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ABSTRACT  20 

Background 21 

Gut colonization by antibiotic resistant E. coli strains, including extended-spectrum beta-22 

lactamase (ESBL)-producing E. coli is a risk factor for developing overt infection. The gut 23 

microbiome can provide colonization resistance against enteropathogens, but it remains 24 

unclear whether it confers resistance against potentially pathogenic ESBL-producing E. coli. 25 

Materials 26 

From a Dutch cross-sectional population study (PIENTER-3), feces from 2751 individuals 27 

were used to culture ESBL-producing bacteria. Of these, we selected 49 samples which were 28 

positive for an ESBL-producing Escherichia coli (ESBL+), and negative for a variety of 29 

variables known to affect microbiome composition. These were matched in a 1:1 ratio to 30 

ESBL- samples based on age, sex, having been abroad in the past six months and ethnicity. 31 

Shotgun metagenomic sequencing was performed and taxonomic species composition and 32 

functional annotations (microbial metabolism and carbohydrate-active enzymes) were 33 

determined. Targeted quantitative metabolic profiling (1H NMR-spectroscopy) was 34 

performed to investigate metabolomic profiles.  35 

Results 36 

No differences in alpha or beta diversity were observed, nor in relative abundance, between 37 

ESBL+ and ESBL- individuals based on bacterial species level composition. Machine 38 

learning approaches based on microbiota composition did not accurately predict ESBL status 39 

(area under the receiver operating characteristic curve (AUROC)=0.53), neither when based 40 

on functional profiles. The metabolome did also not convincingly differ between ESBL 41 
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groups as assessed by a variety of approaches, including machine learning through random 42 

forest (AUROC=0.61). 43 

Conclusion 44 

Using a combination of multi-omics and machine learning approaches, we conclude that 45 

asymptomatic gut carriage of ESBL-producing E. coli is not associated with an altered 46 

microbiome composition or function. This may suggest that microbiome-mediated 47 

colonization resistance against ESBL-producing E. coli is not as relevant as it is against other 48 

enteropathogens. 49 

KEYWORDS: Colonization resistance, MDRO, ESBL-producing Enterobacterales, 50 

Escherichia coli, gut microbiome, metagenome, metabolome 51 

INTRODUCTION 52 

Escherichia coli is a common gut commensal, but several strains possess virulence factors 53 

that enable them to cause gastrointestinal, urinary and extraintestinal infections1, 2. 54 

Colonization of the gut by multidrug-resistant organisms (MDRO), including extended-55 

spectrum beta-lactamase (ESBL)-producing E. coli and carbapenem-resistant E. coli, often 56 

precede infections3. The gut microbiome can mediate colonization resistance against several 57 

enteric pathogens, but it remains unclear whether this is also the case for MDROs such as 58 

ESBL-producing E. coli, especially since many individuals harbor commensal E. coli. 59 

Colonization resistance can be conferred by the gut microbiome through nutrient competition, 60 

production of antimicrobial compounds, support of gut barrier integrity, bacteriophage 61 

deployment and through interaction with the immune system4. However, studies in humans 62 

have reported conflicting evidence regarding which bacterial genera or species within the gut 63 

microbiome could be of relevance in providing colonization resistance against ESBL-64 
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producing E. coli or ESBL-producing Enterobacterales. These conflicting results can, at least 65 

partially, be traced back to several confounding factors (e.g. medication) in those studies5-8. It 66 

was recently shown that unevenly matched case-controls studies with regard to lifestyle and 67 

physiological characteristics can produce spurious microbial associations with human 68 

phenotypes like disease, or in this case, colonization by ESBL-producing E. coli9.  69 

Here, we aimed to compare the gut microbiome and metabolome between individuals 70 

asymptomatically colonized with an ESBL-producing E. coli (ESBL+) and individuals who 71 

are not (ESBL-), determined by culture-based and molecular approaches. To avoid 72 

confounding factors from affecting study results, we selected samples from a large Dutch 73 

cross-sectional population study (PIENTER-3) for which 2751 fecal samples were used to 74 

culture ESBL-producing bacteria10. With this high number of samples available, we could 75 

apply stringent sample selection with regard to known confounders in microbiome studies 76 

such as antibiotic use, proton-pump inhibitor use, a variety of diets etc. Subsequently, we 77 

performed case control matching based on a variety of epidemiological and health related 78 

variables. We performed extensive functional and taxonomic profiling of the gut microbiome 79 

through metagenomics and metabolomics to investigate whether there are differences in the 80 

gut microbiome between matched ESBL+ and ESBL- individuals. 81 

MATERIALS AND METHODS 82 

Sample collection 83 

Samples were selected from a large Dutch population-wide study (PIENTER-3)10. This cross-84 

sectional population study was carried out in 2016/2017, primarily designed to obtain insight 85 

into age-specific seroprevalence of vaccine-preventable infectious diseases. Out of the 98 86 

included samples for the current study, 95 were stored in the freezer within 15 minutes after 87 

defecation, one person did not provide information on this and two individuals took longer 88 
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than one hour to store their sample in the freezer. Samples were kept on average for 2.97 days 89 

