Supplementary information

Genomic inference of a human super bottleneck in the Early Stone Age

Wangjie $\mathrm{Hu}^{1, \dagger}$, Ziqian $\mathrm{Hao}^{1, \dagger}$, Pengyuan Du^{1}, Yi-Hsuan Pan ${ }^{2, *}$, Haipeng $\mathrm{Li}^{1,3, *}$

${ }^{1}$ CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
${ }^{2}$ Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, Shanghai 200062, China.
${ }^{3}$ Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
\dagger These authors contributed equally.
*Corresponding Authors: yxpan@ sat.ecnu.edu.cn; lihaipeng@ picb.ac.cn

Table of Contents

List of Symbols 6
Validation of FitCoal calculation 6
SFS truncation 7
Composite likelihood 8
FitCoal- and simulation-based likelihood surface 9
Demographic inference on simulated data 9
Effects of positive selection 10
Verification of inferred human demographic histories 11
Alternative hypotheses of the super bottleneck 12
Loss of genetic diversity due to the super bottleneck 12
The super bottleneck estimated in Africans 13
Confounding factors of bottleneck 14
Computational performance 15
Models and simulation commands for Fig. S35 15
Models and simulation commands for Table S15 16
Models for verifying the accuracy of FitCoal 17

List of figures

Figure S1. Comparison of likelihood surfaces based on simulations and FitCoal.
Figure S2. Effects of sequence length (a), sample size (b), and recombination rate (c) in the FitCoal inference.

Figure S3. Verification of FitCoal accuracy with truncated SFS.
Figure S4. Verification of FitCoal accuracy with truncated SFS under more complexed models.

Figure S5. Effects of positive selection on demographic inference.
Figure S6. Inferred demographic histories and standard coalescent times of 1000GP populations.

Figure S7. Inferred demographic histories and standard coalescent times of HGPD-CEPH populations.

Figure S8. Verification of the HGDP-CEPH inferred super bottleneck.
Figure S 9 . Verification of the super bottleneck in artificial models.
Figure S10. Inferred demographic histories of 1000GP and HGPD-CEPH populations using the same truncating SFS standard for each data set

Figure S11. The observed SFSs of 1000GP populations.
Figure S12. The observed SFSs without missing data of HGDP-CEPH populations.
Figure S13. The observed SFSs with one missing individual of HGDP-CEPH populations.
Figure S14. Estimated demographic histories of FitCoal conditional on exponential change, stairway plot, and PSMC using simulated samples.

Figure S15. Estimated demographic histories of FitCoal conditional on instantaneous change, stairway plot, and PSMC using simulated samples.

Figure S16. Verification of the accuracy of FitCoal using simulated samples under complex models.

Figure S17. Verification of FitCoal accuracy under three migration models.
Figure S18. 95\% confidence intervals of 1000GP African populations.
Figure S19. 95\% confidence intervals of 1000GP European populations.
Figure S20. 95\% confidence intervals of 1000GP East Asian populations.
Figure S21. 95\% confidence intervals of 1000GP South Asian populations.
Figure S22.95\% confidence intervals of 1000GP American populations.

Figure S23. 95\% confidence intervals of HGPD-CEPH African populations.
Figure S24. 95\% confidence intervals of HGPD-CEPH Middle East populations. Figure S25. 95\% confidence intervals of HGPD-CEPH European populations.
Figure S26. 95\% confidence intervals of HGPD-CEPH East Asian populations. Figure S27. 95\% confidence intervals of HGPD-CEPH Central \& South Asian populations.
Figure S28. 95\% confidence intervals of HGPD-CEPH American population.
Figure S29. Inferred demographic histories with different inference time intervals of 1000GP populations.
Figure S30. Inferred demographic histories with different inference time intervals of HGPD-CEPH American populations.

Figure S31. Verification of inference accuracy under complex population structure model.
Figure S32. Verification of inference accuracy when migration occurred with unknown hominin population.

Figure S33. Estimated demographic histories using the full and the truncated SFSs of 1000GP populations.
Figure S34. Estimated demographic histories using the full and the truncated SFSs of HGDP-CEPH populations.

Figure S35. Comparison of the expected branch lengths of FitCoal and the average branch lengths of coalescent simulations.

List of tables

Table S1. Proportion of correctly-inferred change type for the most recent demographic event in six models.

Table S2. Parameters of the super bottleneck in 1000GP African populations.
Table S3. Parameters of the super bottleneck in HGDP-CEPH African populations
Table S4. Parameters of the out-of-Africa bottleneck in 1000GP non-African populations.
Table S5. Parameters of the out-of-Africa bottleneck in HGDP-CEPH non-African populations.

Table S6. The super bottleneck parameters of Bottleneck I model.
Table S7. The super bottleneck parameters of Bottleneck IV model.
Table S8. Super bottleneck parameters of Bottleneck VII model.
Table S9. Influence of different log-likelihood promotion thresholds.
Table S10. Information of truncated SFS of 1000GP populations.
Table S11. Proportion of SNPs without or with missing data of HGDP-CEPH populations.
Table S12. Information of truncated SFS of HGDP-CEPH populations.
Table S13. Comparison of branch length between theoretical values and FitCoal under the constant size model.

Table S14. Comparison of accuracy between FitCoal and Z-W's method.
Table S15. Comparison of accuracy between FitCoal and simulations.
Table S16. Likelihood promotion rate of inferred demographic histories with different inference time intervals of 1000GP populations.
Table S17. Likelihood promotion rate of inferred demographic histories with different inference time intervals of HGDP-CEPH populations.
Table S18. Probabilities of each state (the number of ancestral lineages remained) at time t.

List of Symbols

Symbol	Meaning
$N(\cdot)$	Demographic history, or varying population size.
t	Standard coalescent time (scaled by $2 N(t)$ generations).
$\tau \tau$	One-point scaled time (scaled by $2 N(0)$ generations).
n	Sample size, or the number of sampled chromosomes.
l	State (the number of lineages).
$p_{l}(t)$	Probability of state l at time t.
i	Size of branch.
$B L_{i}(N(\cdot))$	Expected branch length of size i given population size, in
	number of generations.
$\vec{\xi}=\left(\xi_{i}\right)$	SFS, $i=1, \cdots, n-1 . \xi_{i}$ is the number of mutations with size $i . \xi_{1}$ is usually called the number of singletons, and ξ_{2} the number of doubletons. $\left\{t_{0}, t_{1}, \cdots, t_{m}\right\}$

Validation of FitCoal calculation

We verified the calculation of expected branch lengths in this section. Under the constant size model, when the sample size was small ($n=5$, where n is the number of sequences) or extremely large ($n=1,000$), FitCoal calculated the expected branch lengths correctly ${ }^{1}$ (Table S13). Computational accuracy reached 10^{-8} or 10^{-11}. The high accuracy is important for the precise estimation of demographic history in the following sections.

Moreover, our results were almost the same as the expected branch lengths under three simple models calculated by using the Zivković-Wiehe method ${ }^{2}$ (Table S14). Since Zivković-Wiehe equations can be numerically solved when $\mathrm{n}<50$, we could not compare our results with theirs when the sample size was large.

For more complex models, the average branch lengths were obtained from extensive coalescent simulations. Although with certain variances, the simulated results were
consistent with the FitCoal expected branch lengths under different demographic models (Table S15). Therefore, FitCoal can analytically derive the expected branch length for each SFS type under arbitrary demographic models.

We also compared the results obtained from the tabulated FitCoal and those from the original ones without tabulation. These results were nearly identical with each other (Tables S14 and S15). Since the former was much faster than the latter, the former was used to infer demographic histories. Hereafter, tabulated FitCoal is referred to as FitCoal for short, unless otherwise indicated.

SFS truncation

Denote the SFS of n samples by $\vec{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)$. An m-dimension vector $\vec{V}=\left(v_{1}, \ldots, v_{m}\right)$ is said to be tail-up if there exist $z \in\{1, \cdots, m-1\}$ such that $v_{z}<\cdots<$ v_{m}. If $\vec{\lambda}$ is the expected SFS of a single varying size population, we have $\lambda_{[n / 2]}>\cdots>$ λ_{n-1}. However, the observed $\operatorname{SFS} \vec{\xi}=\left(\xi_{1}, \ldots, \xi_{n-1}\right)$ may be tailed up because of some evolutionary factors, such as positive selection and population structure, which could introduce bias to the demographic inference. Therefore, the truncated SFS is recommended.

A simple procedure is implemented to discard the tail-up types of SFS, containing high-frequency mutations. To determine the truncated tail of SFS, a small window slides through the SFS. The cutoff is determined if ξ_{i} exceeds its random fluctuation range. Let $\widehat{n}(\vec{\xi})=\max _{k \in\{1, \cdots, n-1\}}\left\{k \mid \bar{w}_{k}(\vec{\xi})-3 S D_{k}(\vec{\xi})<w_{k-i(n)+1}, \cdots, w_{k}<\bar{w}_{k}(\vec{\xi})+3 S D_{k}(\vec{\xi})\right\}$, where $\bar{w}_{k}(\vec{\xi})=\frac{1}{i(n)} \sum_{a=k-i(n)+1}^{k} \xi_{a}, S D_{k}(\vec{\xi})=\sqrt{\bar{w}_{k}(\vec{\xi})}$, and $i(n)=\left\{\begin{array}{ll}3 & n \leq 50 \\ 4 & 50<n \leq 100 \\ 5 & n>100\end{array}\right.$. The truncated SFS $\vec{\xi}^{T}=\left(\xi_{i}\right)$, where $i=1, \cdots, k$. In the analysis, we used this strategy to truncate the SFS for each human population. We call $(n-k) / n$ the proportion of truncated SFS types.

When the truncating strategy was applied, the proportion of truncated SFS types was different for different populations (Table S5, S7). Therefore, to verify the effect of this strategy, the same truncating standard ($\sim 10 \%$, the mean proportion) was also used for

1000GP populations (Fig. S10). For HGDP-CEPH, because the proportion of considered SNPs without missing samples is larger than 80% for all populations, we used the corresponding SFS to determine the cutoff to truncate both SFSs. Similarly, the same truncating standard ($\sim 15 \%$, the mean proportion) was used for HGDP-CEPH (Fig. S10).

Composite likelihood

Denote μ as the mutation rate per base pair per generation. Denote $\vec{\xi}=\left(\xi_{i}\right)$ as the observed number of SNPs of n sequences with σ base pair, where $i=1, \cdots, n-1$. The expected SFS $\vec{\lambda}=\left(\lambda_{i}\right)$, where $\lambda_{i}=\mu \sigma B L_{i}(N(\cdot))$, Following the Poisson probability and the previous studies ${ }^{3,4}$, the composite likelihood could be written as

$$
L_{\mu, l}(\vec{\xi}, N(\cdot))=\prod_{i=1}^{n-1} \frac{\lambda_{i}^{\xi_{i}} e^{-\lambda_{i}}}{\xi_{i}!} .
$$

For missing data, we assume that $\sigma^{(n)}$ base pair are sequenced in n samples and S is the set of all sample sizes. We denote the observed number of SNPs of $n(\in S)$ sequences by $\vec{\xi}^{(n)}=\left(\xi_{1}^{(n)}, \cdots, \xi_{n-1}^{(n)}\right)$. The expected SFS of n sequences $\vec{\lambda}^{(n)}=\left(\lambda_{1}^{(n)}, \cdots, \lambda_{n-1}^{(n)}\right)$, where $\lambda_{i}^{(n)}=\mu \sigma^{(n)} B L_{i}^{(n)}(N(\cdot)), B L_{i}^{(n)}(N(\cdot))$ is the expected branch length of type i with n samples under population size $N(\cdot)$. Total number of base pair is given by $\sigma(S)$ $:=\sum_{n \in S} \sigma^{(n)}$. The composite likelihood could be written as

$$
\begin{aligned}
& L_{\mu,\left(\iota^{(n)}\right)}^{n \in S} \text { }\left(\left(\vec{\xi}^{(n)}\right)_{n \in S}, N(\cdot)\right) \\
& =\prod_{n \in S} L_{\mu, l^{(n)}}\left(\vec{\xi}^{(n)}, N(\cdot)\right) \\
& =\prod_{n \in S} \prod_{i=1}^{n-1} \frac{\left(\lambda_{i}^{(n)}\right)^{\xi_{i}^{(n)}} e^{-\lambda_{i}^{(n)}}}{\xi_{i}^{(n)}!}
\end{aligned}
$$

If SFS is tail-up, we use truncated SFS $\vec{\xi}^{T}=\left(\xi_{i}\right)$, where $i=1, \cdots, k$. The composite likelihood is

$$
L_{\mu, l}\left(\vec{\xi}^{T}, N(\cdot)\right)=\prod_{i=1}^{k} \frac{\lambda_{i}^{\xi_{i}} e^{-\lambda_{i}}}{\xi_{i}!}
$$

Sequencing errors often affect rare mutations in a sample. Thus singletons and mutations with size $(n-1)$ can be discarded. Although this is unnecessary in this study, as a general method, the composite likelihood of an SFS without those mutations is

$$
L_{\mu, l}(\vec{\xi}, N(\cdot))=\prod_{i=2}^{n-2} \frac{2 \sum_{i}^{\xi_{i}} e^{-\lambda_{i}}}{\xi_{i}!} .
$$

FitCoal- and simulation-based likelihood surface

In this section, we compared two likelihood surfaces based FitCoal and simulation (Fig. S1). We considered an instantaneous growth model. The population size increases from $10,000\left(N_{1}\right)$ to $20,000\left(N_{0}\right)$ at standard coalescent time 0.2 . For simplicity, we obtained a SFS by multiplying the expected branch length by $\theta l\left(=4 \mathrm{~N}_{0} \mu\right)$, where $\mu l=1.0$. The number of sequences is 100 .

