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ABSTRACT
Beyond causing local ischemia and cell damage at the site of injury, stroke strongly

affects long-range anatomical connections, perturbing the functional organization of

brain networks. Several studies reported functional connectivity abnormalities

parallelling both behavioral deficits and functional recovery across different cognitive

domains. FC alterations suggest that long-range communication in the brain is altered

after stroke. However, standard FC analyses cannot reveal the directionality and time

scale of inter-areal information transfer. We used resting-state fMRI and

covariance-based Granger causality analysis to quantify network-level information

transfer and its alteration in stroke. Two main large-scale anomalies were observed in

stroke patients. First, inter-hemispheric information transfer was significantly decreased

with respect to healthy controls. Second, stroke caused inter-hemispheric asymmetries,

as information transfer within the affected hemisphere and from the affected to the intact

hemisphere was significantly reduced. Both anomalies were more prominent in

resting-state networks related to attention and language, and they correlated with

impaired performance in several behavioral domains. Overall, our findings support the

hypothesis that stroke provokes asymmetries between the affected and spared

hemisphere, with different functional consequences depending on which hemisphere is

lesioned.
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INTRODUCTION
Spontaneous brain activity is intrinsically organized into large-scale networks of

correlated activity (Bullmore and Sporns, 2009; Damoiseaux et al., 2006; Fox et al.,

2005), also known as resting-state networks (RSNs). The functional organization of

RSNs is altered in stroke (Corbetta et al., 2018, 2015). In fact, local ischemia, which

damages cells and neural connections at the site of injury, primarily affects subcortical

regions and white matter, thus altering long-range functional connectivity (FC) between

cortical areas. Two types of large-scale FC alterations affect RSNs (Joshua Sarfaty

Siegel et al., 2016): i) a decrease of within-network interhemispheric FC (Carter et al.,

2010; Golestani et al., 2013; He et al., 2007; New et al., 2015; Park Chang-hyun et al.,

2011; Ramsey et al., 2016; Joshua Sarfaty Siegel et al., 2016; Tang et al., 2016); ii) an

increase of between-network intra-hemispheric FC (Baldassarre et al., 2014; Eldaief et

al., 2017; Ramsey et al., 2016; Joshua Sarfaty Siegel et al., 2016). As a consequence,

within-RSN connections are weakened, while between-RSN connections are

strengthened, which translates into an overall decrease of network modularity (Gratton

et al., 2012). The presence of such common network-level perturbations explains why

lesions in different locations in the brain produce remarkably similar behavioral deficits

in different patients (Corbetta et al., 2018).

FC alterations suggest that behavioral deficits are due to the perturbation of inter-areal

information flow. However, FC analyses cannot reveal the directionality or time scale of

the information flow, leaving several questions open: i) is the stroke-related decrease of

interhemispheric FC associated with a symmetric or asymmetric decrease in information

flow between the damaged and non-damaged hemisphere? ii) is the increase of

between-network intra-hemispheric FC paralleled by a change in intra-hemispheric

information flow? iii) to which extent do changes in network-level information flows

predict cognitive deficits? To address these questions, we performed covariance-based

Granger Causality (GC) analyses (Brovelli et al., 2015) of resting-state fMRI data

collected from stroke patients in the sub-acute phase (two weeks after stroke onset).

Data were provided by the Washington university stroke database (Corbetta et al.,
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2015), and included structural lesions, resting-state fMRI, and neuropsychological

scores for a large cohort of first-time stroke patients and age-matched control subjects.

Analyses revealed that inter-hemispheric information transfer was significantly

decreased in stroke patients with respect to healthy controls. In addition, pronounced

inter-hemispheric imbalances in information transfer were observed in patients. Both

anomalies were more prominent in resting-state networks related to attention and

language, and they paralleled deficits in several behavioral domains.

MATERIALS & METHODS

Brain imaging and behavioral measurements

Details about participants, neuroimaging data acquisition and preprocessing, and brain

lesion identification can be found in previous publications on the same data set

(Corbetta et al., 2015, Siegel et al., 2016). Therefore, here we report only key

information allowing for a self-contained reading of the paper.

Subject Enrollment and Retention. Participants (n = 172) were prospectively recruited.

First-time stroke patients with clinical evidence of motor, language, attention, visual, or

memory deficits based on neurological examination were included. One hundred and

thirty-two patients met all inclusion criteria (for details see Corbetta et al., 2015) and

completed the entire subacute protocol (mean age 52.8 years with range 22-77, 119

right-handed, 63 females, 64 right hemisphere). Patients were excluded from analysis

for poor quality imaging data (n = 5), fewer than 400 frames remaining after motion

scrubbing (n=8), or excessive hemodynamic lags (see below, n = 6) leaving 113

subjects in the final analysis. Demographically matched controls (n = 31) were recruited

and underwent the same behavioral and imaging exams (mean age 55.7 years, SD =

11.5, range 21-83) in two separate scanning sessions (time point 1 and time point 2).

Controls were matched to the study population in age, gender, handedness, and level of

education. Controls were excluded based on a low number of frames after motion
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scrubbing (n = 4 at time point 1, n = 6 at time point 2), leaving 27 controls at time point 1

and 25 controls at time point 2.

Neuropsychological evaluation. Participants underwent a behavioral battery devised to

assess motor, language, attention, memory, and visual function following each scanning

session (details can be found in in Siegel et al., 2016). As described in Corbetta et al.

2015, principal components analysis was performed on all tests within a behavioral

domain to produce a single score that predicted the highest percentage of variance

across tasks. The left/right ‘Motor’ scores described left/right body motor performance

that correlated across shoulder flexion, wrist extension/flexion, ankle flexion, hand

dynamometer, nine-hole peg, action research arm test, timed walk, functional

independence measure, and the lower extremity motricity index. The ‘Visual Field

Attention’ score described contra-lesional attention biases in Posner, Mesulam, and

behavioral inattention center-of-cancellation tasks. The ‘Sustained Attention’ score

loaded on non-spatial measures of overall performance, reaction time, and accuracy on

the same tests. The ‘Shifting Attention’ score loaded on tests indexing attention shifts,

e.g. the difference in response times for attended versus unattended targets. The

‘Spatial Memory’ score loaded on the Brief Visuospatial Memory Test and spatial span.

The ‘Verbal Memory’ score loaded on the Hopkins Verbal Learning Test. The ‘Language’

score loaded on tests devised to assess language comprehension (complex ideational

material, commands, reading comprehension) and production (Boston naming, oral

reading). The score of each of the seven factors for each patient was normalized using

the mean and standard deviation of the corresponding factor scores in age-matched

controls.

Brain imaging acquisition. Patients were scanned two weeks (mean = 13.4 days,

SD=4.8 days) after stroke onset. Controls were scanned twice at an interval of

3-months. All imaging was performed using a Siemens 3T Tim-Trio scanner at the

Washington University School of Medicine (WUSM) and a standard 12-channel head

coil. The MRI protocol included structural, functional, pulsed arterial spin labeling

(PASL), and diffusion tensor scans. Structural scans included: i) a sagittal T1-weighted
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MP-RAGE (TR = 1950 msec, TE = 2.26 msec, flip angle=90°, voxel size=1.0×1.0×1.0

mm); ii) a transverse T2-weighted turbo spin-echo (TR = 2500 msec, TE=435msec,

voxel- size=1.0×1.0×1.0mm); and iii) sagittal FLAIR (fluid attenuated inversion recovery)

with TR = 7500 msec, TE = 326 msec and voxel-size=1.5×1.5×1.5mm. Resting-state

functional scans were acquired with a gradient echo EPI sequence (TR = 2000 msec,

TE = 27 msec, 32 contiguous 4 mm slices, 4×4mm in-plane resolution) during which

participants were instructed to fixate a small white cross centered on a screen with a

black background in a low luminance environment. Six to eight resting state fMRI runs,

each including 128 volumes (for a total of 30 minutes) were acquired. A camera fixated

on the eyes was used to determine when a subject’s eyes were open or closed during

scans. Patients had eyes open on 65.6±31.9% of frames and controls had eyes open

on 76.8±30.2% of frames (t (114) = -1.7, p = 0.091).

Brain lesion masking. Lesions were manually segmented on individual structural MRI

images (T1-weighted MP-RAGE, T2-weighted spin echo images, and FLAIR images

obtained from 1 to 3 weeks post-stroke) using the Analyze biomedical imaging software

system (www.mayo.edu; Robb and Hanson, 1991). Two board-certified neurologists (Dr.

Maurizio Corbetta and Dr. Alexandre Carter) reviewed all segmentations. In

hemorrhagic strokes, edema was included in the lesion. A neurologist (MC) reviewed all

segmentations a second time paying special attention to the borders of the lesions and

degree of white matter disease. Atlas-registered segmented lesions ranged from 0.02

cm3 to 82.97 cm3 with a mean of 10.15 cm3 (SD = 13.94 cm3). Lesions were summed to

display the number of patients with structural damage for each voxel.

fMRI data preprocessing. Preprocessing of fMRI data included: i) compensation for

asynchronous slice acquisition using sinc interpolation; ii) elimination of odd/even slice

intensity differences resulting from interleaved acquisition; iii) whole brain intensity

normalization to achieve a mode value of 1000; iv) removal of distortion using synthetic

field map estimation and spatial realignment within and across fMRI runs; v) resampling

to 3mm cubic voxels in atlas space including realignment and atlas transformation in

one resampling step. Cross-modal (e.g., T2-weighted to T1-weighted) image
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registration was accomplished by aligning image gradients. Cross-modal image

registration in patients was checked by comparing the optimized voxel similarity

measure to the 97.5 percentile obtained in the control group. In some cases, structural

images were substituted across sessions to improve the quality of registration.

Following cross-modal registration, data were passed through three additional

preprocessing steps. First, tissue-based regressors were computed based on

FreeSurfer segmentation (Fischl, Sereno, Tootell, & Dale, 1999). The following sources

of spurious variance were removed by regression: i) six parameters obtained by rigid

body correction of head motion; ii) the signal averaged over the whole brain; iii) signal

from ventricles and CSF; iv) signal from white matter. For Undirected Functional

Connectivity (UFC) computations, we additionally regressed v) the average signal for

gray matter. This step, commonly called global signal regression (GSR) was not applied

for Granger causality (GC) computations. The rationale for this choice was to avoid any

potential suppression of highly variable signals (Nalci et al., 2019) and distortion of

information flow estimates using GC. Second, we performed temporal filtering retaining

frequencies in the 0.009–0.08 Hz band. Third, we applied frame censoring meaning that

the first four frames of each BOLD run were excluded. Frame censoring was

implemented using frame wise displacement (Power et al., 2014) with a threshold of

1mm. This frame-censoring criterion was uniformly applied to all R-fMRI data (patients

and controls).

Cortical surface processing. Surface generation and processing of functional data

followed procedures similar to Glasser et al. (Glasser et al., 2013), with additional

consideration for cortical segmentation in stroke patients. First, anatomical surfaces

were generated for each subject’s T1MRI using FreeSurfer automated segmentation

(Fischl et al., 1999). This included brain extraction, segmentation, generation of white

matter and pial surface, inflation of the surfaces to a sphere, and surface shape-based

spherical registration to the subject’s “native” surface to the fs average surface.

Segmentations were manually checked for accuracy. For patients in whom the stroke

disrupted automated segmentation, or registration, values within lesioned voxels were

filled with normal atlas values prior to segmentation, and then masked immediately after

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/


(7 patients). The left and right hemispheres were then resampled to 164,000 vertices

and registered to each other (Van Essen et al., 2001), and finally down-sampled to

10,242 vertices each (a combined total of 18,722 vertices after exclusion of the medial

wall) for projection of functional data. Following preprocessing, BOLD data were

sampled to each subject’s individual surface (between white matter and pial surface)

using a ribbon-constrained sampling available in Connectome Workbench (Marcus et

al., 2013). Voxels with a high coefficient of variation (0.5 standard deviations above the

mean coefficient of variation of all voxels in a 5 mm sigma Gaussian neighborhood)

were excluded from volume to surface mapping (Glasser et al., 2013). Time courses

were then smoothed along the 10,242 vertex surface using a 3mm FWHM Gaussian

kernel. All brain surface visualizations were generated using Connectome Workbench

(Marcus et al., 2013).

Brain parcellation scheme. We used a cortical surface parcellation generated by Gordon

& Laumann and colleagues (Gordon et al., 2016). The parcellation is based on R-fMRI

boundary mapping and achieves full cortical coverage and optimal region homogeneity.

The parcellation includes 324 regions of interest (159 left hemisphere, 165 right

hemisphere). Note that the original parcellation includes 333 regions, while here all

regions less than 20 vertices (approximately 50 mm2) were excluded. This cutoff was

arbitrarily chosen based on the assumption that parcels below this size would have

unreliable signal given 4 mm sampling of our functional data. Notably, the parcellation

was generated on 120 young adults aged 18-33 and is applied here to adults aged

21-83. To generate parcel-wise connectivity matrices, time courses of all vertices within

a parcel were averaged. For each ROI, we defined its center-of-mass coordinates

as the average of the (x,y,z) coordinates of all vertices in the ROI. For each ROI,(𝑥‾, 𝑦‾, 𝑧)‾

identified the homologous regions as the ROI in having the lowest distance from

(i.e., the ROI closest to be symmetrically located in the opposite hemisphere).(− 𝑥‾, 𝑦‾, 𝑧)‾

In addition to the 324 cortical parcels, we also defined a set of 19 sub-cortical and

cerebellar regions based on the FreeSurfer segmentation: for each hemisphere 9

regions consisting of cerebellum, thalamus, caudate, putamen, pallidum, hippocampus,

amygdala, accumbens and ventral dorsal caudate, plus brainstem (Fischl et al., 2002).
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Granger causality analysis and inter-areal information transfer

Granger Causality (GC) framework. One of the most successful data-driven methods to

quantify the degree of communication from statistical dependencies between neural

signals is based on the Wiener-Granger causality principle (Granger, 1980; Brovelli et

al., 2004; Ding et al., 2006; Bressler and Seth, 2011; Seth et al., 2015). In order to

describe the Granger causality framework, let us consider two (discrete) time series

, representing the activity of two subsystems sampled at discrete times𝑋 = {𝑋
𝑡
} 𝑌 = {𝑌

𝑡
}

t={1,2,3,...,n} , where we assume that times are measured in units of the sampling time

TR. Standard undirected functional connectivity (UFC) is classically computed as the

Pearson’s correlation, defined as where and are respectively the𝑅 = σ(𝑋,𝑌)
σ(𝑋)σ(𝑌) σ(𝑋) σ(𝑌)

standard deviations of and and is their covariance within the selected𝑋
𝑡

𝑌
𝑡

σ2 (𝑋, 𝑌)

time window. The UFC only considers dependencies between and for the same t.𝑋
𝑡

𝑌
𝑡

Information-theoretically, this type of dependency is quantified by the mutual information

, which is a simple function of for Gaussian data,𝐼(𝑋
𝑡
; 𝑌

𝑡
) 𝑅 𝐼(𝑋

𝑡
; 𝑌

𝑡
) =− 1/2𝑙𝑜𝑔(1 − 𝑅2)

. The UFC is insensitive to the temporal structure of correlation between X and Y, since

it is invariant under permutation of t. On the other hand, the framework based on

Granger causality (Granger 1963; 1980) and further developed by Geweke (Geweke,

1982) considers dependencies between two time series and their “lagged” versions with

different lags . Let us assume that is the maximum lag at which dependence is1, 2,... 𝐿

observed: in other words, , are not dependent on for i.e., he𝑋
𝑡

𝑌
𝑡

𝑋
τ
, 𝑌

τ
... τ < 𝑡 − 𝐿,

values of and occurring before a time in the past. One can thus restrict𝑋 𝑌 𝑡 − 𝐿

attention to dependencies between , and the preceding values of the time series,𝑋
𝑡