(±2.82) (six individuals did not indicate this information) in people’s freezer before being 90 

delivered (on cold packs) to the mobile study team10. Fecal samples were kept on dry ice 91 

during transport to the National Institute for Public Health and the Environment and stored at 92 

-80°C the next day. 93 

Detection of ESBL-producing Enterobacterales 94 

Details of the microbiological methods have been described elsewhere (Willems RPJ, van 95 

Dijk K, Dierikx CM, Twisk JWR, van der Klis FRM, de Greeff SC, Vandenbroucke-Grauls 96 

CMJE. Gastric acid suppression, lifestyle factors and intestinal carriage of ESBL and 97 

carbapenemase-producing Enterobacterales: a nationwide population-based study 98 

[Submitted]). Briefly, stool specimens were enriched by tryptic soy broth with ampicillin (50 99 

mg/L) and then cultured on selective agar plates (EbSA, Cepheid Benelux, Apeldoorn). Next, 100 

up to five oxidase-negative morphotypes were subcultured, identified to species level, and 101 

tested for antimicrobial susceptibility using standard procedures (VITEK 2 system, 102 

bioMérieux, Marcy-L’Étoile, France). Antimicrobial susceptibility was classified according 103 

to European Committee on Antimicrobial Susceptibility Testing clinical breakpoints11. ESBL 104 

production was screened for with combination disk diffusion and confirmed by polymerase 105 

chain reaction (PCR); PCR was performed for the blaCTX-M, blaSHV and blaTEM groups12. 106 

ESBL testing was done according to the European Committee on Antimicrobial 107 

Susceptibility Testing guidelines13. 108 

Sample selection 109 

2751 fecal samples were cultured for ESBL- or CPE-producing bacteria, of which 198 110 

samples were positive. For the purpose of our study, we selected samples positive for ESBL-111 

producing E. coli, resulting in 176 potential samples. Next, we applied stringent exclusion 112 
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criteria for all samples based on variables known to affect the gut microbiome. Individuals 113 

were excluded based on the following criteria: current proton-pump inhibitor use, antibiotic 114 

use in the last three months, diarrheal symptoms in the last month (defined as at least three 115 

thin stools within 24 hours), vomiting in the last month, blood in stool during the last month, 116 

abdominal pain or nausea during the last month, use of any pre- or probiotics, consumption of 117 

a special diet (vegetarian, cow’s milk free diet, hen’s egg protein-free diet, gluten free, nut 118 

and/or peanut-free, lactose limited diet, diabetes-related diet, limited protein diet, limited fat 119 

and/or cholesterol diet, enrichment of dietary fiber, caloric restriction, low in sodium, easily 120 

digestible, coloring agent-free, enriched in energy/protein, ‘other diet’) and whether stool was 121 

stored in the freezer after defecation (samples were excluded if not stored in the freezer). This 122 

selection resulted in 51 ESBL+ samples for inclusion, which were subsequently matched to 123 

51 ESBL- samples using the R MatchIt package (v3.0.2) with the “nearest” method in the 124 

matchit function. Subjects were matched based on age, sex, having been abroad during the 125 

last 6 months (yes/no) and ethnicity. ESBL- negative samples were selected using the same 126 

exclusion criteria. Three samples (1 ESBL- sample and 2 ESBL+ samples) were further 127 

excluded as insufficient DNA was available for sequencing. One additional sample (ESBL-) 128 

was excluded as we discovered afterwards that this individual had provided ambiguous 129 

answers regarding dietary habits. The final dataset for analysis contained 49 individuals in 130 

each group. 131 

DNA extraction for metagenomic shotgun sequencing 132 

DNA was extracted by mechanical disruption (repeated bead-beating) and purified in a 133 

Maxwell RSC instrument (Promega Benelux BV, Leiden, The Netherlands). The Maxwell 134 

RSC Blood DNA extraction kit was according to manufacturer’s instructions with several 135 

modifications, as follows. Fecal samples were thawed on ice and approximately 250 mg of 136 

well-homogenized fecal material was resuspended in S.T.A.R (stool transport and recovery 137 
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buffer) buffer (Roche Diagnostics, Almere, The Netherlands), with 0.1 mm zirconia/silica 138 

beads and 2.5 mm glass beads. The fecal suspension was mechanically disrupted three times 139 

for one minute in a FastPrep-24 Instrument at room temperature and 5.5 oscillations, and 140 

maintained on ice after every cycle. Samples were further heated at 95°C for 15 minutes 141 

shaking at 300 rpm, and centrifuged for 5 minutes at full speed. Resulting supernatants (fecal 142 

lysates) were collected and the pellet was further resuspended in an additional 350 µl of 143 

S.T.A.R. buffer following the same procedure. Pooled fecal lysates were then transferred to 144 

the Maxwell RSC Instrument for further purification steps. Eluted sample was cleaned-up 145 

using the OneStep PCR Inhibitor Removal Kit (Zymo Research, Irvine, California), and 146 

DNA was quantified using a Quantus Fluorometer (Promega Corporation, Madison, WI, 147 