We then compared the FitCoal composite likelihood surface of the SFS and the composite likelihood surface of the SFS based on simulation approach. To draw the likelihood surfaces, we performed a grid search in a parameter space. We considered that the population size increase from N_{1} to N_{0} at standard coalescent time 0.2 , where N_{0} ranges from 19,600 to 20,400 and N_{1} from 9,800 to 10,200. The coalescent simulations were conducted by the ms software. The number of simulations is 100,000 to calculate the simulation-based likelihood.

The surface of FitCoal likelihood is smooth, but the surface of likelihood based on simulation approach is rugged (Fig. S1). Moreover, the FitCoal likelihoods are also larger than those based on simulation approach because the FitCoal expected branch lengths fit the data better than the average branch lengths obtained from simulations.

Demographic inference on simulated data

It has been shown that FitCoal can precisely estimate the demographic histories under six different demographic models (Fig. 2). We then validated the accuracy of FitCoal on more simulated data in this section.

Comparing with the examined cases (Fig. 2), the performance of FitCoal can be further improved by providing a priori knowledge. In some circumstances, a slow and continuous change may be more biological relevant than a quick and sudden change and vice versa. FitCoal was then re-performed conditional on either exponential or instantaneous change within each inference time interval (Fig. S14 and S15). Our results
showed that the FitCoal accuracy was enhanced in the presence of correct priori knowledge. Even if the condition was misspecified, the inferred demographic histories were still similar with the true histories.

FitCoal is a model-flexible method and the number of inference time intervals is dependent on the complexity of true demography. FitCoal has the power to detect more complex population histories (Fig. S16). Although FitCoal may omit slight changes of population size occurred in short time periods, it has great ability to detect the major changes in all examined complex histories. When two-population split models are considered (Fig. S17), FitCoal is reasonably accurate but with a slightly larger recent population size due to the effects of migration.

Effects of positive selection

To simulate samples affected by positive selection, we considered a two-locus model 5 under a constant size model. We assumed that the effective population size was 27,000 , and the number of neutral fragments were 10,000 , and 10 or 20% of them were partially linked with selected alleles. The distance between the neutral and the selected loci was 50 kb , and recombination rate was 1 cM per Mb . The sample size was 202 (the average sample size of 1000 GP populations). The selection coefficient ($s=0.01$ or 0.05) was varied. We assumed a mutation rate of 1.2×10^{-8} per base per generation and a generation time of 24 years. To compare among different cases, the fixed number SNPs ($5,882,885$ SNPs, the average number of SNPs in 1000GP populations) were applied. Under neutrality, it was equivalent to the sequenced length of 771.589 Mb .

All the simulated samples had a tail-up feature because of the excess of highfrequency mutations ${ }^{6}$. Considering the low genetic diversity of selected loci, the contribution of selected loci to the genome-wide diversity was relatively low, thus only a slight excess of rare mutations ${ }^{7}$ was observed. The ratio between the number of singletons and doubletons ranged between 2.01 and 2.10 in the simulated samples, only slightly larger than the expected value (2.0) under neutrality.

We then applied FitCoal to estimated demography. When the full SFSs were used, our results showed that the population size remains constant within 2,000 kry (Fig. S5a). If the selection strength was greatly strong ($s=0.05$, where s is the selection coefficient),

FitCoal estimated a large ancient population ~ 240 kyr ago because of the effects of highfrequency mutations. When the high-frequency mutations were removed (i.e. the truncated SFS), the large ancient population size was reduced (Fig. S5b). If $s=0.01$ and 20% loci were subject to positive selection, a slight population expansion was observed, corresponding to the slight excess of rare mutations due to positive selection. Overall, a correct demographic history was estimated within two million years.

Verification of inferred human demographic histories

To evaluate the precision of the inferred human demographic histories (Fig. 3), we simulated 200 data sets under each demographic history. The results showed that FitCoal, with truncated SFS, is highly accurate to reveal human demographic history (Fig. S18 S28). Moreover, when high-frequency mutations were discarded, the truncated proportion of SFS was different for different populations. To address the influence of truncated proportions, we inferred the demographic histories by setting the average truncating proportion within each data set (10% for 1000GP and 15% for HGDP-CEPH) (Fig S10). Results were consistent with the ones obtained above. Therefore, the strategy of truncating SFS does not affect our conclusions.

Similar with the log-likelihood ratio test, the number of inference time intervals was determined by the log-likelihood promotion rate when increasing the number of inference time intervals. It is recommended to use 20% as the threshold of log-likelihood promotion rate derived from extensive simulation results (Table S11). When analyzing the human data, the inferred demographic histories are not sensitive to this threshold (Fig. S29, S30; Tables S16, S17). For example, the log-likelihood promotion rate for three and four inference time intervals of CEU is 2471.16 and 17.07%, respectively. The number of inference time intervals is three, and the inferred demographic history is highly similar with that with four inference time intervals. Thus, the inferred demographic histories are robust to the threshold of 20%.

Alternative hypotheses of the super bottleneck

In this study, the super bottleneck is detected in all the 10 African populations, but not in all the 40 non-African populations. Two alternative hypotheses were explored. First, the super bottleneck was a false positive result due to positive selection. However, FitCoal did not falsely estimate a bottleneck due to the existence of positive selection (Fig. S5). Besides all the 40 non-African populations could also be affected by positive selection, but no super bottleneck was found. Thus it is unlikely that the bottleneck is a false positive bias introduced by positive selection. Second, the super bottleneck could occur in the African populations after the non-African populations were derived. This requires that the African and non-African populations diverged before 1,000 kyr ago, which makes the hypothesis impossible. Therefore, the super bottleneck is shared by African and non-African populations.

Loss of genetic diversity due to the super bottleneck

To measure the loss of current human genetic diversity due to the super bottleneck, we calculated the expected tree length of demographic histories with or without the super bottleneck. It was straightforward to ignore a bottleneck with instantaneous size changes, thus we considered seven 1000GP African populations (ACB, ASW, ESN, GWD, LWK, MSL and YRI) and one HGDP-CEPH African population (Yoruba). To remove the bottleneck, we replaced the population size during the super bottleneck with that after the bottleneck. We then compared the expected tree length of inferred demographic history $\left(\omega_{1}\right)$ with that of demographic history without the bottleneck $\left(\omega_{0}\right)$.

The loss of current genetic diversity due to the super bottleneck is $\left(\omega_{0}-\omega_{1}\right) / \omega_{0}$. When the actual sample size was used for each population, the genetic diversity was measured as Watterson's θ. The genetic diversity loss of these eight populations was 46.22% and the range was $32.17-60.56 \%$.

When $n=2$, the genetic diversity was measured as π, the pairwise nucleotide diversity. The loss of current genetic diversity in these eight populations was 65.85% and the range was $52.71-73.60 \%$. It was larger than the estimate based on Watterson's θ because the bottleneck was ancient and the recovery rate of Watterson's θ was faster than
that of π^{8}. These results demonstrate the importance of the super bottleneck in the human evolution.

The super bottleneck estimated in Africans

In this section, we explored why the super bottleneck can only be estimated in the African population and provided the mathematical explanation. We proved that the inferred number of intervals before time t depends on the dimension of the SFS before time t.

Denote the probability of state l at time t from n samples by $p_{l}^{n}(t)$, where $l=$ $2, \cdots, n$. And denote the expected brach length of size i from n samples by $B L_{i}^{n}(N(\cdot))$, where $i=1, \cdots, n-1$. There exists an invertible matrix $\mathcal{X}=\left(x_{g}^{h}\right)_{g, h=2, \cdots, n}$ which only depends on n, such that $p_{l}^{n}(t)=\sum_{g=2}^{n} x_{g}^{l} p_{g}^{g}(t)$ (ref. ${ }^{9,10}$). If positive numbers $m<n$, there exist a matix $\mathcal{Y}=\left(y_{g}^{h}\right)_{g=2, \cdots, m, h=2, \cdots, n}$, which only depends on m and n, such that $p_{l}^{m}(t)=\sum_{h=2}^{n} y_{l}^{h} p_{h}^{n}(t)$. Combined with eq(1), there exist a matrix $Z=\left(z_{g}^{h}\right)_{g=1, \cdots, m-1, h=1, \cdots, n-1}$, which only depends on m and n, such that $B L_{i}^{m}(N(\cdot))=$ $\sum_{j=1}^{n-1} z_{i}^{j} B L_{j}^{n}(N(\cdot))$.

Define the population size before time t by $N^{t}(s)=N(t+s)$. Denote the expected branch length of state l before time t by $B_{l}(t)=\left(b_{1, l}(t), \cdots, b_{l-1, l}(t)\right)$, where $b_{i, l}(t)$ represent the expected branch length of state l before time t of type i at time t. We have $b_{j, l}(t)=p_{l}^{n}(t) B L_{j}^{l}\left(N^{t}(\cdot)\right) . B L_{i, k}^{t}(i=1, \cdots, n-1)$ denote the branch length of type i whose number of lineages are no more than k before time t. We have

$$
\begin{gathered}
B L_{i, k}^{t}=\sum_{l=2}^{k} \sum_{j=1}^{l-1} \frac{p(j \rightarrow i) p(l-j \rightarrow n-i)}{p(l \rightarrow n)} b_{j, l}(t) \\
\text { where } p(a \rightarrow b)= \begin{cases}\binom{b-1}{a-1} & b \geq a \geq 1 \\
0 & \text { else }\end{cases}
\end{gathered}
$$

Then,

$$
\begin{aligned}
& B L_{i, k}^{t} \\
= & \sum_{l=2}^{k} \sum_{j=1}^{l-1} \frac{p(j \rightarrow i) p(l-j \rightarrow n-i)}{p(l \rightarrow n)} b_{j, l}(t) \\
= & \sum_{l=2}^{k} \sum_{j=1}^{l-1} \frac{p(j \rightarrow i) p(l-j \rightarrow n-i)}{p(l \rightarrow n)} p_{l}^{n}(t) B L_{j}^{l}\left(N^{t}(\cdot)\right) \\
= & \sum_{h=1}^{k-1}\left(\sum_{l=2}^{k} \sum_{j=1}^{l-1} \frac{p(j \rightarrow i) p(l-j \rightarrow n-i)}{p(l \rightarrow n)} p_{l}^{n}(t) z_{j}^{h}\right) B L_{h}^{k}\left(N^{t}(\cdot)\right)
\end{aligned} .
$$

Thus, the space that is generated by $B L_{1, k}^{t}, \cdots, B L_{n-1, k}^{t}$ can be generated by $B L_{1}^{k}\left(N^{t}(\cdot)\right)$, $\cdots, B L_{k-1}^{k}\left(N^{t}(\cdot)\right)$. This leads that the dimension of $\left(B L_{i, k}^{t}\right)_{i=1, \cdots, n-1}$ is no more than ($k-1$).

If the number of ancestral lineages is no more than k before a given standard coalescent time t, the number of inference time intervals should be no more than $(k-1)$ before time t in the inferred demographic history without overfitting. Technically speaking, if a high proportion of the number of ancestral lineages is no more than k before a given standard coalescent time t, we have the same conclusion because it is an inferred demographic history.

For the non-African populations, when $t=1.0$, the number of ancestral lineages is no more than three in more than 90% cases (Table S18), indicating the power to infer an constant size model (with one inference time interval), an expansion or contraction (with two inference time intervals) beyond this time point. The end time of the super bottleneck is 813 (772-864) kyr ago and the corresponding standard coalescent time is larger than 1.0 for all non-African populations (Fig. 3c, 3f). Therefore, the super bottleneck cannot be inferred in this case since the bottleneck contains three inference time intervals.

Confounding factors of bottleneck

African populations have complex population structure ${ }^{11-14}$, and a complex population structure model is proposed for African and European populations ${ }^{12}$ (Fig. S31). To address the effects of population structure, we simulated data for a western rainforest hunter-gatherer (wRHG) and a western farmer (wARG) population and estimated their demographic histories (Fig. S31). Due to frequent migrations, a larger recent population size is estimated for both populations. However, the ancient population size $(14,427)$ is
accurately inferred for both populations (14,493 and 14,428). Thus, the super bottleneck is not due to the complex African population structure.