𝑌
𝑡

𝐿

and (1)𝑋
𝑡−1
(𝐿) ≡ 𝑋

𝑡−1
, 𝑋

𝑡−2
, ..., 𝑋

𝑡−𝐿
𝑌

𝑡−1
(𝐿) ≡ 𝑌

𝑡−1
, 𝑌

𝑡−2
, ..., 𝑌

𝑡−𝐿
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Interdependencies between the two time series reflected into the fact that the time

series of contains information about , and vice versa. The total amount of𝑌 𝑋
𝑡

information about contained in can be quantified by the mutual information between𝑋
𝑡

𝑌

and (present and past): . By virtue of the identity𝑋
𝑡

𝑌 𝐼(𝑋
𝑡
; 𝑌

𝑡
, 𝑌

𝑡−1
(𝐿) )

, this quantity can be decomposed into an𝐼(𝐴; 𝐵𝐶) = 𝐼(𝐴; 𝐵) + 𝐼(𝐴; 𝐶|𝐵)

“instantaneous” and a “lagged” term:

(2)𝐼(𝑋
𝑡
; 𝑌

𝑡
,  𝑌

𝑡−1
(𝐿) ) = 𝐼(𝑋

𝑡
; 𝑌

𝑡
|𝑌

𝑡−1
(𝐿) ) + 𝐼(𝑋

𝑡
; 𝑌

𝑡−1
(𝐿) )

The conditioning on the instantaneous term implies that measures𝐼(𝑋
𝑡
; 𝑌

𝑡
|𝑌

𝑡−1
(𝐿) )

information about contained exclusively in (and not already contained in ).𝑋
𝑡

𝑌
𝑡

𝑌
𝑡−1
(𝐿)

The basic idea of Granger causality is that contains exclusive information about ,𝑌 𝑋
𝑡

which is not already present in the time series of , i.e., in . To obtain the𝑋 𝑋
𝑡−1
(𝐿)

“exclusive” information about contained in one should further condition over :𝑋
𝑡

𝑌 𝑋
𝑡−1
(𝐿)

(3)𝐼(𝑋
𝑡
; 𝑌

𝑡
, 𝑌

𝑡−1
(𝐿) |𝑋

𝑡−1
(𝐿) )

and again obtain an “instantaneous” and a “lagged” term:

(4)𝐼(𝑋
𝑡
; 𝑌

𝑡
, 𝑌

𝑡−1
(𝐿) |𝑋

𝑡−1
(𝐿) ) = 𝐼(𝑋

𝑡
; 𝑌

𝑡
|𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) ) + 𝐼(𝑋

𝑡
; 𝑌

𝑡−1
(𝐿) |𝑋

𝑡−1
(𝐿) )

The first term is called instantaneous causality (IC) and usually indicated by 𝐹
𝑋⋅𝑌

(5)𝐹
𝑋⋅𝑌

≡𝐼(𝑋
𝑡
; 𝑌

𝑡
|𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) )

The second term is called directed causality (DC) from to and usually indicated by𝑌 𝑋

𝐹
𝑌→𝑋

(6)𝐹
𝑌→𝑋

≡𝐼(𝑋
𝑡
; 𝑌

𝑡−1
(𝐿) |𝑋

𝑡−1
(𝐿) )

Symmetrically, the exclusive information about contained in is measured by𝑌
𝑡

𝑋

(7)𝐼(𝑌
𝑡
; 𝑋

𝑡
, 𝑋

𝑡−1
(𝐿) |𝑌

𝑡−1
(𝐿) ) = 𝐼(𝑋

𝑡
; 𝑌

𝑡
|𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) ) + 𝐼(𝑌

𝑡
; 𝑋

𝑡−1
(𝐿) |𝑌

𝑡−1
(𝐿)

 
)
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The first term coincides with and the second one is the directed causality from to𝐹
𝑋⋅𝑌

𝑋

,𝑌

(8)𝐹
𝑋→𝑌

≡𝐼(𝑌
𝑡
; 𝑋

𝑡−1
(𝐿) |𝑌

𝑡−1
(𝐿) )

Figure 1. Interpretation of instantaneous and directed Granger causality in terms of information flows

between two areas.

The measures , and were proposed by Geweke (Geweke, 1982), who𝐹
𝑋→𝑌

𝐹
𝑌→𝑋

𝐹
𝑋⋅𝑌

also defined the total interdependence between and as the sum of all the three𝑋 𝑌

terms,

(9)𝐹
𝑋,𝑌

= 𝐹
𝑋→𝑌

+ 𝐹
𝑌→𝑋

+ 𝐹
𝑋⋅𝑌

This is the “new” dependency between and ”created” at each time ,  indeed𝑋 𝑌 𝑡

(10)𝐹
𝑋,𝑌

= 𝐼(𝑋
𝑡
, 𝑋

𝑡−1
(𝐿) ; 𝑌

𝑡
, 𝑌

𝑡−1
(𝐿) ) − 𝐼(𝑋

𝑡−1
(𝐿) ; 𝑌

𝑡−1
(𝐿) )

Thus, in the GC framework, the total interdependence between two signals can be split

into three terms: two directed Granger causality (DC) terms and an instantaneous

Granger causality (IC) term. The DC terms represent a directed flow of(𝐹
𝑋→𝑌

,  𝐹
𝑌→𝑋

)

information from to or vice versa, occurring over a timescale greater than 1 TR (fig.𝑋 𝑌

1b). The IC term ( ) represents information shared between and𝐹
𝑋⋅𝑌

𝑋 𝑌
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“instantaneously”, i.e., in less than one TR, and it accounts for direct communication, or

unconsidered influences that may originate from common (e.g., subcortical) sources,

occurring in less then one TR (fig. 1a).

Granger causality measures can therefore be formulated in completely

information-theoretical terms (Barnett et al., 2009; Marko, 1973; Rissanen and Wax,

1987; Schreiber, 2000). Information-theoretic measures based on the Wiener-Granger

principle, such as Transfer Entropy (Schreiber, 2000) and Directed Information (Massey,

1990), represent the most general measures of Wiener-Granger causality and capture

any (linear and nonlinear) time-lagged conditional dependence between neural signals

(Besserve et al., 2015; Vicente et al., 2011).

Covariance-based Granger Causality. The GC measures , and capture𝐹
𝑋→𝑌

𝐹
𝑌→𝑋

𝐹
𝑋⋅𝑌

statistical relations among the values of in a time window of length including𝑋, 𝑌 𝐿 + 1

the “present” values , and the “past” values . Together,𝑋
𝑡
, 𝑌

𝑡
𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) 𝑋

𝑡
, 𝑌

𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿)

define a vector of length values. The GC measures can be ultimately expressed2𝐿 + 2

in terms of Shannon entropies involving the ( -variate) probability distribution2𝐿 + 2

and some of its marginals:𝑃(𝑋
𝑡
, 𝑌

𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) )

(11)𝐹
𝑋→𝑌

= 𝐻(𝑌
𝑡
, 𝑌

𝑡−1
(𝐿) ) − 𝐻(𝑌

𝑡−1
(𝐿) ) − 𝐻(𝑌

𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) ) + 𝐻(𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) )

𝐹
𝑋⋅𝑌

= 𝐻(𝑌
𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) ) + 𝐻(𝑋

𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) ) − 𝐻(𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) ) − 𝐻(𝑋

𝑡
, 𝑌

𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) )

Assuming the distribution to be stationary, the classical method to𝑃(𝑋
𝑡
, 𝑌

𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) )

compute entropies is the “binning method”. One considers running windows of length𝑇

, and for each window extracts the vector , thus obtaining𝐿 + 1 𝑋
𝑡
, 𝑌

𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) 𝑇

samples of . Binning each univariate variable and collecting the bin counts, the2𝐿 + 2

joint probability distribution is approximated by (multidimensional)𝑃(𝑋
𝑡
, 𝑌

𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) )

histogram (Beirlant et al., 1997; Treves and Panzeri, 1995). If bins are used for each𝑛
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univariate variable, the total number of multidimensional bins is . As a rule of𝑛2(𝐿+1)

thumb, to get at least a rough estimate of the bin counts one needs at least as many

samples as bins, so points. Since , this requires a large sample for𝑇≥𝑛2(𝐿+1) 𝐿≥1 𝑇≥𝑛4

estimation. In order to make the estimation feasible on short time windows, a common

solution is to approximate the distribution with the first term of the Gram-Charlier

expansion, i.e., by a Gaussian distribution with the same second order moments

(covariance matrix) as the given distribution. This approximation amounts to keeping

only second order statistics, and neglecting higher-order terms, and is relatively

accurate for fMRI data (Hlinka et al., 2011). In this approximation, the distribution

and its marginals are effectively replaced by the covariance matrix𝑃(𝑋
𝑡
, 𝑌

𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) )

and its submatrices. Estimating requires only to estimateΣ (𝑋
𝑡
, 𝑌

𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) ) Σ

parameters corresponding to the second moments of the distribution.(2𝐿 +  2)2

Furthemore, entropies can be simply computed with the formula

(12)           𝐻(𝐴) =
𝑛

𝐴

2 𝑙𝑜𝑔 2π𝑒 +
1

2 𝑙𝑜𝑔|Σ(𝐴) |

where is the covariance matrix of , the dimension of , and is theΣ (𝐴) 𝐴 𝑛
𝐴

𝐴 |⋅|

determinant. In this covariance-based approximation, GC measures are expressed in

terms of determinants of submatrices of the covariance matrix of the data (Brovelli et al.,

2015). For instance,

(13)𝐹
𝑋→𝑌

=
1

2 𝑙𝑜𝑔|Σ(𝑌
𝑡
, 𝑌

𝑡−1
(𝐿) )| −

1

2 𝑙𝑜𝑔|Σ(𝑌
𝑡
)| +  

−  
1

2 𝑙𝑜𝑔|Σ(𝑌
𝑡
, 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) )| +

1

2 𝑙𝑜𝑔|Σ(𝑋
𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) ))|

The covariance-based GC estimation is equivalent to the parametric estimation of GC

from an autoregressive model with Gaussian innovations, i.e., the traditional way to

estimate Granger causality.
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Gaussian-copula-based estimation of GC. The GC measures , and can𝐹
𝑋→𝑌

𝐹
𝑌→𝑋

 𝐹
𝑋⋅𝑌

all be written as appropriate sums of mutual information (MI) terms. For instance,

(14)𝐹
𝑋→𝑌

= 𝐼(𝑌
𝑡
; 𝑋

𝑡−1
(𝐿) |𝑌

𝑡−1
(𝐿) ) = 𝐼(𝑌

𝑡
; 𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) ) − 𝐼(𝑌

𝑡
; 𝑌

𝑡−1
(𝐿) )

The MI is invariant under monotonic transformations of the marginals, and this fact can

be exploited to relax the assumption of Gaussianity. In particular, one can replace the

assumption of Gaussianity with the weaker assumption of a Gaussian copula (Ince et

al., 2017): that the joint distribution of the variables can be rendered Gaussian by

means of local transformations on the marginals. Formally, consider the transformations

, (14)𝑋
~

= 𝑡(𝑋) 𝑌
~

= 𝑢(𝑌)

where , are monotonic functions. The Gaussian copula assumption is equivalent to𝑡 𝑢

the existence of , such that is Gaussian. While Gaussianity imposes a linear𝑡 𝑢 𝑃(𝑋
~

, 𝑌
~

)

dependence between variables, the Gaussian copula assumption allows for more

general monotonic dependence (Ince et al., 2017). Under the Gaussian copula

assumption, there is a simple way to compute the MI. Since the MI is invariant under

monotonic transformations of the marginals, , and since there exist𝐼(𝑋; 𝑌) = 𝐼(𝑋
~

:) 𝑋
~

, 𝑌
~

such that is Gaussian, it is sufficient to find and compute with the𝑃(𝑋
~

, 𝑌
~

) 𝑋
~

, 𝑌
~

𝐼(𝑋
~

; 𝑌
~

)

covariance-based formula (12), which is exact for .𝑋
~

, 𝑌
~

Finding is easy. Consider two random variables , with joint cumulative distribution𝑋
~

, 𝑌
~

𝑋 𝑌

function (CDF) and marginal CDFs , . Consider𝐻(𝑋, 𝑌) 𝐹(𝑋) 𝐺(𝑋)

, (16)𝑡(𝑋) = Φ−1(𝐹(𝑋)) 𝑢(𝑌) = Φ−1(𝐺(𝑌))

where is the CDF of a standard normal variable. One can immediately show thatΦ

, are standard normal variables, i.e., , .𝑋
~

= 𝑡(𝑋) 𝑌
~

= 𝑢(𝑌) 𝐹
~

(𝑋
~

) = Φ(𝑋
~

) 𝐺
~

(𝑌
~

) = Φ(𝑌
~

)

Applying the covariance-based approach to the transformed variables, one has

, and by virtue of the invariance .𝐼(𝑋
~

 ; 𝑌
~

) = 1
2 𝑙𝑜𝑔

|Σ
𝑋
~||Σ

𝑌
~|

|Σ
𝑋
~

𝑌
~| 𝐼(𝑋; 𝑌) = 𝐼(𝑋

~
 ; 𝑌

~
)

The Gaussian copula evaluation of the MI is not exact. In general, even though the

marginal distribution of are Gaussian, the joint distribution is not perfectly a𝑋
~

 , 𝑌
~
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bivariate Gaussian. This is true only if the copula, i.e., the part of the distribution

specifying the dependence between the two variables, is Gaussian (see Ince et al. 2017

for a definition of copula and discussion of this point). However, for many distributions

the Gaussian copula assumption is approximately met. In summary, one obtains the

following algorithm to compute the MI: i) given samples , approximate ,{𝑋
𝑖
, 𝑌

𝑖
} 𝐹(𝑋) 𝐺(𝑌)

with the empirical CDFs , and compute𝐹(𝑋
𝑖
) = 𝑟𝑎𝑛𝑘(𝑋

𝑖
)/𝑁 𝐺(𝑌

𝑖
) = 𝑟𝑎𝑛𝑘(𝑌

𝑖
)/𝑁

, . and are normally𝑡(𝑋
𝑖
) = Φ−1(𝑟𝑎𝑛𝑘(𝑋

𝑖
)/𝑁) 𝑢(𝑌

𝑖
) = Φ−1(𝑟𝑎𝑛𝑘(𝑌

𝑖
)/𝑁) 𝑡(𝑋

𝑖
) 𝑢(𝑌

𝑖
)

distributed and have the same MI as ii) compute the MI from the samples𝑋
𝑖
, 𝑌

𝑖

with the covariance-based method. In our work, we have computed all GC{𝑡(𝑋
𝑖
), 𝑢(𝑌

𝑖
)}

measures by expressing them in terms of sums of MIs and then applying the

Gaussian-copula-based estimation to each term in the sum.

Overall, the first advantage of bivariate gaussian-copula and covariance-based GC is its

applicability to large networks of nodes, such as the 343 nodes used in this study. Most

other methods to infer directed GC (such as multivariate Granger causality) are more

accurate in inferring direct (i.e., non-mediated) influences, but usually applicable to only

smaller networks (of the order of 100 nodes) (Tang et al., 2012; Stramaglia et al., 2016).