USA). Every extraction round included two negative DNA extraction controls (blank samples 148 

with S.T.A.R. buffer without any added fecal material) and two microbial mock communities 149 

as positive controls (ZymoBiomics Microbial Community Standards; Zymo Research, Irvine, 150 

California, USA).  151 

Metagenomic shotgun sequencing 152 

Shotgun metagenomic sequencing was performed by GenomeScan B.V. (Leiden, The 153 

Netherlands) using the NEBNext® Ultra™ II FS DNA Library Prep Kit (New England 154 

Biolabs, Ipswich, Massachusetts, USA) and the NextSeq 500 platform (paired-end, 150bp). 155 

Two positive sequencing controls (ZymoBiomics Microbial Community DNA Standards; 156 

Zymo Research, Irvine, California, USA) and two negative sequencing controls (sterile 157 

water) were included. Average number of raw reads (of 98 samples and four positive 158 

controls) is 4,747,908 (range 2,565,232 – 62,035,096) and a median of 4,142,237 paired-end 159 

reads. Raw shotgun sequencing reads were quality checked using the FastQC (v0.11.9) and 160 

MultiQC (v1.8) tools, both before and after cleaning files for low-quality reads and human 161 

reads using the kneaddata (v0.7.10) tool with default parameters.  162 
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Taxonomic and functional annotation were performed on cleaned reads using the NGLess 163 

language (v1.2.0), associated tools and the Integrated Gene Catalog (IGC) database14-18. For 164 

taxonomic analysis, mOTUs (v2.5.1) was used with default parameters and unclassified reads 165 

(-1 category in mOTUs) were not included for downstream analyses19. Functional annotation 166 

was performed by aligning cleaned reads to the annotated IGC database (we annotated the 167 

IGC through eggNOG mapper v2.1.0 using default parameters and the “-m diamond” 168 

argument) using Burrows-Wheeler-Aligner MEM (BWA, v0.7.17)17, 18, 20. Unclassified reads 169 

were not taken into account for downstream analyses. Default parameters were used, apart 170 

from the ‘normalization’ argument, which was specified as normalization="scaled", which 171 

corrects for size of the feature (gene). Aligned reads were then aggregated using the Kyoto 172 

Encyclopedia of Genes and Genomes (KEGG), KEGG Orthology (KO) groups and 173 

Carbohydrate-active enzymes (CAZymes) annotations present in the IGC 174 

(features="KEGG_ko" or features= "CAZy" argument in NGLess)21, 22.  175 

Multi-locus sequence typing on E. coli was performed using the MetaMLST tool (default 176 

parameters). MetaMLST aligns sequencing reads against a database (which can be 177 

customized) of housekeeping genes to identify sequence types present in metagenomes. A 178 

custom E. coli database (Achtman MLST scheme) was created with MLST data from 179 

October 16th 2020 (https://pubmlst.org/bigsdb?db=pubmlst_ecoli_achtman_seqdef)23. No 180 

sequence types could be reliably detected in the samples, likely due to the very low relative 181 

abundance of E. coli and the corresponding low number of reads and coverage of E. coli.  182 

Resistome profiling 183 

To profile the antimicrobial resistance genes in the metagenomes, cleaned reads were aligned 184 

to the MEGARes database (v2.00) using BWA MEM with default settings17. The resulting 185 

SAM file was parsed using the ResistomeAnalyzer tool 186 
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(https://github.com/cdeanj/resistomeanalyzer) and the default threshold of 80% was used, 187 

meaning an antibiotic-resistance determinant was only included if at least 80% of the gene is 188 

detected in a sample24. Read counts originating from alignments to housekeeping genes 189 

associated with antimicrobial resistance (AMR) (e.g. rpoB and gyrA) that require single 190 

nucleotide polymorphisms to confer resistance were filtered out of the count table before 191 

downstream analyses, as previously reported25. Gene level data (e.g. tetO, tetQ and tetW) 192 

were used for calculating alpha and beta diversity metrics and for differential abundance 193 

analysis. For visualization purposes, gene level outputs were aggregated at the mechanism 194 

level (e.g. beta-lactams, mupirocin). 195 

Positive and negative controls for metagenomic sequencing 196 

Eight mOTUs were detected in all four positive controls, exactly matching theoretical 197 

expectations. With regard to expected relative abundances, sequencing controls were, as 198 

expected, more accurate (average fold error of 1.14) than the DNA extraction controls 199 

(average fold error of 1.42 with underrepresentation of Gram-positive bacteria). The four 200 

included negative controls (two extraction controls and two sequencing controls) did not 201 

generate any reads. These results indicate good performance of sequencing, DNA extraction 202 

procedures and bioinformatic processing of the data. 203 

Metabolomics 204 

The method for NMR analysis of fecal samples was adapted from the protocol developed by 205 

