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Abstract  23 

High genetic variation and extensive gene flow may help forest trees with adapting to 24 

ongoing climate change, yet the genetic bases underlying their adaptive potential remain 25 

largely unknown. We investigated range-wide patterns of potentially adaptive genetic 26 

variation in 64 populations of European beech (Fagus sylvatica L.) using 270 SNPs from 139 27 

candidate genes involved either in phenology or in stress responses. We inferred neutral 28 

genetic structure and processes (drift and gene flow) and performed differentiation outlier 29 

analyses and gene-environment association (GEA) analyses to detect signatures of divergent 30 

selection. 31 

Beech range-wide genetic structure was consistent with the species’ previously 32 

identified postglacial expansion scenario and recolonization routes. Populations showed high 33 

diversity and low differentiation along the major expansion routes. A total of 52 loci were 34 

found to be putatively under selection and 15 of them turned up in multiple GEA analyses. 35 

Temperature and precipitation related variables were equally represented in significant 36 

genotype-climate associations. Signatures of divergent selection were detected in the same 37 

proportion for stress response and phenology-related genes. The range-wide adaptive 38 

genetic structure of beech appears highly integrated, suggesting a balanced contribution of 39 

phenology and stress-related genes to local adaptation, and of temperature and 40 

precipitation regimes to genetic clines. Our results imply a best-case scenario for the 41 

maintenance of high genetic diversity during range shifts in beech (and putatively other 42 

forest trees) with a combination of gene flow maintaining within-population neutral 43 

diversity and selection maintaining between-population adaptive differentiation. 44 

 45 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.18.444720doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444720
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Keywords: candidate gene, phenology, drought stress, divergence outlier, genotype-46 

environment associations analyses, forest tree, local adaptation 47 

 48 

Introduction  49 

Local adaptation is pervasive in forest tree populations (Alberto, Aitken, Alía, 50 

González-Martínez, et al., 2013; Savolainen, Pyhäjärvi, & Knürr, 2007) and is expected to play 51 

a major role in their response to ongoing environmental changes (Fady et al., 2016). Local 52 

adaptation implies that some key adaptive traits are genetically differentiated among 53 

populations, and thus that individual populations could evolve differently to the same 54 

environmental stress due to their different genetic setup (Kawecki & Ebert, 2004). Most 55 

temperate tree species have developed their present-day geographical patterns of local 56 

adaptation following considerable a range expansion from their glacial refugia after the Last 57 

Glacial Maximum (19.5-26 kyr BP, Clark et al., 2009; de Lafontaine, Napier, Petit, & Hu, 58 

2018). There is ample concern that population processes going along with this postglacial 59 

range expansion such as founder events, genetic drift, or allele surfing might have left lasting 60 

imprints that could compromise the correct identification of adaptive genetic variation in 61 

extant natural tree populations (de Villemereuil, Frichot, Bazin, François, & Gaggiotti, 2014; 62 

Hoban et al., 2016; Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015). Yet very few 63 

surveys of adaptive genetic variation in forest trees have to date assembled two 64 

prerequisites to properly account for species’ postglacial population dynamics: (i) a 65 

rangewide perspective with a sampling that thoroughly replicates populations from different 66 

regions and (ii) independent palaeoecological evidence documenting the species’ postglacial 67 
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range dynamics and expansion (de Lafontaine et al., 2018). Empirical research to elucidate 68 

the issue is urgently needed because knowledge on local adaptation is crucial for conceiving 69 

conservation and management practices to adapt forest tree species and their ecosystems 70 

to ongoing environmental change (Aitken & Whitlock, 2013; Fady et al., 2016; Oney, 71 

Reineking, O’Neill, & Kreyling, 2013).  72 

Reciprocal transplant experiments have been the classic approach to investigate local 73 

adaptation in forest trees, highlighting that phenotypes generally match their environment 74 

in extant populations (Rehfeldt et al., 2002; Savolainen et al., 2007). Provenance trials have 75 

also shown that trees generally have high levels of phenotypic plasticity at adaptive traits, 76 

and high levels of genetic variability within populations (Alberto et al., 2013; Gárate-77 

Escamilla et al., 2019). This combination of local adaptation (i.e., mean trait values close to 78 

the optimum) and high within-population variation at key adaptive traits (i.e., large variance 79 

around the means) indicates a high genetic load, which in turn can be an asset when facing a 80 

swift environmental change (Savolainen et al., 2007). The development of population 81 

genomics has provided complementary approaches to study local adaptation (Hoban et al., 82 

2016; Lind, Menon, Bolte, Faske, & Eckert, 2018). Two approaches, in particular, have 83 

become widely used to identify loci involved in local adaptation for non model organisms: 84 

differentiation outlier analyses, which aim at identifying loci with disproportionate allele 85 

frequency differentiation among populations, and gene-environment association (GEA) 86 

analyses , which aim at identifying loci exhibiting significant correlations with ecological 87 

variables. A key strength of such approaches is that they are cost-efficient for targeting large 88 

numbers of populations across well-defined environmental gradients, and therefore for 89 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.18.444720doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444720
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

investigating ecological hypotheses on the genomic basis of local adaptation (Capblancq et 90 

al., 2020; Rellstab et al., 2016; Temunović et al., 2020).  91 

Present-day patterns of adaptive phenotypic and genetic differentiation have built up 92 

relatively quickly. It is only (at most) a few hundreds of generations ago that most temperate 93 

forest tree species recolonized large areas becoming available after the Last Glacial 94 

Maximum. Studies combining extensive surveys of fossil records (pollen and macro-remains) 95 

and of population genetic variation have been able to provide detailed direct evidence of the 96 

number and spatial location of glacial refugia, postglacial expansion routes, hybrid zones, 97 

and the timing of expansion events (e.g., de Lafontaine, Amasifuen Guerra, Ducousso, & 98 

Petit, 2014; Magri et al., 2006). This knowledge represents a highly valuable baseline 99 

information for disentangling demographic effects from those of selection, which is a major 100 

challenge for differentiation outlier and GEA analyses (de Villemereuil et al., 2014;Frichot, 101 

Schoville, de Villemereuil, Gaggiotti, & François, 2015; Hoban et al., 2016; Rellstab et al., 102 

2015). Theoretical studies have shown that population expansions into new areas can go 103 

along with repeated founder effects, increasing random fluctuations of allele frequencies, 104 

possibly leading to the rise of neutral mutations to high frequencies (“allele surfing”), loss of 105 

genetic diversity and strong spatial genetic structure (SGS) along the expansion axis (de 106 

Lafontaine, Ducousso, Lefèvre, Magnanou, & Petit, 2013; Excoffier, Foll, & Petit, 2009; 107 

Slatkin, 1993). Allele surfing, in particular, could be mistaken for the increase in allelic 108 

frequency of a beneficial mutation propagated by selection (Paulose & Hallatschek, 2020; 109 