To consider the effects of archaic introgression from ghost populations ${ }^{15,16}$, we examined different models by assuming that introgression happened in different time periods with different migration rates (Fig. S32). Results show that archaic introgression does not result in an ancient super bottleneck.

Truncated SFS was used in demography inference in this study. To examine the effects of SFS truncation, the FitCoal inference was re-performed by taking the full SFSs that include high-frequency derived mutations. Again, the super bottleneck is revealed only in the African populations, but not in the non-African populations (Fig. S33, S34). Therefore, the ancient super bottleneck is not due to the effects of SFS truncation.

Computational performance

We compared the performance of the FitCoal with or without tabulation. We applied them to analyze the data of YRI population by fixing four inference time intervals and allowing instantaneous population size change. The former is much faster than the latter (1 second vs 36.2 hours).

Models and simulation commands for Fig. S35

We simulated trees for 10 sequences with $1,000,000$ replications using the ms software ${ }^{17}$ to calculate the average branch length for each SFS type. In this section, time is scaled by $4 N_{0}$ generations and the population size is scaled by N_{0} when using the ms software.

1. Constant size model (Fig. S35a)

The corresponding ms command is
ms 101000000 -L -T
2. Exponential growth model (Fig. S35b)

We assumed an ancient population size of 0.5 , and the population began an exponential growth at time of 0.17328679513998632 to the current size of 1.0. The corresponding ms command is
ms 101000000 -G 4.0 -eN $0.173286795139986320 .5-\mathrm{L}$-T
3. Bottleneck model (Fig. S35c)

We assumed a population size of 1.0 and a population size of 0.5 during time of 0.1 and 0.25 . The corresponding ms command is
ms 101000000 -eN 0.10 .5 -eN 0.251 .0 -L -T
4. Complex model (Fig. S35d)

We assumed an ancient population size of 0.5 . The population experienced a bottleneck with population size decreasing to 0.2 from time of 0.11465735902799726 to 0.08465735902799726 and growing exponentially to the current size of 1.0. The corresponding ms command for the simulation is
ms 101000000 -G 20.0 -eN 0.034657359027997260 .5 -eN 0.084657359027997260 .2 eN 0.114657359027997260 .5 -L -T

Models and simulation commands for Table S15

To ensure the accuracy of FitCoal, we compared the expected branch length of FitCoal $(n=10)$ with Zivković-Wiehe's method ${ }^{2}$ that is a numerical calculation method for piecewise constant model with at most three inference time intervals. In this section, time is scaled by $4 N_{0}$ generations and the population size is scaled by N_{0} because of the requirement of Zivković-Wiehe's method.

1. Constant size model

The corresponding input parameters of Zivković-Wiehe's method are unfoldedfreq[10, 0.0, 0.0, 1.0, 1.0]
2. Instantaneous growth model

We assumed a current population size of 1.0 and an ancient population size of 0.5 before time 0.5. The corresponding input parameters of Zivković-Wiehe's method are unfoldedfreq[10, $0.5,0.0,0.5,0.5$]
3. Bottleneck model

We assumed a population size of 1.0 and a population size of 0.5 during time of 0.1 and 0.25 . The corresponding input parameters of Zivković-Wiehe's method are unfoldedfreq[10, 0.2, 0.6, 0.5, 1]

Models for verifying the accuracy of FitCoal

If not specified, we used a default mutation rate μ of 1.2×10^{-8} per base per generation and a recombination rate $r=0.8 \mu$. All models were simulated with 200 replications using ms^{17} or MaCS^{18}. In this section, time is scaled by $4 N_{0}$ generations and the population size is scaled by N_{0} because of the requirement of simulation softwares.

1. Constant size model (Fig. 2a, S3a, S14a and S15a)

We assumed the effective population size of 10,000 . And 30 sequences of 10 Mb were simulated. The corresponding ms command is ms 30200 -t 4800 -r 380010000000
2. Instantaneous increase model (Fig. 2b, S3b, S14b and S15b)

We used this model to mimic the demography of an African population ${ }^{19}$. We assumed the ancient population size of 7,778 and the current population size of 25,636 and the population began an instantaneous increase at 6,809 generations ago. 30 sequences of 10 Mb were simulated. The corresponding ms command for the simulation is ms 30200 -t 12310 -r 975010000000 -eN 0.0660 .3
3. PSMC "standard" model (Fig. 2c, S3c, S14c and S15c)

This model was based on the "standard simulation" model in PSMC publication ${ }^{20}$. 170 sequences of 30 Mb were simulated. The corresponding MaCS command for this simulation is
macs 17030000000 -i 200 -h 1e3 -t 0.002732 -r 0.002179 -h 1e3 -eN 0.010 .05 -eN 0.03750 .5 -eN 1.251
4. Exponential growth model I (Fig. 2d, S3d, S14d and S15d)

We assumed the current population size of 50,000 and a growth rate $r=0.004$. 30 sequences of 10 Mb were simulated. The corresponding ms command for the simulation is
ms 30200 -t 24000 -r 1900010000000 -G 800
5. Exponential growth model II (Fig. 2e, S3e, S14e and S15e)

We used this model to mimic the demography of a European populations ${ }^{21}$. We assumed the ancient population size of 1,000 and the current population size of 29,525
and the population began exponential growth at 848 generations ago. 30 sequences of 10 Mb were simulated. The corresponding ms command for the simulation is ms 30200 -t 14172 -r 1062910000000 -G 472.4 -eN 0.007180 .0339
6. Exponential growth model III (Fig. 2f, S3f, S14f and S15f)

We assumed the ancient population size of 8,000 . The population experienced an instantaneous decrease to 7,900 and then began exponentially growth to $900,000.30$ sequences of 10 Mb were simulated. The corresponding ms command for the simulation is
ms 30200 -t 432000 -r 34000010000000 -G 46368 -eN 0.00010270 .008889
7. PSMC "sim-YH" model (Fig. S4a and S16a)

This model was based on the "sim-YH" model in the PSMC publication ${ }^{20} .170$ sequences of 30 Mb were simulated. The corresponding MaCS command for the simulation is macs 17030000000 -i 200 -h 1e3 -t 0.002171 -r 0.001731 -eN 0.00550 .0832 -eN 0.0089 0.0489 -eN 0.01300 .0607 -eN 0.01770 .1072 -eN 0.02330 .2093 -eN 0.02990 .3630 -eN 0.03750 .5041 -eN 0.04650 .5870 -eN 0.05710 .6343 -eN 0.06950 .6138 -eN 0.0840 0.5292 -eN 0.10100 .4409 -eN 0.12100 .3749 -eN 0.14440 .3313 -eN 0.17180 .3066 -eN 0.20400 .2952 -eN 0.24180 .2915 -eN 0.28600 .2950 -eN 0.33790 .3103 -eN 0.3988 0.3458 -eN 0.47010 .4109 -eN 0.55380 .5048 -eN 0.65200 .6520 -eN 0.76710 .6440 -eN 0.90200 .6178 -eN 1.06030 .5345 -eN 1.46351 .7931
8. PSMC "sim-1" model (Fig. S4b and S16b)

This model was based on the "sim-1" model in the PSMC publication ${ }^{20} .170$ sequences of 30 Mb were simulated. The corresponding MaCS command for the simulation is
macs 17030000000 -i 200 -h 1e3 -t 0.001 -r 0.0008 -eN 0.010 .1 -eN 0.061 -eN 0.20 .5 -
eN 11 -eN 22
9. PSMC "sim-2" model (Fig. S4c and S16c)

This model was based on the "sim-1" model in the PSMC publication ${ }^{20} .170$ sequences of 30 Mb were simulated. The corresponding MaCS command for the simulation is
macs 17030000000 -i 200 -h 1e3 -t 0.0001 -r 0.00008 -eN 0.15 -eN 0.620 -eN 25 -eN 1010 -eN 205
10. PSMC "sim-3" model (Fig. S4d and S16d)

This model was based on the "sim-1" model in the PSMC publication ${ }^{20} .170$ sequences of 30 Mb were simulated. The corresponding MaCS command for the simulation is macs 17030000000 -i 200 -h 1e3 -t 0.002 -r 0.0016 -eN 0.010 .05 -eN 0.01500 .5 -eN 0.050 .25 -eN 0.50 .5

11. Complicated model III (Fig. S4e and S16e)

We assumed the ancient population size of 4,167 . The population experienced an instantaneous increase to 20,833 at 33,333 generations ago, an instantaneous decrease to 2,083 at 2,500 generations ago and an instantaneous increase to 41,667 at 833 generations ago. 170 sequences of 30 Mb were simulated. The corresponding MaCS command for the simulation is
macs 17030000000 -i 200 -h 1e3 -t 0.002 -r 0.0016 -eN 0.0050 .05 -eN 0.01500 .5 -eN 0.20 .1
12. Complicated model II (Fig. S4f and S16f)

We assumed the ancient population size of 1,250 . The population experienced an instantaneous increase to 33,333 at 33,333 generations ago, an instantaneous decrease to 12,500 at 16,667 generations ago, an instantaneous increase to 20,833 at 8,333 generations ago, an instantaneous decrease to 8,333 at 4,167 generations ago, an instantaneous decrease to 2,083 at 1,667 generations ago and an instantaneous increase to 41,667 at 833 generations ago. 170 sequences of 30 Mb were simulated. The corresponding MaCS command for the simulation is
macs 17030000000 -i 200 -h 1e3 -t 0.002 -r 0.0016 -eN 0.0050 .05 -eN 0.010 .2 -eN 0.02500 .5 -eN 0.050 .3 -eN 0.10 .8 -eN 0.20 .03
13. Exponential growth model IV (Fig. S4g and S16g)

We assumed the ancient population size of 20,000. The population experienced an instantaneous decrease to 1,000 at 4,000 generations ago, and began exponential growth to 20,000 at 2,000 generations ago. 170 sequences of 30 Mb were simulated. The corresponding MaCS command for the simulation is
macs 17030000000 -i 200 -h 1e3 -t 0.001 -r 0.0008 -G 120 -eG 0.0250 -eN 0.051

14. Exponential growth model V (Fig. S4h and S16h)

We assumed the ancient population size of 15,000 . The population experienced an instantaneous decrease to 6,000 at 4,000 generations ago, and began exponential growth to 30,000 at 2,000 generations ago. 170 sequences of 30 Mb were simulated. The corresponding MaCS command for the simulation is macs 17030000000 -i 200 -h 1e3 -t 0.00144 -r 0.00115 -G 96.37 -eG 0.01670 -eN 0.033 0.5
15. Exponential growth model VI (Fig. S4i and S16i)

We assumed the ancient population size of 15,000 . The population experienced an exponential decrease to 6,000 at 5,000 generations ago, and began exponential growth to 30,000 at 2,000 generations ago. 170 sequences of 30 Mb were simulated. The corresponding ms command for the simulation is ms 170100 -t 1440 -r 11521000000 -G 96.56627474604602 -eG 0.01666666666667 36.65162927 -eN 0.04166666666670 .5
16. Split model I (Fig. S17a)

We used this model to mimic the split demography of African hunter-gatherer and agriculturist populations. We assumed the ancient population size of 20,833. The ancient population splits into two subpopulation at 6,667 generations ago. Population 1 experienced an instantaneous increase to 41,667 at 500 generations ago, and population 2 experienced an instantaneous decline to 8,333 at 1,250 generations ago. 170 sequences of 30 Mb were simulated. The corresponding MaCS command for the simulation is macs 34030000000 -i 1 -h 1e3 -t 0.002 -r 0.0016 -I 21701704 -n 20.2 -en 0.00310 .5 en 0.007520 .5 -ej 0.0421

17. Split model II (Fig. S17b)

We used this model to mimic the split demography of African and European populations. We assumed the ancient population size of 20,833 . The ancient population split into two subpopulation at 5,000 generations ago and the population size of population 1 became 83,303 . Then, population 1 experienced an instantaneous increase to 20,833 at 833 generations ago. Population 2 experienced an instantaneous increase to

41,667 at 500 generations ago. 170 sequences of 30 Mb were simulated. The corresponding MaCS command for the simulation is
macs 34030000000 -i 1 -h 1e3 -t 0.004 -r 0.0032 -I 21701704 -n 20.5 -en 0.00152
0.25 -en 0.002510 .1 -ej 0.01512

