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ABSTRACT 35 

There are now a rich variety of genomic and genotypic resources available to wheat 36 

researchers and breeders. However, the generation of high-quality and field-relevant 37 

phenotyping data which is required to capture the complexities of gene x environment 38 

interactions remains a major bottleneck. Historical datasets from national variety 39 

performance trials (NVPT) provide sufficient dimensions, in terms of numbers of years 40 

and locations, to examine phenotypic trends and study gene x environment interactions. 41 

Using NVPT for winter wheat varieties grown in the UK between 2002 – 2017, we 42 

examined temporal trends for eight traits related to yield, adaptation, and grain quality 43 

performance. We show a non-stationary linear trend for yield, grain protein content, 44 

HFN and days to ripening. Our data also show high environmental stability for yield, 45 

grain protein content and specific weight in UK winter wheat varieties and high 46 

environmental sensitivity for Hagberg Falling Number. Using the historical NVPT data in 47 

a genome-wide association analysis, we uncovered a significant marker-trait 48 

association peak on wheat chromosome 6A spanning the NAM-A1 gene that have been 49 

previously associated with early senescence. Together our results show the value of 50 

utilizing the data routinely collected during variety evaluation process for examining 51 

breeding progress and the genetic architecture of important traits.  52 

 53 

 54 
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INTRODUCTION 55 

Over the last three years, there has been a rapid surge in the development of genomic 56 

resources for wheat (reviewed in Adamski et al. 2020). This includes a chromosome-57 

scale reference assembly of the Chinese Spring cultivar (RefSeqv1) and a pan-genome 58 

resource comprised of chromosome and scaffold-level assemblies of 15 hexaploid 59 

wheat cultivars (IWGSC et al. 2018; Walkowiak et al. 2020). There is also a wide range 60 

of array-based (Axiom-35K, iSelect 90K, Axiom-660K and Axiom-820K; Wang et al. 61 

2014; Winfield et al. 2016; Allen et al. 2017), sequencing-based (e.g DARTSeq, 62 

RADSeq) or PCR-based (e.g KASP, TaqMan, rhAmp; Semagn et al. 2014; Ayalew et al. 63 

2019) SNP genotyping assays available to wheat researchers and breeders. There 64 

have also been efforts to re-sequence different wheat populations either through 65 

reduced-representation sequencing approach like exome-capture and sequencing (e.g 66 

He et al. 2019; Krasileva et al. 2017; Jordan et al. 2015)  or through whole genome 67 

resequencing (e.g Cheng et al. 2019; Scott et al. 2020). This preponderance of 68 

genomics and genotypic data which are available in open-access repositories (e.g. 69 

EnsemblPlants, CerealsDB; Bolser et al. 2016; Howe et al. 2020; Wilkinson et al. 2020) 70 

now makes it possible to map traits at high-resolution (e.g Walkowiak et al. 2020), 71 

examine population diversity at whole genome levels or in breeding units (haplotypes: 72 

e.g Brinton et al. 2020; Scott et al. 2020), and implement genome-assisted breeding 73 

schemes using marker-assisted and/or genomic selection (e.g Sweeney et al. 2019; 74 

Rasheed and Xia 2019).  75 

Despite these advances, the generation of high-quality and field-relevant phenotyping 76 

data remains a major bottleneck. Modern phenomics platforms have improved 77 
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phenotyping throughput and precision under controlled conditions, but these do not 78 

always capture the environmental effects experienced under real-world farming 79 

conditions (Yang et al. 2020). Given climate change projections of fluctuating radiation, 80 

heat and precipitation patterns in major wheat growing areas (including the UK), 81 

breeding for phenotypic stability and understanding complex gene x environment 82 

interactions is of high priority (Semenov 2009; Trnka et al. 2019).  83 

Due to their large scale and multi-environment (years and locations) design, historical 84 

dataset from national variety performance trials (NVPT) provide sufficient dimensions, in 85 

terms of years and locations to examine phenotypic trends and study gene x 86 

environment interactions. These historical datasets are, however, incomplete by design 87 

because of, for example, changes in the number and specific set of varieties trialed and 88 

changes in the field sites used from year to year. Previous studies have analyzed NPVT 89 

data for wheat in the UK (Silvey 1981; Mackay et al. 2011) and similar analyses of 90 

historical data have been conducted elsewhere (e.g Crossa et al. 2007; Pozniak et al. 91 

2012).  92 

In the UK, new wheat varieties undergo statutory tests before they are registered on the 93 