Kim et al. with a few minor adaptations26. 206 

Sample preparation 207 

Each feces-containing sample tube was weighed before sample preparation. To each sample 208 

tube 50 µl of 0.5 mm zirconium oxide beads (Next Advance, Inc.) and 750 µl of milli-Q 209 
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water were added. Then, the tubes were subjected to bead beating for four sessions of one 210 

minute. The tubes were subsequently centrifuged at 18,000 g at 4°C for 15 minutes. For most 211 

samples, 600 µl of supernatant was transferred to new 1.5 ml Eppendorf tubes. In some cases 212 

the volume of available supernatant was slightly less. These tubes were centrifuged at 18,000 213 

g at 4 °C for 1 hour. 270 µl of supernatant was added to 30 µl of pH 7.4 phosphate buffer (1.5 214 

M) in 100% D2O containing 4 mM TSP-d4 and 2 mM NaN3. A customized Gilson 215 liquid 215 

handler was used to transfer the samples to a 3.0 mm Bruker NMR tube rack. The original 216 

sample tubes were cleaned, dried and weighed again. 217 

NMR measurements 218 

1H NMR data were collected using a Bruker 600 MHz Avance Neo/IVDr spectrometer 219 

equipped with a 5 mm TCI cryogenic probe head and a z-gradient system. A Bruker 220 

SampleJet sample changer was used for sample insertion and removal. All experiments were 221 

recorded at 300 K. A standard sample 99.8% methanol-d4 was used for temperature 222 

calibration before each batch of measurements27. One-dimensional (1D) 1H NMR spectra 223 

were recorded using the first increment of a NOESY pulse sequence28 with presaturation (γB1 224 

= 50 Hz) during a relaxation delay of four seconds and a mixing time of 10 ms for efficient 225 

water suppression29. Initial shimming was performed using the TopShim tool on a random 226 

mix of urine samples from the study, and subsequently the axial shims were optimized 227 

automatically before every measurement. Duration of 90° pulses were automatically 228 

calibrated for each individual sample using a homonuclear-gated mutation experiment30 on 229 

the locked and shimmed samples after automatic tuning and matching of the probe head. 16 230 

scans of 65,536 points covering 12,335 Hz were recorded. J-resolved spectra (JRES) were 231 

recorded with a relaxation delay of 2 s and 2 scans for each increment in the indirect 232 

dimension. A data matrix of 40 × 12,288 data points was collected covering a sweep width of 233 

78 × 10,000 Hz. Further processing of the raw time-domain data was carried out in the 234 
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KIMBLE environment31. The Free Induction Decay of the 1D experiment was zero-filled to 235 

65,536 complex points prior to Fourier transformation. An exponential window function was 236 

applied with a line-broadening factor of 1.0 Hz. The spectra were automatically phase and 237 

baseline corrected and automatically referenced to the internal standard (TSP = 0.0 ppm). A 238 

sine-shaped window function was applied and the data was zero-filled to 256 × 16,384 239 

complex data points prior to Fourier transformation. In order to remove the skew, the 240 

resulting data matrix was tilted along the rows by shifting each row (k) by 0.4992× (128-k) 241 

points and symmetrized about the central horizontal lines. 242 

Metabolite quantification 243 

Metabolites were quantified using KIMBLE and the results were checked by quantifying the 244 

same metabolites both in the JRES and in the NOESY1D experiments and in 10 randomly 245 

chosen spectra using the Chenomx NMR Suite version 8.6 (Chenomx Inc., Edmonton AB, 246 

Canada).  247 

Statistical analysis 248 

Statistical software used for downstream analysis 249 

Analyses and visualizations were performed in R (v4.0.4), using the following packages: 250 

phyloseq (v1.34.0), microbiome (v1.12.0), vegan (v2.5-7), tidyverse packages (v1.3.0), 251 

SIAMCAT (v1.10.0), table1 (v1.2.1) and ropls (v1.22.0)32-38. All analytical R code will be 252 

made publicly available upon acceptance of the manuscript. For all used tools, default 253 

parameters were used unless stated otherwise. 254 

Community composition analysis of metagenomic data 255 

We tested for differences in overall microbiota composition with permutational multivariate 256 

analysis of variance (PERMANOVA) using Bray-Curtis dissimilarity. As violation of the 257 
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assumption of homogenous dispersions can lead to wrong conclusions regarding 258 

PERMANOVA, we first tested this assumption using the betadisper function of the vegan 259 

package. No heteroscedasticity was observed between the ESBL+ and ESBL- group. To 260 

investigate both linear and non-linear patterns in the data, we performed dimension reduction 261 

using both principal coordinates analysis (PCoA) and t-distributed stochastic neighbor 262 

embedding (t-SNE), both based on Bray-Curtis dissimilarity. Alpha diversity indices were 263 

compared using independent t-tests. 264 

Differential abundance analysis in metagenomic data 265 

Differential abundance analysis of mOTUs, KO groups, CAZymes and resistance genes 266 

between ESBL+ and ESBL- samples was performed using SIAMCAT on relative abundance 267 

matrices. Features (mOTUs, KO groups or CAZymes) had to be present in at least 25% of 268 

samples to be included in the analysis. Regarding resistome analyses, a gene had to be 269 

present in 10% of samples to be included, as the 25% prevalence cut-off was too stringent 270 

resulting in only fourteen genes included in the analysis. To correct for false discovery rate, 271 

p-values were corrected in all tests using the Benjamini-Hochberg procedure39. 272 