Ruiz Daniels et al., 2018). As both allele surfing and selection typically affect only a subset of 110 

loci in the genome, the former must be carefully considered when screening for the latter in 111 

expanding populations. Alternatively, colonization by many individuals should result in high 112 
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genetic diversity at the colonization front and shallow SGS, particularly when founders 113 

originate from a variety of source populations. The effective number of founders depends on 114 

patterns of long-distance dispersal and on a variety of demographic processes and life-115 

history traits (Austerlitz, Mariette, Machon, Gouyon, & Godelle, 2000; Fayard, Klein, & 116 

Lefèvre, 2009; Roques, Garnier, Hamel, & Klein, 2012). The actual relevance of these 117 

processes during the postglacial range expansion of temperate forest trees and their 118 

eventual traces in the present-day population genetic structures remain however under 119 

investigated. 120 

This study takes advantage of the outstandingly well known postglacial population 121 

history of the European beech (Fagus sylvatica L.) to investigate the climate-associated 122 

genetic variation across its distribution range. Beech putative glacial refugia and colonization 123 

routes have been identified based on very detailed pollen records and genetic population 124 

surveys with chloroplast and isozyme markers (Magri et al., 2006). Beech is known to be 125 

highly sensitive to summer droughts (Aranda et al., 2015; Knutzen, Dulamsuren, Meier, & 126 

Leuschner, 2017), and, to a lesser extent, to late frosts (Kreyling et al., 2014; Petit-Cailleux et 127 

al., 2020). Genetic variation has been investigated at various climate-related phenological 128 

traits (Gárate-Escamilla, Hampe, Vizcaíno-Palomar, Robson, & Benito Garzón, 2019; Gauzere, 129 

Klein, Brendel, Davi, & Oddou-Muratorio, 2020; Gömöry & Paule, 2011; Kramer et al., 2017; 130 

Vitasse, Delzon, Bresson, Michalet, & Kremer, 2009), physiological or morphological traits 131 

(Bresson, Vitasse, Kremer, & Delzon, 2011; Hajek, Kurjak, von Wühlisch, Delzon, & Schuldt, 132 

2016; Wortemann et al., 2011) and performance traits (Gárate-Escamilla et al., 2019). 133 

Phenological traits such as budburst and leaf senescence show consistent patterns of genetic 134 

variation across latitude or elevation at various spatial scales, with populations of higher 135 
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elevation or latitude flushing earlier than populations from low elevation or latitude in 136 

common garden conditions (Gauzere et al., 2020; Gömöry & Paule, 2011; Vitasse et al., 137 

2009). Genetic variation for performance traits, such as growth and juvenile survival, also 138 

shows a spatial structure, driven by spatial variations of maximal potential 139 

evapotranspiration (Gárate-Escamilla et al., 2019). By contrast, other functional traits 140 

involved in photosynthesis and transpiration are usually only weakly differentiated among 141 

populations but show instead high within-population variation (Hajek et al., 2016). These 142 

contrasting patterns of differentiation raise questions about the role of phenological and 143 

physiological traits in local adaptation and the spatial scales at which it takes place. Only a 144 

few published studies have so far used genetic approaches to investigate local adaptation, 145 

and mostly at local to regional scales (Capblancq et al., 2020; Csilléry et al., 2014; Cuervo-146 

Alarcon et al., 2021; Krajmerová et al., 2017; Lalagüe et al., 2014; Müller, Seifert, & 147 

Finkeldey, 2015; Pluess et al., 2016).  148 

This study investigates range-wide patterns of adaptive genetic variation in beech 149 

using 405 SNPs that are located in candidate genes involved either in budburst phenology 150 

and dormancy regulation (Lalagüe et al. 2014; Lesur et al. 2015) or in response to stresses 151 

(Lalagüe et al. 2014). We genotyped 446 individuals from 64 populations covering the entire 152 

species range (Fig. 1) to address the three following questions: (Q1) What are the risks that 153 

past population demography, including post-glacial recolonization, blur potential selective 154 

imprints on genetic structure? We expect limited genetic drift and allele surfing in beech. 155 

(Q2) Do certain loci show imprints of local adaptation? We expect genes related to 156 

phenological traits to show stronger signals of selection compared to genes related to stress-157 

response traits. (Q3) if the spatial and climatic effects can be separated, what are the 158 
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respective impacts of temperature- versus precipitation-related variables on adaptive 159 

differentiation? In line with Q2, we expected the temperature variables to stand out more 160 

than precipitation variables.  161 

Materials and Methods 162 

Sampling design 163 

European beech is a dominant broadleaved tree species of many lowland and 164 

mountain forests across Europe, extending from Spain to the Carpathians and from Sicily to 165 

southern Sweden. We sampled 446 adult trees in 64 populations across Europe (Fig. 1A), 166 

thoroughly covering the geographical range and bioclimatic niche of beech (Fig. 1B) and 167 

including all the major glacial refugia identified by Magri et al. (2006). Leaves were collected 168 

from 4 to 10 (7 on average) haphazardly chosen dominant adult trees (at a minimal distance 169 

of 40 m from each other) growing in native beech stands.  170 

SNP development, genotyping and filtering 171 

Nuclear DNA was extracted from 20-30 mg of dry leaf tissue per individual with the 172 

DNeasy Plant Mini Kit (QIAGEN) following the manufacturer’s instructions. DNA 173 

concentration was measured on a ND-8000 NanoDrop spectrophotometer (Thermo 174 

Scientific, Wilmington, USA). Samples were genotyped at 405 SNPs distributed in two 175 

multiplex assays. 176 

The first assay of 165 SNPs previously developed by Lalagüe et al. (2014) was carried 177 

out using Kompetitive Allele Specific PCR (KASP; He, Holme, & Anthony, 2014). Among those, 178 

37 SNPs were located in 15 genes annotated as phenology-related in Quercus petraea. The 179 

other 128 SNPs were located in 37 stress-related genes that were selected from different 180 
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sources (see Lalagüe et al., 2014 for details) : (1) literature on candidate genes involved in 181 

plant response to abiotic stress; (2) sequences of three proteins involved in cavitation 182 

resistance in beec); (3) annotated amplicons from Q. petraea and Q. robur.  183 

The second assay targeted 240 SNPs in six multiplexes of 40 SNPs each. This assay was 184 

developed for this study from available genomic resources (Lesur et al., 2015) and included 185 

104 SNPs located in 51 genes differentially expressed in quiescent buds (QB) as well as 116 186 

SNPs located in 58 genes differentially expressed in swelling buds (SB). This assay also 187 

included 20 unrelated control SNPs located in 15 housekeeping genes. Genotyping was 188 

performed on a MassARRAY System (Agena Bioscience, USA) using the iPLEX Gold chemistry 189 

following Gabriel et al. (2009). Data analysis was performed with Typer Analyzer 4.0.26.75 190 