National List (NL). Registered varieties are subsequently introduced (or maintained on) 94 

the UK Recommended List (RL) after undergoing independent non-statutory NPVT 95 

managed by the Agriculture and Horticulture Development Board (AHDB, formerly 96 

Home-Grown Cereals Authority). The NL serves as variety registry while the RL is used 97 

as a reference by farmers for variety selection. Mackay et al. (2011) re-analyzed data 98 

from the UK NL and RL trials conducted between 1948 – 2007, and found significant 99 

yield improvement that was mostly attributed to plant breeding. In the present study, we 100 
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analyzed data from the UK RL NVPT for winter wheat between 2002 - 2017 and used 101 

this to examine temporal trends in eight yield, adaptation, and grain quality traits. We 102 

also demonstrate the usefulness of these NVPT dataset for trait mapping to uncover loci 103 

of breeding importance. 104 

 105 

 106 

MATERIALS AND METHODS 107 

NVPT datasets 108 

We downloaded result files for the NVPT for winter wheat in the UK from 2002 – 2010 109 

and 2012 - 2017 from the AHDB website (accessible at: https://ahdb.org.uk/knowledge-110 

library/recommended-lists-for-cereals-and-oilseeds-rl-harvest-results-archive). We 111 

focused our study on data for eight traits including yield, adaptation and grain quality 112 

traits. Yield and height data were collected from treated and untreated trials. The treated 113 

trials included management for diseases (fungicide spray) while the untreated trials did 114 

not include disease management. Both trials were managed under standard husbandry 115 

practices including the application of plant growth regulator (PGR), herbicide, fertiliser 116 

and pest control management as recommended by AHDB. Details of the AHDB RL trial 117 

protocol is accessible at: https://ahdb.org.uk/rlprotocols.  Before analyses, we filtered 118 

the dataset to remove observations with unknown locations or from locations where 119 

trials were abandoned. Varieties that were trialed in a single year were also omitted. 120 

The nomenclature of varieties, locations and counties were standardized in cases 121 
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where different designation or acronyms were used for the same variety, location or 122 

county across different years. After filtering, the distribution of the observations obtained 123 

for each of the eight target traits resemble a bell curve suggesting normal distribution 124 

(Figure S1). 125 

Germplasm 126 

Data for a total of 168 varieties were used in this study. These include 133 varieties 127 

whose phenotype information were obtained from the AHDB website as described 128 

above. For 139 varieties, which included additional 35 pre-2002 UK wheat varieties, 129 

genotype data from the Axiom-35K array was used as described below. The number of 130 

varieties used for each analysis in this study are detailed in Figure S2.  131 

Statistical Analyses 132 

We used a two-stage approach to examine the linear trend of trait from the NVPT data. 133 

First, we fitted a linear mixed model (LMM) to the NVPT data using restricted maximum 134 

likelihood (REML) estimation. The model was implemented using the lme4 package in R 135 

as: 136 

Yijk = µ +vi +yj + sjk + eijk 137 

Yijk is the historical performance of variety i in year j at location k. µ is the overall mean 138 

performance of all varieties, vi is the effect of variety i, yj is the effect of year j (the 139 

calendar year of the trial) and Sjk is the effect of location k within year j. eijk is the 140 

residual variance arising from factors not accounted for in the model including variety x 141 

year interaction. As our main interest was the performance for each variety, the variety 142 

effect was fitted as fixed factor while the year and site (nested within year) were fitted as 143 
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random factors. This is slightly different to the strategy used by Mackay et al. (2011), 144 

which also included calendar year as a fixed factor to account for the long year interval 145 

(1948 – 2002) examined and changes in trial management system across these years. 146 

Given the short interval examined in this study, we believe the management systems 147 

were fairly uniform across the trial year. We derived estimates for the varieties means 148 

(EVM) from the LMM. Second, we used a linear model to regress the EVM derived from 149 

the LMM above against the year the variety was first entered into the NVPT. For trait 150 

comparison between end-use groups, Analysis of Variance (ANOVA) followed by post-151 

hoc TukeyHSD was used to evaluate and compare significant difference in EVM of 152 

varieties belonging to different end-use groups. The lstrend function implemented in the 153 

R lsmeans package (Lenth 2016) was used to estimate and compare slopes of the 154 

linear regression between groups. For slope comparisons between the four end-use 155 

groups, the adjusted P value is presented based on Tukey’s method of comparison.   156 

We used the Finlay Wilkinson regression to examine phenotype stability (Finlay and 157 

Wilkinson 1963). The original Finlay Wilkinson regression used by breeders to examine 158 

varietal adaptability is not best suited for data from incomplete trial design as the 159 

environment means used for normalizing varietal performance are biased due to 160 

incomplete replication of varieties across all environments. To circumvent this bias in 161 

our analysis, we used the Bayesian method proposed by Su et al., (2006) and 162 

implemented in the R package FW (Lian and de los Campos 2016). Only varieties that 163 

were trialed in more than three years were used for this analysis. The mean values for 164 

each variety in each year were used as input. The model was fitted with the Bayesian 165 

“gibbs” method, with 50000 iterations and 5000 burnIn rate as suggested for wheat 166 
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analyses in the FW package paper  (Lian and de los Campos 2016). The FW 167 

coefficients are presented as b + 1 which describes expected change in variety 168 

performance per unit change of the environment effect (Lian and de los Campos 2016). 169 