Machine learning classifier on metagenomic data 273 

We used obtained taxonomic and functional profiles for feature selection and construction of 274 

prediction models. To this end, least absolute shrinkage and selection operator (LASSO) 275 

logistic regression using the SIAMCAT package was performed to select predictive features 276 

and remove uninformative features based on species composition or functional profiles. 277 

Preprocessing was done by filtering mOTUs, KO groups, or CAZyme families which were 278 

present in at least 25% of samples. The vignette from SIAMCAT 279 

(https://siamcat.embl.de/articles/SIAMCAT_vignette.html) was followed37. In short, we 280 

performed data normalization using the “log.unit” method, 5-fold cross validation to split the 281 
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data in several combinations of training and test data, trained the model using LASSO 282 

logistic regression (“lasso” parameter) and, lastly, made the predictions.  283 

Metabolomics data 284 

Metabolomic concentrations were first log10 normalized to reduce heteroscedasticity. 285 

Metabolite concentrations were subsequently centered and scaled to a mean of 0 and standard 286 

deviation of 1, as previously described40. Differences in concentrations between ESBL 287 

groups were tested using t-tests where p-values were corrected for multiple testing using two 288 

methods (to establish robustness of potential findings), namely Benjamini-Hochberg and 289 

Holm correction (with Holm correction being more conservative)39, 41. Next, we performed 290 

multivariate analyses using PCA and Partial Least-Squares Discriminant Analysis (PLS-DA). 291 

Lastly, random forest was applied to investigate whether ESBL+ and ESBL- individuals could 292 

be accurately classified based on their respective metabolite profiles. As input to the random 293 

forest, normalized metabolite concentrations were used and, similarly as with metagenomic 294 

data, 5-fold cross validation was implemented in SIAMCAT.  295 

RESULTS 296 

Participant and ESBL-producing E. coli isolates characteristics 297 

The original sample selection contained 51 individuals in each group, but three samples were 298 

not suitable for metagenomic sequencing due to too low DNA concentrations after extraction. 299 

One more individual had to be excluded due to ambiguous answers regarding dietary habits. 300 

Ultimately, this resulted in metagenomics data from 49 individuals per group. Demographic 301 

and participant characteristics were highly similar between the ESBL+ and ESBL-group and 302 

antibiotic use between the preceding three to twelve months was also evenly matched (Table 303 

1). With regard to the ESBL-producing E. coli isolates that colonized our 49 ESBL+ 304 
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participants, 44 carried a CTX-M-type. The majority of these were CTX-M-1 (25) and CTX-305 

M-9 (18) and one could not definitively be typed (CTX-M-1 or CTX-M-8). Isolates of four 306 

individuals were negative for CTX-M genes and for one participant it could not be 307 

determined. Additional information on antimicrobial susceptibility of the strains can be found 308 

in Supplementary Table 1. 309 

No differences between the ESBL+ and ESBL- individuals in bacterial species 310 

composition or diversity parameters  311 

We investigated potential differences in microbiota composition and diversity between 312 

ESBL+ and ESBL- samples. A total of 1178 species (mOTUs) were detected in our cohort. 313 

Overall bacterial composition at the family and genus level are shown in Figure S1. The most 314 

abundant species and their average relative abundance in this cohort were Bifidobacterium 315 

adolescentis (4.6% ± 6.9%), Ruminococcus bromii (3.4% ± 4.8%) undefined 316 

Ruminococcaceae spp. (2.9% ± 3.2%), Eubacterium rectale (2.7% ± 2.8%) and Prevotella 317 

copri (2.5% ± 5.7%). We did not observe differences in alpha diversity (observed mOTUs 318 

and Shannon index, Figure 1A and B), nor in beta diversity (PCoA and t-SNE, Figure 1C and 319 

D).  320 

Next, we investigated whether there were differences in relative abundance between the study 321 

groups at the species level (mOTUs). Prior to differential abundance testing, mOTUs were 322 

filtered based on a prevalence of at least 25%, resulting in 261 mOTUs (representing 22.2% 323 

of the total observed mOTUs). No significant differentially abundant mOTUs were detected 324 

(all corrected p-values > 0.7). In order to elucidate whether microbiota composition is 325 

predictive of ESBL carriage, a machine learning classifier (LASSO logistic regression) was 326 

applied to the filtered mOTUs relative abundance matrix, which provided an AUROC value 327 
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of approximately random classification (AUROC of 0.53, Figure 1E), indicating that mOTUs 328 

relative abundance does not allow for reliable prediction of ESBL status.  329 

No differences in the resistome of individuals colonized by an ESBL-producing E. coli 330 

and ESBL- individuals 331 

Of all cleaned reads, an average of 0.035% (±0.024%) reads per sample mapped against the 332 

MegaRes 2.0 database. There was no difference between ESBL groups in the average number 333 

of reads aligned to MegaRes 2.0 (independent t-test, p=0.84). A total of 98 unique 334 

antimicrobial resistance genes (ARGs) were detected with 17 different AMR mechanisms 335 

(e.g. beta-lactam), and the number of detected ARGs was not different between ESBL groups 336 