18. Split model III (Fig. S17c)

We assumed the ancient population size of 4,167 . The ancient population experienced an instantaneous growth to 20,833 at 8,333 generations ago and splits into two subpopulations at 2,500 generations ago. The population size of population 1 decreased to 2,083 at 1,666 generations ago and increased to 20,833 at 833 generations ago. The population size of population 2 remained constant. 170 sequences of 100 Mb were simulated. The corresponding MaCS command for the simulation is macs 3401000000 -i 100 -h 1e3 -t 0.001 -r 0.0008 -I 21701704 -eN 01 -en 0.0110 .1 en 0.0211 -ej 0.0321 -eN 0.100 .2 -eN 11
19. Models for studying influence factors of FitCoal (Fig. S2)

We simulated variations of the Exponential growth model V by increasing or decreasing the number of sequences, length of sequences and recombination rate.
19.1. Number of sequence $n=170$, sequence length $L=1 \mathrm{Mb}$, recombination rate $\rho=0.8 \mu$ (Fig. S2a). The corresponding ms command for the simulation is ms 1701 -t 1440 -r 11521000000 -G 96.56627474604602 -eN 0.016666666666666666 0.2 -eN 0.033333333333333330 .5
19.2. Number of sequence $n=170$, sequence length $L=10 \mathrm{Mb}$, recombination rate $\rho=0.8 \mu$ (Fig. S2b). The corresponding ms command for the simulation is ms 17010 -t 1440 -r 115201000000 -G 96.56627474604602 -eN
0.0166666666666666660 .2 -eN 0.033333333333333330 .5
19.3. Number of sequence $n=170$, sequence length $L=100 \mathrm{Mb}$, recombination rate $\rho=0.8 \mu$ (Fig. S2c, S2f and S2h). The corresponding ms command for the simulation is ms 170100 -t 14400 -r 1152010000000 -G 96.56627474604602 -eN
0.0166666666666666660 .2 -eN 0.033333333333333330 .5
19.4. Number of sequence $n=10$, sequence length $L=100 \mathrm{Mb}$, recombination rate $\rho=0.8 \mu$ (Fig. S2d). The corresponding ms command for the simulation is
ms 10100 -t 14400 -r 1152010000000 -G 96.56627474604602 -eN
0.0166666666666666660 .2 -eN 0.033333333333333330 .5
19.5. Number of sequence $n=100$, sequence length $L=100 \mathrm{Mb}$, recombination rate $\rho=0.8 \mu$ (Fig. S2e). The corresponding ms command for the simulation is ms 100100 -t 14400 -r 1152010000000 -G 96.56627474604602 -eN
0.0166666666666666660 .2 -eN 0.033333333333333330 .5
19.6. Number of sequence $n=170$, sequence length $L=100 \mathrm{Mb}$, recombination rate $\rho=0.1 \mu$ (Fig. S2g). The corresponding ms command for the simulation is ms 170100 -t 14400 -r 144010000000 -G 96.56627474604602 -eN 0.0166666666666666660 .2 -eN 0.033333333333333330 .5
19.7. Number of sequence $n=170$, sequence length $L=100 \mathrm{Mb}$, recombination rate $\rho=10 \mu$ (Fig. S2i). The corresponding ms command for the simulation is ms 170100 -t 14400 -r 14400010000000 -G 96.56627474604602 -eN
0.0166666666666666660 .2 -eN 0.033333333333333330 .5
20. Models for studying the super bottleneck

For 1000 GP , we used recent population expansion parameters of YRI and CHB to represent the recent population expansion for African and non-African population, respectively. Then, we used approximate average value of parameters inferred from African and non-African populations to represent other parameters of corresponding models.

For HGDP-CEPH, we used recent population expansion parameters of Yoruba and Han to represent the recent population expansion for African and non-African population, respectively. Then, we used approximate average value of parameters inferred from African except Biaka and non-African populations to represent other parameters of corresponding models. Because of the difference of ancient demography between Biaka and other African populations, we did not take it into consideration.

For idealized models, we fine-tuned parameters so that all parameters had a standard coalescent time smaller than 2.0.
20.1. Bottleneck I model for 1000GP (Fig. 4a and 4b)

We used this model to mimic the demography of African populations. We assumed the ancient population size of 96,000 . The population experienced an instantaneous
decrease to 1,600 at 39,000 generations ago, an instantaneous growth to 27,000 at 32,500 generations ago and began exponential growth to 160,000 at 200 generations ago. 202 sequences of 800 Mb were simulated. The corresponding ms command for the simulation is ms 20280000 -t 76.8 -r 61.4310000 -G 5693.878237534393 -eN $3.125 \mathrm{E}-40.16875$-eN 0.050781250 .01 -eN 0.06093750 .6
20.2. Bottleneck II model for 1000GP (Fig. 4c)

We used this model to mimic the estimated demography of non-African populations. We assumed the ancient population size of 20,000. The population experienced an exponential decrease to 6,000 at 20,000 generations ago and began exponential growth to 250,000 at 1,000 generations ago. 202 sequences of 800 Mb were simulated. The corresponding ms command for the simulation is ms 20080000 -t 120 -r 9610000 -G 3729.7014486341914 -eN 0.0010 .024 -eG 0.001 63.36698970136505 -eN 0.020 .08
20.3. Bottleneck III model for 1000GP (Fig. 4d)

We used this model to mimic the real demography of non-African populations. We assumed the ancient population size of 96,000 . The population experienced an instantaneous decrease to 1,600 at 39,000 generations ago, an instantaneous growth to 27,000 at 32,500 generations ago. Then, the population began exponential decline to 6,000 at 24,735 generations ago and instantaneously increased to 250,000 at 1,000 generations ago. 200 sequences of 800 Mb were simulated. The corresponding ms command for the simulation is ms 20080000 -t 120 -r 9610000 -G 3729.7014486341914 -eN 0.0010 .024 -eG 0.001 63.36959750479352 -eN 0.0247350 .108 -eN 0.03250 .0064 -eN 0.0390 .384
20.4. Bottleneck IV model for HGDP-CEPH (Fig. S8a and S8b)

We used this model to mimic the demography of African populations. We assumed the ancient population size of 120,000 . The population experienced an instantaneous decrease to 1,400 at 41,000 generations ago, an instantaneous growth to 28,000 at 35,000 generations ago and began instantaneous growth to 50,000 at 500 generations ago. 44 sequences of 800 Mb were simulated. The corresponding ms command for the simulation is
ms 4480000 -t 24 -r 19.1910000 -eN 0.00250 .56 -eN 0.175000000000000020 .028 -eN 0.2052 .4

20.5. Bottleneck V model for HGDP-CEPH (Fig. S8c)

We used this model to mimic the estimated demography of non-African populations. We assumed the ancient population size of 21,000 . The population experienced an exponential decrease to 6,000 at 20,000 generations ago and began exponential growth to 300,000 at 1,000 generations ago. 56 sequences of 800 Mb were simulated. The corresponding ms command for the simulation is
ms 5680000 -t 144 -r 115.1910000 -G 4694.427606513776 -eN $8.333333333333333 \mathrm{E}-4$ 0.02 -eG $8.333333333333333 E-4-79.1218716944443$-eN 0.0166666666666666660 .07 20.6. Bottleneck VI model for HGDP-CEPH (Fig. S8d)

We used this model to mimic the real demography of non-African populations. We assumed the ancient population size of 120,000 . The population experienced an instantaneous decrease to 1,400 at 41,000 generations ago, an instantaneous growth to 25,000 at 35,000 generations ago. Then, the population began exponential decline to 6,000 at 24,363 generations ago and instantaneously increased to 300,000 at 1,000 generations ago. 56 sequences of 800 Mb were simulated. The corresponding ms command for the simulation is
ms 5680000 -t 144 -r 115.1910000 -G 4694.427606513776 -eN $8.333333333333333 \mathrm{E}-4$
0.02 -eG $8.333333333333333 \mathrm{E}-4$-79.12228948065652 -eN 0.0203025
0.09333333333333334 -eN 0.0291666666666666670 .004666666666666667 -eN
0.0341666666666666650 .4
20.7. Bottleneck VII model for idealized models (Fig. S9a and S9b)

We used this model to mimic the demography of African populations. We assumed the ancient population size of 30,000 . The population experienced an instantaneous decrease to 3,000 at 35,000 generations ago, an instantaneous growth to 30,000 at 30,000 generations ago. 170 sequences of 800 Mb were simulated. The corresponding ms^{17} command for the simulation is ms 170800 -t 1440 -r 11521000000 -eN 0.250 .1 -eN 0.2916671
20.8. Bottleneck VIII model for idealized models (Fig. S9c)

We used this model to mimic the estimated demography of non-African populations. We assumed the ancient population size of 20,000. The population experienced an exponential decrease to 6,000 at 20,000 generations ago and began exponential growth to 300,000 at 1,000 generations ago. 170 sequences of 800 Mb were simulated. The corresponding ms command for the simulation is ms 170800 -t 14400 -r 115201000000 -G 4694.427606513776 -eN 0.000833330 .02 -eG 0.00083333 -101.6487102589958 -eN 0.0166666666666666660 .1
20.9. Bottleneck IX model for idealized models (Fig. S9d)

We used this model to mimic the real demography of non-African populations. We assumed the ancient population size of 30,000 . The population experienced an instantaneous decrease to 3,000 at 35,000 generations ago, an instantaneous growth to 30,000 at 30,000 generations ago. Then, the population began exponential decline to 6,000 at 20,000 generations ago and instantaneously increased to 300,000 at 1,000 generations ago. 170 sequences of 800 Mb were simulated. The corresponding ms command for the simulation is ms 170800 -t 14400 -r 115201000000 -G 4694.427606513776 -eN 0.000833330 .02 -eG 0.00083333 -101.6487102589958 -eN 0.016666666666666660 .1 -eN 0.0250 .01 -eN 0.02916670 .1
21. Models for estimating confidence interval

1000GP populations (Fig. S18 - S22):

ACB:

ms 19280000 -t 37.725120000000004 -r 30.18009600000000210000 -G
307.97400639367373 -eN 0.00337426983613774370 .35374201592996923 -eN
0.102375077176707230 .012990813548107999 -eN 0.1132253281877044
0.9123469984986132

ASW:
ms 12280000 -t 26.50224 -r 21.20179210000 -G 56.10026737541272 -eN
0.013909291796913290 .4582616412801333 -eN 0.1538498233982067
0.013891655950591346 -eN 0.165601677782693751 .3718870555847353

BEB:
ms 17280000 -t 62.65536 -r 50.12428810000 -G 1215.8971532452542 -eN 0.00234031113148332930 .058100695614868386 -eG 0.0023403111314833293 30.907477873075123 -eN 0.033711085142312310 .15320381209205405 CDX: ms 18680000 -t 25.248 -r 20.198410000 -G 495.40037108442965 -eN 0.0046046465499348520 .10216730038022814 -eG 0.004604646549934852 17.489419084798488 -eN 0.08351184900091350 .4061216730038023 CEU:
ms 19880000 -t 76.50768000000001 -r 61.20614410000 -G 3486.9981711123683 -eN
$8.189396733027973 \mathrm{E}-40.057518931432765964$-eN 0.01896877424771246
0.1280749854132291

CHB:
ms 20680000 -t 148.45488 -r 118.76390410000 -G 7477.99792685936 -eN
$5.168378866508531 \mathrm{E}-40.020964753735276336$-eN 0.006336402867008054 0.06404208470614102

CHS:
ms 21080000 -t 87.9024 -r 70.3219210000 -G 4112.853998070424 -eN
$8.149360963103421 \mathrm{E}-40.03502429967782449$-eN 0.011161187141954527 0.1114290394801507

CLM: ms 18880000 -t 26.05104 -r 20.84083210000 -eN 0.006899708256449607 0.17470933981906286 -eN 0.046548134796538580 .35472518563558303 ESN: ms 19880000 -t 32.99376 -r 26.39500810000 -G 1399.7970544542743 -eN $6.732730258474137 \mathrm{E}-40.38967368375110933$-eN 0.11907424073256923 0.025241136505812008 -eN 0.146457787439797651 .6907342479305179 FIN:
ms 19880000 -t 21.88368 -r 17.50694410000 -G 1545.9307685858762 -eN 0.00100696489285178550 .21083108508258208 -eN 0.079627651288076 0.4667149218047421

GBR:
ms 18280000 -t 68.96448 -r 55.17158410000 -G 4780.2465803320365 -eN $4.8660205464359964 \mathrm{E}-40.09767810907876055$-eG 4.8660205464359964E-4 299.83121839376906 -eN 0.00264693573113872330 .051108048665051926 -eG $0.0026469357311387233-38.53061553796807$-eN 0.02777287031733699 0.1345666638826248

GIH:
ms 20680000 -t 22.5384 -r 18.0307210000 -G 319.3657263289911 -eN 0.0053317890621041430 .18217442231924183 -eG 0.005331789062104143 7.108545561599834 -eN 0.13128019049400010 .4459801938025769 GWD: ms 22680000 -t 71.53488 -r 57.22790410000 -G 2480.4594823364796 -eN $6.955466408858352 \mathrm{E}-40.17812401446678877$-eN 0.055221144353749266 0.008796827505686736 -eN 0.064464764417870290 .7480725486643718 IBS: ms 21480000 -t 101.40288 -r 81.12230410000 -G 3879.3899843730937 -eN $7.379412692860351 \mathrm{E}-40.05711080395349718$-eN 0.001639355380662806 0.03441322376642557 -eG $0.001639355380662806-55.51532072601329$-eN 0.0193129610058740580 .09179857613511569