The use of covariance-based GC does not require to select a specific sub-network of

nodes, or to average BOLD signals over large regions (which would imply a

considerable signal loss, due to potential inhomogeneities). A second advantage is its

estimability from short signals. This property allows us to estimate GC from BOLD time

series of 400-800 time points, i.e., the time series of single subjects. Thus, we do not

need to concatenate several subjects to perform the estimation, and we can obtain

individual estimates. These two key properties enable a direct comparison of Granger

causality results with previous FC studies.

Choice of the appropriate lag (L). GC measures , and depend on the𝐹
𝑋→𝑌

𝐹
𝑌→𝑋

𝐹
𝑋⋅𝑌

maximum lag used. Intuitively, should be as large as to include all points in the past𝐿 𝐿

that have correlations with , . This would roughly correspond to the autocorrelation𝑋
𝑡

𝑌
𝑡

decay time of the time series. For rs-fMRI, this is of the order of 10s (5 TR). More
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rigorously, we tested how many points in the past significantly contribute to predicting

the present values of the time series by assuming a specific form for the process

generating the data. If we assume that the data are generated by a Gaussian vector

autoregressive (VAR) process of length 𝐿

, (17)𝑋
𝑡

=
𝑠=1

𝐿

∑ 𝑎
𝑥𝑥,𝑠

𝑋
𝑡−𝑠

+ 𝑎
𝑥𝑦,𝑠

𝑌
𝑡−𝑠

+ ε
𝑥

𝑌
𝑡

=
𝑠=1

𝐿

∑ 𝑎
𝑦𝑥,𝑠

𝑋
𝑡−𝑠

+ 𝑎
𝑦𝑦,𝑠

𝑌
𝑡−𝑠

+ ε
𝑦

where , are (possibly correlated) Gaussian innovations. This can be rewritten asε
𝑥

ε
𝑦

,𝑋
𝑡

= 𝐴
𝑥𝑥

· 𝑋
𝑡−1
(𝐿) + 𝐴

𝑥𝑦
· 𝑌

𝑡−1
(𝐿) + ε

𝑥
𝑌

𝑡
= 𝐴

𝑦𝑥
· 𝑋

𝑡−1
(𝐿) + 𝐴

𝑦𝑦
· 𝑌

𝑡−1
(𝐿) + ε

𝑦

(18)

with vectors , , . In this setting are Gaussian with means𝐿×1 𝐴
𝑥𝑥

, 𝐴
𝑥𝑦

𝐴
𝑦𝑥

𝐴
𝑦𝑦

𝑋
𝑡
, 𝑌

𝑡

, and covariance given by theµ
𝑥

= 𝐴
𝑥𝑥

𝑋
𝑡−1
(𝐿) + 𝐴

𝑥𝑦
𝑌

𝑡−1
(𝐿) µ

𝑦
= 𝐴

𝑦𝑥
𝑋

𝑡−1
(𝐿) + 𝐴

𝑦𝑦
𝑌

𝑡−1
(𝐿) σ 2×2

covariance matrix of , . Using least squares estimation, one obtains the best fit forε
𝑥

ε
𝑦

the parameters

, , ,𝐴
𝑥𝑥,𝑠

=
𝑐𝑜𝑣(𝑋

𝑡
,𝑋

𝑡−𝑠
)

𝑣𝑎𝑟(𝑋
𝑡−𝑠

) 𝐴
𝑥𝑦,𝑠

=
𝑐𝑜𝑣(𝑋

𝑡
,𝑌

𝑡−𝑠
)

𝑣𝑎𝑟(𝑌
𝑡−𝑠

) 𝐴
𝑦𝑥,𝑠

=
𝑐𝑜𝑣(𝑌

𝑡
,𝑋

𝑡−𝑠
)

𝑣𝑎𝑟(𝑋
𝑡−𝑠

)

, (19)𝐴
𝑦𝑦,𝑠

=
𝑐𝑜𝑣(𝑌

𝑡
,𝑌

𝑡−𝑠
)

𝑣𝑎𝑟(𝑌
𝑡−𝑠

) σ =  Σ(𝑋
𝑡
𝑌

𝑡
|𝑋

𝑡−1
(𝐿) 𝑌

𝑡−1
(𝐿) )

where is the partial covariance matrix ofΣ(𝐴|𝐵) = Σ(𝐴) − Σ(𝑋, 𝑌)Σ−1(𝐵)Σ(𝐴, 𝐵)𝑇 𝐴

given , with .𝐵 𝑑𝑒𝑡 σ =  |Σ(𝑋
𝑡
𝑌

𝑡
, 𝑋

𝑡−1
(𝐿) 𝑌

𝑡−1
(𝐿) )| −  |Σ(𝑋

𝑡−1
(𝐿) 𝑌

𝑡−1
(𝐿) )|

An appropriate choice of is given by model comparison, i.e., by fitting models with𝐿

different to the data and selecting the model yielding the “best fit”. Since the models𝐿

for increasing are nested (models with higher include models with lower as a𝐿 𝐿 𝐿

special case), the likelihood of the models increases monotonically as a function of . To𝐿

avoid overfitting, the customary procedure with nested models is to select the proper 𝐿

by a model-comparison criterion penalizing models with a larger number of parameters.

Here, we used the common BIC criterion (McQuarrie and Tsai, 1998) that assesses the

fitness of each model as where is the log-likelihood, and𝐵 = 2𝑙𝑜𝑔Λ − 𝑑 𝑙𝑜𝑔(𝑛) Λ
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is a term penalizing models with a large number of parameters . The𝑑 𝑙𝑜𝑔(𝑛) 𝑑

log-likelihood of the model (17) is which gives the BIC value𝑙𝑜𝑔Λ =  − 𝑁
2 𝑙𝑜𝑔2π𝑒 𝑑𝑒𝑡 σ

𝐵𝐼𝐶 = 𝑑 𝑙𝑜𝑔(𝑛) − 2𝑙𝑜𝑔Λ = 4(𝐿 + 1) 𝑙𝑜𝑔(𝑛) − 𝑁
2 𝑙𝑜𝑔2π𝑒 𝑑𝑒𝑡Σ(𝑋

𝑡
, 𝑌

𝑡
|𝑋

𝑡−1
(𝐿) , 𝑌

𝑡−1
(𝐿) )

(20)
The best-fitting model is the one maximising . We computed the value of for all𝐵𝐼𝐶 𝐵𝐼𝐶

pairs of regions-of-interest (ROIs) and all subjects (patients and controls) as a function

of . We found that on average BIC increases up to , and then remains relatively𝐿 𝐿≈5

stable. Note that since TR= 2s, corresponds to the expected autocorrelation𝐿 = 5

length of the signal. On the basis of these results, we chose to fix in our analyses.𝐿 = 5

Relation between linear correlation and covariance-based Granger causality measures.

Standard undirected functional connectivity (UFC) is classically computed as the

Pearson’s correlation, defined as where , are the standard𝑅 = σ(𝑋,𝑌)
σ(𝑋)σ(𝑌) σ(𝑋) σ(𝑌)

deviations of and and is their covariance within the selected time window.𝑋
𝑡

𝑌
𝑡

σ2 (𝑋, 𝑌)

The UFC only considers dependencies between and for the same t. UFC and𝑋
𝑡

𝑌
𝑡

covariance-based Granger causality measures share common properties. Linear

correlation and total interdependence are undirected measures quantifying static and

dynamic dependencies, respectively. Although these measures are not related by a

mathematical decomposition, there is a strong relationship between the existence of

both types of dependencies. A lack of total interdependence implies a lack of linear

correlation; and, if we assume that the future of and causally depends on their own𝑋 𝑌

past, respectively, the opposite relation is also true. This occurs because linear

correlation is related to the covariance-based approximation of the mutual information,

, and because conditioning on the past cannot create new𝐼(𝑋
𝑡
; 𝑌

𝑡
) =− 1/2𝑙𝑜𝑔(1 − 𝑅2)

dependencies (Chicharro and Panzeri, 2014). It is also clear the directed and

instantaneous Granger measures are smaller than the total interdependence. Thus, null

total interdependence implies the absence of Granger causality measures because they

constitute non-negative contributions to the total interdependence. In other words,
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Granger causality is present if, and only if, both linear correlation and total Granger

interdependencies are not zero.

The FC and GC quality-based exclusion criteria. In order to ensure good-quality FC and

GC estimates, we excluded from analysis all subjects with less than 400 usable frames

after motion scrubbing. Furthermore, for each subject, we computed a lag between

homologous ROIs as in (Siegel et al., 2016B). In brief, for any integer lag

we computed the lagged cross-correlation between𝑙 =− 4, − 3,..., 3, 4 𝐶
𝑙

=< 𝑋
𝑡
𝑌

𝑡+𝑙
>   

the BOLD signals of the homologous ROIs; the homotopic lag between the ROIs𝑋, 𝑌

was identified by finding , performing a parabolic interpolation on𝑙
0

= 𝑎𝑟𝑔𝑚𝑖𝑛(𝐶
𝑙
)

, and computing the minimum of the parabola. An average homotopic lag𝐶
𝑙

0
−1

,  𝐶
𝑙

0

,  𝐶
𝑙

0
+1

between the left and right hemisphere was computed by averaging over all homptipic

lags between left ROIs and the homologous right ROIs. Anomalously large homotopic

lags are a likely indication of the presence of lags of hemodynamic origin, due to

disruption of the standard hemodynamic response in the vicinity of the lesion.

Therefore, we excluded from analysis all subjects with severe homotopic lags (greater

than 1s inter-hemispheric difference). After motion and lag exclusion, 113 patients were

included at two weeks, 27 controls at time point one, and 25 at time point two.
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RESULTS

We analyzed resting-state fMRI data recorded from acute stroke patients (n=113) and

healthy participants(n=26). Our analysis tested the hypothesis that post-stroke FC

alterations are tightly intertwined with information flow deficits occurring both

inter-hemispherically and intra-hemispherically. To address this issue, we performed

covariance-based Granger causality (GC) analyses (Brovelli et al., 2015) of

resting-state fMRI data and compared inter-areal information flow analyses with

standard FC approaches. The comparison was performed by means of the notion of

total interdependence between signals (Geweke et al., 1982). In the GC framework, the

total interdependence (TI) between two signals can be split into three terms: two

directed Granger causality (DC) terms and an instantaneous Granger causality (IC)

term. The DC terms represent a directed flow of information from to or(𝐹
𝑋→𝑌

,  𝐹
𝑌→𝑋

) 𝑋 𝑌

vice versa, occurring over a timescale greater than 1TR (fig. 1b). The IC term ( )𝐹
𝑋⋅𝑌

represents information shared between and “instantaneously”, i.e., in less than one𝑋 𝑌

TR, and it accounts for rapid direct communication, or unconsidered influences that may

originate from common (e.g., subcortical) sources (fig. 1a). Functional MRI data were

computed for 324 parcels of the Gordon-Laumann cortical parcellation (Gordon et al.,

2016) and 19 sub-cortical and cerebellar parcels from the FreeSurfer atlas (Fischl et al.,

2002). For each subject and for each pair of parcels, or regions-of-interest (ROIs), we

evaluated the undirected functional connectivity (UFC, z-transformed Pearson

correlation), the instantaneous Granger causality (IC) and the directed Granger

causality in both directions (DC). For healthy controls, the DC, IC and UFC matrices

obtained in two independent sessions were averaged.

Consistency of UFC and GC measures across fMRI sessions
We first tested the reliability of our results by verifying the consistency of the UFC and

GC measures obtained for control participants in two separate sessions (Fig. 2a).

Consistency was defined as the Pearson correlation between the (upper-triangular parts

of the) corresponding matrices in the two sessions. The UFC matrices were highly
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consistent (r=0.65±0.03, average and standard error over subjects). The same result

was obtained for IC matrices (r=0.73±0.02). The DC matrices, instead, were much less

consistent (r=0.22±0.02). We obtained reduced network-wise (28×28) matrices by

averaging over ROIs in the same network and hemisphere. We considered thirteen

cortical resting-state networks as in (Gordon et al., 2016), plus subcortical ROIs.

Consistency improved for UFC (r= 0.80±0.03), IC (r=0.87±0.03), and DC (r=0.41±0.03).

The UFC and IC results are thus reliable at the single-subject level, especially if

network-averaged results are considered. As for the DC, due to the poor level of

consistency obtained in the full (343×343) DC matrix, we cannot expect reliable results

at the level of single subject, single ROI. Also at the network level individual results are

not completely reliable. To assess the reliability of group results, we computed the

consistency of group-averaged FC matrices for random groups of participants(Fig.𝑛

2b). The group consistency is significantly stronger than the individual consistency.

When considering groups of 5 subjects, the DC consistency rises to 0.4 (0.7 for

network-wise matrices), and for 10 subjects it rises to 0.5 (0.8 for network-wise

matrices). This result implies that while individual DC results are affected by a very large

noise, DC results at the group-level are reliable. In summary, UFC and IC matrices were

highly consistent both at the individual and group level, while DC matrices were

consistent only at the group level.

To better understand the relation between the degree of consistency across sessions

and the variance explained by each metric, we computed the fraction of TI due to the IC

and DC. In fig. 2c, we show the proportion over the TI averaged across links for each

individual subject. Overall, he IC accounts for a large fraction (mean: 70%, s.d.: 10%) of

the TI. This fraction is even higher if we compute the mean over homotopic links, which

are the strongest functional links, connecting homologous ROIs located symmetrically in

opposite hemispheres (mean: 80%, s.d.: 4%). Another class of strong functional links is

given by intra-hemispheric links within the same resting state network: also in this case,

the largest fraction of the TI is due to the IC (mean: 71%, s.d.: 6%). If we consider weak

functional links connecting different resting state networks, the fraction of TI due to the

IC decreases, but remains well above 50% (mean: 61%, s.d. 8%). These results imply

that most of the correlation between the time series of different ROIs is due to
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interactions occurring within the time resolution of fMIR (1TR=2s). This limits the

detectability of directed interactions (DC), and consequently also the resolvability of

directionality.

Figure 2: (a-b) Consistency of FC measures in two separate sessions. We computed 343×343 DC, IC

and UFC matrices for the two separate sessions of control subjects. We assessed consistency between

the FC results in the two sessions as the Pearson correlation between the (upper-triangular part of the)

corresponding matrices in the two sessions. We also evaluated consistency between the 28×28 DC, IC

and UFC matrices obtained by averaging over all pairs of ROIs belonging to the same RSN (13 cortical

resting state systems + subcortical ROIs). In panel (a) we show the distribution of consistency for the

individual results of each subject. In panel (b), we assess consistency of group averages. For each n, we

randomly select n subjects and average the FC matrices over subjects. We then show the average (over

random choices of n subjects) consistency of the group-averaged matrices as a function of n.
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(c) average fraction of the total interdependence (TI) accounted for by the instantaneous causality (IC)

and directed causality (DC), for each subject and different classes of links: all links (all), homotopic links

(homo), within-hemisphere within-RSN links (WH, WN), within-hemisphere across-RSN links (WH, AN)

links. It is apparent that IC accounts for a large fraction of the TI, especially for homotopic links (~80%).

Interhemispheric homotopic undirected functional connectivity and Granger
causality analyses
Previous studies have shown that stroke patients present a reduced interhemispheric

UFC with respect to healthy controls (Carter et al., 2010; Golestani et al., 2013; He et

al., 2007; New et al., 2015; Park et al., 2011; Ramsey et al., 2016; Siegel et al., 2016;

Tang et al., 2016). Such effect is strongest for interhemispheric homotopic connections,

which link homologous ROIs located symmetrically in opposite hemispheres. We

computed UFC, IC, and DC between pairs of homologous ROIs and compared healthy

controls (C, n=26) with stroke patients (P, n=113) in the subacute phase. Furthermore,

we subdivided the latter group into patients with lesions in the left hemisphere (LHP,

n=60) and patients with lesions in the right hemisphere (RHP, n=53). LHP and RHP

were kept separate as they were clinically different and presented dissimilarities in FC.