(independent t-test, p = 0.46) (Figure 2A). Overall ARGs profiles in the study groups 337 

assessed by plotting beta diversity, did not show a clear separation between ESBL groups 338 

(Figure 2B), which was confirmed by PERMANOVA (p=0.21). The most abundant ARGs 339 

and AMR mechanisms are visualized in Figure 2C and D. No differences in relative 340 

abundance of ARGs were found between the groups using differential abundance analysis (all 341 

corrected p-values > 0.4). Tetracycline resistance was most abundant in the resistomes 342 

(47.7% ± 24.7%, Figure 2C), followed by mupirocin resistance (33.7% ± 28.6%). 343 

Tetracycline resistance was conferred by several tet genes, while mupirocin resistance was 344 

conferred through the ileS gene. As it is known from literature that Bifidobacterium spp. can 345 

be intrinsically resistant to mupirocin through the ileS gene42, we analyzed the correlation 346 

between the relative abundance of Bifidobacterium (at genus level) and the ileS gene, which 347 

was indeed high (R=0.78, p<2.2x1016) (Figure S2). We then moved on to investigate 348 

functional profiles of our participants. 349 

No differences between the ESBL+ and ESBL- individuals in functional capacity of the 350 

microbiome  351 
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To compare the functionality of the gut microbiome between the study groups, cleaned reads 352 

were mapped against the annotated IGC database. On average, 95.8% (±1.7%) of reads 353 

aligned against the IGC, and the aligned number of reads was not different between ESBL 354 

groups (independent t-test, p=0.23). From the aligned reads, 49.2% (±2.2%) aligned against a 355 

gene annotated by a functional group (KO group) and this was not different between ESBL 356 

groups (independent t-test, p=0.13). There was no difference in overall functional profiles 357 

between the groups (PERMANOVA, p=0.19). 8450 KO groups were detected and after 358 

filtering on 25% prevalence, 5179 KO groups remained for differential abundance testing. No 359 

KO groups were significantly differentially abundant between ESBL groups (all corrected p-360 

values > 0.2). To identify functional groups predictive of ESBL status, LASSO logistic 361 

regression was applied to the relative abundance matrix of KO groups. No accurate prediction 362 

model could be constructed (AUROC of 0.61), indicating that the functional groups do not 363 

contain information allowing for prediction of ESBL status. 364 

No functional differences in Carbohydrate Active Enzymes (CAZymes) between the 365 

ESBL+ and ESBL- group  366 

From the aligned reads, 2.1% (±0.2%) aligned against a gene annotated to a CAZyme family 367 

and this was not different between ESBL groups (independent t-test, p=0.48). A total of 109 368 

CAZyme families were detected with a mean of 77.7 (±5.7) per individual, with no 369 

differences between ESBL groups (independent t-test, p=0.34) (Figure 3A). The three most 370 

abundant CAZymes in our study were glycoside hydrolase (GH)13 (19.4% ± 3.3%), GH3 371 

(11.4% ± 1.6%) and GH31 (6.2% ± 0.9%) (Figure 3C), corresponding to breakdown of starch 372 

and glycogen (GH13) and breakdown of plant cell wall glycans (GH3 and GH31)43. Variation 373 

in CAZyme relative abundance profiles could not be explained by ESBL group 374 

(PERMANOVA, p=0.57, Fig 3B). Compositional plots based on the top 20 most abundant 375 

CAZymes were highly similar between the ESBL groups (Figure 3C), and no differences in 376 
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relative abundance of individual CAZyme families was observed (all corrected p-values > 377 

0.6). To identify potential drivers of ESBL-producing E. coli colonization we used LASSO 378 

logistic regression on relative abundances CAZymes, which did not result in an accurate 379 

prediction model (AUROC of 0.56). This indicates there is only very low to no predictive 380 

power in relative abundances of CAZymes with regard to ESBL status.  381 

Metabolomics profiling shows no clear differences between ESBL groups at the 382 

functional level 383 

For metabolomic analysis we quantified metabolite concentrations in all individuals, except 384 

for one ESBL+ sample that was excluded as a good quality NMR spectrum could not be 385 

recorded due to shimming problems. First, to investigate whether any differences in 386 

metabolite concentrations existed between ESBL groups, we performed univariate testing 387 

(independent t-tests). These results strongly depended on the method used for multi-error 388 

correction (11 metabolites were significantly different at p=0.048 with Benjamini-Hochberg, 389 

but none with Holm) (Figure S3 and Figure S4).  390 

Unsupervised dimensionality reduction using PCA was performed to investigate whether any 391 

separation could be observed based on ESBL carriage (Fig 4A). Over 46% of the 392 

metabolome variation could be explain on the first principal component, with some 393 

separation of the study groups. However, supervised analysis using a PLS-DA indicates that 394 

no predictive value could be obtained for class separation based on two PLS components 395 

(Q2Y = -0.06). Lastly, we performed a random forest prediction model to investigate whether 396 

ESBL status could be predicted based on metabolite profiles, but this was not the case 397 