ITU:
ms 20480000 -t 45.81072 -r 36.64857610000 -G 942.7096023053382 -eN 0.0024940897823234590 .09525456050461552 -eN 0.026664885830212617 0.2086358826056434

JPT:
ms 20880000 -t 55.95024 -r 44.76019210000 -G 3128.7376262633884 -eN
$8.114087494514677 \mathrm{E}-40.07897017063733774$-eN 0.002182047525463559 0.04600945411494213 -eG $0.002182047525463559-42.38616087573135-e N$ 0.033721690171389040 .17515849797963332

KHV:
ms 19880000 -t 57.9072 -r 46.3257610000 -G 1588.3658354039515 -eN 0.00192645618515235350 .04689157824933687 -eG 0.0019264561851523535 36.60290382061524 -eN 0.037920015174373070 .17509118037135277

LWK:
ms 19880000 -t 21.33888 -r 17.07110400000000210000 -G 34.458048510849686 -eN 0.0143193713411564950 .6105362605722512 -eN 0.18803659662764166 0.02145942055065683 -eN 0.208794097854160142 .0908763721432426 MSL:
ms 17080000 -t 21.25872 -r 17.00697610000 -G 127.20491855898698 -eN 0.0032793542576158190 .6589220799747115 -eN 0.18195660752091394 0.04585788796315112 -eN 0.235798114216551422 .9051457472510105 MXL:
ms 12880000 -t 72.2232 -r 57.7785610000 -G $1185.9983336956855-e N$ 0.00255525195871156120 .04829030006978367 -eG 0.0025552519587115612 35.997766981810344 -eN 0.0307700962131418970 .13333997939720202 PEL: ms 17080000 -t 104.52432 -r 83.61945610000 -G $2449.33558491349-\mathrm{eN}$ 0.00144104144335050750 .029316813541575778 -eN 0.01066574560965878 0.09490308092891683

PJL: ms 19280000 -t 40.10544 -r 32.08435210000 -G 658.1508823918153 -eN 0.00351654901258093920 .09882350125070315 -eG 0.0035165490125809392 14.935034208218648 -eN 0.064587151930435250 .2460234821011813 PUR: ms 20880000 -t 23.60832 -r 18.88665610000 -eN 0.0038497802945414656 0.6750365972674041 -eN 0.0143881046982243590 .1546437865972674 -eG $0.014388104698224359-15.582101828279491$-eN 0.07286054886643582 0.3846169486011711 STU: ms 20480000 -t 34.572 -r 27.65760000000000210000 -G 510.43071934664556 -eN 0.0042672526242938070 .11325234293648039 -eN 0.02525451461678291 0.2616869142658799

TSI:
ms 21480000 -t 75.82608 -r 60.66086400000000410000 -G 2569.467980386571 -eN 0.00113710591777425270 .05383899576504548 -eG 0.0011371059177742527 19.704497360903815 -eN 0.049862708654793670 .14062707712175018 YRI: ms 21680000 -t 64.91088 -r 51.92870410000 -G 4776.570655987927 -eN $3.3888995289779744 \mathrm{E}-40.19814983250881826$-eN 0.0625962626099122 0.007882807936050167 -eN 0.068352728057589850 .4330589879539455

HGDP-CEPH populations (Fig. S23 - S28):
Adygei:
ms 3280000 -t 19.19712 -r 15.35769610000 -eN 0.005250411630207267
0.19837975696354454 -eG 0.005250411630207267 - 8.596593090355556 -eN 0.115486699534579710 .5117517627644147

Balochi:
ms 4880000 -t 50.949600000000004 -r 40.7596810000 -G 623.264941916954 -eN 0.0042230245409248050 .0719299072024118 -eG 0.004223024540924805 32.99343443398211 -eN 0.0328258235420359060 .18482264826416694 Basque:
ms 4680000 -t 26.153760000000002 -r 20.92300810000 -G 751.4700408942055 -eN 0.00250163137072495230 .15260520858186355 -eG 0.0025016313707249523 8.224106050612061 -eN 0.11996707570976250 .40097637968689775 Bedouin: ms 9280000 -t 36.622080000000004 -r 29.29766410000 -G 244.38587570241546 -eN 0.0088412006449617860 .11524850581944007 -eG 0.008841200644961786 16.31003863953942 -eN 0.057389978749292170 .2544039005976722 Biaka: ms 4480000 -t 4.5912 -r 3.672960000000000210000 -eN 0.009592435429723692 3.6935703084161005 -eN 0.93197607459214950 .09492943021432305 -eG $0.9319760745921495-11.520947944349727$-eN 1.3098356260554107 7.379299529534762

Brahui:

814
ms 5080000 -t 36.26112 -r 29.00889610000 -G 372.4275509762127 -eN 0.0060635479881281930 .10453510536905644 -eG 0.006063547988128193 20.411278092113488 -eN 0.051821980320035670 .26600391824632

Burusho:

ms 4880000 -t 11.5464 -r 9.2371210000 -eN 0.015366836965198416
0.29627935980045733 -eG 0.015366836965198416 -8.16350928074288 -eN
0.14081681830938840 .8250259821242986

Druze:
ms 8480000 -t 16.18944 -r 12.95155210000 -G 109.07256817628162 -eN 0.012882152269348640 .24534511385199242 -eG 0.01288215226934864 7.35809820577746 -eN 0.132340630313500070 .5909037001897534 French:
ms 5680000 -t 79.18416 -r 63.34732800000000510000 -G 2198.9359820452387 -eN 0.0013489023844339040 .051501209332775646 -eG 0.001348902384433904 24.36290322377743 -eN 0.039399152848143320 .13014117975110173

Han:
ms 8680000 -t 159.24816 -r 127.39852810000 -G 5363.756025025552 -eN $7.370989032405503 \mathrm{E}-40.0191851510246649$-eN 0.005252449909354633 0.05743488653181299

Hazara:

 ms 3880000 -t 12.69792 -r 10.15833610000 -eN 0.014217614003750299 0.25629394420503515 -eG $0.014217614003750299-9.884907873225844$-eN 0.122456922707310470 .7471459892643834Japanese:
ms 5480000 -t 33.88464 -r 27.10771210000 -G 636.5261153273832 -eN 0.0040004353542189950 .07836471038204922 -eG 0.004000435354218995 26.629980477176918 -eN 0.05282582768569060 .2876064198999901

Kalash:
ms 4480000 -t 3.04608 -r 2.43686410000 -G -2.415743522809092 -eN
0.470285025235862353 .1145603529782537

Makrani:
ms 5080000 -t 24.11088 -r 19.28870410000 -eN 0.00980388240380426
0.14526885787661006 -eG 0.00980388240380426 -17.111271203295853 -eN 0.067239551041183980 .388146761959746

Mandenka:
ms 4480000 -t 13.10688 -r 10.48550410000 -eN 0.3296277261231593 0.048304401962938545 -eG $0.3296277261231593-17.85185708722175-\mathrm{eN}$ 0.58250771712529334 .411191679484362

Maya:
ms 4280000 -t 16.673280000000002 -r 13.33862400000000110000 -eN 0.0085892301123617380 .09687356057116536 -eG 0.008589230112361738 25.14802627151756 -eN 0.081111107981131470 .600155458314141 Mozabite:
ms 5480000 -t 17.42304 -r 13.93843210000 -G 34.034495761040134 -eN 0.033027870851000880 .32494903300457323 -eG 0.03302787085100088 4.504618045303915 -eN 0.14726988718891010 .543638767976197

Palestinian:
ms 9280000 -t 22.33968 -r 17.87174410000 -eN 0.008844463035145432
0.1913151844610129 -eG 0.008844463035145432 -7.866119095624621-eN 0.111287085203698610 .4282675490427795

Pathan:

ms 4880000 -t 42.96432 -r 34.37145610000 -G 497.59849646988573 -eN 0.0053128819463159240 .07109899563172419 -eG 0.005312881946315924 47.5703288285576 -eN 0.028616626014539150 .21543085052899708 Russian:
ms 5080000 -t 22.14048 -r 17.71238410000 -G 258.609263568537 -eN 0.0064737214717774330 .1874647704114816 -eN 0.047392730886604 0.4300394571391406

Sardinian:
ms 5680000 -t 19.90512 -r 15.92409610000 -G 209.67966756103402 -eN 0.0083614642156342210 .17321372591574427 -eG 0.008361464215634221 11.622404927783043 -eN 0.096747636183415070 .48385541006535

Sindhi:
ms 4880000 -t 28.07088 -r 22.45670400000000210000 -eN 0.006697787857121225
0.12812708401019132 -eG $0.006697787857121225-17.75301871013936$-eN 0.061313244364601990 .33785331988167094

Yakut:
ms 5080000 -t 10.99008 -r 8.79206410000 -G 107.01050381191519 -eN
0.0103970964625901170 .32870370370370366 -eN 0.09403222060369128 0.8740391334730957

Yoruba:
ms 4480000 -t 30.6816 -r 24.5452810000 -G 298.1592873494309 -eN
0.00282043989260002180 .4313047559449311 -eN 0.1396195363438095 0.026126408010012515 -eN 0.169800434866340222 .1113579474342927

Figure S1. Comparison of likelihood surfaces based on simulations and FitCoal. (a) Likelihood surface of a SFS based on simulation approach. (b) Likelihood surface of the SFS based on FitCoal. The sample size is 100 . The SFS is obtained under a demography that the population size increases from 10,000 to 20,000 at standard coalescent time 0.2 . The surfaces were obtained conditional on standard coalescent time 0.2 while the current $\left(N_{0}\right)$ and the ancestral population size $\left(N_{1}\right)$ varied in the instantaneous growth model. Red dots indicate large likelihoods, and blue dots indicate small likelihoods.

Figure S2. Effects of sequence length (a), sample size (b), and recombination rate (c)

 in the FitCoal inference. Thin black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. n is the number of simulated sequences, L the length of the simulated sequences, and r the recombination rate relative to the mutation rate (μ). Other parameters are the same with Figure 2. The corresponding commands for simulations are described above.

Figure S3. Verification of FitCoal accuracy with truncated SFS. (a) Constant size model. (b) Instantaneous increase model. (c) PSMC "standard" model. (d) Exponential growth I model. (e) Exponential growth II model. (f) Exponential growth III model. The six models are the same as Figure 2. Thin solid black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. n is the number of simulated sequences and L the length of the simulated sequences. 10% SFS types (high frequency mutations) were discarded. The corresponding commands for simulations are described above.

Figure S4. Verification of FitCoal accuracy with truncated SFS under more complexed models. (a) PSMC sim-YH model. (b) PSMC sim-1 model. (c) PSMC sim-2 model. (d) PSMC sim-3 model. (e) Four stage model. (f) Intricate model. (g) Exponential growth IV model. (h) Exponential growth V model. (i) Exponential growth VI model. The nine models are the same as Figure S4. Thin solid black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. The number of simulated sequences is 170 and the length of the simulated sequences is 100 Mb . The corresponding commands for simulations are described above.

Figure S5. Effects of positive selection on demographic inference. (a) Demographic histories inferred by using the full size SFSs. (b) Demographic histories inferred by using the truncated SFSs. The constant size model was considered with different selection strength (s) and the percentage of loci affected by positive selection. $n=202$. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal.

Figure S6. Inferred demographic histories and standard coalescent times of 1000GP populations. (a) African populations. (b) European populations. (c) East Asian populations. (d) South Asian populations. (e) American populations. The left column is the inferred demographic histories, and the right column is calendar time $v s$ standard coalescent time. The results are the same with Figure 3.

Figure S7. Inferred demographic histories and standard coalescent times of HGPDCEPH populations. (a) African populations. (b) European populations. (c) Middle East populations. (d) East Asian populations. (f) Central \& South Asian populations. (g) American population. The left column is the inferred demographic histories, and the right column is calendar time $v s$ standard coalescent time. The results are the same with Figure 3.

Figure S8. Verification of the HGDP-CEPH inferred super bottleneck. (a) Bottleneck IV model and the estimated histories. The bottleneck IV mimics the estimated demography of HGDP-CEPH African population. (b) Linear-scaled Bottleneck IV model during the super bottleneck. (c) Bottleneck V model and the estimated histories. The bottleneck V mimics the estimated demography of HGDP-CEPH non-African population. (d) Bottleneck VI model and the estimated histories. The bottleneck VI mimics the true demography of HGDP-CEPH non-African population. Thin black lines indicate three models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Blue circle indicates the population size gap. The number of simulated sequences is 44 in Bottleneck IV, and 56 in Bottleneck V and VI, as the average sampled sequences in the HGDPCEPH African and non-African populations. The length of simulated sequences is 800 Mb .