Global measures of homotopic connectivity were obtained by averaging the UFC, IC

and DC over all pairs of homotopic links. Network-wise measures were obtained by

averaging over pairs of homotopic ROIs belonging to the same resting state network

(RSNs). We considered twelve RSNs as in (Gordon et al., 2016), in addition to

subcortical regions, and left out networks with less than 5 nodes. We considered the

following RSNs: the visual network (VIS), sensorimotor dorsal network (SMD),

sensorimotor ventral network (SMV), auditory network (AUD), cingulo-opercular network

(CON), ventral attention network (VAN), dorsal attention network (DAN), default mode

network (DMN), fronto-parietal network (FPN), subcortical regions (SUB).

Figure 3a shows the distribution of the homotopic UFC, averaged over all homotopic

pairs. We observed a significant difference in the UFC distribution between healthy

controls, LH and RH patients. The UFC was significantly higher in controls than LH and

RH patients, which in turn were not different (one way ANOVA with group as factor:

F(2,136)=6.6, p=0.002; post-hoc T-tests C vs LHP, T(84)=4.1, p=0.0001, C vs RHP

T(77)=3.2, p=0.0001, LHP vs RHP T(111)=−0.9, p=0.37). Figure 4d shows UFC

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?broken=DOkBeM
https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/


distributions for each RSN. Controls had significantly higher UFC than LH patients in all

networks except for the VAN, and significantly higher UFC than RH patients in all

networks except for the VAN, DMN, FPN and SMV (two-way repeated-measures

ANOVA with group and network as factors; group F(2,1224) = 6.4, p=0.002; network:

F(9,1224) = 126.7, p <10−10; interaction: F(18,1224) = 2.1, p= 0.005; post-hoc T-tests C

vs LHP: p<0.05 in all networks except VAN, FDR-corrected for 10 comparisons; C vs

RHP: p<0.05 in all networks except VAN,DMN, FPN and SMV, FDR-corrected for 10

comparisons). In summary, stroke patients presented an overall decrease of homotopic

UFC with respect to healthy subjects. The effect was strongest for homotopic

connections in VIS, SMD, AUD, CON, DAN networks, and for subcortical regions.

Analogous results were already obtained in previous analyses (Joshua Sarfaty Siegel et

al., 2016).

The analysis of homotopic UFC in patients showed that the activity of homologous

regions is less synchronized than in healthy controls, suggesting a reduced interaction

between the hemispheres. Granger causality (GC) analyses were performed to

characterize instantaneous (IC) and directional (DC) interactions between homologous

regions. Figure 3b depicts the distribution of the instantaneous causality (IC), averaged

over all homotopic pairs of ROIs. The IC was significantly higher in controls with respect

to LH patients and RH patients, but did not differ between LH and RH patients (one-way

ANOVA with group as factor, F(2,136) = 14.0, p= 3·10−6; post-hoc t-tests C vs LHP,

T(84) = 5.5, p=4·10−6, C vs RHP T(77) = 4.2, p=0.0001, LHP vs RHP T(111)=−1.1, p=

0.27). Figure 3e shows results separately for each network. While controls had

significantly higher IC than both LH and RH patients in all networks, the strongest

differences were observed in the VIS, SMD, CON, DAN and subcortical regions

(two-way repeated-measures ANOVA with groups ad network as factors, group:

F(2,1224)=13.5, p=4·10−6; network: F(2,1224)=180.3, p<10−10; interaction:

F(18,1360)=4.2, p=1.0·10−10; post-hoc T tests C vs LHP, p < 0.05 in all networks,

FDR-corrected for 10 comparisons; C vs RHP, p < 0.05 in all networks, FDR-corrected

for 10 comparisons). In summary, the IC results are in qualitative agreement with those

of UFC, but the discrepancy between patients and control subjects is more pronounced

(as mirrored in a larger group effect).
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We then analyzed directional Granger causality measures between homologous

regions. We first investigated whether the bidirectional information flow across

hemispheres was different between patients and controls. To this aim, we computed

total directed interdependence between brain regions, defined as the sum of DC

estimates, where is a ROI in the left hemisphere and the𝑆
𝑋↔𝑌

= 𝐹
𝑋→𝑌

+ 𝐹
𝑌→𝑋

𝑋 𝑌

homologous ROI in the right hemisphere. Figure 3c shows the distribution of the

homotopic bidirectional DC, averaged over homotopic pairs of regions. DC was

significantly higher in controls than LH patients, but not RH patients (one-way Anova

with group as factor, F(2,136)=3.6, p=0.03; post-hoc t-tests C vs LHP, T(84)=2.9,

p=0.006; C vs RHP, T(77)=1.2, p=0.22). Considering different networks separately (Fig.

3f), we found that for all networks, the bidirectional information flow was higher in

healthy controls than LH patients (two-way repeated-measures Anova with group and

network as factors, group: F(2,1224)=3.7, p=0.03; network: F(9,1224)=75.8, p<10−10;

interaction: F(18,1224)=1.3, p=0.14).
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Figure 3: Average homotopic UFC, IC and DC in acute phase. For each subject, we averaged the UFC,

the IC, and the bidirectional DC for homotopic pairs of ROIs. (a-c) show individual averages of homotopic

UFC, IC, bidirectional DC (each dot represents one subject). At a group level, the average homotopic

UFC and IC are higher for controls than both LH and RH patients. The bidirectional DC is higher for

controls than LH patients. (d-f) show homotopic UFC, IC and bidirectional DC by resting-state network.

Column heights are averages over subjects, error bars standard errors over subjects. At the group level,

the UFC and IC for each network is higher in controls compared to patients. Control/patient differences

are stronger for IC than UFC. The average bidirectional DC for each network is higher in controls

compared to LH patients. Stars indicate networks for which comparison with controls (two-sample T-test,

p<0.05 FDR corrected for 10 comparisons) is significant. VIS=visual, SMD=sensorimotor dorsal,

SMV=sensorimotor ventral, AUD=auditory network, CON=cingulo-opercular network, VAN=ventral

attention network, DAN=dorsal attention network, DMN=default mode network, FPN=fronto-parietal

network SUB=subcortical nodes.

We then studied whether stroke induces an asymmetry in information flow between the

hemispheres by quantifying the asymmetry in information flow between brain regions,

defined as the difference in DC, . We computed the net homotopic𝐺
𝑋→𝑌

=  𝐹
𝑋→𝑌

−  𝐹
𝑌→𝑋
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DC asymmetry where is a ROI in the right hemisphere and the homologous𝐺
𝑋→𝑌

𝑋 𝑌

ROI in the left hemisphere. larger than zero implies a net information flow from the𝐺
𝑋→𝑌

right to the left hemisphere, and vice versa for smaller than zero. Figure 4a shows𝐺
𝑋→𝑌

the distribution of the homotopic DC asymmetry, averaged over homotopic pairs of

ROIs. The net homotopic information flow was shifted towards the left hemisphere in LH

patients compared to control subjects, and significantly shifted towards the right

hemisphere in RH patients compared to control (one-way ANOVA with group as factor,

F(2,136)=13.5, p=4·10−6; post-hoc t-tests C vs LHP, (T(84)=3.1, p=0.002, C vs RHP,

T(77)=-2.5, p=0.02). In other words, the DC from the intact to the lesioned hemisphere

tended to be higher than in the opposite direction, implying a net information flow from

the intact to the lesioned hemisphere. Considering individual RNSs (Fig. 4d), we found

that for all networks, the information flow captured by the DC asymmetry was higher

from the healthy to the lesioned hemisphere in patients (two-way repeated measures

ANOVA with group and network as factors, group: F(2,1224)=11.1, p=4·10−5; network:

F(9,1224)=2.3, p=0.02; interaction: F(18,1224)=1.2, p=0.2). Figure 4d additionally

shows that the net information flow in healthy participants was preferentially from the left

(dominant) towards the right (non-dominant) hemisphere, but the net asymmetry was

much weaker than that observed in patients.

We then investigated whether the asymmetry effect could be attributed to a reduction of

DC from the lesioned to the intact hemisphere, or rather to an enhancement of DC from

the intact to the lesioned hemisphere. We analysed separately homotopic DC terms

, where is a ROI in the left hemisphere and the homologous ROI in the𝐹
𝑋→𝑌

 𝐹
𝑌→𝑋

𝑋 𝑌

right hemisphere. The results revealed that the asymmetry is due to a reduction of DC

from the lesioned to the healthy hemisphere. Indeed, we found that the homotopic DC

from the lesioned to the healthy hemisphere (left to right) in LH patients was significantly

lower than in healthy controls, while the DC from the healthy to the lesioned hemisphere

(right to left) was only slightly, but not significantly reduced. For RH patients, the DC

from the lesioned to the healthy hemisphere (right to left) was significantly lower in

comparison with healthy controls, while the DC from the healthy to the lesioned was

comparable (T-test C vs LHP, left to right, T(84)=3.9, p= 3·10−4, right to left, T(84)=1.6,
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p=0.1; T-test C vs RHP, left to right, T(77)=2.2, p=0.03, right to left, T(77)=−0.05,

p=0.95). In Fig. 4e and 4f, we show the DC from left to right and from right to left for

different networks, respectively. Network-level results parallelled global results.

DC from left to right was reduced in several networks for LH patients, but not RH

patients, as compared to healthy controls. DC from right to left was slightly reduced in

many networks for LH patients, and more severely reduced for RH patients (three-way

ANOVA with group, network and directionality - left to right vs right to left - as factors on

homotopic DC, group F(2,136)=3.7, p=0.03, network F(9,2584)=74.9, p<10−10,

directionality F(1,2584)=5.7, p=0.02, group x directionality F(2,2584)=37.8, p<10−10,

network x directionality F(9,2584)=2.5, p=0.01). In summary, the homotopic directed

connectivity from the lesioned to the intact hemisphere in patients was reduced with

respect to healthy controls. Directed connectivity from the intact to the lesioned was

slightly reduced (for LH patients) or comparable with that of healthy controls.

Consequently, stroke patients present an asymmetric interhemispheric information flow,

going from the healthy to the lesioned hemisphere.
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Figure 4: Direction of the average homotopic DC in acute phase. For each subject, we averaged the DC

over homotopic pairs of ROIs, considering separately the DC from left regions to right regions, from right

regions to left regions, and the difference, called homotopic DC asymmetry asymmetry. (a-c) we show

individual averages of homotopic DC from left to right, right to left, and asymmetry (left to right - right to

left). Each dot represents a subject. At a group level, for both LH and RH patients, the information flow

(DC asymmetry) is in the direction of the lesioned hemisphere, i.e., the homotopic DC from the intact to

the lesioned hemisphere is higher than vice versa. DC from left to right is reduced for all patients

compared to controls, but much more strongly for LH patients. DC from right to left is reduced for RH

patients compared to controls. Overall, DC from the lesioned to the intact hemisphere tends to be

reduced in patients. (d) We show homotopic DC asymmetry (right to left - left to right) by resting-state

network. Column heights are averages over subjects, error bars standard errors over subjects. For all

networks, the information flow (DC asymmetry) is from right to left LH patients, and from left to right in RH

patients. Stars represent networks for which comparison with 0 (one-sample T-test, p<0.05 FDR

corrected for 10 comparisons) is significant. (e-f) We show homotopic DC from left to right and right to left.

Column heights are averages over subjects, error bars standard errors over subjects. DC from left to right

is significantly reduced in several networks for LH patients. Stars represent networks for which

comparison with controls (two-sample T-test, p<0.05 FDR corrected for 10 comparisons) is significant.

VIS=visual, SMD=sensorimotor dorsal, SMV=sensorimotor ventral, AUD=auditory network, CON=cing

VIS=visual, SMD=sensorimotor dorsal, SMV=sensorimotor ventral, AUD=auditory network,
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CON=cingulo-opercular network, VAN=ventral attention network, DAN=dorsal attention network,

DMN=default mode network, FPN=fronto-parietal network SUB=subcortical nodes.

Intra-hemispheric undirected functional connectivity and Granger causality
analyses
We then investigated intra-hemispheric UFC, IC, and DC. Previous studies reported a

bilateral increase of specific intra-hemispheric functional connections (Baldassarre et

al., 2014; Eldaief et al., 2017; Ramsey et al., 2016; Siegel et al., 2016). In our analysis,

we averaged over all intra-hemispheric connections and indeed observed an increase of

intra-hemispheric UFC. Figure 5a shows the total (left plus right) intra-hemispheric UFC

for healthy controls and stroke patients. We only observed a marginal increase for LH

patients and RH patients in comparison to controls (one-way ANOVA, F(2,136) = 2.2,

p= 0.12: post-hoc T-test C vs LHP T(84)=-2.08, p=0.04, C vs RHP, T(77)=-2.24,

p=0.03). When considering different resting-state networks separately (for each

network, we considered the sum of its connections with all networks), we obtained

similar results (Figure 5d), with the three groups not showing strong differences

(two-way repeated-measures ANOVA with group and network as factors, group:

F(2,1224)=1.5, p=0.2; network: F(9,1224)=259.3, p<10−10; interaction: F(18,1224)=0.8,

p=0.7).

We then investigated whether stroke impacts the balance in intra-hemispheric functional

connectivity between the lesioned and intact hemisphere. We computed a measure of

intra-hemispheric imbalance defined as the difference between the mean UFC

averaged over all pairs of regions within the same hemisphere. The intra-hemispheric

UFC did not show a significant imbalance between the left and right hemisphere in

either patients or controls (one-way ANOVA, F(2,136)=0.97, p=0.38; post-hoc T-tests V

vs LHP, T(84)=0.27, p=0.78, C vs RHP, T(77)=1.425, p=0.15, LHP vs RHP, T(111)=1.1,

p=0.27).

The average intra-hemispheric IC was significantly reduced in patients as compared to

controls. LH patients presented a reduced intra-hemispheric IC in both hemispheres

(Fig 5h and 5i), with a more pronounced reduction in the lesioned one. In RH patients,

the IC was reduced only in the lesioned hemisphere. (T-test left IC, C vs LHP: T=3.0,

p=0.004, C vs RHP: T=0.7, p=0.48; T-test right IC, C vs LHP, T=2.17, p=0.03; C vs RHP
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T=2.31, p=0.02). Thus, both LH and RH patients presented an imbalance in

intra-hemispheric IC between the two hemispheres: intra-hemispheric IC was reduced

in the lesioned hemisphere. Figure 5b shows the distribution of the intra-hemispheric IC

imbalance (difference between the average intra-hemispheric IC in right and left

hemisphere) for patients and controls. The imbalance is significantly different in the

three groups, being significantly positive for LH patients (higher IC in the right

hemisphere), significantly negative for RH patients (higher IC in the left hemisphere),

and not significant for controls (one-way ANOVA with group as factor, F(2,136)=19.6,

p=3·10−8; post-hoc T-test, C vs LHP T(84)=−2.5, p=0.01, C vs RHP, T(77)=3.7,

p=0.0004, LHP vs RHP, T(111)=5.7, p=1·10−7). Figure 5e shows the intra-hemispheric

IC imbalance for different resting state networks. For each network, we considered the

sum of its connections with all networks. We observed a significant imbalance for both

LH and RH patients in the AUD, CON and DAN networks. For RH patients, we found an

imbalance also in VIS, SMD, SMV, DMN and FPN (two-way repeated-measures

ANOVA with group and network as factors, group: F(2,1224)=19.7, p<3·10−8; network:

F(9,1224)=5.4, p=2·10−7; interaction: F(18,1224)=4.1, p=2·10−8; post-hoc T-test C vs

LHP, p<0.05 FDR-corrected in AUD, CON, DAN; C vs RHP, p<0.05 FDR-corrected in

AUD, CON, DAN, VIS, SMD, SMV, DMN, FPN). The stronger effects observed in RH

patients could be explained by lesion volume, since LH patients have an average wider

lesions than RH patients. Healthy subjects presented a significant imbalance in the VAN

and FPN (i.e., the IC was higher in the left hemisphere). In summary, stroke patients

showed lower intra-hemispheric IC in the lesioned hemisphere than the intact one.