(Agena Bioscience). We filtered out all monomorphic SNPs, as well as loci with a weak or 191 

ambiguous signal (i.e., displaying more than three clusters of genotypes or unclear cluster 192 

delimitation). 193 

Raw variant data were filtered with Plink (v.1.9; Chang et al., 2015). Individuals and 194 

SNPs with >15% missing data were filtered out, together with variants with MAF<1%. 195 

Linkage disequilibrium 196 

Pairwise linkage disequilibrium (LD) estimates were obtained within each of the 197 

genetic clusters identified by genetic clustering analyses (see below) using the LD() function 198 

in the R package genetics (Warnes, Gorjanc, Leisch, & Man, 2021). The p.adjust() function 199 

was used to correct p-values for multiple testing with the Bonferroni method, and 200 

association between allele frequencies was deemed as statistically significant at a nominal 201 

significance threshold equal to 1�10-3. An ad hoc algorithm was devised to iteratively identify 202 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.18.444720doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444720
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

and remove the loci most frequently involved in pairwise significant tests, leading to cluster-203 

specific lists of SNPs showing statistical evidence of linkage. The markers shared across all 204 

analyses were removed to obtain an LD-pruned version of the SNP dataset to be used in the 205 

analyses assuming linkage equilibrium among loci (i.e., STRUCTURE and pcadapt, see below). 206 

Population genetic structure  207 

The Bayesian clustering analysis implemented in STRUCTURE (Pritchard, Stephens, & 208 

Donnelly, 2000) and the multivariate method implemented in the Discriminant Analysis of 209 

Principal Components (DAPC; Jombart, Devillard, & Balloux, 2010) were used to infer 210 

patterns of population structuring and admixture among beech populations. The main 211 

difference between the two methods is that STRUCTURE builds genetic clusters so to 212 

minimise the overall departures from HWE, whereas DAPC is based on maximizing the 213 

differentiation between inferred genetic clusters while minimizing variation within them. 214 

STRUCTURE 2.3.4 (Pritchard et al., 2000) was run using default settings and parameter 215 

values, assuming the admixture model, and the putative number of different genetic clusters 216 

(K) ranging from one to 10. Each run consisted of 5×104 burn-in iterations and 1×105 data 217 

collection iterations. Ten independent runs were performed for each value of K. The average 218 

likelihood and ΔK statistics described in Evanno et al. (2005) were calculated for each K and 219 

used to identify the most-likely K-value. For informative values of K, distinct runs were 220 

averaged using CLUMPAK (Kopelman, Mayzel, Jakobsson, Rosenberg, & Mayrose, 2015) to 221 

obtain the final estimates of the membership coefficients (q-values) at individual and 222 

population levels. To comply with model assumptions, STRUCTURE was run first with the 223 
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complete SNPs dataset, and then with the LD-pruned version of the dataset (once LD 224 

estimated within each cluster). 225 

DAPC is based on a discriminant analysis (DA) of genetic data preceded by a few 226 

analytical steps to meet its requirements, all implemented in the R package adegenet 227 

(Jombart, 2008). Since DA requires a priori definition of clusters, K-means clustering of 228 

principal components (PC) on individual allele frequencies was first used to identify both 229 

group priors and the most likely number of genetic clusters. K-means was run on 150 PCs 230 

with K ranging from one to 40, and the Bayesian Information Criterion (BIC) was used to 231 

assess the best supported K-value. Then, as DA requires the variables to be uncorrelated and 232 

fewer than the number of observations, we used a principal component analysis (PCA) and 233 

the randomization approach implemented in the a.score() function in adegenet to select the 234 

number of PCs optimizing the trade-off between power of discrimination and over-fitting. 235 

Finally, the DA was run on 23 PCs extracted from the original dataset. 236 

Basic diversity and differentiation statistics 237 

We computed allelic richness (Ar) and mean number of alleles per locus (Na) using the 238 

R package diveRsity (Keenan, McGinnity, Cross, Crozier, & Prodöhl, 2013); percentage of 239 

polymorphic loci using GenAlEx 6.5 (Peakall & Smouse, 2012); observed (HO) and expected 240 

(HE) heterozygosity, Wright’s inbreeding coefficient (FIS), and βWT (a plot-specific index of 241 

genetic differentiation relative to the entire pool; Weir and Goudet 2017) using the R 242 

package hierfstat (Goudet, 2005). Parameters of genetic fixation (GST; Nei, 1977) and 243 

differentiation (Jost’s D; Jost, 2008) among populations/clusters were also calculated with 244 

GenAlEx and their statistical significance assessed with 999 permutations. 245 
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Isolation by distance and barriers to gene flow 246 

We estimated spatial genetic structure (SGS) among populations and tested whether 247 

geographic distance significantly shaped the patterns of genetic differentiation (as estimated 248 

by FST/1-FST) using the software SpaGeDi 1.4c (Hardy and Vekemans 2002). To test for 249 

isolation by distance (IBD), the (FST/1-FST) values were regressed on ln(dij), where dij is the 250 

spatial distance between populations i and j. Then, we tested the regression slope (null 251 

hypothesis: blogFST = 0) using 5,000 permutations of genotypes over populations. These 252 

analyses were run both on the 64 populations and within each cluster identified with DAPC. 253 

For within-cluster analyses, we retained all the individuals successfully assigned to a given 254 

cluster (i.e., those having a q-value above the nominal threshold of 0.6). 255 

Spatial variation in genetic diversity and gene flow rates were estimated using 256 

Estimated Effective Migration Surfaces (EEMS; Petkova et al., 2016). This method tests for 257 

regional departures from the IBD model: areas where the decay of genetic differences across 258 

geographical distance is higher than expected under an IBD model are considered as 259 

suggestive of barriers to gene flow. A user-selected number of demes determines the 260 

geographic grid size and possible migration paths between all populations, and the EEMS are 261 

calculated by adjusting the migration rates so that the genetic differences obtained under a 262 

stepping-stone model match as closely as possible the observed genetic differences. The 263 

estimates are subsequently interpolated over the geographic space to provide a surface of 264 

observed genetic dissimilarities. We ran the runeems_snps executable with 500,000 burn-in 265 

MCMC steps and 2�106 subsequent iterations. To reduce the potential influence of grid size, 266 

we averaged the results over nine independent runs with different numbers of demes (800, 267 
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1200 and 1600 with three repetitions each) and combined the results across the three 268 

independent analyses. We assessed convergence of runs, plotted geographic distance and 269 

genetic dissimilarity across demes, and generated effective diversity (q) and effective 270 

migration rates (m) surfaces using the R package reemsplots (Petkova et al., 2016). 271 