Genotyping, population structure and association analysis 170 

A subset of 139 modern varieties and historic cultivars were genotyped using the 171 

Axiom-35K array (Allen et al. 2017). We filtered the genotype data to include only sites 172 

with > 0.05 minor allele frequencies. Marker with heterozygous calls but that were 173 

missing one of the homozygous calls (e.g markers with AA and AC but missing CC) 174 

were also removed as these are likely due to wrong genotype assignment during 175 

automated genotype cluster analysis. The markers were filtered to remove pair of loci 176 

with high linkage disequilibrium (R2 > 0.75). This was done to remove biases arising 177 

from high LD loci (such as from introgression from wild relatives) that can bias the 178 

contributions of such loci in population structure analysis. To assign physical positions 179 

to the Axiom markers, their sequences were used as queries in BLASTn alignments 180 

against the IWGSC RefSeqv1.0 assembly (IWGSC et al. 2018) as described in Brinton 181 

et al. (2020) and the best hits on each of the three wheat homoeologous genomes (A, B 182 

and D) were recorded. Of these, the correct homoeologous chromosome was selected 183 

using genetic mapping information from 13 populations (Gardiner et al. 2019) where 184 

available for each marker. Otherwise, the highest BLASTn score was used to select the 185 

homoeologous chromosome. In case of conflicting genetic mapping results for the 186 

correct chromosome between the mapping populations, the most frequent outcome was 187 

used. 188 
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Population structure analysis was done using discriminant  analysis of principal 189 

component (DAPC) as implemented in the Adegenet R package (Jombart and Ahmed 190 

2011). For this, the number of population cluster (k) was determined by kmeans 191 

clustering using a range of k. The k with the minimum Bayesian Information Criterion 192 

was selected as the optimum k. To increase the accuracy of grouping, 50 iterations of 193 

the kmeans clustering algorithm was run and the population group to which a variety 194 

was most frequently assigned was selected. Also, the cross-validation function 195 

(xvalDapc) was used to select the optimum number of principal components to use for 196 

DAPC. 197 

GWASpoly – a R package for association analysis in polyploid crop, was used for 198 

GWAS (Rosyara et al. 2016). We used a K+Q mixed model where K represents the 199 

kinship matrix describing the relatedness between the varieties and Q represents the 200 

population grouping derived from the DAPC analysis. A Bonferroni threshold with 201 

adjusted P value below 0.05 was used to select markers with significant association 202 

with the trait of interest.  203 

Data Availability  204 

The original data files for the trials described in this study can be downloaded from the 205 

AHDB website at: https://ahdb.org.uk/knowledge-library/recommended-lists-for-cereals-206 

and-oilseeds-rl-harvest-results-archive. As data for different traits are combined in these 207 

original files, we re-organized the files to separate the data for each trait into separate 208 

files. The re-organized files are available at Zenodo: 209 

https://doi.org/10.5281/zenodo.4761528. The QC-filtered trial data used for subsequent 210 
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analyses are presented in Table S1. Table S2 contains the end-use group information 211 

and linear-mixed-model-derived EVM for the varieties trialed. Table S3 contains the FW 212 

coefficients for each variety used in the FW regression analysis. The filtered Axiom-35K 213 

genotyping data and their genome distribution are presented in Table S4 and Table S5, 214 

respectively. Table S6 contains the population group information for each variety 215 

genotyped.  216 

 217 

 218 

RESULTS 219 

Estimates from multi-environment trial capture expected relationship between 220 

traits 221 

We analyzed the historical data set of the UK RL NVPT from 2002 to 2017. We focused 222 

our analyses on six traits of agronomic and economic importance: yield, plant height, 223 

days to ripening, Hagberg Falling Number (HFN), grain protein content and specific 224 

weight. For yield and plant height, we analyzed data coming from (fungicide) treated 225 

and untreated trials. This results in a final dataset for eight traits. After quality controls 226 

(described in Materials and Methods), we retained 52,152 observations for these eight 227 

traits from 133 winter wheat varieties (Table S1). These 133 varieties were phenotyped 228 

in at least two years across a combined 162 locations, with a subset of 95 locations 229 

being used for evaluations in two or more years. Table 1 details the number of varieties 230 
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phenotyped for each trait and the number of locations and year-location combinations 231 

used. The trial locations were spread across 43 counties and unitary authorities in 232 

England, Wales, Scotland, and Northern Ireland as shown in Figure 1. 233 

Using a linear mixed model that accounted for variation arising from the different years 234 

and trial locations, we derived estimates for variety mean (hereafter referred to as EVM) 235 

for each variety for each trait (Table S2). Correlation analysis using the EVM captured 236 

expected patterns of relationship between the measured traits (Figure 2). We observed 237 

significant positive correlations between treated and untreated trials for height and yield, 238 

although the correlation between treated/untreated trials for height was much stronger 239 

than for yield. HFN and grain protein content were positively correlated to each other, 240 

but negatively correlated to treated yield, treated plant height and days to ripening. 241 