Compared to healthy subjects, the intra-hemispheric IC was found to be lower in both

hemispheres (more severely in the lesioned one) for LH patients and in the lesioned

hemisphere for RH patients.

Finally, we analyzed DC within each hemisphere and computed a bidirectional DC

strength, defined as . This metric was computed over all pairs of𝑆
𝑋↔𝑌

= 𝐹
𝑋→𝑌

+ 𝐹
𝑌→𝑋

ROIs within each hemisphere. Compared to healthy controls, LH patients presented a

slight reduction in intra-hemispheric DC in the left hemisphere, but not in the right

hemisphere. RH patients presented no significant difference with controls (DC left

hemisphere, T-test C vs LHP, T=1.6, p=0.10; C vs RHP left: T=0.28, p= 0.77; DC right
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hemisphere, C vs LHP, T=0.84, p= 0.40, C vs RHP, T=0.59, p= 0.55). All groups

presented an imbalance in intra-hemispheric DC (Figure 5c). For patients, the

intra-hemispheric DC was higher in the healthy hemisphere. For controls, the

intra-hemispheric DC was higher in the left hemisphere, which is the dominant

hemisphere. The left-ward imbalance effect appeared only slightly strengthened in RH

patients compared to control subjects (one-way ANOVA with group as factor,

F(2,136)=8.12, p=5·10−4; post-hoc T-tests C vs LHP T(84)=−3.3, p= 0.0016, C vs RHP

T(77)=1.0, p=0.34, LHP vs RHP T(111)=3.6, p=0.0005). In Figure 5f, we show the

imbalance in intra-hemispheric DC for different resting state networks. For each

network, we considered the sum of its incoming and outgoing connections with all other

networks. We observed a significant imbalance in CON, AUD and DMN and subcortical

regions for both LH and RH patients. Additionally, RH patients had a significant

imbalance in VIS, VAN and FPN networks. We observed an imbalance in VIS, VAN,

FPN and the CON networks also for healthy controls, so the RH patients' effect may not

be an anomaly related to stroke (two-way repeated-measures ANOVA with group and

network as factors, group: F(2,1224)=8.9, p=0.0002; network: F(9,1360)=3.7, p=0.0001;

interaction: F(18,1224)=2.6, p=0.0002; T-test C vs 0, p < 0.05 FDR-corrected for VIS,

VAN, FPN, CON; LHP vs 0, p < 0.05 FDR-corrected for CON, AUD, DMN; p<0.05

FDR-corrected for VIS, VAN, FPN).
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Figure 5: Average intra-hemispheric FC in acute phase. For each subject, we have computed the

average intra-hemispheric UFC, IC and DC within the LH and RH hemisphere (a) the average

intra-hemispheric UFC (sum of the LH and RH averages) is higher for patients than for controls. (b-c) the

average imbalance (RH-LH difference) in intra-hemispheric IC and DC is positive for LH patients and

negative for RH patients, implying that the average IC and DC are higher in the intact than the lesioned

hemisphere (d) We show the average intra-hemispheric UFC by resting state network. Dots are averages

over subjects, error bars standard errors over subjects. Stars represent networks for which comparison

with controls (two-sample T-test) is not significant. (e-f) We show the imbalance in average

intra-hemispheric IC, DC by resting state network. Dots are averages over subjects, error bars standard

errors over subjects. Stars represent networks for which comparison with 0 (one-sample T-test) is not
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significant. (g) there is no left/right imbalance in intra-hemispheric UFC for patients and controls (h) the

average intra-hemispheric IC in the left hemisphere is reduced in LH patents compared to controls and

RH patients (i) the average intra-hemispheric IC in the right hemisphere is reduced in RH and LH patients

compared to controls. VIS=visual, SMD=sensorimotor dorsal, SMV=sensorimotor ventral, AUD=auditory

network, CON=cingulo-opercular network, VAN=ventral attention network, DAN=dorsal attention network,

DMN=default mode network, FPN=fronto-parietal network SUB=subcortical nodes.

Global FC and GC summary measures and stroke-related behavioral deficits
In the previous sections, we characterized several global correlates, or summary

measures, of stroke based on functional connectivity and Granger causality analyses.

Four summary measures were related to homotopic connections: 1) UFChomo: homotopic

UFC; 2) IChomo: homotopic IC; 3) ΣDChomo: sum of homotopic DC (contralesional to

ipsilesional plus ipsilesional to contralesional); 4) ΔDChomo: homotopic DC asymmetry

(contralesional to ipsilesional minus ipsilesional to contralesional). Both LH and RH

patients, as a group, presented a reduced UFChomo, a reduced IChomo and an enhanced

ΔDChomo in comparison to healthy subjects. In addition, LH patients presented a

reduction of ΣDChomo. Three additional summary measures were related to

intra-hemispheric connections: 5) ΣUFCintra: sum of intra-hemispheric UFC (ipsilesional

plus contralesional); 6) ΔICintra: intra-hemispheric IC imbalance (contralesional minus

ipsilesional); 7) ΔDCintra: intra-hemispheric DC imbalance (difference of contralesional

minus ipsilesional). LH and RH patients present an enhanced ΣUFCintra and an

enhanced ΔICintra in comparison to healthy subjects.

In order to study whether these global summary measures were correlated among each

other, we computed the partial Spearman correlation values between pairs of measures

for all patients, controlling for lesion volume. Results are shown in Fig. 6a. We observed

that the measures split into three groups. The first group included UFChomo, IChomo and

ΣDChomo, which were all strongly correlated. These three measures quantified the

strength of inter-hemispheric (homotopic) connectivity. The second group included

ΔDChomo, ΔICintra and ΔDCintra, which were mutually correlated and uncorrelated with the

homotopic measures. These three measures quantified homotopic imbalance. Last,

ΣUFCintra was weakly correlated with the other measures. A PCA on the (z-scored)

summary measures identified two principal components explaining 32% and 30% of the
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total variance respectively (Fig. 6b), henceforth indicated as the principal components

PC1 and PC2. The PC1 loaded on UFChomo, IChomo and ΣDChomo, whereas the PC2 on

ΔDChomo, ΔICintra and ΔDCintra. Intuitively, PC1 summarized the inter-hemispheric

functional integration (Fig. 6b, left panel), whereas PC2 the inter-hemispheric imbalance

(Fig. 6b, right panel). We investigated whether PC1 and PC2 were related to the

structural lesions. As shown in Fig. 6c, PC1 was negatively correlated with lesion

volume (Spearman r=-0.47, p<10-6): the larger the lesion, the lower the functional

integration between the hemispheres (Fig. 6c). Concerning PC2, we found that the

modulus of PC2 was positively correlated with lesion volume (Spearman r=0.54,

p<10-7): the larger the lesion, the larger the asymmetry between the hemispheres (Fig.

6d). In this regard, we should note that the value PC2 reflected the direction of the

asymmetry (left-ward or right-ward), while its modulus reflected the magnitude of the

asymmetry.

In a previous work (Corbetta et al., 2015), eight behavioral scores were identified,

corresponding to the eight strongest principal components explaining a large fraction of

variance in behavioral tests covering language, memory, motion and attention function.

The eight factors were associated with language, left body motion, right body motion,

spatial attention (hemispatial neglect), sustained attention, shifting attention, spatial

memory, verbal memory. Higher scores signify better performance. Right body motion,

language, verbal memory and shifting attention scores tend to be lower for LH patients,

sustained attention scores show no hemispheric bias, while left body motion and spatial

memory scores tend to be lower for RH patients.
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Figure 6. Global FC and GC summary measures. Our analysis identified several global correlates of

stroke, or summary measures, based on functional connectivity and Granger causality analyses. (a)

Looking at the correlation (partial Spearman correlation correcting for lesion volume) between each pair of

measures, one can immediately notice two separate groups of correlated measures, one including

UFChomo, IChomo, ΣDChomo, the other including ΔDChomo , ΔICintra, ΔDCintra. (b) A PCA on the seven measures

revealed two PCs explaining more than 32% and 30% of the total variance across patients. The first

component (PC1) loaded on UFChomo, IChomo, ΣDChomo, the second component (PC2) on ΔDChomo , ΔICintra,

ΔDCintra. This is summarized in the two brain plots showing intuitively the main effects captured by PC1

and PC2 in the healthy and lesioned hemisphere. (c) PC1 correlates negatively with lesion volume (d) the

modulus of PC2 correlates positively with lesion volume.
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Figure 7. Correlation with behavioral scores. : (a) Spearman correlation between behavioral scores

and the two principal components (PC) summarizing FC and GC stroke summary measures (b) partial

Spearman correlation between behavioral scores and the two principal components, correcting for lesion

volume

(c) scatter plot of PC1/PC2 versus language scores for LH patients (d) scatter plot of PC1/PC2 vs verbal

memory scores for RH patients (e) scatter plot of PC1/PC2 vs spatial attention scores for RH patients (f)

scatter plot of PC1/PC2 versus left body motion scores for RH patients
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We then quantified to which extent the first two principal components (PC1 and PC2)

were predictive of the observed behavioral deficits. To do so, we computed the

Spearman correlation between the two PCs and behavioral scores (Fig. 7a). We had

two general predictions. First, we expected a positive correlation between performance

and inter-hemispheric integration (Carter 2010, Siegel 2016, Corbetta 2018).

Consequently, we expected PC1 to correlate positively with behavioral scores. Second,

we expected that a decrease of connectivity within and from the lesioned hemisphere

would have been generally detrimental for performance. Hence, behavioral scores were

expected to correlate negatively with PC2. These expectations were partially met. PC1

correlated positively with all scores for both LH and RH patients (LHP: Spearman r>

0.17 for all scores, RHP: Spearman r > 0.2 for all scores except Shift Att). It is

noteworthy that different correlations were significant in LH and RH patients. For LH

patients, effects were stronger for scores related to verbal function, general attention,

and contralesional motion (r>0.35, p<0.05 for Lang, Ver Mem, Shift Att, Sust Att, Mot L,

FDR-corrected for 8 comparisons). For RH patients, effects were stronger for scores

related to spatial processing and motion (r> 0.47, p<0.05 Sp Mem, Sp Att, Mot L, Mot R,

FDR-corrected for 8 comparisons). PC2 correlated negatively for LH patients

(Spearman r < -0.15, p<0.31 uncorrected for all scores except Shift Att), and was

significant for scores associated with language (p<0.05 Lang, Ver Mem, FDR-corrected

for 8 comparisons), while correlations were weaker, ambiguous in sign, and not

significant for RH patients (p>0.05 for all scores, FDR-corrected for 8 comparisons); the

strongest observed effect was a positive correlation between PC2 and language-related

scores (r=0.15, p=0.29 for Lang; r=0.35, p=0.03 uncorrected for Ver mem). In summary,

a lower PC1 (lower inter-hemispheric integration) was associated with significantly

worse performance in several behavioral domains, different for LH and RH patients; for

RH patients, the effect could not be explained by lesion volume. A higher PC2 (higher

inter-hemispheric imbalance) was associated with worse performance in

language-related domains for LH patients, and with better performance in RH patients.
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Control analyses

Part of the observed differences between LH and RH patients may be due to the

influence of lesion volume. Both the homotopic UFC and the homotopic IC appeared to

be higher for RH than LH patients (Fig. 3). In both cases the difference could be largely

explained by differences in lesion volume (UFC: one-way ANOVA with group as factor,

after linearly regressing logarithm of lesion volume lesion: F(1,1110) = 1.5, p= 0.2; IC:

one-way ANOVA with group as factor, after linearly regressing logarithm of lesion

volume lesion: F(1,1110)=3.4, p=0.06). Moreover, since PC1 and PC2 correlate with

lesion volume, part of the observed correlation with behavioral scores may be explained

by lesion volume. A larger lesion volume is causally related to more widespread

structural disconnections (Griffiths et al. 2019), which are at the root of functional

connectivity alterations captured by PC1, PC2. However, a larger lesion volume is also

causally associated with a larger local damage to cortical area. Thus, a correlation

between the PCs and behavioral scores does not provide sufficient evidence that the

functional anomalies captured by the PCs have a specific role in the genesis of the

deficits, more than other functional perturbations such as impaired activity in the locally

damaged area. We computed the partial Spearman correlation between the two PCs

and behavioral scores, controlling for the effect of lesion volume (Fig. 7b). As for PC1,

we still observed a positive correlation with behavioral scores (LHP: Spearman r> 0.13

for all scores except Sp Att; RHP: r > 0.26, for all scores except Shift Att ). Surprisingly,

while effects were generally reduced and no longer significant for LH patients (p>0.05

for all scores, FDR-corrected for 8 comparisons), correlations remained significant for

RH patients (r> 0.36, p<0.05 Mot R, Sp Mem, Sp Att, Mot L, FDR-corrected for 8

comparisons). For PC2, we still observed a generally negative correlation for LH

patients (Spearman r < -0.08, for all scores except Shift Att), but correlations were no

longer significant (p>0.05 for all scores, FDR-corrected for 8 comparisons).

Correlations were still not significant for RH patients (p>0.05 for all scores,

FDR-corrected for 10 comparisons).
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We finally performed control analyses to investigate potential confounding effects

associated with nuisance sources and hemodynamic lags. GC analyses were

performed on preprocessed BOLD signals without global signal regression (GSR)

removal. The rationale for this choice was that GSR may effectively work as a “temporal

filter” (Liu et al., 2017, Nalci et al., 2019), suppressing the contribution of time points

associated with low global signal, potentially distorting the estimation of information

flows in GC. While standardly adopted for UFC estimation, GSR is a contentious step

(Saad et al., 2012), particularly when one compares healthy subjects with neurological

or psychiatric patients (Hahamy et al., 2014; Yang et al., 2014). Indeed, the global

signal can reflect extended correlation of neural origin (Schölvinck et al., 2010), possibly

differing between patients and control subjects. By applying GSR our data, homotopic

information transfer (homotopic IC and bidirectional DC) presented similar effects to

those found without GSR, including the asymmetry in homotopic DC (Fig. 8a). However,

results on intra-hemispheric GC differed: no clear imbalance is observed in

intra-hemispheric DC or IC (Fig. 8b and 8c). Thus, GSR significantly attenuates the

hemispheric imbalances. However, due to the high network specificity of the observed

imbalances, it appears unlikely that such imbalances represent metabolic, movement,

breathing-rate, cardiovascular or vigilance effects. It is more likely that differences in

global signal between the hemispheres represent alterations in the excitation/inhibition

balance within each hemisphere (Yang et al., 2014), which are obscured by GSR.