Bioclimatic data 272 

Each sampling site was characterized by a set of 19 bioclimatic variables extracted 273 

from the WorldClim database v.1.4 (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) with a 274 

grid cell resolution of 30-arc second (ca 1×1 km) using DIVA-GIS v.7.5. These bioclimatic 275 

variables represent annual trends (e.g., mean annual temperature, annual precipitation), 276 

seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting 277 

climatic factors (e.g., temperature of the coldest and warmest month, and precipitation of 278 

the wettest and driest quarter). To calculate predictors in the following analyses, we used 279 

the mean values of these 19 bioclimatic variables (Table S1) over the period from 1950 to 280 

2000.  281 

To reduce the multidimensional bioclimatic data set to a few uncorrelated factors, we 282 

performed two PCAs using the R package FactoMineR (Lê, Josse, & Husson, 2008), one 283 

focusing on the temperature-related variables (BIO1 to 11), and the other focusing on the 284 

precipitation-related predictors (BIO12 to 19). The selected principal components of each 285 

PCA were used as individual climate variables in lfmm and Samβada analyses, and combined 286 

in matrices to represent the climatic structure in the variance partitioning analyses (see 287 

sections below). 288 
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Detection of signatures of selection 289 

To detect loci carrying putative signatures of divergent selection (i.e., outliers), we 290 

used two differentiation outlier search methods, pcadapt (Luu, Bazin, & Blum, 2017) and the 291 

FST-based method by Martins et al. (2016) as implemented in lea (Frichot & François, 2015). 292 

Moreover, we used two genotype-environment associations analyses, lfmm (Frichot, 293 

Schoville, Bouchard, & François, 2013) and Samβada (Stucki et al., 2017); these approaches 294 

are detailed in Supplementary Online Appendix 2. Note that each method allows the 295 

correction of outlier detection for the confounding effects of population structure. For all 296 

four methods, p-values were corrected across multiple tests using the same local False 297 

Discovery Rate (FDR) algorithm.  298 

Finally, we annotated the identified outliers. For the loci obtained from Lalagüe et al. 299 

(2014), we queried against The Arabidopsis Information Resource (TAIR 11) database using 300 

BlastX with an E-value cut-off of 10-5. For the loci obtained from Lesur et al. (2015), the 301 

functional annotation of gene sequences containing outlier SNP was also reported (from 302 

their Table S2) . 303 

Isolation by distance and environment 304 

To evaluate the respective importance of IBD versus isolation by environment (IBE), we 305 

used a variance partitioning approach (Legendre, Fortin, & Borcard, 2015). We partitioned 306 

the explanatory power (as expressed by the adjusted R²) of the climatic and spatial 307 

structures on the genetic structure. Genetic structure was obtained through a Principal 308 

Coordinate Analysis (PCA) on the matrix of pairwise population genetic distances as returned 309 

by GenAlEx (Peakall & Smouse, 2012). Principal coordinates explaining up to 80% of the total 310 
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variance were included in the response data table. The spatial structure was modelled by 311 

distance-based Moran's eigenvector maps (dbMEM; Dray et al., 2006), as suggested by 312 

Legendre et al. (2015), and estimated by the mem() function in the R package adespatial 313 

(Dray et al., 2018). We retained only the statistically significant eigenvectors modelling 314 

positive spatial autocorrelation and, therefore, describing global patterns sensu Jombart et 315 

al. (2008). The climatic structure was summarized by temperature- or precipitation-related 316 

synthetic climatic variables (see “Bioclimatic data” section above). We assessed the relative 317 

contribution of climatic and spatial structure in explaining the genetic structure of 318 

populations using the function varpart() of the R package vegan (Oksanen et al., 2019). 319 

Significance of the variance components was calculated through an ANOVA-like permutation 320 

test for redundancy analysis (RDA) and partial ReDundancy Analysis (pRDA) based on 10,000 321 

permutations (Legendre & Legendre, 2012). 322 

All statistical analyses were conducted using R 3.6.2 (R Core Team, 2019) unless 323 

otherwise indicated. 324 

Results 325 

SNP dataset 326 

Of the 405 SNPs from the two multiplex arrays, 135 were discarded from the analyses: 327 

9 failed to amplify in all samples; 50 were monomorphic; 75 were of poor quality (visual 328 

clustering inspection); and one had a call rate <85%. Sixteen individuals were discarded due 329 

to a low call rate. The resulting dataset comprised 430 individuals and 270 SNPs 330 

(Supplementary Online Appendix A1), with 3-10 individuals per population (6.7 on average). 331 

The 270 SNPs included 150 SNPs in 93 phenology genes, 109 SNPs in 38 stress-related genes, 332 
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and 11 SNPs in 8 housekeeping genes. After removing linked markers, the LD-pruned version 333 

of the dataset comprised 212 SNPs.  334 

Population genetic structure 335 

Both the STRUCTURE and the DAPC analysis revealed an optimal grouping at K=3 (Fig. 2 336 

and Fig. S1) with clear geographic boundaries among the three genetic clusters (as 337 

represented by the green, red and blue colors in Fig. 2) and admixture zones (areas with 338 

cross symbols in Fig. 2). Populations were considered as admixed when none of the 339 

population q-values exceeded the threshold of 0.60 for any inferred genetic cluster (Table 340 

S2). 341 

The green (dominant in Northern Europe) and red (dominant in Western Europe) 342 

clusters were separated by a main genetic boundary extending from the northern 343 

Tyrrhenian coast to southern England, which was also an area of admixture. In southern 344 

Europe, populations from the Apennines clustered with those from the Balkan peninsula and 345 

Carpathian mountains, forming the blue cluster. In central-eastern Europe, the main 346 

boundary between the blue and green clusters was located between Slovenia and Croatia 347 

and between the Western and Eastern Carpathian mountains. The area between the 348 

southern Carpathian mountains and the Baltic sea represented the second largest admixture 349 

area detected. The GST and Jost’s D pair-wise values among the three genetic clusters 350 

spanned from 0.024 to 0.025, and from 0.022 to 0.023, respectively.  351 

Spatial patterns of genetic diversity and differentiation  352 

Genetic diversity and differentiation estimates are detailed in Table S2. The percentage 353 

of polymorphic SNPs within a population (%polloc) ranged from 62% to 87 % (mean %polloc 354 
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= 77%), corresponding to an allelic richness ranging from 1.48 to 1.65 (mean Ar = 1.58). 355 

Observed and expected heterozygosities per population ranged, respectively, from 0.262 to 356 

0.347 and from 0.248 to 0.327 (mean Ho = 0.305 and mean He = 0.300), indicating a small 357 

heterozygote excess (mean FIS = -0.025). All genetic diversity indices showed the same 358 

patterns of variation across the range (Fig. 3 a, b), where southeastern populations had 359 

below-average values, whereas western populations showed above-average values. The 360 

indices of genetic diversity (He, %polloc) also varied among clusters (Fig. S2). Populations 361 

assigned to red and green clusters had a higher He than populations assigned to the blue 362 

cluster (p = 0.003 and 0.074 respectively), while the red cluster populations showed higher 363 