Figure S9. Verification of the super bottleneck in artificial models. (a) Bottleneck VII model and the estimated histories. The artificial bottleneck VII represents the authorsaltered demography of African population. (b) Linear-scaled Bottleneck VII model during the super bottleneck. (c) Bottleneck VIII model and the estimated histories. The artificial bottleneck VIII represents the authors-altered estimated demography of nonAfrican population. (d) Bottleneck IX model and the estimated histories. The bottleneck IX represents the authors-altered true demography of non-African population. Thin black lines indicate models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Blue circle indicates the population size gap. The number of simulated sequences is 170 , and the length of simulated sequences is 800 Mb .

Figure S10. Inferred demographic histories of 1000GP and HGPD-CEPH

 populations using the same truncating SFS standard for each data set. (a) Estimated histories of 26 1000GP populations. (b) Linear-scaled estimated histories of 1000GP populations during the super bottleneck. (c) Calendar time vs standard coalescent time conditional on the estimated histories of 1000GP populations. (d) Estimated histories of 24 HGPD-CEPH populations. (e) Linear-scaled estimated histories of HGPD-CEPH populations during the super bottleneck. (f) Calendar time vs standard coalescent time conditional on the estimated histories of HGPD-CEPH populations. Red lines are the estimated histories of African populations; yellow lines stand for the European populations; brown lines the Middle East populations; blue lines the East Asian populations; green lines the Central or South Asian populations; dark sea green lines the American populations. We truncated 10% SFS types for 1000GP populations, and 15% for HGDP-CEPH populations. We assumed a mutation rate of 1.2×10^{-8} per base per generation and a generation time of 24 years, the same as Figure 2.

Figure S11. The observed SFSs of 1000GP populations. Solid lines indicate the observed SFS, and the x-axis is the SFS types, ranging from 1 to $(n-1)$. Dash lines indicate the threshold of truncating SFS.

Figure S12. The observed SFSs without missing data of HGDP-CEPH populations. Solid lines indicate the observed SFS, and the x-axis is the SFS types, ranging from 1 to ($n-1$). Dash lines indicate the threshold of truncating SFS.

Figure S13. The observed SFSs with one missing individual of HGDP-CEPH populations. Solid lines indicate the observed SFS, and the x-axis is the SFS types, ranging from 1 to $(n-3)$. Dash lines indicate the threshold of truncating SFS.

1012
1013

Figure S14. Estimated demographic histories of FitCoal conditional on exponential change, stairway plot, and PSMC using simulated samples. (a) Constant size model. (b) Instantaneous increase model. (c) PSMC "standard" model. (d) Exponential growth I model. (e) Exponential growth II model. (f) Exponential growth III model. Thin black lines indicate true models. Thick red lines are the medians of FitCoal histories estimated conditional on exponential change. Green and blue lines indicate the results of stairway plot and PSMC, respectively, which are obtained from the previous study ${ }^{22}$. Other parameters are the same with Figure 2.

Figure S15. Estimated demographic histories of FitCoal conditional on instantaneous change, stairway plot, and PSMC using simulated samples. (a)

Constant size model. (b) Instantaneous increase model. (c) PSMC "standard" model. (d) Exponential growth I model. (e) Exponential growth II model. (f) Exponential growth III model. FitCoal inference was performed conditional on instantaneous change. Other parameters are the same with Figure 2 and S2.

Figure S16. Verification of the accuracy of FitCoal using simulated samples under complex models. (a) PSMC sim-YH model. (b) PSMC sim-1 model. (c) PSMC sim-2 model. (d) PSMC sim-3 model. (e) Complicated I model. (f) Complicated II model. (g) Exponential growth IV model. (h) Exponential growth V model. (i) Exponential growth VI model. Thin black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. The number of simulated sequences is 170 and the length of the simulated sequences is 100 Mb in all models. Other parameters are the same with Figure 2. The corresponding commands for simulations are described above.

Figure S17. Verification of FitCoal accuracy under three migration models. (a) Inferred histories of two populations under Split I model. The model assumes that the two populations split at 160 kyr ago, and the first population had an instantaneous growth, and the second one had a population size decline. Migration occurred populations. The population size during each stage is shown in the model (the right panel). (b) Inferred histories of two populations under Split II model. (c) Inferred histories of two populations under Split III model. Thin solid black lines indicate true models. Thin dash lines indicate split times. Thick red lines are the medians of the estimated histories of FitCoal; thin red
lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. In three rightmost figures, the unit of time is 1,000 years and the unit of population size is 1,000 . The number of simulated sequences is 170 and the migration rate $(4 \mathrm{Nm})$ is 4 . The length of the simulated sequences is 30 Mb in the first two models and 100 MB in the last model. Other parameters are the same with Figure 2. The corresponding commands for simulations are described above.

Figure S18.95\% confidence intervals of 1000GP African populations. ACB: African Caribbeans in Barbados; ASW: Americans of African Ancestry in SW USA; ESN: Esan in Nigeria; GWD: Gambian in Western Divisions in the Gambia; LWK: Luhya in Webuye, Kenya; MSL: Mende in Sierra Leone; YRI: Yoruba in Ibadan, Nigeria. The inferred demographic histories in Figure 3 are considered as true models, and 200 simulated samples are obtained for each true model. Black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs were used. The corresponding commands for simulations are described above.

Figure S19.95\% confidence intervals of 1000GP European populations. CEU: Utah Residents (CEPH) with Northern and Western European Ancestry; FIN: Finnish in Finland; GBR: British in England and Scotland; IBS: Iberian Population in Spain; TSI: Toscani in Italia. The inferred demographic histories in Figure 3 are considered as true models, and 200 simulated samples are obtained for each true model. Black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs were used. The corresponding commands for simulations are described above.

JPT

CHB

KHV

Figure S20.95\% confidence intervals of 1000GP East Asian populations. CDX:
Chinese Dai in Xishuangbanna, China; CHB: Han Chinese in Beijing, China; CHS: Southern Han Chinese; JPT: Japanese in Tokyo, Japan; KHV: Kinh in Ho Chi Minh City, Vietnam. The inferred demographic histories in Figure 3 are considered as true models, and 200 simulated samples are obtained for each true model. Black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs were used. The corresponding commands for simulations are described above.

Figure S21.95\% confidence intervals of 1000GP South Asian populations. BEB: Bengali from Bangladesh; GIH: Gujarati Indian from Houston, Texas; ITU: Indian Telugu from the UK; PJL: Punjabi from Lahore, Pakistan; STU: Sri Lankan Tamil from the UK. The inferred demographic histories in Figure 3 are considered as true models, and 200 simulated samples are obtained for each true model. Black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs were used. The corresponding commands for simulations are described above.

Figure S22.95\% confidence intervals of 1000GP American populations. CLM: Colombians from Medellin, Colombia; MXL: Mexican Ancestry from Los Angeles USA; PEL: Peruvians from Lima, Peru; PUR: Puerto Ricans from Puerto Rico. The inferred demographic histories in Figure 3 are considered as true models, and 200 simulated samples are obtained for each true model. Black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs were used. The corresponding commands for simulations are described above.

Mandenka

Yoruba

Figure S23. 95\% confidence intervals of HGPD-CEPH African populations. The inferred demographic histories in Figure 3 are considered as true models, and 200 simulated samples are obtained for each true model. Black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs were used. The corresponding commands for simulations are described above.

Figure S24.95\% confidence intervals of HGPD-CEPH Middle East populations. The inferred demographic histories in Figure 3 are considered as true models, and 200 simulated samples are obtained for each true model. Black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs were used. The corresponding commands for simulations are described above.

Figure S25.95\% confidence intervals of HGPD-CEPH European populations. The inferred demographic histories in Figure 3 are considered as true models, and 200 simulated samples are obtained for each true model. Black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs were used. The corresponding commands for simulations are described above.

Japanese

Yakut

Figure S26. 95\% confidence intervals of HGPD-CEPH East Asian populations. The
inferred demographic histories in Figure 3 are considered as true models, and 200 simulated samples are obtained for each true model. Black lines indicate true models.

Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs were used. The corresponding commands for simulations are described above.

Hazara

Figure S27.95\% confidence intervals of HGPD-CEPH Central \& South Asian

 populations. The inferred demographic histories in Figure 3 are considered as true models, and 200 simulated samples are obtained for each true model. Black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs were used. The corresponding commands for simulations are described above.

Figure S28.95\% confidence intervals of HGPD-CEPH American population. The inferred demographic history in Figure 3 is considered as the true model, and 200 simulated samples are obtained for the true model. Black line indicates the true model. Thick red line is the median of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs were used. The corresponding command for simulations is described above.

BEB

Figure S29. Inferred demographic histories with different inference time intervals of

 1000GP populations. Red lines indicate the inferred demographic histories, and blue lines indicate demographic histories with one more inference time interval. The loglikelihood promotion rate for the blue-line-indicating history is presented below the name of population. The results of populations are shown in which log-likelihood promotion rate is at least 5\% (Table S16).

Figure S30. Inferred demographic histories with different inference time intervals of HGPD-CEPH American populations. Red lines indicate the inferred demographic histories, and blue lines indicate demographic histories with one more inference time interval. The log-likelihood promotion rate for the blue-line-indicating history is presented below the name of population. The results of populations are shown in which \log-likelihood promotion rate is at least 5% (Table S17).

Figure S31. Verification of inference accuracy under complex population structure model. We used FitCoal to estimate the demography of imaginary wRHG (African I population) and wAGR (African II population). Split times and population sizes are show in the right panel. The unit of time is 1,000 years and the unit of population size is 1,000 . In the left and middle panel, thin solid black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal. Truncated SFSs of simulated samples were used to infer the history. The corresponding command for simulations is described above. The number of simulated sequences is 170 , and the length of simulated sequences is 800 Mb .

Figure S32. Verification of inference accuracy when migration occurred with unknown hominin population. Two models were considered with different time range of migration between the pop1 and an unknown hominin population (d, h), in which the unit of time is 1,000 years and the unit of population size is 1,000 . The region with light red indicates the time range of migration in pop1. We assumed that the unknown population and modern human had common ancestors 2,000 kya. In (d), the unknown population began to migrate with modern human 400 kya, and stopped 300 kya. In (h), the unknown population began to migrate with modern human 800 kya , and stopped 300 kya. M is the migration rate (4 Nm). The inferred demographic histories of pop1 in (d) are shown in $(a-c)$, and $(e-g)$ are results of pop1 in the second model (h). The number of simulated sequences is 170 , and the length of simulated sequences is 800 Mb . Truncated SFSs were used. Thin solid black lines indicate true models. Thick red lines are the medians of the estimated histories of FitCoal; thin red lines are 2.5 and 97.5 percentiles of the estimated histories of FitCoal.

Figure S33. Estimated demographic histories using the full and the truncated SFSs of 1000GP populations. ACB: African Caribbeans in Barbados; ASW: Americans of African Ancestry in SW USA; ESN: Esan in Nigeria; GWD: Gambian in Western Divisions in the Gambia; LWK: Luhya in Webuye, Kenya; MSL: Mende in Sierra Leone; YRI: Yoruba in Ibadan, Nigeria, BEB: Bengali from Bangladesh; CEU: Utah Residents (CEPH) with Northern and Western European Ancestry; CHB: Han Chinese in Beijing, China. The comparison is conducted conditional on the same number of inference time intervals. Red lines indicate the demographic histories inferred using the truncated SFSs,
the same as what were shown in Figure 3a and S9, and blue lines indicate these inferred using the full SFS.

Figure S34. Estimated demographic histories using the full and the truncated SFSs of HGDP-CEPH populations. The comparison is conducted conditional on the same number of inference time intervals. Red lines indicate the demographic histories inferred using the truncated SFSs, the same as what were shown in Figure 3d and S10, and blue lines indicate these inferred using the full SFSs.

Figure S35. Comparison of the expected branch lengths of FitCoal and the average branch lengths of coalescent simulations. (a) Constant size model. (b) Exponential growth model. (c) Bottleneck model. (d) Complex model. The models, the related parameters, and the ms command lines are described above. $n=10$. To calculate the average, the number of iterations is 10^{6} for coalescent simulations.

Table S1. Proportion of correctly-inferred change type for the most recent demographic event in six models.