 242 

Examining Trait Trends 243 

We next examined the temporal pattern across the 15 years of trials to highlight linear 244 

trends in traits due to breeding progress. For this, we regressed the EVM for each 245 

variety on its year of first entry to the NVPT which is directly related to its year of 246 

release. This regression likely captures temporal pattern of breeding progress as 247 

successive releases of varieties are expected to outperform previous releases in one or 248 

more traits. We observed linear increase for yield between 2002 - 2017 in both the 249 

treated and untreated trials (Figure 3A - B). The rate of yield increase in the untreated 250 

trial was significantly higher than in the treated trials (rate difference = 0.093 251 

tonnes/ha/year, P < 0.0001). Conversely, grain protein content and HFN showed small 252 
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but significantly decrease over time (P < 0.001 and 0.03, respectively; Figure 3C - D). 253 

We also observed a significant delay in days to ripening over the same period (P = 254 

0.004, Figure 3E). Changes in plant height (treated and untreated) and specific weight 255 

were not significant (P = 0.31 – 0.51, Figure 3F - H) suggesting stable trends.  256 

UK wheat varieties are classified into four main end-use groups as described by the UK 257 

Flour Millers (www.ukflourmillers.org). These include the UK Flour Group 1 – 4, 258 

hereafter referred to as UFG1-4. The UFG1 and UFG2 varieties have superior grain 259 

quality (grain protein content and HFN) and are used for breadmaking. UFG3 varieties 260 

are often used for biscuits and cakes, whereas UFG4 varieties usually have high yield 261 

potential but inferior grain quality and are mainly used for animal feed. As yield and 262 

protein content are important measures for these end-use classifications, we examined 263 

how the temporal trends observed for these traits varied for the different end-use 264 

groups. Expectedly, UFG4 varieties showed higher yield while the bread making 265 

varieties (UFG1-2) show higher grain protein content (Figure 4A - B). All end-use 266 

groups showed a significant increasing yield trend across time and the rates of increase 267 

were not significantly different between the end-use groups (P = 0.263 - 0.885; Figure 268 

4C). UFG2 and UFG4 varieties showed a significant and comparable decline in grain 269 

protein content over time (Figure 4D) while changes in protein content of UFG1 and 270 

UFG3 varieties were non-significant (Figure 4D). 271 

 272 
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Yield, protein content, specific weight, but not HFN, are stable in UK 273 

environments 274 

Using a modified Finlay Wilkinson (FW) regression (Lian and de los Campos 2016) for 275 

measuring genotype x environment interaction, we examined the stability of yield and 276 

end-use quality traits across the trial years (Figure 5, Table S3). Only 95 varieties that 277 

were trialed in three or more years were included in this analysis. FW regression 278 

measures the stability of variety performance across different environments by 279 

regressing individual variety trait means on the environmental effect (Finlay and 280 

Wilkinson 1963). FW regression coefficient close to 1 suggests average varietal stability 281 

in which variety performance is consistent with environment effect i.e. variety performs 282 

poorly in bad environments and well in good environments. Larger values suggest 283 

below average stability i.e. higher environmental sensitivity. 284 

Yield was stable across years in most UK wheat varieties (regression coefficients close 285 

to 1, Figure 5A). Similarly, most of the varieties examined showed high stability in 286 

protein content and specific weight, with bread-making varieties stably producing grains 287 

with above median protein and specific weights (Figure 5B). HFN, on the other hand, 288 

showed varying FW coefficients ranging from -0.28 (KWS Barrel) to 6.03 (Hyperion). 289 

More than 83% of the 95 UK wheat varieties examined have FW coefficient > 2 for HFN 290 

suggesting below-average stability. Figure 5B shows the HFN performance of three 291 

varieties with different FW coefficients: KWS_Barrel, Hyperion, and Napier with (FW 292 

coefficient of 1.02). Napier consistently showed low HFN values in all the years it was 293 

trialed. On the other hand, Hyperion with the highest FW co-efficient, showed extreme 294 

HFN phenotypes - very low HFN value in Low-HFN years and very high HFN value in 295 
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high-HFN years suggesting high environmental sensitivity. KWS_Barrel’s HFN 296 

performance was fairly constant irrespective of the environments it was trialed. 297 

 298 

 299 

 300 

Post-2002 UK wheat varieties belong into four distinct population groups301 

Using the Axiom35k SNP array (Allen et al. 2017) we genotyped 139 varieties including 302 

a subset of those trialed between 2002 - 2017 (104) and additional historic UK wheat 303 

cultivars. After quality filtering (described in Materials and Methods), we selected 4298 304 

high quality markers dataset (Table S4) including 1715, 1781 and 778 markers on the 305 