%polloc values than those of the green and blue clusters (p < 10-3). 364 

Spatial patterns of genetic diversity were consistent when assessed independently 365 

with SNPs from the two different arrays (Fig. S3). Although other array-specific 366 

representation problems may occur, such a finding rules out a major distortion due to 367 

ascertainment bias. 368 

Genetic differentiation of each population from the entire gene pool ranged from -369 

0.034 to 0.20 (mean βWT = 0.05). Patterns of βWT variation across Europe were opposed to 370 

diversity patterns (Fig. 3c), with southeastern populations characterized by higher average 371 

values than western populations. Accordingly, βWT of the red and green cluster was higher 372 

than βWT of the blue cluster (p = 0.005 and 0.091 respectively) (Fig. S2 c). 373 

Genetic differentiation between all populations pairs revealed a significant signal of 374 

IBD (Fig. 4a). Pairwise FST/1-FST values increased with increasing geographic distance (blog = 375 

0.027, p < 0.001). This IBD signal was also observed within the blue and green clusters (Table 376 

S3, Fig. S4), but not within the red cluster. 377 
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The EEMS analyses highlighted several barriers to gene flow corresponding to 378 

biogeographical barriers (Fig. 4b). The first barrier separated the UK and Scandinavia from 379 

the European mainland, and corresponded to the English Channel, the Baltic sea and plains 380 

in Western Germany and North-Western France. A second barrier corresponded to the Alps 381 

(Northern Italy, Austria) and extended to Slovakia and the Carpathians in the east. Weaker 382 

barriers to gene flow also occurred in Southern Italy and the Balkans.  383 

Spatial patterns of effective diversity estimated with EEMS (Fig. 4c) partially contrasted 384 

with the maps of He and %polloc (Fig. 3). Indeed, areas of higher-than-average diversity were 385 

found with EEMS in Western Europe (UK, Pyrenees mountains, Germany) but also in Central 386 

and South-Eastern Europe. Diversity was lower than average in Spain, Southern Italy, and in 387 

an area from Eastern Scandinavia to Poland. 388 

Climate data analysis  389 

The first three principal components of the temperature-focussed PCA (Temp1, 390 

Temp2, Temp3) were retained, and accounted for 90.9% of the total variance of the dataset 391 

(Online Appendix A3). Temp1 is an axis of mean temperatures, opposing hot (southern) to 392 

cold (northern) climates. Temp2 can be interpreted as an axis of climate continentality, 393 

opposing climates with strong versus weak variation of temperatures among years and 394 

seasons (e.g. continental vs. oceanic climates). Temp3 can be interpreted as an axis of 395 

climate xericity, opposing climates with a high diurnal range and the wettest season 396 

corresponding to the coldest months (i.e., mediterranean climates) to climates with a low 397 

diurnal range and the wettest season corresponding to the warmest months (i.e. temperate 398 

mesic climates). 399 
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The first three principal components of the precipitation-focussed PCA (Precip1, 400 

Precip2, Precip3) were also retained, and accounted for 98.6% of the total variance of the 401 

dataset. Precip1 is a precipitation abundance axis, opposing wet (Great-Britain, Northern 402 

Italy) to dry climates (Greece, Spain). Precip2 is a precipitation variability axis, opposing 403 

climates with strong (Greece, Italy) versus weak (France) variation of precipitation. Precip3 404 

captures the coupling between precipitation and seasonal temperatures, opposing climate 405 

where high precipitation occurs during the vegetation period (Poland, Romania) to those 406 

where high precipitation occurs in winter (Greece, Italy). 407 

Selection signatures 408 

pcadapt : The first two PCs were retained to represent population structure in pcadapt 409 

analysis based on the Cattle’s rule (Online Appendix A3). One candidate SNP under selection 410 

(0.3%) was identified after controlling for FDR (Table S4). 411 

lea: The lowest cross-entropy criterion value was found at K = 3. Five SNPs (1.85%) were 412 

identified as potentially under divergent selection after controlling for FDR and after 413 

calibrating p-values using the calculated genomic inflation factor (λ = 6.0; Table S4). 414 

lfmm: After controlling for FDR, 46 SNPs (17%) were found to be associated with 415 

temperature or precipitation-related climatic variables (60 significant associations in total, 416 

Table S5): seven SNPs showed correlations with Temp1, 13 with Temp2 and 11 SNPs with 417 

Temp3 ; four SNPs showed correlations with Precip1, nine with Precip2, and 16 with Precip3. 418 

Samβada : Thirty-two genotypes at 22 SNPs (8.1%) were associated with temperature and 419 

precipitation-related variables after controlling for FDR. In particular, four loci showed 420 
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correlations with Precip1 and 11 with Precip3, while 5 SNPs were associated withTemp1, 421 

seven with Temp2 and five with Temp3 (Table S6). 422 

Overlapping signatures of selection and ontology of genes bearing outlier: Overlapping 423 

signatures of selection from population divergence and GEA analyses were detected at 424 

genes 154_1 and QB_c10512 (Table 1, Fig. 5). The GEA analyses shared signatures of local 425 

adaptation in 12 additional genes (13 common SNPs). The population divergence analyses 426 

also shared signatures of local adaptation at one additional gene. Finally, 29 and six outlier 427 

SNPs were detected by lfmm and Samβada alone, respectively. 428 

While our panel of 270 SNPs included 67.9% of putatively phenology-related, 26.4% of 429 

stress-related and 5.7% of control-related genes, respectively, outliers included 61.4% of 430 

phenology-related, 34.1% of stress-related, and 4.5% of control genes (Table 1). Hence, 431 

there was no difference of category (stress, phenology, control) among initial and outlier 432 

genes (χ² = 0.99, p = 0.61). 433 

Isolation by distance and environment 434 

The variance partitioning and partial RDA analyses revealed a greater effect of spatial 435 

structure than of climatic structure on the spatial distribution of genetic variation (Figure S5, 436 

Table S7). Considering the 218 putatively neutral SNPs only, the climatic structure alone 437 

explained ~1% of variance in the genetic structure, which is not statistically different from 438 

the null expectation of 0% variance explained (F6,52 = 1.17, p = 0.16). On the contrary, the 439 

contribution of the spatial structure alone was much larger (R² = 16%) and its effect was 440 

statistically significant (F5,52 = 4.12, p < 0.001). The joint effect of climatic and spatial 441 

structures contributed significantly in explaining the genetic structure (R² = 25%). In this 442 
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case, such a joint effect is not equivalent to a standard interaction term, and relates to the 443 

intrinsic covariation of climatic and spatial effects.  444 

When considering the set of 52 SNPs putatively under selection, the contribution of 445 

the climatic structure to the genetic structure was significant (R² = 3%; F6,52 = 1.65, p = 446 