Hemodynamic lags represent an additional potential confound for our results. In fact,

stroke can cause a pathologic delay in the hemodynamic response in the perilesional

area, or in a wider area subserved by the occluded artery (Siegel et al., 2016b). This

delay may introduce spurious “lags” of non-neural origin between regions in this area

and homologous regions in the intact hemisphere, thus contributing to the observed

homotopic DC asymmetry. We checked whether the observed global homotopic DC

asymmetry could be linked to asymmetries in the perilesional area. We considered each

region X in the lesioned hemisphere and computed the DC asymmetry

where Y is the homologous area in the intact hemisphere. We𝐺
𝑌→𝑋

=  𝐹
𝑌→𝑋

−  𝐹
𝑋→𝑌

thus obtained brain-wide maps of homotopic DC asymmetry that overlayed with the
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lesion maps (to produce the homotopic DC maps, we assigned the value to all𝐺
𝑌→𝑋

voxels within a radius of 10mm around the center of each ROI X, and then applied

10mm Gaussian smoothing). In Fig. 8d, we show the results for a representative

subject.The strongest DC asymmetries were observed far from the lesions location in

the brain. In order to have a more quantitative control, we repeated our analyses

excluding all regions at a distance less than 4cm from the lesioned area. As shown in

Fig. 8e-8g, the homotopic DC asymmetry is still present after this removal, while the

intra-hemispheric IC and DC imbalance appear to be even strengthened. This showed

that the observed effects are not due to anomalous hemodynamic lags in the vicinity of

the lesion.
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Figure 8. Control for possible confounds. (a-c) We checked the effect of GSR on the found

inter-hemispheric imbalances. GSR has no effect on the homotopic DC asymmetry, while it removes the

imbalance in intra-hemispheric IC and DC. (d-g) We checked possible influences of perilesional

hemodynamic anomalies on our results. In (d) we verified whether the homotopic DC asymmetry could be

driven by hemodynamic lags in the perilesional area. We show a map of the homotopic DC asymmetry for

one representative subject, together with the lesion location (in blue). Strongest homotopic DC

asymmetries are found far from the lesion. In (e-g) we show the effect of removing from analysis all

regions at a distance < 4cm from the lesion. Such removal has no effect on the homotopic DC asymmetry,

while it strengthens the imbalance observed in intra-hemispheric IC and DC.
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DISCUSSION

Previous research, including previous work on the Washington stroke database (Joshua

Sarfaty Siegel et al., 2016, Corbetta et al., 2018, Griffis et al. 2019), has made extensive

use of resting-state fMRI to investigate functional connectivity in stroke patients. The

results of these studies suggest a view of stroke as a network dysfunction syndrome.

Stroke is accompanied by widespread alterations of functional connectivity, with

common patterns observed across patients independently of lesion location. In

particular, most patients present a loss of inter-hemispheric FC (Corbetta et al., 2018;

Golestani et al., 2013; Joshua Sarfaty Siegel et al., 2016; Tang et al., 2016). Anomalies

of long-range FC are paralleled by perturbations of monosynaptic (Griffis et al. 2019)

and polysynaptic (Griffis et al. 2020) structural connections. While sensorimotor deficits

are reasonably well explained by local damage, cognitive deficits are better explained

by network dysfunction (Siegel et al., 2016).

However, it was still unclear whether stroke produces functional asymmetries in

long-range brain interactions. Being symmetric, standard functional connectivity (UFC)

and structural connectivity (SC) measures are not suited to address this question. In our

work, we used Granger causality (GC) measures to investigate alterations of long-range

directional interactions in the brain after stroke. By exhaustively looking at temporal

dependencies between the BOLD signals of two regions, GC measures can yield

information about the directionality and time scale of interactions, which is missing from

UFC analyses. Our analyses revealed several stroke-related asymmetries between the

hemispheres, which further allowed us to better highlight major differences between

patients with left- or right-hemisphere lesions which had not been specifically addressed

in previous analyses.

Stroke-related modulations in inter- and intra-hemispheric coupling revealed by
Granger causality analyses

One of the major functional effects of stroke is a loss of inter-hemispheric integration

associated with a decrease of homotopic UFC. It is still relatively unknown to which
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extent the UFC decrease corresponds to a decrease of direct interactions (supported by

homotopic connections crossing the corpus callosum (Schmahmann et al., 2009)) or

indirect interactions through subcortical structures. Our results from GC-based analyses

show that UFC decrease (Fig. 3a) is strongly associated with a loss of inter-hemispheric

interactions captured by the homotopic IC and DC (Fig. 3b, 3c). IC captured

cortico-cortical interactions unfolding within 1 TR, while DC captured lagged

cortico-cortical interactions occurring on a time scale longer than 1 TR. Classically, IC

are interpreted as originating from external common inputs (Ding et al., 2006). Since a

large part of the total interdependence between the signals of homotopic areas is due to

the IC (Fig. 2c), our results suggest that a component of stroke-related alterations in

cortico-cortical coupling emerges from disrupted common inputs from regions that

project symmetrically to cortical areas, such as subcortical structures. This hypothesis is

supported by structural analyses that locate stroke lesions primarily in subcortical areas,

such as the thalamus (Corbetta et al. 2015), as well as by recent experimental work

showing that subcortical structures can play a large role in maintaining FC between

cortical regions when direct influences are impaired (Canella et al. 2020). However,

given the slow sampling rate of our data (TR=2s), an IC decrease cannot be uniquely

attributed to a loss of common input, as it may also result from a decrease of fast

directed interactions occurring on timescale shorter than 2s. To which extent subcortical

structures contribute in re-modulating cortical interaction remains a relevant topic for

further investigation.

Importantly, even though IC rather than DC dominates homotopic interdependence, DC

analysis is precious as it hints at strong interhemispheric communication asymmetries.

Our results on homotopic DC showed that stroke impacts the inter-hemispheric

information flow asymmetrically, with a spared information flow from the healthy to the

lesioned hemisphere and a reduced flow in the opposite direction (Fig. 4a). This

asymmetric effect is not immediately explained by structural lesions, since there is no

evidence that ischemia would affect selectively fibers from the ipsilesional to the

contralesional hemisphere rather than in the opposite direction. The homotopic

asymmetry we measured is in line with recent work (Wang 2019) showing that time

series in the lesioned hemisphere are “lagged” with respect to the homologous areas in
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the healthy hemisphere. To which extent this effect may stem from non-neural,

hemodynamic causes - a systematic alteration of the hemodynamic response in the

lesioned hemisphere - remains an open question. In our control analysis (fig. 8) we

excluded the possibility that the effect be trivially related to the well-known presence of

large hemodynamic lags in the perilesional area (Siegel et al., 2016b). Thus, the

measured asymmetry, if caused by hemodynamic effects, would imply wide alterations

of the hemodynamic response far from the lesion. In future work, this issue may be

specifically addressed by applying deconvolution prior to GC analysis, building on “blind

deconvolution” techniques that allow retrieving the hemodynamic response from

resting-state data (Wu et al., 2013). Such analysis is beyond the scope of the current

study. Since deconvolution techniques for resting-state fMRI remain exploratory, it is still

unclear whether these methods are accurate in presence of anomalous distortions of

the hemodynamic response potentially arising in pathological conditions such as stroke.

The relevance of the observed homotopic GC asymmetry is strengthened by our

analysis of intra-hemispheric GC, which revealed another functional imbalance between

the hemispheres in stroke patients: intra-hemispheric IC and DC are higher in the intact

hemisphere than the lesioned one (Fig. 5b and 5c). Our results are not conclusive

regarding the relation between the homotopic DC asymmetry (Fig. 4a) and the

imbalance in intra-hemispheric IC and DC (Fig. 5). However, we provided evidence that

the intra-hemispheric and inter-hemispheric imbalances are correlated (Fig. 6), which

suggests that the two results are not independent and may have a common cause. We

speculate that both effects could stem from structural disconnection within the lesioned

hemisphere, causing a loss of inter-areal excitatory influences. Since stroke can

damage structural connections between ipsilesional areas, we could generally expect a

loss of excitatory influences, and hence general activity decrease, within the lesioned

hemisphere (Grefkes and Fink, 2014). This, in turn, would also imply that the lesioned

hemisphere would exert less excitation on the healthy one. This picture would explain

both the decrease of ipsilesional DC and IC, and the decrease of DC from the lesioned

to the healthy hemisphere. Further support to this interpretation comes from the fact that

all imbalance measures (ΔDChomo, ΔICintra, ΔDCintra) correlate negatively with lesion
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volume (i.e., the stronger the lesion, the higher the intra- and inter-hemispheric

functional imbalances).

Post-stroke inter-hemispheric imbalances in effective connectivity were widely reported

in the motor system, as reviewed in (Grefkes and Fink, 2014). During motor tasks,

excitatory influences within the lesioned hemisphere are reduced, contributing to a

general decrease of ipsilesional brain activity (Grefkes and Fink, 2014; Rehme and

Grefkes, 2013). As for inter-hemispheric connectivity, several studies on the motor

system after stroke indicate an anomalous influence of the contralesional hemisphere

onto the lesioned one during motor tasks (Rehme and Grefkes, 2013, Grefkes et al.,

2010, Grefkes and Fink, 2014). Whether the contralesional influence is inhibitory (hence

detrimental to motor performance), or excitatory (hence supportive of performance)

seems to depend on several factors, including time after stroke and severity of the

lesions (Pino et al., 2014). Our results instead showed a decrease of influence of the

damaged hemisphere on the normal one. However, we are wary of a direct comparison,

since our whole-brain results were obtained with a resting-state paradigm, hence

without any specific involvement of the motor cortex. In order to further clarify

inter-hemispheric balance after stroke, future whole-brain studies should discriminate

between excitatory and inhibitory influences, which is not possible in the current GC

analysis.

Hemispheric functional imbalance and stroke-related behavioral deficits
Previous behavioral analyses on this cohort (Corbetta et al., 2015; Ramsey et al., 2017)

identified sets of correlated deficits for left and right lesions respectively, largely

agreeing with lateralization maps described in healthy subjects (Karolis et al., 2019).

Right body motion, language, verbal memory and shifting attention scores tend to be

lower for LH patients, sustained attention scores show no hemispheric bias, while left

body motion, spatial attention and spatial memory scores tend to be lower for RH

patients. Here, we systematically addressed for the first time the functional basis of

LH/RH patient differences.

In LH patients, the amount of inter-hemispheric communication (summarized by PC1)

correlated positively with behavior for domains that are specific to the left hemisphere
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(language, verbal memory, attention shifting), with the exception of right motion. The

correlation between PC1 and behavioral scores was significantly lower if lesion volume

was regressed, and presently we cannot discriminate the specific impact of

inter-hemispheric communication loss on behavioral function from other possible effects

resulting from the lesion. The imbalance between the hemispheres (summarized by

PC2) correlated negatively with behavioral scores, significantly for behaviors that were

affected by left hemisphere lesions (language, verbal memory) and could be largely

explained by lesion volume, suggesting that it reflects the extent of intra-hemispheric LH

damage.

In RH patients PC1 correlated with behavior for domains more associated with the right

hemisphere (motor function, spatial and sustained attention, and spatial memory).

Correlations were robust to regression of lesion volume, which suggests a specific

impact of inter-hemispheric communication loss on behavior. This hypothesis agrees

with previous studies showing that deficits that were affected by right lesions were more

associated with inter-hemispheric rather than intra-hemispheric functional disconnection

(Baldassarre et al., 2016a, 2016b; Siegel et al., 2016). We speculate that input from the

LH may be more critical for functional integrity of the RH than the other way around,

congruently with studies reporting that the left hemisphere presents more central or

indispensable regions for the whole-brain structural network (Iturria-Medina et al., 2011),

and that the right hemisphere depends more heavily on integration with the left one than

the other way around (Gotts et al., 2013). In RH patients we did not observe a negative

correlation between scores and PC2, suggesting that intra-hemispheric damage has a

lesser impact on behavior. Instead, we observed a positive correlation between PC2

and verbal memory scores, which suggests a supportive role of the left (contralesional)

hemisphere for a left-lateralized function in the case of right lesions.

In both LH and RH patients, sustained attention scores had a significant positive

correlation with PC1, and a negative correlation with PC2. This is consistent with

previous literature suggesting that higher scores are associated with a higher

inter-hemispheric integration and a higher intra-hemispheric integration in the lesioned

hemisphere (Corbetta et al. 2005, He et al. 2007, Corbetta and Shulman 2011), but a

large part of the correlation observed in this work could be explained by lesion volume,
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hence at present we cannot know to which extent the effect is causally related to

functional connectivity anomalies.

Methodological considerations on Granger causality analyses: advantages and
limitations
The efficacy of GC as a data-driven analysis method rests on its ability to uncover

global patterns of information flow and differences in information flows between groups

or experimental conditions in a completely unsupervised way (Faes et al., 2017; Friston

et al., 2013; Roebroeck et al., 2011, 2005). The pairwise covariance-based GC analysis

approach used in this work is a method of choice for whole-brain analyses of large

databases aimed at uncovering general information flow patterns (see e.g., Deco at al.,

2021). The main limitation of our analysis is the uncertainty affecting GC estimates at

different levels, from single-session to single-subject (Fig. 2). For each GC-based stroke

summary measure (e.g., the total homotopic IC), we obtained a large group variance,

and consequently a large overlap between the distributions of patients and controls, so

that we could not robustly classify an individual as patient or control based on his/her

value of the summary measure. It is likely that part of this variance reflects estimation

error, rather than true interindividual variability. Analogously, the uncertainty affecting

single-subject estimates also implies a difficulty in relating individual GC results with

individual behavioral scores. Thus, estimation error limits the use of GC for the

development of personalized biomarkers predictive of clinical condition and behavioral

performance at the single-patient level. This limitation is not inherent in GC per se, but

depends on the relative paucity of functional data available for each patient, and the

poor temporal resolution implied by TR=2s. By taking longer recordings or repeating

recording sessions, we could obtain much more accurate GC estimates. Improved GC

estimates may also be obtained by using a lower TR. Using a TR=0.67s (as in the

Human Connectome Project database (van Essen et al., 2013)) would triple the number

of points for estimation and offer a significantly improved time resolution, allowing for a

more precise characterization of directionality effects (we predict that by using a shorter

TR, a part of the total interdependence that is seen as IC in this study would appear as

DC). In our opinion, the main limitation of GC in this study is due to intrinsic properties
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of the data, rather than the specific approach used for calculating DC - bivariate and

covariance-based. We are skeptical that more sophisticated approaches for GC

estimation would yield radically improved results. In particular, for several reasons we

do not believe that a multivariate approach (Barnett 2014), which in principle gives

cleaner results by eliminating indirect network effects, would particularly contribute to

our study. Since we have a large number of areas, conditioning would impair estimation,

especially because of many redundancies (Stramaglia et al. 2016). Moreover, since our

main results are based on large averages over many pairs of regions, they are largely

indifferent to whether single links are affected by indirect contributions.

Conclusions
To conclude, the Granger causality (GC) analysis of inter-areal interactions after stroke

highlighted two broad pathological features. First, a decrease of homotopic GC,

suggesting a large decrease of interhemispheric communication, either direct or

mediated by subcortical structures. Second, an inter-hemispheric imbalance, revealed

by an asymmetry in homotopic GC, as well as a right-left difference in intra-hemispheric

GC, suggesting a decrease of communication within and from the lesioned hemisphere.

These results show that previously observed FC alterations in stroke are related to

broad changes in inter-areal communication. Furthermore, our analysis confirms and

generalizes previous findings about post-stroke inter-hemispheric imbalances in the

motor and attention system. The observed GC anomalies highlighted a different impact

of lesion on behavior depending on which hemisphere was lesioned. Left-lateralized

behavior was strongly affected by loss of intra-hemispheric communication in patients

with left hemisphere lesions. Right-lateralized behavior was strongly affected by loss of

inter-hemispheric communication in patients with right hemisphere lesions.

48

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES
Angelini, L., De Tommaso, M., Marinazzo, D., Nitti, L., Pellicoro, M., & Stramaglia, S. (2010).

Redundant variables and Granger causality. Physical Review E, 81(3), 037201.