A, B and D sub-genomes, respectively (Table S5). Using these genotypic data, we 306 

examined the population structure within the UK wheat collection. DAPC analysis 307 

revealed four distinct population groups (Pop1-4; Figure 6A, Table S6). Using Helium 308 

for pedigree visualization (Shaw et al. 2014), we could trace the modern founder 309 

parents for three (Pop1, 2 and 4) of the four population groups. Pop1 contains 19 310 

varieties, of which 15 (79%) have Cadenza in their pedigree, consistent with Cadenza 311 

being an important parent for Pop1. Pop2 comprises 27 varieties, 20 (74%) of which 312 

contain Claire in their pedigree. Pop4 includes 30 varieties, 28 (93%) of which trace 313 

their pedigree to Robigus suggesting Robigus as an important parent for this group 314 

(Figure 6B). Pop3 is the largest group with 63 varieties with a more diverse pedigree 315 

structure. Using a subset of 111 varieties with both genotype and end-use group 316 

information (Figure S2), we examined the association between the population groups 317 
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and end-use groups (Figure S3). The “Claire” (Pop2) and “Robigus” (Pop4) population 318 

groups only contain UFG3 and UFG4 varieties used for biscuit/cakes and feeds, 319 

respectively. While the “Cadenza” (Pop1) population group mostly (71%) contain UFG1 320 

and UFG2 varieties used for breadmaking.  321 

 322 

Using NVPT Data for Trait Mapping 323 

We next examined the suitability of using the EVM obtained from the NVPT for trait 324 

mapping through a genome-wide association study (GWAS). To ascertain that our 325 

genotypic data and population composition are suitable for GWAS, we included data for 326 

the presence/absence of Sm1 - a major locus known to underlie resistance to Orange 327 

wheat blossom midge (OWBM) in UK wheat varieties. As expected, we identified a 328 

major peak associated with OWBM resistance on wheat chromosome 2B (Figure S4A 329 

and B). This peak co-localizes with the physical position for Sm1 (Walkowiak et al. 330 

2020), supporting our Sm1 marker information. Importantly, our GWAS analysis 331 

identified a region on the short arm of chromosome 6A with significant marker trait 332 

association (MTA) for days to ripening (Figure 7A - B). The days to ripening MTA region 333 

contain two markers, AX-94549511 and AX-94710688, located in an interval (73.5 – 334 

86.5 Mbp) containing the NAM-A1 gene (TraesCS6A02G108300; 77.1 Mbp) that is 335 

associated with variation in senescence in European wheat cultivars (Cormier et al. 336 

2015). Days to ripening was significantly different between the allele groups of marker 337 

AX-94710688 which has the highest significance score (Figure 7C). 338 

 339 
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 340 

DISCUSSIONS 341 

Yield is an important driver of linear trends 342 

Using historical data from UK NVPT we examined phenotypic trends in winter wheat 343 

varieties trialed between 2002 – 2017. Our analysis highlights a linear increase for yield 344 

(treated and untreated) and days to ripening, and a linear decrease in protein content 345 

and HFN. Given that the model used to analyze this data adjusted for variation arising 346 

from locations across years, and that agronomic practices are largely consistent in the 347 

NVPT, this linear trend can be attributed mostly to genetic improvement of varieties over 348 

time. Mackay et al. (2011) similarly attributed 88% of yield increase in cereals crops in 349 

the UK from 1982 – 2007 to genetic improvement. Yield is the most important 350 

determinant of grain market value; as such the linear increase in yield is consistent with 351 

concerted breeding efforts to improve yield under UK wheat growing conditions. In 352 

addition to the overall yield trend, we also observed consistent and similar linear 353 

increases in yield in all the four UK Flour Groups (UFG1 – 4). This further highlight yield 354 

as the main breeding target for varietal development (and adoption into the RL) 355 

irrespective of their target end-use groups.  356 

We observed that the rate of yield increase in untreated trials (152 kg/ha/year) is 357 

significantly (p <0.0001) higher than in treated trials (60 kg/ha/year) across the 15-year 358 

period. Mackay et al. (2011) similarly observed the same pattern between 1982 – 2007 359 

and argued that this pattern is due to loss of disease resistance by some varieties 360 

during the trial period examined. Varieties progressively lose resistance over time 361 
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(Meikle and Scarisbrick 1994) and consequently variety performance declines with time. 362 

This mean that under untreated trial conditions, newly introduced varieties with ‘intact’ 363 

disease resistance will outperform a portion of previously released varieties whose 364 

disease resistance have ‘broken down’. This differential loss of disease resistance will 365 

further increase the variation in variety yield performance in untreated trials in addition 366 

to the variation arising from non-disease related genetic factors observed in treated 367 

trials. In other words, there is an “upward bias” in variety effects for the yield observed in 368 

untreated trials as described by Mackay et al. (2011).  369 

Based on the rationale described above, it would be expected that a sudden loss of 370 

resistance in a large proportion of varieties due to the emergence of a more virulent 371 

pathogen race would result in a marked upward bias in variety effect estimates. This is 372 

what we observed when we compared yield trends before and after the emergence of 373 

the yellow rust (Puccinia striiformis) “Warrior” race in 2011 (Hubbard et al. 2015). The 374 

