey matter reduction only in adolescents 

engaged in heavy drinking. Previously published 

studies using anatomically defined ROIs obscured 

the underlying heterogeneity in age-related cortical 

thickness changes that may be associated with 

synaptic pruning that were revealed by our data-

driven approach. It is also conceivable that cortical 

areas with robust pruning during adolescence are 

particularly susceptible to disruption from heavy 

alcohol consumption (44). 

We found no significant interactions between 

drinking class and the other variables including 

lifetime trauma, SES, ethnicity, sex, and family 

history of alcohol use disorder. In a related 

NCANDA study, baseline PTSD symptoms but not 

the number of baseline traumatic events predicted 

moderate to heavy drinking longitudinally (45).  A 

previous NCANDA study also reported similar age-

related declines in cortical thickness in male and 

female adolescents and similar cortical thickness 

across races, suggesting that cortical thickness 

decline is typical of development (2). We reported 

that cumulative lifetime trauma and alcohol use 

interact to affect the volume and trajectory of 

hippocampal and amygdala substructures (19). It is 

possible that specific variables in adolescent 

drinkers, such as sex and trauma have stronger 

effects on cortical volume, surface area, and 

subcortical volume than on cortical thickness. 

Studies in small samples reported thinner cortices 

in adolescent male binge drinkers (N=14) and 

thicker cortices in adolescent female binge drinkers 

(N=15) compared to sex-matched alcohol-naïve 

controls and thinner cortices in frontal and parietal 

lobes in adolescents with a family history of AUD 

(N=95) than controls, especially among the youngest 

adolescents  Previously reported interactions 

between alcohol consumption and sex (13), or family 

history (46) in relatively small samples with specific 

clinical and demographic attributes may not 

generalize to our much larger and more 

representative sample. Large-scale studies of 

adolescent cortical development that assess the role 

of alcohol with other environmental insults such as 

childhood trauma, poverty, drug use, and education 

may prove to be informative. 

Strengths and Limitations  

A limitation of our study was that we did not control 

for cannabis or other substance use, but these 

occurred at extremely low levels in our sample. In 

addition, we analyzed the first four years of 

NCANDA data, but another time point that became 

available as we concluded data analysis will expand 

the sample size within each developmental cohort 

and may help define longer-term sequelae. Finally, 

our analysis draws only on cortical thickness data, 

but did not examine cortical surface area or white 

matter. Future studies that apply multi-modal 

imaging may discover novel effects of alcohol in the 

adolescent brain to inform treatment development. 

Our study has several strengths relative to previous 

investigations. First, we applied unsupervised 

machine learning to achieve clustering, data 

dimension reduction, and enhanced power. Second, 

we investigated three times more participants than 

previous studies. Third, we utilized ComBat to 

harmonize cortical thickness measurements across 

five NCANDA sites while preserving variance 

associated with biologically and behaviorally 

relevant variables (21). Finally, we leveraged 

longitudinal data with four yearly timepoints, which 

is rare among neuroimaging studies of psychiatric 

conditions. 

Conclusions 
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Multivariate data-driven method can successfully 

identify coordinated patterns of vertex-level cortical 

thickness variation. Age-related cortical thinning, 

which is typical of the adolescent neurodevelopment 

process, occurs more rapidly in younger individuals 

and less rapidly in older individuals who engage in 

heavy alcohol consumption as compared to low/non-

drinking adolescents. The present findings in the 

cortex mean that early adolescent binge drinking 

may have related adverse effects on wide ranging 

processes of cognition, emotion regulation, 

impulsivity, and social learning. 
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