Model	Proportion
Constant size	100%
Instantaneous increase	85.5%
PSMC "standard"	100%
Exponential growth I	41.5%
Exponential growth II	61%
Exponential growth III	66.5%

1226
Table S2. Parameters of the super bottleneck in 1000GP African populations.

Population	Ancestral Ne	Start time of the bottleneck		Ne during the bottleneck	End time of the bottleneck		Ne immediate. after the bottleneck
		Time ${ }^{\text {a }}$	Change type ${ }^{\text {b }}$		Time ${ }^{\text {a }}$	$\begin{gathered} \text { Change } \\ \text { type }^{\text {b }} \end{gathered}$	
ACB	71,705	854,288	I	1,021	772,422	I	27,802
ASW	75,746	877,763	I	767	815,473	I	25,302
ESN	116,216	966,439	I	1,735	785,741	I	26,785
GWD	111,486	922,296	I	1,311	790,048	I	26,546
LWK	92,952	891,086	I	954	802,498	I	27,142
MSL	128,666	1,002,553	I	2,031	773,633	I	29,183
YRI	58,563	887,367	I	1,066	812,636	I	26,796

Note: a: Time in years. b: I represents instantaneous change, and E represents exponential change.

1230
Table S3. Parameters of the super bottleneck in HGDP-CEPH African populations.

Population	Ancestral Ne	Start time of the bottleneck		Ne during the bottleneck	End time of the bottleneck		Neimmediatelyafter thebottleneck
		Time ${ }^{\text {a }}$	Change type ${ }^{\text {b }}$		Time ${ }^{\text {a }}$	Change type ${ }^{\text {b }}$	
Biaka	70,583	1,202,743	E	908	855,778	I	35,329
Mandenka	120,452	1,526,972	E	1,319	864,078	I	27,306
Yoruba	134,958	1,041,950	I	1,670	856,750	I	27,569

Note: a: Time in years. b: I represents instantaneous change, and E represents exponential change.

1234 1235

Table S4. Parameters of the out-of-Africa bottleneck in 1000GP non-African populations.

Super population	Population	Ancestral Ne	Start time of the bottleneck		Ne during the bottleneck
			Time ${ }^{\text {a }}$	Change type ${ }^{\text {b }}$	
EUR	CEU	20,414	290,251	I	9,168
	GBR	19,334	383,068	E	7,343
	FIN	21,278	348,509	I	9,612
	IBS	19,393	391,678	E	7,270
	TSI	22,215	756,179	E	8,505
EAS	CDX	20,414	421,701	I	9,168
	CHB	19,334	188,134	E	7,343
	CHS	21,278	196,219	I	9,612
	JPT	19,393	377,347	E	7,270
	KHV	22,215	439,168	E	8,505
SAS	BEB	19,998	422,436	E	7,584
	GIH	20,941	591,769	E	8,554
	ITU	19,912	244,308	I	9,091
	PJL	20,556	518,059	E	8,257
	STU	18,848	174,620	I	8,157
AMR	CLM	19,252	242,526	I	9,482
	MXL	20,063	444,463	E	7,266
	PEL	20,666	222,966	I	6,384
	PUR	18,917	344,023	E	7,606

Note: a: Time in years. b: I represents instantaneous change, and E represents exponential change.

1239 1240 populations.

Super population	Population	Ancestral Ne	Start time of the bottleneck		Ne during the bottleneck
			Time ${ }^{\text {a }}$	Change type ${ }^{\text {b }}$	
Middle East	Bedouin	19,410	420,348	E	8,793
	Druze	19,930	428,504	E	8,275
	Mozabite	19,932	497,224	E	8,904
	Palestinian	19,733	513,178	E	11,795
European	Adygei	20,467	443,402	E	7,934
	Basque	21,848	627,518	E	8,315
	French	21,469	623,958	E	8,496
	Russian	19,836	209,860	I	8,647
	Sardinian	20,065	385,155	E	7,183
East Asian	Han	19,055	167,289	I	6,365
	Japanese	20,303	357,997	E	5,532
	Yakut	20,012	206,684	I	7,526
 South Asian	Balochi	19,618	334,493	E	7,635
	Brahui	20,095	375,825	E	7,897
	Burusho	19,846	325,186	E	7,127
	Hazara	19,765	310,990	E	6,780
	Kalash	19,766	286,505	E	6,346
	Makrani	19,497	324,241	E	7,297
	Pathan	19,283	245,899	E	6,364
	Sindhi	19,758	344,223	E	7,493
American	Maya	20,847	270,478	E	3,365

Table S5. Parameters of the out-of-Africa bottleneck in HGDP-CEPH non-African

Note: a: Time in years. b: I represents instantaneous change, and E represents exponential change.

1245
Table S6. The super bottleneck parameters of Bottleneck I model.

Parameter	Value	Median of estimations	Lower bound of $95 \% \text { CI }$	Upper bound of $95 \% \text { CI }$
Start time of the bottleneck	912,000	978,024	790,776	1,890,528
End time of the bottleneck	792,000	764,376	685,656	794,784
Population size before the bottleneck	93,000	62,224	32,334	130,445
Population size during the bottleneck	1,300	1,907	546	5,838
Population size after the bottleneck	27,000	27,069	26,936	27,230

1246

1247
Table S7. The super bottleneck parameters of Bottleneck IV model.

Parameter	Value	Median of estimations	Lower bound of $95 \% \text { CI }$	Upper bound of $95 \% \text { CI }$
Start time of the bottleneck	984,000	1,072,368	894,648	1,899,288
End time of the bottleneck	864,000	854,256	774,360	873,672
Population size before the bottleneck	110,000	72,408	31,934	140,463
Population size during the bottleneck	1,300	1,677	638	5,536
Population size after the bottleneck	28,000	27,965	27,817	28,203

1250
Table S8. The super bottleneck parameters of Bottleneck VII model.

Parameter	Value	Median of estimations	Lower bound of $95 \% \mathrm{CI}$	Upper bound of $95 \% \mathrm{CI}$
Start time of the bottleneck End time of the bottleneck	840,000	887,088	736,560	$1,419,480$
Population size before the bottleneck	720,000	719,712	650,688	$1,126,176$
Population size during the bottleneck	30,000	31,513	25,356	132,364
Population size after the bottleneck	3,000	2,892		

1252

Table S9. Influence of different log-likelihood promotion thresholds.

Model	30\%			20\%			10\%		
	Underfitting	Correct	Overfitting	Underfitting	Correct	Overfitting	Underfitting	Correct	Overfitting
Constant size	\ldots	100\%	0	\ldots	100\%	0	\ldots	93\%	2\%
Instantaneous increase	0	100\%	0	0	100\%	0	0	99.5\%	0.5\%
PSMC "standard"	0	100\%	0	0	100\%	0	0	100\%	0
Exponential growth II	0	100\%	0	0	100\%	0	0	99.5\%	0.5\%
Exponential growth III	0	100\%	0	0	100\%	0	0	100\%	0
PSMC sim-YH	0	100\%	0	0	100\%	0	0	99.5\%	0.5\%
PSMC sim-1	0	100\%	0	0	100\%	0	0	100\%	0
PSMC sim-2	20\%	80\%	0	0	100\%	0	0	100\%	0
PSMC sim-3	0	100\%	0	0	100\%	0	0	98\%	2\%
Complicated I	0	100\%	0	0	100\%	0	0	100\%	0
Complicated II	0	100\%	0	0	100\%	0	0	100\%	0
Exponential growth IV	0	100\%	0	0	100\%	0	0	100\%	0
Exponential growth V	0	100\%	0	0	100\%	0	0	100\%	0
Exponential growth VI	0	100\%	0	0	100\%	0	0	100\%	0
Split I pop 1	0	100\%	0	0	100\%	0	0	99.5\%	0.5\%
Split I pop 2	0	100\%	0	0	100\%	0	0	99.5\%	0.5\%
Split II pop 1	0	100\%	0	0	100\%	0	0	100\%	0
Split II pop 2	0	100\%	0	0	100\%	0	0	100\%	0
Split III pop 1	0	100\%	0	0	100\%	0	0	100\%	0
Split III pop 2	0	100\%	0	0	100\%	0	0	100\%	0

Table S10. Information of truncated SFS of 1000GP populations.

Population	$\begin{gathered} \text { Size of SFS } \\ (n-1) \end{gathered}$	Truncated sizes of SFS	Proportion of truncated sizes (\%)	Proportion of truncated SNPs (\%)
ACB	191	171-191	10.99	3.17
ASW	121	107-121	12.40	3.66
BEB	171	156-171	9.36	4.00
CDX	185	174-185	6.49	3.56
CEU	197	178-197	10.15	4.39
CHB	205	180-205	12.68	5.34
CHS	209	191-209	9.09	4.17
CLM	187	163-187	13.37	5.49
ESN	197	182-197	8.12	2.67
FIN	197	181-197	8.63	4.19
GBR	181	151-181	17.13	6.60
GIH	205	189-205	8.29	3.75
GWD	225	208-225	8.00	2.59
IBS	213	$179-213$	16.43	6.29
ITU	203	186-203	8.87	3.88
JPT	207	182-207	12.56	5.26
KHV	197	181-197	8.63	4.21
LWK	197	174-197	12.18	3.39
MSL	169	147-169	13.61	3.63
MXL	127	114-127	11.02	5.49
PEL	169	152-169	10.65	6.21
PJL	191	177-191	7.85	3.54
PUR	207	174-207	16.43	5.77
STU	203	171-203	16.26	5.79
TSI	213	197-213	7.98	3.78
YRI	215	189-215	12.56	3.50

1255
1256

Population	No missing data (\%)	$\begin{gathered} \text { Missing samples }<=2 \\ \text { chromosomes (\%) } \end{gathered}$
Adygei	92.58	98.80
Balochi	91.01	98.37
Basque	92.66	98.83
Bedouin	87.00	97.30
Biaka	93.25	98.03
Brahui	90.76	98.37
Burusho	91.30	98.55
Druze	89.60	97.86
French	88.78	98.14
Han	84.54	97.14
Hazara	92.53	98.76
Japanese	87.45	97.96
Kalash	90.57	98.48
Makrani	91.10	98.29
Mandenka	91.93	98.13
Maya	94.98	99.13
Mozabite	93.21	98.58
Palestinian	87.22	97.32
Pathan	91.74	98.60
Russian	92.68	98.68
Sardinian	93.04	98.81
Sindhi	90.73	98.43
Yakut	86.66	97.80
Yoruba	92.78	98.02

Table S11. Proportion of SNPs without or with missing data of HGDP-CEPH populations.

1260
1261

Table S12. Information of truncated SFS of HGDP-CEPH populations.

Population	Size of SFS $(n-1)$	Truncated sizes of SFS	Proportion of truncated sizes (\%)	Proportion of truncated SNPs (\%)
Adygei	31	28-31	12.90	5.65
Balochi	47	40-47	17.02	7.22
Basque	45	$41-45$	11.11	6.18
Bedouin	91	73-91	20.88	9.52
Biaka	43	36-43	18.60	4.93
Brahui	49	44-49	12.24	5.21
Burusho	47	41-47	14.89	6.57
Druze	83	70-83	16.87	8.24
French	55	50-56	10.91	5.59
Han	85	$67-85$	22.35	8.72
Hazara	37	32-37	16.22	6.72
Japanese	53	45-53	16.98	6.95
Kalash	43	40-43	9.30	5.22
Makrani	49	41-49	18.37	7.24
Mandenka	43	37-43	16.28	4.75
Maya	41	37-41	12.20	7.20
Mozabite	53	44-53	18.87	7.43
Palestinian	91	78-91	15.38	8.53
Pathan	47	35-49	27.66	10.12
Russian	49	40-49	20.41	8.06
Sardinian	55	51-55	27.27	11.65
Sindhi	47	41-47	14.89	6.35
Yakut	49	39-49	22.45	10.02
Yoruba	43	$38-43$	13.95	4.14

1265
1266

Table S13. Comparison of branch length between theoretical values and FitCoal under the constant size model.

	$n=5$	
Type	Theoretical length	FitCoal length
1	2.000000000000	1.999999995001
2	1.000000000000	0.999999995001
3	0.666666666667	0.666666661667
4	0.500000000000	0.499999995000
Type	$n=1,000$	
1	Theoretical length	FitCoal length
100	2.000000000000	1.999999999979
200	0.020000000000	0.019999999980
300	0.010000000000	0.009999999980
400	0.006666666667	0.006666666647
500	0.005000000000	0.004999999980
600	0.004000000000	0.003999999980
700	0.003333333333	0.003333333313
800	0.002857142857	0.002857142837
900	0.002500000000	0.002499999980
999	0.00222222222	0.00222222202
	0.002002002002	0.002002001982

1267
1268

Table S14. Comparison of accuracy between FitCoal and Z-W's method.