rate of yield increase in untreated trials significantly (P < 0.001) increased three-fold 375 

from 123 kg/ha/year before the emergence of the “Warrior” race to 372 kg/ha/year after 376 

the emergence of the “Warrior” race (Figure 8). During the same time, the rate of yield 377 

increase was significantly (P = 0.2697) comparable in the treated trial before and after 378 

the emergence of the “Warrior” race (Figure 8). The use of historical data in this study 379 

allowed us to identify this trend and thus highlight the importance of such datasets for 380 

dissecting the effect of important events in a national cropping history such as change in 381 

disease epidemics. 382 

It is also interesting to speculate that the higher rate of yield increase observed in the 383 

untreated trials indirectly suggests that newer varieties contain new sources of genetic 384 
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resistance that improve their performance over older varieties at a rate greater than 385 

observed in the treated trials. This is likely not accidental, but points to concerted efforts 386 

by breeders to introduce more effective source of genetic resistance into UK wheat. The 387 

improved genetic resistance profile of newer varieties narrows the yield gap observed 388 

between the treated and untreated trials. We cannot, however, rule out the fact that this 389 

narrower yield gap might be due to less disease pressure in recent years. A more 390 

detailed genetic characterization will be needed to accurately describe the genetic 391 

resistance profile of UK wheat varieties.  392 

Concomitant with the yield increase, there has been a decrease in grain protein content 393 

from 2002 - 2017 which reflects the well-established antagonistic relationship between 394 

yield and protein content (Figure S5; Simmonds 1995). Unlike for yield, linear trends 395 

were not consistent across the four end-use groups. While we identified an overall 396 

significant decrease in grain protein content over time, this was not observed in the 397 

UFG1 varieties that are used for breadmaking (Figure 4). UFG2 varieties which also 398 

have breadmaking potential, however, showed significant decrease over time just like 399 

the UFG4 varieties used for animal feed. The decline in UFG2 varieties grain protein 400 

content may be due to the fact that this group comprise varieties that did not 401 

consistently meet the higher grain quality (in particular protein content) requirement for 402 

UFG1 and were downgraded to UFG2 . The fact that our analysis captures expected 403 

trait (yield, protein content and HFN) differences in end-use groups (Figure 4A - B, 404 

Figure S6A - B) suggests that the linear mixed effect model adopted is appropriate to 405 

handle the incomplete design of the NVPT and to examine phenotype trends within 406 

each end-use group. 407 
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 408 

The multidimensional (year and location) nature of the NVPT also allows for examining 409 

varietal adaptability across multiple environments. We observed year-to-year stability in 410 

yield and protein content in most of the varieties irrespective of their end-use group. 411 

This is likely attributable to the fact that we mainly examined data from RL trials that are 412 

comprised of varieties which had been previously screened for distinctness, uniformity, 413 

and stability during National Listing trials. Despite this ‘pre-screening’, almost all the 414 

varieties show high environmental sensitivity for HFN (FW coefficient: -0.28 to 6.03). 415 

Sjoberg et al (2020) similarly obtained a wide range of FW coefficient for HFN in 133 416 

varieties trialed across three years in the Pacific Northwest of the US.  417 

HFN is inversely related to α-amylase activity within the grain. High α-amylase activity 418 

caused by incidences of pre-harvest sprouting (PHS) and/or pre-maturity amylase 419 

(PMA) reduce the bread-making potential of wheat grains. Both PHS and PMA are 420 

known to be highly environmental dependent: PHS is induced by wet raining conditions 421 

during harvest maturity while PMA is mostly caused by low or high temperature shock 422 

around grain physiological maturity (Joe et al. 2005; Mares and Mrva 2014). The 423 

environmental conditions required to induce PHS and PMA occur infrequently from year 424 

to year making it difficult for breeders to screen for these traits under field conditions. In 425 

addition, both traits are controlled by many genes most of which have small effects 426 

making marker assisted selection (MAS) for HFN stability difficult. Within the last 427 

decade, progress has been made in identifying genes with major effects on PHS 428 

including TaMFT and TaMKK3-A (Nakamura et al. 2011; Torada et al. 2016). We also 429 

previously showed the effect of TaMMK3-A in reducing PHS in UK germplasm 430 
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(Shorinola et al. 2016) and developed markers to facilitates its use in breeding 431 

(Shorinola et al. 2017). The availability of markers for major genes controlling PHS now 432 

makes it possible to apply MAS for improving HFN. However, selection for PMA 433 

resistance remains a major challenge because the conditions that induces PMA varies 434 

between varieties (Liu et al. 2021) 435 

 436 

Population structure within UK winter wheat germplasm 437 

Our analysis reveals that three modern wheat varieties largely contribute to the 438 

development of winter wheat varieties released in the UK between 2002 - 2017. These 439 

include Cadenza (Pop1), Claire (Pop2) and Robigus (Pop4), which were themselves 440 

released in 1992, 1999, 2005, respectively. Together, 51% of the 114 varieties that 441 

were first trialed between 2002 – 2017 were derived from either Cadenza, Claire, and/or 442 