(AUROC = 0.61) (Figure 4B). Altogether, minor differences in metabolite concentrations 398 

could be detected using t-tests, but these were dependent on the method applied for correction 399 
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for multiple testing. PCA between the ESBL groups showed a small overall signal, but no 400 

predictive value could be confirmed by both PLS-DA and random forest. 401 

DISCUSSION 402 

We present a unique study investigating differences in the gut microbiome and metabolome 403 

between individuals asymptomatically colonized by an ESBL-producing E. coli and matched 404 

non-colonized individuals. Importantly, in contrast to previous studies on this topic, we 405 

applied stringent inclusion criteria and matched ESBL+ individuals with ESBL- individuals on 406 

important epidemiological variables, which minimized the chance for observing effects 407 

which could be attributed to confounding variables. The combination of metagenomics and 408 

metabolomics allowed for a deep molecular resolution of the gut microbiome, both at the 409 

taxonomic and functional level. We show that there is no difference in the gut microbiome of 410 

individuals asymptomatically colonized with an ESBL-producing E. coli as compared to 411 

individuals who are not colonized. 412 

Confounding factors may, at least partially, be the reason for the previously reported 413 

differences in microbial signatures associated with protection from asymptomatic 414 

colonization by ESBL-producing bacteria and MDROs across different studies. It must be 415 

noted that these studies have mostly investigated vulnerable patient populations, such as 416 

nursing home residents and hospitalized patients. In such populations it is very complex to 417 

disentangle observed differences between colonized and non-colonized individuals from 418 

differences due to confounding variables (such as comorbidities and medication) between 419 

compared individuals6, 8, 44-46. In our study we excluded individuals based on many 420 

microbiome-influencing clinical factors, and performed matching on several clinical 421 

variables, as recently recommended for cross-sectional microbiome studies9. In this way, we 422 

could study the effect of colonization of ESBL-producing E. coli in isolation and 423 
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convincingly show that no differences exist in the gut microbiome between colonized and 424 

non-colonized individuals. 425 

In addition, previous research has generally not focused on species-specific colonization 426 

resistance, but rather on a broad category of MDROs (such as ESBL-producing 427 

Enterobacterales)6, 8, 44-46. Given the large genomic diversity within species47, let alone within 428 

the order of Enterobacterales, it is highly unlikely that a common mechanisms exists which 429 

could prevent colonization of e.g. both ESBL-producing Klebsiella pneumoniae and ESBL-430 

producing E. coli. Therefore in the current study we focused on a single species (E. coli), 431 

rather than a broad group of ESBL-producing Enterobacterales. 432 

Microbiome composition of individuals in our study population reflects that of other 433 

population cohorts in general. For example, B. adolescentis has been previously described in 434 

another Dutch cohort as the most abundant bacterial species, with an average relative 435 

abundance of 9.51% (±10.8%)48. In addition, P. copri, R. bromii and E. rectale were also 436 

highly abundant and prevalent, in line with the findings in the current study48.  437 

The resistome profiles identified in our study also corresponded well with what is generally 438 

described in literature, with tetracyline resistance being the most abundant resistance 439 

mechanism in the human gut49-51. The observed high relative abundance to mupirocin in our 440 

study could be explained by the intrinsic resistance of Bifidobacterium spp. to this, of which 441 

relatively high abundances were observed in this cohort.  442 

We show that despite inter-individual variation in taxonomic profiles, the functionality of the 443 

microbiome as assessed by the relative abundance of CAZyme families, is highly consistent 444 

between individuals. These finding are in line with previous findings showing functional 445 

similarity at the metabolic level despite taxonomic diversity52, 53. 446 
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This study is, to our knowledge, the first study to profile the gut metabolome in relation to 447 

colonization of ESBL-producing E. coli. We did not observe a relation between the 448 

metabolome, or any specific metabolite, and ESBL status. For other enteric pathogens, like 449 

Salmonella enterica serovar Typhimurium and C. difficile, specific metabolites have been 450 

shown to be strongly related to colonization resistance in rodent models54, 55. It should 451 

however be mentioned that these are infection models rather than asymptomatic colonization 452 

models, which would better represent our study. 453 

A limitation of our study is that we do not have longitudinal data on the microbiome of these 454 

participants, and are therefore unable to make any statements about the duration of 455 

colonization of ESBL-producing E. coli and associations with the gut microbiome in time. 456 

This is particularly relevant considering the large variation in the duration of colonization 457 

between individuals56, 57. It could be speculated that individuals who are long-term colonized 458 

have a different gut microbiome than individuals who are only colonized for a short period of 459 

time, although there is no clear evidence for this in literature to our knowledge. Furthermore, 460 

longitudinal observations would allow us to identify changes occurring at the compositional 461 

and functional level when asymptomatic carriage turns into active infection or when people 462 

become decolonized. Lastly, one would have ideally have microbiome data of an individual 463 

shortly before an ESBL-producing E. coli would colonize and at time of colonization, so that 464 

microbiome changes within an individual can be investigated. Secondly, we do not have 465 

whole-genome sequencing data of the ESBL-producing E. coli isolates, which prevents us 466 