0.006), but still smaller than that of the spatial structure (14%; F5,52 = 4.008, p < 0.001). The 447 

joint effects of climatic and spatial structures explained 32% of the genetic structure. Thus, 448 

the variance contributed by climatic and spatio-climatic structures combined was higher for 449 

the 52 outliers (~35%) than for the supposedly neutral loci (~26%; Fig. S5). Moreover, the 450 

temperature and precipitation components of the sole climatic effects explained a similar 451 

and statistically significant amount of variance (1.5% and 1.2%, respectively; p < 0.001; Table 452 

S7B) in the supposedly adaptive genetic structure. The variance contributed by shared 453 

spatial and temperature structures (21%) was higher than that contributed by shared spatial 454 

and precipitation structures (6%).  455 

Discussion  456 

Our study supported our first expectation: we observed weak founder effects in beech, 457 

which indicates that past population demography is not likely to blur the detection of 458 

selection signatures. On the contrary, our second expectation was not met as we identified 459 

loci with the signature of divergent selection as often in genes involved in phenology as in 460 

genes involved in stress response. And counter to our third expectation, temperature and 461 

precipitation related variables were equally represented in the significant genotype-climate 462 

associations. Overall, our results suggest a balanced contribution of traits related with 463 

phenology and with stress responses to local adaptation in beech. 464 
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Impact of past recolonization history on genetic diversity 465 

Our results revealed a clear spatial disjunction between three main gene pools. A first 466 

pool (blue cluster) corresponds to the area harbouring beech glacial refugia in Southeastern 467 

Europe. Its geographical distribution matches well with results of genetic and 468 

palaeoecological studies showing that lineages from these refugia expanded only as far as 469 

the Northern Apennines and Central Carpathians (Leonardi & Menozzi, 1995; Magri, 2008; 470 

Magri et al., 2006). A second gene pool (red cluster) includes the Southwest European glacial 471 

refugia located on the Iberian Peninsula and in southern France, where beech persisted 472 

throughout several glacial cycles (de Lafontaine et al., 2014) and was even more abundant 473 

than in the southeastern refugia during the middle and upper Pleistocene (Magri et al., 474 

2006). A third gene pool (green cluster) mostly corresponds to recently recolonized areas in 475 

Northern Europe (Sjölund, González-Díaz, Moreno-Villena, & Jump, 2017) and likely 476 

originates from glacial refugia located in the Eastern Alps-Slovenia and in Slovakia-Moravia 477 

(Magri, 2008). Boundaries between the three clusters were associated with strong 478 

admixture, which would be consistent with the relatively high number of recolonization 479 

routes known for beech as compared to other tree species (de Lafontaine et al. 2014; Magri, 480 

2008).  481 

Consistently with previous studies based on allozymes or microsatellites (Comps, 482 

Gomory, Letouzey, Thiebaut, & Petit, 2001; de Lafontaine et al., 2013), spatial patterns of 483 

SNP genetic diversity did not reflect signals of founder effects resulting from the post-glacial 484 

expansion. In particular, the northern populations (green cluster) showed values of Nei’s 485 

heterozygosity (He) and genetic differentiation (βWT) similar to those of the southwestern 486 

populations (red cluster), while the southeastern populations (blue cluster) showed lower He 487 
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and higher βWT. Hence, diversity across the 270 studied SNPs was higher, and differentiation 488 

lower, both in recently recolonized areas, and in areas where beech was more abundant in 489 

the past. These patterns likely result from the combination of several processes and life-490 

history traits specific to trees in general and beech in particular: first, the long juvenile phase 491 

of forest trees strongly attenuates founder effects during colonization in a diffusive dispersal 492 

model (Austerlitz et al., 2000). Moreover, long-distance pollen dispersal is frequent in beech 493 

(Gauzere, Klein, & Oddou-Muratorio, 2013; Piotti et al., 2012), which is expected to increase 494 

the number of founders and the mixing of genes from distant sources, resulting in a rapid 495 

increase of genetic diversity after the initial colonization (Fayard et al., 2009; Lander, Klein, 496 

Roig, & Oddou-Muratorio, 2021; Paulose & Hallatschek, 2020). Finally, beech is one of the 497 

tree species that recolonised northern Europe the latest, and the factors that limited its 498 

ability to migrate probably also contributed to its retaining a high level of diversity along the 499 

expansion front (Roques et al., 2012; Saltré et al., 2013) 500 

Range-wide spatial genetic structure (SGS) was statistically significant but weak. The 501 

strongest signal was found in the southeastern genetic cluster. This is consistent with the 502 

theoretical work of Slatkin (1993) on IBD, who showed that a species having restricted 503 

dispersal should exhibit SGS if enough time has elapsed after establishment. Since the south-504 

eastern European populations (blue cluster) have undergone a relatively early and short-505 

distance post-glacial expansion (Magri et al., 2006), they would have had the longest time 506 

for the establishment of SGS. 507 

Altogether, our results hence agree on the absence of a marked signature of genetic 508 

drift and allele surfing in beech due to recolonization. It appears therefore warranted to 509 

assume that our analysis of genetic signatures of local adaptation is little burdened with such 510 
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sources of uncertainty, in line with previous studies on temperate forest trees that have 511 

explicitly tested for such effects (Eckert et al., 2010; Ruiz Daniels et al., 2018; Temunović et 512 

al., 2020).  513 

Genomic signatures of local adaptation along climatic gradients 514 

Two genes showed convergent signatures of selection using GEA and differentiation 515 

outlier analyses. GEA detected more outliers than differentiation outlier analyses, with 12 516 

genes showing convergent signatures of divergent selection using lfmm and Samβada. The 517 

52 outliers identified with at least one of the methods displayed significant IBE patterns 518 

(while the putatively neutral markers did not), consistently with the fact that allele 519 

frequencies co-vary with climatic variables at the loci under selection. 520 

According to GEA, 50 associations were attributable to the temperature variables and 521 

42 to the precipitation variables. Among the temperature variables, associations with 522 

climate continentality (22) were found more often than associations with mean temperature 523 

(12) or climate xericity (16). This finding may indicate that the risk of late frosts could 524 

represent a major constraint for the evolution of phenology-related traits in beech (Gauzere 525 

et al., 2020; Kreyling et al., 2014). Among the precipitation variables, associations with the 526 

coupling between precipitation and seasonal temperatures (25) were found more often than 527 

associations with precipitation abundance (8) or variability (9). This result could be due to 528 

genetic differentiation between locations where high precipitation occurs during the 529 

vegetation period (coupling) versus those where a precipitation deficit occurs during the 530 

vegetation period (decoupling). This would highlight the major role of low precipitation in 531 

driving patterns of local adaptation, in agreement with the known sensitivity of beech to 532 

drought (Aranda et al., 2015; Cuevo-Alarcon et al., 2021), and with the major role of maximal 533 
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potential evapotranspiration as a driver of genetic differentiation for growth and survival 534 