Robigus. Based on pedigree visualization, Robigus (and Pop4 varieties) appears to be 443 

a more recent introduction to the UK (Figure S7) suggesting that new gene pools are 444 

being introduced into the UK wheat breeding landscape. Since its introduction Robigus 445 

has made significant contribution to UK wheat pedigree. Fradgley et al (2019) identified 446 

Robigus as the second most used parents in UK breeding, next to Capelle Desprez. We 447 

also observed a clear association between the population groups and end use groups. 448 

Pop2 and Pop4 varieties, mostly derived from Claire and Robigus which are themselves 449 

UFG3 varieties, both contain only UFG3 (biscuit) and UFG4 (feed) varieties. Pop1 450 

varieties, which are mostly derived from Cadenza - a UFG2 variety, mostly contain 451 

UFG1 and UFG2 (breadmaking) varieties. One probable explanation for this association 452 

is that breeders tend to make crosses with varieties from the same end-use groups to 453 
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ensure that the gene combinations underlying the traits in the target end-use groups are 454 

preserved in their progenies (Simon Berry 2021, personal communication). This 455 

suggests that the choice of parents is an important determinant of the end-use class of 456 

varieties.   457 

Due to the type (gene-based SNP) and limited number of markers used, we 458 

acknowledge the limitation of this study to more precisely define the population groups 459 

represented in UK winter bread wheat collection to a high resolution. Brinton et al. 460 

(2020) demonstrated the inadequacy of array-based genotyping chips to precisely 461 

define haplotype groups due to their gene-centric design. Scaffold-level assemblies are 462 

now available for important UK wheat varieties including representatives of Pop1, Pop3 463 

and Pop4  (Cadenza, Claire and Robigus; Walkowiak et al. 2020). These genome 464 

assemblies can be combined with high-density genotyping or re-sequencing data to 465 

more precisely define the populations groups of wheat varieties grown in the UK.  466 

 467 

Historical data could be valuable for trait mapping 468 

We identified significant marker-trait association (MTA) peaks spanning a gene (NAM-469 

A1) that have been previously associated with natural variation in a trait of agronomic 470 

interest.. Cormier et al. (2015) identified a C/T missense SNP in the NAC domain and 471 

A/- frame-shift deletion in NAM-A1 leading to a truncated protein from a worldwide 472 

wheat collection and suggested functional roles for these polymorphisms. Harrington et 473 

al., (2019) showed that missense mutations in the NAC domain of NAM-A1 result in 474 

delayed peduncle and flag leaf senescence. Similarly, Avni et al (2014) showed that 475 

loss of function NAM-A1 mutants showed significant delay in senescence. Given the 476 
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large interval covered by the MTA peaks for days to ripening on chromosome 6A (73.4 477 

Mbp – 86.5 Mbp, ~140 genes) we cannot rule out the possibility that other gene(s) 478 

underly this days to ripening effect. Nonetheless, the co-localization of our GWAS peak 479 

with a known locus for the target trait highlights the usefulness of this historical dataset 480 

for quantitative trait mapping.  481 

Beside the MTA for days to ripening, we did not identify strong MTA for the other traits. 482 

This might be due to the fact that many of the major genes controlling these traits have 483 

been mostly fixed in the UK wheat population examined, and that the population size 484 

used in our study is not large enough to pick up minor effect and/or minor allele 485 

frequency gene(s). Also, while the phenotyping conditions used in the NPVT might be 486 

representative of UK farming conditions, they might not always be best suited for trait 487 

mapping. An example is the application of plant growth regulators in the trials to prevent 488 

lodging (by reducing plant height) but this might mask the effect of height genes. 489 

Despite these limitations, our work demonstrates that national trials data can be 490 

valuable for examining trait trends, stability, and genetic architecture.  491 
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FIGURE LEGEND 653 

Figure 1: Distribution of 162 NVPT locations used in this study (2002 and 2017). The 654 

number of field sites within each county and unitary authority are indicated in colour.  655 

Figure 2: Phenotype correlation between yield, adaptation and grain quality traits. EVM 656 

were derived for each variety from the NVPT conducted between 2002 and 2017. Only 657 

significant correlations (P < 0.05) are indicated. Positive and negative correlations are 658 

indicated with the blue and red circles, respectively, with the size and colour intensity of 659 

the circles representing the magnitude of the correlation. 660 

Figure 3: Temporal Trait Trend in UK Winter Wheat. Scatter plot showing changes in 661 

yield in the treated (A) and untreated trial (B), protein content (C), HFN (D), days to 662 

ripening (E), specific weight (F), plant height in treated (G) and untreated (H) trials. Blue 663 

dots represent individual varieties. For each trait, the EVM for each variety is regressed 664 

against the first year of entry in the 2002 -2017 trials. The solid line shows the 665 

regression line of the linear model and is coloured red if significant (P < 0.05). The 666 