from placing these data into a broader epidemiological context. For example, if the majority 467 

of isolates would be sequence type (ST)131, an endemic ST, this would be valuable extra 468 

information and further extend the clinical relevance of our findings. 469 

This study is however unique in the fact that ESBL+ and ESBL- individuals were selected 470 

from a large Dutch cohort (n= 2751), and therefore we could apply stringent inclusion criteria 471 
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and match the two groups on several demographic and clinical variables. To the best of our 472 

knowledge, this is one of very few studies in the microbiome field that applied such a 473 

stringent study setup. This setup ensured that the potential effect of confounding factors was 474 

minimized. In addition, this study is the first to investigate differences in the gut microbiome 475 

and metabolome between individuals colonized by an ESBL-producing E. coli and non-476 

colonized individuals using a combined approach of metagenomics and metabolomics. 477 

Therefore, it provides insight into both the composition and function of the gut microbiome. 478 

CONCLUSIONS 479 

Our study shows that there are no differences in the gut microbiome or metabolome of 480 

individuals who are, or are not, asymptomatically colonized by an ESBL-producing E. coli. 481 

We hypothesize that microbiome-mediated colonization resistance may therefore not be as 482 

relevant against ESBL-producing E. coli as it is for other enteric pathogens (like C. difficile 483 

and vancomycin-resistant Enterococcus), although longitudinal studies or controlled human 484 

colonization models are necessary to confirm this hypothesis.  485 
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TABLES AND FIGURES 508 

Table 1: Characteristics of participants included in the study. P-values were obtained using 509 

an independent t-test (for numerical variables) or Fisher’s exact test (for categorical 510 

variables). 511 
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 512 

Figure 1: Taxonomic analyses between ESBL groups with comparisons of observed mOTUs 513 

(A) and Shannon index (B), unsupervised clustering using PCoA (C) and t-SNE (D) based on 514 

Bray-Curtis dissimilarity and the ROC curve for LASSO (E). The ROC curve shows the 515 

mean AUC value and its respective 95% CI. 516 

Figure 2: Resistome analyses with comparisons of the number of detected ARG (A), 517 

resistome diversity (B) and overviews of the most abundant resistance mechanisms (C) and 518 

resistance genes (D).  519 

Figure 3: Overview of analyses based on CAZyme repertoire with a comparison of number 520 

of CAZyme families (A), PCoA based on Bray-Curtis dissimilarity (B) and a compositional 521 

plot to show the consistency of CAZyme families across participants. GH: Glycoside 522 

hydrolase, GT: glycosyl transferase. 523 

ESBL negative ESBL positive P-value

(N=49) (N=49)

Age (years)

Mean (SD) 44.1 (15.2) 46.6 (15.3) 0.43

Median [Min, Max] 45.0 [20.0, 74.0] 46.0 [21.0, 74.0]

Sex

Male 26 (53.1%) 23 (46.9%) 0.69

Female 23 (46.9%) 26 (53.1%)

Abroad in last 6 months

Yes 39 (79.6%) 37 (75.5%) 0.81

No 10 (20.4%) 12 (24.5%)

Ethnicity

Dutch 38 (77.6%) 36 (73.5%) 0.79

First generation other-Western 1 (2.0%) 0 (0%)

Second generation other-Western 2 (4.1%) 3 (6.1%)

First generation Suriname+Aruba+Dutch Antilles 3 (6.1%) 3 (6.1%)

Second generation Suriname+Aruba+Dutch Antilles 1 (2.0%) 0 (0%)

First generation other non-Western 4 (8.2%) 7 (14.3%)

Antibiotic use in the prior 3 to 12 months

Yes 6 (12.2%) 7 (14.3%) 0.77

No 43 (87.8%) 41 (83.7%)

Do not know 0 (0%) 1 (2.0%)
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Figure 4: Metabolomic analyses with PCA (A) and the ROC curve of random forest based 524 

on metabolite profiles (B). The ROC curve shows the mean AUC value and its respective 525 

95% CI.  526 

Table S1: Additional information on antimicrobial susceptibility of ESBL-producing E. coli 527 

strains based on clinical breakpoints of EUCAST. 528 

Figure S1: Compositional plots of taxonomy at family level (A) and genus level (B) for all 529 

participants in the current cohort, facetted by ESBL status. The 20 most abundant families 530 

and genera across all individuals are displayed. ‘Other’ indicates the sum of all bacterial 531 

families or genera not indicated in the respective plot. 532 

Figure S2: Spearman correlation plot between relative abundance of the ileS gene and 533 

Bifidobacterium (at genus level). Correlation coefficient (R) and significance are indicated in 534 

the plot. 535 

Figure S3: Metabolite concentrations (after log10 normalization and scaling) in µmol/g feces 536 

of all measured metabolites per ESBL group. T-tests with Benjamini-Hochberg adjustment 537 

for multi-error correction were performed to obtain indicated p-values. 538 

Figure S4: Metabolite concentrations (after log10 normalization and scaling) of all measured 539 

metabolites per ESBL group. T-tests with Holm adjustment for multi-error correction were 540 

performed to obtain indicated p-values.  541 
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