Baldassarre, A., Ramsey, L., Hacker, C.L., Callejas, A., Astafiev, S.V., Metcalf, N.V., Zinn, K.,

Rengachary, J., Snyder, A.Z., Carter, A.R., Shulman, G.L., Corbetta, M., 2014.

Large-scale changes in network interactions as a physiological signature of spatial

neglect. Brain 137, 3267–3283. https://doi.org/10.1093/brain/awu297

Barnett, L., Barrett, A.B., Seth, A.K., 2009. Granger Causality and Transfer Entropy Are

Equivalent for Gaussian Variables. Phys. Rev. Lett. 103, 238701.

https://doi.org/10.1103/PhysRevLett.103.238701

Barnett, L., Seth, A.K., 2014. The MVGC multivariate Granger causality toolbox: A new

approach to Granger-causal inference. J. Neurosci. Methods 223, 50–68.

https://doi.org/10.1016/j.jneumeth.2013.10.018

Beirlant, J., Dudewicz, E.J., Györfi, L., Van der Meulen, E.C., 1997. Nonparametric entropy

estimation: An overview. Int. J. Math. Stat. Sci. 6, 17–39.

Brovelli, A., Chicharro, D., Badier, J.-M., Wang, H., Jirsa, V., 2015. Characterization of Cortical

Networks and Corticocortical Functional Connectivity Mediating Arbitrary Visuomotor

Mapping. J. Neurosci. 35, 12643–12658.

https://doi.org/10.1523/JNEUROSCI.4892-14.2015

Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of structural

and functional systems. Nat. Rev. Neurosci. 10, 186–198.

https://doi.org/10.1038/nrn2575

Canella, C., Rocchi, F., Noei, S., Gutierrez-Barragan, D., Coletta, L., Galbusera, A., ... & Gozzi,

A. (2020). Cortical silencing results in paradoxical fMRI overconnectivity. bioRxiv.

Carter, A.R., Astafiev, S.V., Lang, C.E., Connor, L.T., Rengachary, J., Strube, M.J., Pope,

D.L.W., Shulman, G.L., Corbetta, M., 2010. Resting interhemispheric functional magnetic

resonance imaging connectivity predicts performance after stroke. Ann. Neurol. 67,

365–375. https://doi.org/10.1002/ana.21905

Chicharro, D., Ledberg, A., 2012. Framework to study dynamic dependencies in networks of

interacting processes. Phys. Rev. E 86, 041901.

https://doi.org/10.1103/PhysRevE.86.041901

Corbetta, Maurizio, et al. "Neural basis and recovery of spatial attention deficits in spatial

neglect." Nature neuroscience 8.11 (2005): 1603-1610.

https://www.nature.com/articles/nn1574

49

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?broken=rqM1Ht
https://www.zotero.org/google-docs/?broken=rqM1Ht
https://www.zotero.org/google-docs/?broken=rqM1Ht
https://www.zotero.org/google-docs/?broken=gG8ByD
https://www.zotero.org/google-docs/?broken=gG8ByD
https://www.zotero.org/google-docs/?broken=gG8ByD
https://www.zotero.org/google-docs/?broken=CrytoM
https://www.zotero.org/google-docs/?broken=CrytoM
https://www.zotero.org/google-docs/?broken=JGqm9F
https://www.zotero.org/google-docs/?broken=JGqm9F
https://www.zotero.org/google-docs/?broken=JGqm9F
https://www.zotero.org/google-docs/?broken=JGqm9F
https://www.zotero.org/google-docs/?broken=fjVHxS
https://www.zotero.org/google-docs/?broken=fjVHxS
https://doi.org/10.1038/nrn2575
https://www.zotero.org/google-docs/?broken=frPs40
https://www.zotero.org/google-docs/?broken=frPs40
https://www.zotero.org/google-docs/?broken=frPs40
https://www.zotero.org/google-docs/?broken=frPs40
https://www.zotero.org/google-docs/?broken=8UMyS4
https://www.zotero.org/google-docs/?broken=8UMyS4
https://doi.org/10.1103/PhysRevE.86.041901
https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/


Corbetta, Maurizio, and Gordon L. Shulman. "Spatial neglect and attention networks." Annual

review of neuroscience 34 (2011): 569-599.

https://www.annualreviews.org/doi/pdf/10.1146/annurev-neuro-061010-113731

Corbetta, M., Ramsey, L., Callejas, A., Baldassarre, A., Hacker, C.D., Siegel, J.S., Astafiev, S.V.,

Rengachary, J., Zinn, K., Lang, C.E., Connor, L.T., Fucetola, R., Strube, M., Carter, A.R.,

Shulman, G.L., 2015. Common Behavioral Clusters and Subcortical Anatomy in Stroke.

Neuron 85, 927–941. https://doi.org/10.1016/j.neuron.2015.02.027

Corbetta, M., Siegel, J.S., Shulman, G.L., 2018. On the low dimensionality of behavioral deficits

and alterations of brain network connectivity after focal injury. Cortex, In Memory of

Professor Glyn Humphreys 107, 229–237. https://doi.org/10.1016/j.cortex.2017.12.017

Damoiseaux, J.S., Rombouts, S. a. R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M.,

Beckmann, C.F., 2006. Consistent resting-state networks across healthy subjects. Proc.

Natl. Acad. Sci. 103, 13848–13853. https://doi.org/10.1073/pnas.0601417103

Deco, G., Vidaurre, D., & Kringelbach, M. L. (2021). Revisiting the Global Workspace

orchestrating the hierarchical organization of the human brain. Nature Human Behaviour,

1-15.

Eldaief, M.C., McMains, S., Hutchison, R.M., Halko, M.A., Pascual-Leone, A., 2017.

Reconfiguration of Intrinsic Functional Coupling Patterns Following Circumscribed

Network Lesions. Cereb. Cortex 27, 2894–2910. https://doi.org/10.1093/cercor/bhw139

Faes, L., Stramaglia, S., Marinazzo, D., 2017. On the interpretability and computational

reliability of frequency-domain Granger causality. F1000Research 6.

https://doi.org/10.12688/f1000research.12694.1

Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Essen, D.C.V., Raichle, M.E., 2005. The

human brain is intrinsically organized into dynamic, anticorrelated functional networks.

Proc. Natl. Acad. Sci. 102, 9673–9678. https://doi.org/10.1073/pnas.0504136102

Friston, K., Moran, R., Seth, A.K., 2013. Analysing connectivity with Granger causality and

dynamic causal modelling. Curr. Opin. Neurobiol., Macrocircuits 23, 172–178.

https://doi.org/10.1016/j.conb.2012.11.010

Geschwind, N., Galaburda, A.M., 1985. Cerebral Lateralization: Biological Mechanisms,

Associations, and Pathology: I. A Hypothesis and a Program for Research. Arch. Neurol.

42, 428–459. https://doi.org/10.1001/archneur.1985.04060050026008

Geweke, J., 1982. Measurement of Linear Dependence and Feedback between Multiple Time

Series. J. Am. Stat. Assoc. 77, 304–313.

https://doi.org/10.1080/01621459.1982.10477803

50

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?broken=zOyT32
https://www.zotero.org/google-docs/?broken=zOyT32
https://www.zotero.org/google-docs/?broken=zOyT32
https://www.zotero.org/google-docs/?broken=zOyT32
https://www.zotero.org/google-docs/?broken=HaWpXk
https://www.zotero.org/google-docs/?broken=HaWpXk
https://www.zotero.org/google-docs/?broken=HaWpXk
https://www.zotero.org/google-docs/?broken=hIxhRU
https://www.zotero.org/google-docs/?broken=hIxhRU
https://www.zotero.org/google-docs/?broken=hIxhRU
https://doi.org/10.1073/pnas.0601417103
https://www.zotero.org/google-docs/?broken=x3L3pK
https://www.zotero.org/google-docs/?broken=x3L3pK
https://www.zotero.org/google-docs/?broken=x3L3pK
https://www.zotero.org/google-docs/?broken=cUEkVL
https://www.zotero.org/google-docs/?broken=cUEkVL
https://www.zotero.org/google-docs/?broken=cUEkVL
https://www.zotero.org/google-docs/?broken=TwOVQc
https://www.zotero.org/google-docs/?broken=TwOVQc
https://www.zotero.org/google-docs/?broken=TwOVQc
https://www.zotero.org/google-docs/?broken=3zMrfJ
https://www.zotero.org/google-docs/?broken=3zMrfJ
https://www.zotero.org/google-docs/?broken=3zMrfJ
https://www.zotero.org/google-docs/?broken=0VIIsA
https://www.zotero.org/google-docs/?broken=0VIIsA
https://www.zotero.org/google-docs/?broken=0VIIsA
https://www.zotero.org/google-docs/?broken=JLk52u
https://www.zotero.org/google-docs/?broken=JLk52u
https://www.zotero.org/google-docs/?broken=JLk52u
https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/


Golestani, A.-M., Tymchuk, S., Demchuk, A., Goodyear, B.G., 2013. Longitudinal Evaluation of

Resting-State fMRI After Acute Stroke With Hemiparesis. Neurorehabil. Neural Repair

27, 153–163. https://doi.org/10.1177/1545968312457827

Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., Petersen, S.E., 2016.

Generation and Evaluation of a Cortical Area Parcellation from Resting-State

Correlations. Cereb. Cortex 26, 288–303. https://doi.org/10.1093/cercor/bhu239

Gotts, S.J., Jo, H.J., Wallace, G.L., Saad, Z.S., Cox, R.W., Martin, A., 2013. Two distinct forms

of functional lateralization in the human brain. Proc. Natl. Acad. Sci. 110, E3435–E3444.

https://doi.org/10.1073/pnas.1302581110

Granger, C.W.J., 1969. Investigating Causal Relations by Econometric Models and

Cross-spectral Methods. Econometrica 37, 424–438. https://doi.org/10.2307/1912791

Gratton, C., Nomura, E.M., Pérez, F., D’Esposito, M., 2012. Focal Brain Lesions to Critical

Locations Cause Widespread Disruption of the Modular Organization of the Brain. J.

Cogn. Neurosci. 24, 1275–1285. https://doi.org/10.1162/jocn_a_00222

Grefkes, C., Fink, G.R., 2014. Connectivity-based approaches in stroke and recovery of

function. Lancet Neurol. 13, 206–216. https://doi.org/10.1016/S1474-4422(13)70264-3

Griffis, J.C., Metcalf, N.V., Corbetta, M., Shulman, G.L., 2020. Damage to the shortest structural

paths between brain regions is associated with disruptions of resting-state functional

connectivity after stroke. NeuroImage 210, 116589.

https://doi.org/10.1016/j.neuroimage.2020.116589

Griffis, J.C., Metcalf, N.V., Corbetta, M., Shulman, G.L., 2019. Structural Disconnections Explain

Brain Network Dysfunction after Stroke. Cell Rep. 28, 2527-2540.e9.

https://doi.org/10.1016/j.celrep.2019.07.100

Hahamy, A., Calhoun, V., Pearlson, G., Harel, M., Stern, N., Attar, F., Malach, R., Salomon, R.,

2014. Save the Global: Global Signal Connectivity as a Tool for Studying Clinical

Populations with Functional Magnetic Resonance Imaging. Brain Connect. 4, 395–403.

https://doi.org/10.1089/brain.2014.0244

He, B.J., Snyder, A.Z., Vincent, J.L., Epstein, A., Shulman, G.L., Corbetta, M., 2007. Breakdown

of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in

Spatial Neglect. Neuron 53, 905–918. https://doi.org/10.1016/j.neuron.2007.02.013

Hlinka, J., Paluš, M., Vejmelka, M., Mantini, D., Corbetta, M., 2011. Functional connectivity in

resting-state fMRI: Is linear correlation sufficient? NeuroImage 54, 2218–2225.

https://doi.org/10.1016/j.neuroimage.2010.08.042

Ince, R.A.A., Giordano, B.L., Kayser, C., Rousselet, G.A., Gross, J., Schyns, P.G., 2017. A

51

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?broken=f1s0hP
https://www.zotero.org/google-docs/?broken=f1s0hP
https://www.zotero.org/google-docs/?broken=f1s0hP
https://www.zotero.org/google-docs/?broken=nZDwdb
https://www.zotero.org/google-docs/?broken=nZDwdb
https://www.zotero.org/google-docs/?broken=nZDwdb
https://www.zotero.org/google-docs/?broken=zXRqXD
https://www.zotero.org/google-docs/?broken=zXRqXD
https://www.zotero.org/google-docs/?broken=zXRqXD
https://www.zotero.org/google-docs/?broken=wBWwvw
https://www.zotero.org/google-docs/?broken=wBWwvw
https://www.zotero.org/google-docs/?broken=AquFvR
https://www.zotero.org/google-docs/?broken=AquFvR
https://www.zotero.org/google-docs/?broken=AquFvR
https://www.zotero.org/google-docs/?broken=tCZV5R
https://www.zotero.org/google-docs/?broken=tCZV5R
https://www.zotero.org/google-docs/?broken=0PM9IE
https://www.zotero.org/google-docs/?broken=0PM9IE
https://www.zotero.org/google-docs/?broken=0PM9IE
https://www.zotero.org/google-docs/?broken=0PM9IE
https://www.zotero.org/google-docs/?broken=ntxubm
https://www.zotero.org/google-docs/?broken=ntxubm
https://www.zotero.org/google-docs/?broken=ntxubm
https://www.zotero.org/google-docs/?broken=rA16pA
https://www.zotero.org/google-docs/?broken=rA16pA
https://www.zotero.org/google-docs/?broken=rA16pA
https://www.zotero.org/google-docs/?broken=rA16pA
https://www.zotero.org/google-docs/?broken=CcRUCJ
https://www.zotero.org/google-docs/?broken=CcRUCJ
https://www.zotero.org/google-docs/?broken=CcRUCJ
https://www.zotero.org/google-docs/?broken=4qe250
https://www.zotero.org/google-docs/?broken=4qe250
https://www.zotero.org/google-docs/?broken=4qe250
https://www.zotero.org/google-docs/?broken=INDa9M
https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/


statistical framework for neuroimaging data analysis based on mutual information

estimated via a gaussian copula. Hum. Brain Mapp. 38, 1541–1573.

https://doi.org/10.1002/hbm.23471

Iturria-Medina, Y., Pérez Fernández, A., Morris, D.M., Canales-Rodríguez, E.J., Haroon, H.A.,

García Pentón, L., Augath, M., Galán García, L., Logothetis, N., Parker, G.J.M.,

Melie-García, L., 2011. Brain Hemispheric Structural Efficiency and Interconnectivity

Rightward Asymmetry in Human and Nonhuman Primates. Cereb. Cortex 21, 56–67.

https://doi.org/10.1093/cercor/bhq058

Josse, Goulven, and Nathalie Tzourio-Mazoyer. "Hemispheric specialization for language."

Brain Research Reviews 44.1 (2004): 1-12.

Karolis, V.R., Corbetta, M., Thiebaut de Schotten, M., 2019. The architecture of functional

lateralisation and its relationship to callosal connectivity in the human brain. Nat.

Commun. 10, 1417. https://doi.org/10.1038/s41467-019-09344-1

Kringelbach, M.L., Deco, G., 2019. 24 - Whole-brain modeling of neuroimaging data: Moving

beyond correlation to causation, in: Raz, A., Thibault, R.T. (Eds.), Casting Light on the

Dark Side of Brain Imaging. Academic Press, pp. 139–143.

https://doi.org/10.1016/B978-0-12-816179-1.00024-4

Liu, T.T., Nalci, A., Falahpour, M., 2017. The global signal in fMRI: Nuisance or Information?