(Gárate-Escamilla et al. 2019). Partial RDA analyses also indicate significant effects of 535 

temperature and precipitation on the genetic structure at all the 52 outlier loci together, 536 

even though the portion of genetic variance contributed by “pure” temperature or 537 

precipitation effects was low in both cases (1%). Considering that phenology-related 538 

candidate genes were slightly over-represented in our set of 270 SNPs, and assuming that 539 

optimal values of phenological traits are likely to vary primarily with temperature and 540 

photoperiod rather than with precipitation (Metcalf & Mitchell-Olds, 2009), the balanced 541 

contribution of precipitation and temperature variables to the genetic-climate associations 542 

suggests that range-wide local adaptation in beech is driven by traits related to various 543 

climate components (see also Garate-Escamilla et al. 2019).  544 

Although we cannot completely rule out some false positives, the large number of 545 

outliers detected using GEA approaches is methodologically consistent. First, our sampling 546 

design with 64 populations covering beech range proves to be appropriate to account for 547 

steep ecological gradients, control for population structure, and ultimately optimize 548 

statistical power in GEA (Selmoni, Vajana, Guillaume, Rochat, & Joost, 2020). Moreover, the 549 

major post-glacial expansion axes of beech align with steep ecological gradients: the South-550 

to-North axis of expansion opposes hot to cold climates, while the axis from Central Europe 551 

to Great Britain opposes continental to oceanic climates (Magri et al., 2006). Although the 552 

populations sampled in this study may not fully capture these axes of climate variation, such 553 

a configuration is expected to minimize the number of false positive with GEA, as compared 554 

to the opposite case where ecological gradients are orthogonal to the expansion axis (Frichot 555 

et al. 2015).  556 
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 557 

Functional role of the genes under selection 558 

Among the 139 candidate genes investigated, eighteen showed signatures of divergent 559 

selection with at least two methods. Eight of them had also shown signatures of divergent 560 

selection in previous studies (Table 1 and Table S8). Among these “best candidates”, the 561 

outlier gene 92 encodes for ACO, an enzyme involved in the production of the plant 562 

hormone ethylene, which regulates many plant developmental processes and stress 563 

responses. This study found a putative signature of selection at the non-synonymous locus at 564 

position 352, (coding for histidine or glutamine; Table 1), where the frequency of the 565 

homozygous genotype TT decreased with drought stress (Fig. 6a). This locus was also 566 

associated with annual and growth season temperatures in the study of Cuervo-Alarcon et 567 

al. (2018). Two other loci within this gene (although non-coding or synonymous) were also 568 

detected as outliers by Pluess et al. (2016), where their frequencies correlated with drought 569 

indices. These two previous studies were conducted in Switzerland, along drought and 570 

precipitation gradients using GEA approaches. Hence, our combined results suggest that the 571 

ACO gene could be under divergent selection at various hierarchical scales across Europe.  572 

Another interesting example is the outlier gene QB_c10512, which encodes for the 573 

NAC domain-containing protein 72, a transcription factor responsive to desiccation. This 574 

gene was found to be differentially expressed in beech quiescent buds by Lesur et al. (2015). 575 

At synonymous position 206 (in a Leucine-coding codon), the frequency of the AA genotype 576 

increased with drought stress (Fig. 6b). Two other variants within this gene (including a non-577 

synonymous one) were also detected as outliers by Cuervo-Alarcon et al. (2018), where their 578 

frequencies also correlated with precipitation during the growing season. Moreover, the 579 
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gene QB13549, detected as an outlier by pcadapt and lea, also encodes for the NAC domain-580 

containing protein 72. At position 857, allele frequency showed a strong variation from 581 

Eastern to Western Europe (Fig. 6c).  582 

The signatures of divergent selection were not particularly enriched in genes related to 583 

phenology. This is a counter-intuitive result, as previous quantitative genetic approaches 584 

failed to detect divergent selection at various physiological traits related to drought stress, 585 

but did detect significant differentiation in phenological (Gauzere et al., 2020; Hajek et al., 586 

2016), growth and survival traits (Gárate-Escamilla et al., 2019; Gauzere et al., 2020). This is 587 

likely because the stress-related genes genotyped in this study are involved in the response 588 

to multiple stresses varying across climate gradients. Moreover, our panel of candidate 589 

genes probably determines a larger number of stress-related traits than usually phenotyped 590 

in quantitative genetic approaches (Gauzere et al., 2020; Hajek et al., 2016). Another 591 

limitation of quantitative genetic approaches is that they are usually conducted on a few 592 

populations and do hence not adequately cover the range-wide diversity of stress gradients 593 

(see also Garate-Escamilla et al. 2019). This comparison illustrates the complementarity of 594 

quantitative genetic and molecular approaches to investigate local adaptation (Rudman et 595 

al., 2018).  596 

Implications for conservation and management 597 

The rates of expected (natural) species range shifts are likely to be insufficient for trees 598 

to track ongoing climate change (Saltré et al., 2013; Savolainen et al., 2007). In this context, 599 

there is an increasing interest in evolutionary-oriented management strategies, relying on 600 

the high genetic diversity observed within and among tree populations to adapt forest to 601 

ongoing climate change (Aitken & Whitlock, 2013; Lefèvre et al., 2014; Oney et al., 2013).  602 
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We showed that the spatial distribution of genetic diversity across beech range reflects 603 

both biogeographical history and adaptive processes. This has consequences for 604 

conservation, where the importance of maintaining adaptive genetic diversity - in addition to 605 

preserving as many lineages as possible - can not longer be overlooked (de Lafontaine et al. 606 

2018; Ouborg, Pertoldi, Loeschcke, Bijlsma, & Hedrick, 2010; Shafer et al., 2015). While the 607 

conservation of lineages rely on the assessment of genetic boundaries, the conservation of 608 

adaptive diversity may require the identification of the relevant loci and the targeted 609 

conservation of specific alleles, genotypes or combinations thereof. Our results also have 610 

consequences for management, where knowledge of the genetic variants under selection, as 611 

combined with the estimation of their current spatial distribution and the prediction of 612 

future climate, may help inform decisions about assisted migration, perhaps under the form 613 

of an “enrichment” of existing stands with potentially favourable genotypes (Rellstab et al., 614 