shaded region defines the confidence interval. The regression equation is shown within 667 

each plot. The EVM data used for these plots are in Table S2.  668 

Figure 4: Temporal Trait Trend by End-use Groups. (A-B) Violin plots showing 669 

distribution for yield (A) and protein content (B) for the different end-use groups. The 670 

solid lines represent the mean of the distribution and the black letters show Tukey 671 

statistical comparison between the groups. Groups that are statistically similar share the 672 

same letter. (C-D) Scatter plot showing changes in yield (C) and protein content (D) for 673 

each end-use group of UK winter wheat. Each dot represents a variety while the colors 674 
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of the dots represent the end use groups (UK Flour Group 1-4). For each trait, the EVM 675 

for each variety is regressed against the first year of entry in the 2002 -2017 trials. The 676 

solid lines are the regression line of the linear model. The regression line equation for 677 

each group is shown. UFG1, UFG2, UFG3 and UFG4 are represented by the red, 678 

green, gray and peach dots, lines and text, respectively. 679 

Figure 5: Phenotype Stability by End-use Group. Scatter plot showing stability for 680 

treated yield, protein content, specific weight and HFN for UK winter wheat varieties 681 

across the 15 years of trials (2002 – 2017). The y-axis represents the Finlay Wilkinson 682 

(FW) coefficient which specifies expected change in performance per unit change in 683 

environment (year) effect. Varieties with above median performance are in the shaded 684 

region. The solid line indicates stable performance in all environments i.e. b + 1 = 1 685 

(Lian and De los Campos, 2016). Datapoints for three varieties whose HFN 686 

performance are further illustrated in Figure 5B are labeled. (B) Plot of HFN 687 

performance of varieties with lowest, highest and stable (~1) FW coefficient against the 688 

estimated environment year effect. The dashed lines present a constant slope of 1. 689 

Figure 6: Population structure of UK winter wheat varieties using DAPC analysis. (A) 690 

The representative variety for each population group (Pop) is indicated except for Pop2 691 

which consists of a more diverse pedigree. (B) Pedigree structure for Pop4 “Robigus”. 692 

The number in the inset represent varieties: (1) Qplus (2) Torch (3) Viscount (4) 693 

Conqueror (5) Leeds (6) Lear (7) Zulu (8) Gravitas (9) Twister (10) Britannia (11) Invicta 694 

(12) Warrior (13) Cougar (14) KWS Croft (15) KWS Target (16) Oakley (17) Jorvik (18) 695 

Panacea (19) Tuxedo (20) Icon (21) Horatio (22) KWS Gator (23) KWS Santiago (24) 696 

RGT Scrummage (25) Reflection (26) Energise (27) KWS Kerrin. The population groups 697 
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are represented by teal (Pop1), yellow (Pop2), purple (Pop3), and red (Pop4) circles, 698 

whereas gray circles represent varieties which were not genotyped in this study.  699 

Figure 7: (A) Manhattan plot for days to ripening using EVM derived from the 2002 – 700 

2017 NVPT of UK winter wheat varieties. The Bonferroni threshold is indicated with a 701 

dotted line. The seven wheat chromosome groups are indicated on the X-axis and each 702 

homoeologous sub-genome is coloured in red (A genome), gray (B) or yellow (D). (B) 703 

QQplot showing expected and observed distribution of –log (p values). (C) Allele effect 704 

of the marker showing the highest significant marker trait association for days to 705 

ripening.  706 

Figure 8: Yield comparison between treated and untreated trials before and after the 707 

emergence of the “warrior” yellow rust race. Scatter plot showing changes in yield in 708 

treated (light blue) and untreated trials (dark blue) before (unshaded region) and after 709 

(shaded region) the emergence of the “warrior” yellow rust race. The EVM for each 710 

period are regressed separately against the first year of entry into the NVPT trials for 711 

each variety.  The solid lines are the regression lines. The regression equations are 712 

shown at the bottom corners of the plot.  713 

 714 

 715 

 716 

 717 

 718 
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 719 

 720 

 721 

 722 

TABLE 1: NUMBER OF VARIETIES, SITES, AND YEARS OF TRIALS FOR THE UK NVPT BETWEEN 723 

2002-2017 724 

Trait Varieties* Trial 
Locations++ 

Trial 
Years 

Year x 
Location 

Combinations 

Total 
Observations 

Treated yield 133 158 15 410 13080 
Untreated yield 131 53 15 124 4156 
Protein content 128 99 15 230 7142 
Days to ripening 133 108 15 247 7977 
HFN 128 99 15 227 7154 
Specific weight 129 99 15 231 7091 
Treated height 108 74 11 171 3905 

Untreated height 107 30 11 75 1647 
*Not all varieties were tested for each trait, and in each year and location. 725 
++Some locations were used in more than one year. 726 

 727 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444481
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444481
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444481
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444481
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444481
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444481
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444481
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444481
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444481doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444481
http://creativecommons.org/licenses/by-nc-nd/4.0/