NeuroImage 150, 213–229. https://doi.org/10.1016/j.neuroimage.2017.02.036

Mancuso, L., Uddin, L.Q., Nani, A., Costa, T., Cauda, F., 2019. Brain functional connectivity in

individuals with callosotomy and agenesis of the corpus callosum: A systematic review.

Neurosci. Biobehav. Rev. 105, 231–248. https://doi.org/10.1016/j.neubiorev.2019.07.004

Marko, H., 1973. The Bidirectional Communication Theory - A Generalization of Information

Theory. IEEE Trans. Commun. 21, 1345–1351.

https://doi.org/10.1109/TCOM.1973.1091610

McQuarrie, A.D.R., Tsai, C.-L., 1998. Regression and Time Series Model Selection. World

Scientific.

Melozzi, F., Bergmann, E., Harris, J.A., Kahn, I., Jirsa, V., Bernard, C., 2019. Individual

structural features constrain the mouse functional connectome. Proc. Natl. Acad. Sci.

116, 26961–26969. https://doi.org/10.1073/pnas.1906694116

Mengotti, Paola, et al. "Lateralization, functional specialization, and dysfunction of attentional

networks." Cortex (2020).

Messé, A., Rudrauf, D., Benali, H., Marrelec, G., 2014. Relating Structure and Function in the

Human Brain: Relative Contributions of Anatomy, Stationary Dynamics, and

52

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?broken=INDa9M
https://www.zotero.org/google-docs/?broken=INDa9M
https://www.zotero.org/google-docs/?broken=INDa9M
https://www.zotero.org/google-docs/?broken=cWyQn5
https://www.zotero.org/google-docs/?broken=cWyQn5
https://www.zotero.org/google-docs/?broken=cWyQn5
https://www.zotero.org/google-docs/?broken=cWyQn5
https://doi.org/10.1093/cercor/bhq058
https://www.zotero.org/google-docs/?broken=G6ZnfM
https://www.zotero.org/google-docs/?broken=G6ZnfM
https://www.zotero.org/google-docs/?broken=G6ZnfM
https://www.zotero.org/google-docs/?broken=NXpA8V
https://www.zotero.org/google-docs/?broken=NXpA8V
https://www.zotero.org/google-docs/?broken=NXpA8V
https://www.zotero.org/google-docs/?broken=NXpA8V
https://www.zotero.org/google-docs/?broken=0NAEDz
https://www.zotero.org/google-docs/?broken=0NAEDz
https://www.zotero.org/google-docs/?broken=VkrQNk
https://www.zotero.org/google-docs/?broken=VkrQNk
https://www.zotero.org/google-docs/?broken=VkrQNk
https://www.zotero.org/google-docs/?broken=a1LuqH
https://www.zotero.org/google-docs/?broken=a1LuqH
https://www.zotero.org/google-docs/?broken=a1LuqH
https://www.zotero.org/google-docs/?broken=fjAaI2
https://www.zotero.org/google-docs/?broken=fjAaI2
https://www.zotero.org/google-docs/?broken=HO2bOe
https://www.zotero.org/google-docs/?broken=HO2bOe
https://www.zotero.org/google-docs/?broken=HO2bOe
https://doi.org/10.1073/pnas.1906694116
https://www.zotero.org/google-docs/?broken=Wtd2FS
https://www.zotero.org/google-docs/?broken=Wtd2FS
https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/


Non-stationarities. PLoS Comput. Biol. 10. https://doi.org/10.1371/journal.pcbi.1003530

New, A.B., Robin, D.A., Parkinson, A.L., Duffy, J.R., McNeil, M.R., Piguet, O., Hornberger, M.,

Price, C.J., Eickhoff, S.B., Ballard, K.J., 2015. Altered resting-state network connectivity

in stroke patients with and without apraxia of speech. NeuroImage Clin. 8, 429–439.

https://doi.org/10.1016/j.nicl.2015.03.013

O’Reilly, J.X., Croxson, P.L., Jbabdi, S., Sallet, J., Noonan, M.P., Mars, R.B., Browning, P.G.F.,

Wilson, C.R.E., Mitchell, A.S., Miller, K.L., Rushworth, M.F.S., Baxter, M.G., 2013.

Causal effect of disconnection lesions on interhemispheric functional connectivity in

rhesus monkeys. Proc. Natl. Acad. Sci. 110, 13982–13987.

https://doi.org/10.1073/pnas.1305062110

Park Chang-hyun, Chang Won Hyuk, Ohn Suk Hoon, Kim Sung Tae, Bang Oh Young,

Pascual-Leone Alvaro, Kim Yun-Hee, 2011. Longitudinal Changes of Resting-State

Functional Connectivity During Motor Recovery After Stroke. Stroke 42, 1357–1362.

https://doi.org/10.1161/STROKEAHA.110.596155

Pino, G.D., Pellegrino, G., Assenza, G., Capone, F., Ferreri, F., Formica, D., Ranieri, F., Tombini,

M., Ziemann, U., Rothwell, J.C., Lazzaro, V.D., 2014. Modulation of brain plasticity in

stroke: a novel model for neurorehabilitation. Nat. Rev. Neurol. 10, 597–608.

https://doi.org/10.1038/nrneurol.2014.162

Ramsey, L.E., Siegel, J.S., Baldassarre, A., Metcalf, N.V., Zinn, K., Shulman, G.L., Corbetta, M.,

2016. Normalization of network connectivity in hemispatial neglect recovery. Ann.

Neurol. 80, 127–141. https://doi.org/10.1002/ana.24690

Rehme, A.K., Grefkes, C., 2013. Cerebral network disorders after stroke: evidence from

imaging-based connectivity analyses of active and resting brain states in humans. J.

Physiol. 591, 17–31. https://doi.org/10.1113/jphysiol.2012.243469

Rissanen, J., Wax, M., 1987. Measures of mutual and causal dependence between two time

series (Corresp.). IEEE Trans. Inf. Theory 33, 598–601.

https://doi.org/10.1109/TIT.1987.1057325

Roebroeck, A., Formisano, E., Goebel, R., 2011. The identification of interacting networks in the

brain using fMRI: Model selection, causality and deconvolution. NeuroImage 58,

296–302. https://doi.org/10.1016/j.neuroimage.2009.09.036

Roebroeck, A., Formisano, E., Goebel, R., 2005. Mapping directed influence over the brain

using Granger causality and fMRI. NeuroImage 25, 230–242.

https://doi.org/10.1016/j.neuroimage.2004.11.017

Roland, J.L., Snyder, A.Z., Hacker, C.D., Mitra, A., Shimony, J.S., Limbrick, D.D., Raichle, M.E.,

53

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?broken=Wtd2FS
https://www.zotero.org/google-docs/?broken=Mg5JE5
https://www.zotero.org/google-docs/?broken=Mg5JE5
https://www.zotero.org/google-docs/?broken=Mg5JE5
https://www.zotero.org/google-docs/?broken=Mg5JE5
https://www.zotero.org/google-docs/?broken=LqMUFp
https://www.zotero.org/google-docs/?broken=LqMUFp
https://www.zotero.org/google-docs/?broken=LqMUFp
https://www.zotero.org/google-docs/?broken=LqMUFp
https://www.zotero.org/google-docs/?broken=LqMUFp
https://www.zotero.org/google-docs/?broken=djCcy3
https://www.zotero.org/google-docs/?broken=djCcy3
https://www.zotero.org/google-docs/?broken=djCcy3
https://www.zotero.org/google-docs/?broken=djCcy3
https://www.zotero.org/google-docs/?broken=HKvkrd
https://www.zotero.org/google-docs/?broken=HKvkrd
https://www.zotero.org/google-docs/?broken=HKvkrd
https://www.zotero.org/google-docs/?broken=HKvkrd
https://www.zotero.org/google-docs/?broken=EaAMyA
https://www.zotero.org/google-docs/?broken=EaAMyA
https://www.zotero.org/google-docs/?broken=EaAMyA
https://www.zotero.org/google-docs/?broken=GCtNRS
https://www.zotero.org/google-docs/?broken=GCtNRS
https://www.zotero.org/google-docs/?broken=GCtNRS
https://www.zotero.org/google-docs/?broken=7ieZY1
https://www.zotero.org/google-docs/?broken=7ieZY1
https://www.zotero.org/google-docs/?broken=7ieZY1
https://www.zotero.org/google-docs/?broken=6PAvUf
https://www.zotero.org/google-docs/?broken=6PAvUf
https://www.zotero.org/google-docs/?broken=6PAvUf
https://www.zotero.org/google-docs/?broken=ODyRV6
https://www.zotero.org/google-docs/?broken=ODyRV6
https://www.zotero.org/google-docs/?broken=ODyRV6
https://www.zotero.org/google-docs/?broken=A8lIUn
https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smyth, M.D., Leuthardt, E.C., 2017. On the role of the corpus callosum in

interhemispheric functional connectivity in humans. Proc. Natl. Acad. Sci. 114,

13278–13283. https://doi.org/10.1073/pnas.1707050114

Saad, Z.S., Gotts, S.J., Murphy, K., Chen, G., Jo, H.J., Martin, A., Cox, R.W., 2012. Trouble at

Rest: How Correlation Patterns and Group Differences Become Distorted After Global

Signal Regression. Brain Connect. 2, 25–32. https://doi.org/10.1089/brain.2012.0080

Schmahmann, J.D., Schmahmann, J., Pandya, D., 2009. Fiber Pathways of the Brain. Oxford

University Press, USA.

Schölvinck, M.L., Maier, A., Ye, F.Q., Duyn, J.H., Leopold, D.A., 2010. Neural basis of global

resting-state fMRI activity. Proc. Natl. Acad. Sci. 107, 10238–10243.

https://doi.org/10.1073/pnas.0913110107

Schreiber, T., 2000. Measuring Information Transfer. Phys. Rev. Lett. 85, 461–464.

https://doi.org/10.1103/PhysRevLett.85.461

Siegel, Joshua Sarfaty, Ramsey, L.E., Snyder, A.Z., Metcalf, N.V., Chacko, R.V., Weinberger, K.,

Baldassarre, A., Hacker, C.D., Shulman, G.L., Corbetta, M., 2016. Disruptions of network

connectivity predict impairment in multiple behavioral domains after stroke. Proc. Natl.

Acad. Sci. 113, E4367–E4376. https://doi.org/10.1073/pnas.1521083113

Siegel, Joshua S, Snyder, A.Z., Ramsey, L., Shulman, G.L., Corbetta, M., 2016. The effects of

hemodynamic lag on functional connectivity and behavior after stroke. J. Cereb. Blood

Flow Metab. 36, 2162–2176. https://doi.org/10.1177/0271678X15614846

Stramaglia, Sebastiano, et al. "Synergetic and redundant information flow detected by

unnormalized Granger causality: Application to resting state fMRI." IEEE Transactions on

Biomedical Engineering 63.12 (2016): 2518-2524.

Takeuchi, N., Izumi, S.-I., 2012. Noninvasive Brain Stimulation for Motor Recovery after Stroke:

Mechanisms and Future Views [WWW Document]. Stroke Res. Treat.

https://doi.org/10.1155/2012/584727

Tang, C., Zhao, Z., Chen, C., Zheng, X., Sun, F., Zhang, X., Tian, J., Fan, M., Wu, Y., Jia, J.,

2016. Decreased Functional Connectivity of Homotopic Brain Regions in Chronic Stroke

Patients: A Resting State fMRI Study. PLoS ONE 11.

https://doi.org/10.1371/journal.pone.0152875

Tang, Wei, et al. "Measuring Granger causality between cortical regions from voxelwise fMRI

BOLD signals with LASSO." PLoS Comput Biol 8.5 (2012): e1002513.

Toga, A.W., Thompson, P.M., 2003. Mapping brain asymmetry. Nat. Rev. Neurosci. 4, 37–48.

https://doi.org/10.1038/nrn1009

54

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?broken=A8lIUn
https://www.zotero.org/google-docs/?broken=A8lIUn
https://www.zotero.org/google-docs/?broken=A8lIUn
https://www.zotero.org/google-docs/?broken=gaIDry
https://www.zotero.org/google-docs/?broken=gaIDry
https://www.zotero.org/google-docs/?broken=gaIDry
https://www.zotero.org/google-docs/?broken=Jzjgi1
https://www.zotero.org/google-docs/?broken=Jzjgi1
https://www.zotero.org/google-docs/?broken=1APvKY
https://www.zotero.org/google-docs/?broken=1APvKY
https://www.zotero.org/google-docs/?broken=1APvKY
https://www.zotero.org/google-docs/?broken=PIfjqZ
https://www.zotero.org/google-docs/?broken=PIfjqZ
https://www.zotero.org/google-docs/?broken=DhsouW
https://www.zotero.org/google-docs/?broken=DhsouW
https://www.zotero.org/google-docs/?broken=DhsouW
https://www.zotero.org/google-docs/?broken=DhsouW
https://www.zotero.org/google-docs/?broken=fskvtj
https://www.zotero.org/google-docs/?broken=fskvtj
https://www.zotero.org/google-docs/?broken=fskvtj
https://doi.org/10.1177/0271678X15614846
https://www.zotero.org/google-docs/?broken=5DN4Qx
https://www.zotero.org/google-docs/?broken=5DN4Qx
https://www.zotero.org/google-docs/?broken=5DN4Qx
https://www.zotero.org/google-docs/?broken=PjvcXe
https://www.zotero.org/google-docs/?broken=PjvcXe
https://www.zotero.org/google-docs/?broken=PjvcXe
https://doi.org/10.1371/journal.pone.0152875
https://www.zotero.org/google-docs/?broken=ez7yCX
https://www.zotero.org/google-docs/?broken=ez7yCX
https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/


Treves, A., Panzeri, S., 1995. The Upward Bias in Measures of Information Derived from

Limited Data Samples. Neural Comput. 7, 399–407.

https://doi.org/10.1162/neco.1995.7.2.399

van der Knaap, L.J., van der Ham, I.J.M., 2011. How does the corpus callosum mediate

interhemispheric transfer? A review. Behav. Brain Res. 223, 211–221.

https://doi.org/10.1016/j.bbr.2011.04.018

van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil, K., & Wu-Minn

HCP Consortium. (2013). The WU-Minn human connectome project: an overview.

Neuroimage, 80, 62-79.

Wang, X., Seguin, C., Zalesky, A., Wong, W. W., Chu, W. C. W., & Tong, R. K. Y. (2019).

Synchronization lag in post stroke: relation to motor function and structural connectivity.

Network Neuroscience, 3(4), 1121-1140.

Wu, G. R., Liao, W., Stramaglia, S., Ding, J. R., Chen, H., & Marinazzo, D. (2013). A blind

deconvolution approach to recover effective connectivity brain networks from resting

state fMRI data. Medical image analysis, 17(3), 365-374.

Yang, G.J., Murray, J.D., Repovs, G., Cole, M.W., Savic, A., Glasser, M.F., Pittenger, C., Krystal,

J.H., Wang, X.-J., Pearlson, G.D., Glahn, D.C., Anticevic, A., 2014. Altered global brain

signal in schizophrenia. Proc. Natl. Acad. Sci. 111, 7438–7443.

https://doi.org/10.1073/pnas.1405289111

55

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?broken=MgDtBd
https://www.zotero.org/google-docs/?broken=MgDtBd
https://www.zotero.org/google-docs/?broken=MgDtBd
https://www.zotero.org/google-docs/?broken=pOixEq
https://www.zotero.org/google-docs/?broken=pOixEq
https://doi.org/10.1016/j.bbr.2011.04.018
https://www.zotero.org/google-docs/?broken=m608Xd
https://www.zotero.org/google-docs/?broken=m608Xd
https://www.zotero.org/google-docs/?broken=m608Xd
https://doi.org/10.1073/pnas.1405289111
https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/