Constant size model			
size	Z-W's method	FitCoal	Tabulated FitCoal
1	1.9999999999	1.9999999977	2.0000000000
2	0.9999999999	0.9999999977	1.0000000000
3	0.6666666666	0.6666666644	0.6666666666
4	0.4999999999	0.4999999977	0.5000000000
5	0.3999999999	0.3999999977	0.4000000000
6	0.3333333333	0.3333333311	0.3333333333
7	0.2857142857	0.2857142834	0.2857142857
8	0.2499999999	0.2499999977	0.2500000000
9	0.2222222222	0.2222222200	0.2222222222
Instantaneous growth model			
size	Z-W's method	FitCoal	Tabulated FitCoal
1	1.7547171613	1.7547178684	1.7547229380
2	0.7797340922	0.7797345132	0.7797375358
3	0.4686921135	0.4686923318	0.4686939043
4	0.3218480766	0.3218481580	0.3218487511
5	0.2394397929	0.2394397884	0.2394397658
6	0.1883537444	0.1883536920	0.1883533260
7	0.1545070379	0.1545069652	0.1545064537
8	0.1309436073	0.1309435332	0.1309430117
9	0.1138668845	0.1138668210	0.1138663751
Bottleneck model			
size	Z-'s method	FitCoal	FitCoal with tabulated
1	1.6737287481	1.6737298163	1.6737374623
2	0.7744529188	0.7744529447	0.7744538197
3	0.5109730563	0.5109727763	0.5109715354
4	0.3927621211	0.3927618350	0.3927603900
5	0.3264269184	0.3264267194	0.3264256821
6	0.2832102142	0.2832101093	0.2832095492
7	0.2519772704	0.2519772388	0.2519770488
8	0.2277455013	0.2277455192	0.2277455704
9	0.2080244642	0.2080245126	0.2080247051

1270

1271 Table S15. Comparison of accuracy between FitCoal and simulations.

	Constant size model		
Type	Simulation method	FitCoal	Tabulated FitCoal
1	1.999529551	1.999999998	2.000000000
2	0.999720720	0.999999998	1.000000000
3	0.667102715	0.666666664	0.666666667
4	0.500240165	0.499999998	0.500000000
5	0.400967708	0.399999998	0.400000000
6	0.333256388	0.333333331	0.333333333
7	0.285465389	0.285714283	0.285714286
8	0.249471384	0.249999998	0.250000000
9	0.222272679	0.222222220	0.222222222
		Exponential growth model	
Type	Simulation method	FitCoal	Tabulated FitCoal
1	1.441789518	1.441679286	1.441673129
2	0.616556332	0.616509230	0.616508244
3	0.376438453	0.376743719	0.376742859
4	0.269168704	0.268510898	0.268510338
5	0.207984340	0.208373433	0.208373096
6	0.170848693	0.170519845	0.170519652
7	0.144555420	0.144603196	0.144603091
8	0.125837330	0.125751961	0.125751908
9	0.111364011	0.111402468	0.111402445

		Bottleneck model	
Type	Simulation method	FitCoal	Tabulated FitCoal
1	1.673321651	1.673732814	1.673741394
2	0.775051787	0.774454488	0.774457584
3	0.510960086	0.510973534	0.510974557
4	0.394262151	0.392762187	0.392762519
5	0.325116671	0.326426872	0.326426966
6	0.284039310	0.283210170	0.283210115
7	0.251717509	0.251977260	0.251977042
8	0.228240338	0.227745526	0.227745129
9	0.207539986	0.208024514	0.208023953
		Complex model	

Type	Simulation method	FitCoal	Tabulated FitCoal
1	1.055607245	1.055618949	1.055592252
2	0.444340081	0.444811898	0.444812747
3	0.285522751	0.285500848	0.285501081
4	0.215995323	0.215622334	0.215622470
5	0.176447487	0.176540313	0.176540331
6	0.151750997	0.151231386	0.151231289
7	0.133173783	0.133109963	0.133109779
9	0.118845125	0.119172606	0.119172375

1272

1273 1274

Table S16. Likelihood promotion rate of inferred demographic histories with different inference time intervals of 1000GP populations.

Super population	Population	Rate compared with result of (k-1) inference time intervals (\%)			
		2	3	4	5
AFR	ACB	1384.26	350.31	60.09	18.68
	ASW	3538.08	130.56	93.48	6.10
	ESN	714.05	35.23	126.18	17.37
	GWD	590.15	302.50	112.43	13.01
	LWK	2925.80	91.55	70.91	5.88
	MSL	2935.78	43.91	60.37	8.62
	YRI	861.84	166.36	69.09	7.07
EUR	CEU	135.51	2471.16	17.07	\ldots
	FIN	341.55	541.28	9.03	\ldots
	GBR	65.68	2900.65	22.20	2.50
	IBS	384.43	2289.75	25.85	4.34
	TSI	236.98	2286.49	7.09	\ldots
EAS	CDX	49.99	4430.87	15.64	\ldots
	CHB	175.03	5343.87	10.80	\ldots
	CHS	111.49	4384.47	10.26	\ldots
	JPT	56.37	4100.17	24.05	6.76
	KHV	153.13	4242.29	7.67	...
SAS	BEB	319.95	2491.42	11.33	\ldots
	GIH	101.31	1982.75	8.66	\ldots
	ITU	261.16	1836.98	18.17	\ldots
	PJL	254.33	1884.50	11.41	...
	STU	284.42	2590.84	9.89	\ldots
AMR	CLM	834.67	1867.06	17.44	\ldots
	MXL	347.01	4258.47	10.01	...
	PEL	359.65	5549.64	16.19	...
	PUR	1335.08	967.44	22.39	11.29

1275

1276
1277

Table S17. Likelihood promotion rate of inferred demographic histories with different inference time intervals of HGDP-CEPH populations.

Super population	Population	Rate compared with result of (k-1) inference time intervals (\%)			
		2	3	4	5
AFR	Biaka	387.67	931.28	58.4	0.42
	Mandenka	2350.47	31.56	13.81	\ldots
	Yoruba	3157.91	24.28	67.73	0.35
ME	Bedouin	282.02	87.97	1.89	...
	Druze	33.15	218.35	1.68	\ldots
	Mozabite	275.41	130.64	2.99	\ldots
	Palestinian	195.99	102.86	1.2	\ldots
EUR	Adygei	179.37	98.23	0.37	\ldots
	Basque	336.87	42.2	0.78	\ldots
	French	48.25	201.88	0.58	\ldots
	Russian	75.68	97.53	0.27	\ldots
	Sardinian	105.69	649.27	1.04	...
EAS	Han	59.53	201.39	0.95	\ldots
	Japanese	86.6	154.89	0.41	\ldots
	Yakut	287.46	43.19	0.23	\ldots
CSA	Balochi	40.25	244.48	0.78	\ldots
	Brahui	27.24	276.49	0.6	\ldots
	Burusho	75.72	115.73	0.21	\ldots
	Hazara	95.97	159.24	1.05	\ldots
	Kalash	1465.6	11.76	\ldots	\ldots
	Makrani	106.68	112.25	0.35	\ldots
	Pathan	28.68	218.83	0.31	\ldots
	Sindhi	69.31	170.14	0.29	\ldots
AMR	Maya	136.19	1813.04	5.16	\ldots

1278
1279

Table S18. Probabilities of each state (the number of ancestral lineages remained) at time t.

Standard coalescent	n	n	1	2	3	4	5	6	7
time					Number of ancestral lineages remained	else			
0.6	30	1.92%	17.22%	38.16%	30.57%	10.39%	1.62%	0.12%	$<0.01 \%$
0.6	40	1.64%	15.62%	36.9%	31.85%	11.78%	2.03%	0.17%	0.01%
0.6	50	1.49%	14.67%	36.06%	32.55%	12.68%	2.32%	0.21%	0.01%
0.6	180	1.11%	12.05%	33.27%	34.28%	15.53%	3.37%	0.37%	0.02%
0.6	200	1.09%	11.96%	33.15%	34.34%	15.65%	3.42%	0.38%	0.02%
0.6	220	1.08%	11.88%	33.05%	34.38%	15.74%	3.46%	0.38%	0.02%
0.8	30	7.32%	36.36%	40.14%	14.22%	1.86%	0.1%	$<0.01 \%$	$<0.01 \%$
0.8	40	6.73%	34.93%	40.68%	15.36%	2.17%	0.12%	$<0.01 \%$	$<0.01 \%$
0.8	50	6.38%	34.05%	40.96%	16.08%	2.38%	0.14%	$<0.01 \%$	$<0.01 \%$
0.8	180	5.44%	31.41%	41.56%	18.27%	3.09%	0.22%	0.01%	$<0.01 \%$
0.8	200	5.4%	31.31%	41.58%	18.36%	3.12%	0.22%	0.01%	$<0.01 \%$
0.8	220	5.37%	31.22%	41.59%	18.43%	3.15%	0.22%	0.01%	$<0.01 \%$
1.0	30	15.99%	48.88%	29.75%	5.09%	0.28%	0.01%	$<0.01 \%$	$<0.01 \%$
1.0	40	15.18%	48.17%	30.73%	5.58%	0.33%	0.01%	$<0.01 \%$	$<0.01 \%$
1.0	50	14.7%	47.72%	31.32%	5.89%	0.36%	0.01%	$<0.01 \%$	$<0.01 \%$
1.0	180	13.35%	46.29%	33%	6.88%	0.48%	0.01%	$<0.01 \%$	$<0.01 \%$
1.0	200	13.29%	46.23%	33.06%	6.92%	0.48%	0.01%	$<0.01 \%$	$<0.01 \%$
1.0	220	13.25%	46.18%	33.12%	6.95%	0.49%	0.01%	$<0.01 \%$	$<0.01 \%$
1.2	30	26.31%	53.05%	18.95%	1.65%	0.04%	$<0.01 \%$	$<0.01 \%$	$<0.01 \%$
1.2	40	25.42%	52.97%	19.75%	1.82%	0.05%	$<0.01 \%$	$<0.01 \%$	$<0.01 \%$
1.2	50	24.89%	52.89%	20.23%	1.93%	0.05%	$<0.01 \%$	$<0.01 \%$	$<0.01 \%$
1.2	180	23.37%	52.6%	21.69%	2.27%	0.07%	$<0.01 \%$	$<0.01 \%$	$<0.01 \%$
1.2	200	23.31%	52.59%	21.74%	2.29%	0.07%	$<0.01 \%$	$<0.01 \%$	$<0.01 \%$
1.2	220	23.26%	52.58%	21.79%	2.3%	0.07%	$<0.01 \%$	$<0.01 \%$	$<0.01 \%$

Note: the highlighted area represents that, when $t \geq 1.0$, the number of ancestral lineages remained is no more than 3 in more than 90% cases.

1286
1287

References

1 Fu, Y. X. Statistical properties of segregating sites. Theor. Popul. Biol. 48, 172197 (1995).
2 Zivković, D. \& Wiehe, T. Second-order moments of segregating sites under variable population size. Genetics 180, 341-357 (2008).
$3 \mathrm{Li}, \mathrm{H} . \&$ Stephan, W. Inferring the demographic history and rate of adaptive substitution in Drosophila. PLoS Genet. 2, e166 (2006).
4 Hudson, R. R. Two-locus sampling distributions and their application. Genetics 159, 1805-1817 (2001).
5 Kim, Y. \& Stephan, W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 160, 765-777 (2002).
6 Fay, J. C. \& Wu, C.-I. Hitchhiking under positive Darwinian selection. Genetics 155, 1405-1413 (2000).
7 Fu, Y. X. \& Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693-709 (1993).
8 Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595 (1989).
9 Polanski, A., Bobrowski, A. \& Kimmel, M. A note on distributions of times to coalescence, under time-dependent population size. Theor. Popul. Biol. 63, 33-40 (2003).
10 Bhaskar, A. \& Song, Y. S. Descartes' rule of signs and the identifiability of population demographic models from genomic variation data. Ann. Stat. 42, 2469-2493 (2014).
11 Hsieh, P. et al. Model-based analyses of whole-genome data reveal a complex evolutionary history involving archaic introgression in Central African Pygmies. Genome Res. 26, 291-300 (2016).
12 Lopez, M. et al. The demographic history and mutational load of African hunter-gatherers and farmers. Nat. Ecol. Evol. 2, 721-730 (2018).
13 Schlebusch, C. M. \& Jakobsson, M. Tales of human migration, admixture, and selection in Africa. Annu. Rev. Genomics Hum. Genet. 19, 405-428 (2018).
14 Skoglund, P. et al. Reconstructing prehistoric African population structure. Cell 171, 59-71 (2017).
15 Durvasula, A. \& Sankararaman, S. Recovering signals of ghost archaic introgression in African populations. Sci. Adv. 6, eaax5097 (2020).
16 Beerli, P. Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. Mol. Ecol. 13, 827836 (2004).
17 Hudson, R. R. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18, 337-338 (2002).
18 Chen, G. K., Marjoram, P. \& Wall, J. D. Fast and flexible simulation of DNA sequence data. Genome Res. 19, 136-142 (2009).

19 Boyko, A. R. et al. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet. 4, e1000083 (2008).
$20 \mathrm{Li}, \mathrm{H} . \&$ Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493-496 (2011).
21 Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. \& Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).
22 Liu, X. M. \& Fu, Y. X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555-559 (2015).