2016; Rochat, Selmoni, & Joost, 2021). This would however require a reliable validation of 615 

the adaptive meaning of our best candidates by independent proof, as well as the 616 

assessment of genotype�genotype interactions (to make sure there is no outbreeding 617 

depression) and of genotype�environment interactions (to avoid undesired, unforeseen 618 

under-performances of the introduced genotypes and their progeny in the new 619 

environments).  620 

At the intersection of management and conservation lies the possibility to favour 621 

natural migration and regeneration dynamics, which could result in efficient mixing of 622 

genotypes in multiple environments, thus exposing them to natural selection and adaptive 623 

processes (Lefèvre et al., 2014). Here, the detailed analysis of barriers to gene flow is of the 624 

essence, to understand whether the barriers and “corridors” we detected have been caused 625 
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by geographical features or isolation by adaptation: while in the former case it may be 626 

sensible to manage such barriers and corridors to shape gene flow, in the latter in may be 627 

difficult - or even detrimental - to force the modification of gene flow patterns. 628 

 629 
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Figures legends  924 

Figure 1: Distribution of the 64 studied populations (red dots) (a) in the geographical space, 925 

overlaid on beech distribution range (in grey) ; (b) in the bioclimatic niche defined by annual 926 

precipitations and temperature, with the grey colour intensity indicating increasing density 927 

of beech stands. 928 

 929 

Figure 2: Spatial interpolates of the admixture coefficients estimated with STRUCTURE for 930 

K=3. Each color corresponds to one cluster and the colour intensity indicates the probability 931 

to belong to the cluster at a given position in space, based on spatial kriging of the individual 932 

q-matrix. Only areas belonging to beech distribution range are considered. Crosses indicate 933 

admixed populations, not assigned to a single cluster.  934 

 935 

Figure 3: Estimates of diversity (He), percentage of polymorphic loci (%polloc) and genetic 936 

differentiation relative to the entire pool (βWT) in the 64 studied populations, overlaid on 937 

beech distribution range (in grey).  938 

 939 

Figure 4: Patterns of isolation by distance and barriers to gene flow among the 64 studied 940 

populations. (a) Spatial genetic structure as depicted by the variation of genetic 941 

differentiation against geographic distance (on a log-scale). The grey envelope represents 942 

expected FST/1-FST values under complete spatial randomness and bars represent standard 943 

error at 95% level within each distance class. (b) Contour maps representing the posterior 944 

mean of effective migration (m) surface; populations in the blue areas are connected by 945 

higher migration rates than expected under isolation by distance (IBD) while the ones in the 946 

orange areas have lower migration rates than expected and are interpreted as migration 947 

barriers. In white areas, the effective migration surface is close to the one expected under 948 

IBD. (c) Contour maps representing the posterior mean of effective diversity (q) surface;  949 

populations in the orange (respectively blue) areas have lower-than-expected (respectively 950 

higher-than-expected) genetic diversity than the average. On maps (b) and (c), black dots 951 

represent the studied populations, aggregated per grid cell (with size proportional to the 952 

number of genotyped individuals) 953 

 954 

Figure 5: Venn diagram of the private and common outliers identified by the different 955 

methods to detect signatures of divergent selection. 956 

 957 

Figure 6: Variation in allelic/genotypic frequencies at three outlier SNPs (panel a: 92_352; 958 

b: QB_c10512; c: QB13549_857) across the studied geographic range. For panels (a) and 959 

(b), the graph on the left represents the predicted variation in genotype occurrence 960 

probability (GOP) across the environmental gradient as estimated by Samβada. Maps show 961 

the observed genotypic/allelic frequency superimposed on the environmental gradient 962 

(panels a and b) and spatial genetic structure (c).  963 

  964 
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Table 1. Outlier SNPs showing signature of divergent selection with at least one of the four methods (pcadapt, lea, lfmm and 
Samβada). We applied analysis-specific FDR cut-offs granting no expected false positives. For lfmm and Samβada, we report the climatic 
variable for which the genetic-environment association was found (T1-3: Temp1-3; P1-3: Precip 1-3). Converging selection signatures from 
at least two methods are underlined in grey. For each SNP, we code the study where it was described first (1: Lalagüe, et al. 2014 ; 2: Lesur, 
et al. 2015) and give the gene sequence (in Genbank for 1; in Lesur, et al. 2015 for 2). We finally provide for each candidate gene its 
category (stress-related, phenology-related or control genes), its annotation based on the homology with Arabidopsis thaliana sequence 
(with the TAIR ID and probability of matching E) 

 

SNP Method 
 

SNP Resource Cat Annotation  TAIR_ID E 

 

p
c
a
d
a
p
t 

L
E
A
 

L
F
M
M
 

S
a
m
β
a
d
a
 

Study 
Sequence 

name 
 

   

7_186 - - T3 - 1 JX406438.1 Stress Xyloglucan endotransglucosylase/hydrolase 18 
(ATXTH18) 

AT4G30280.1 1.00 10

19_206 - - P1 - 1 JX406440.1 Stress  pseudogene of Histone superfamily protein AT1G75610.1 2.00 10

21_243 - - P3,T1,T2 P3,T2 1 JX406442.1 Stress S-adenosylmethionine synthetase 3 (SAMS3) AT3G17390.1 4.00 10

27_485 - - T3 - 1 JX406445.1 Stress Trehalose-phosphate/synthase 7 (TPS7) AT1G06410.1 5.00 10

39_225 - - T1 - 1 JX406448.1 Stress Potassium transporter (AtKT2p) AT2G40540.1 2.00 10

50_232 - - T3 T3 1 JX406449.1 Stress C-repeat/dre binding factor 1 (ATCBF1) AT4G25490.1 5.00 10

52_1_246 - - T2 T2 1 JX406451.1 Stress S-adenosyl-l-homocystein hydrolase 1 (SAHH1) AT4G13940.1 1.00 10-

66_698 - - P1 P1 1 JX406455.1 Stress S-adenosylmethionine decarboxylase (SAMDC) AT3G02470.1 1.00 10-

68_277 - - P3 - 1 JX406456.1 Stress Glyceraldehyde-3-phosphate dehydrogenase c 
subunit (GAPC1) 

AT3G04120.1 5.00 10

92_352 - - P3,T2,T3 T3 1 JX406462.1 Stress 1-aminocyclopropane-1-carboxylate oxidase (ACO4) AT1G05010.1 1.00 10

129_685 - - P3 P3 1 JX406471.1 Pheno Glyceraldehyde-3-phosphate dehydrogenase 
asubunit 2 (GAPA-2) 

AT1G12900.1 4.00 10

133_306 - - P1 P1,T2 1 JX406475.1 Pheno NA NA NA 

142_143 - - T2 - 1 JX406476.1 Pheno Membrane protein CONTINUOUS VASCULAR RING 
(COV1) 

AT2G20120.1 6.00 10
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148_1_1411 - - P3 - 1 JX406478.1 Pheno  S phase kinase-associated protein 1 (SKP1) AT1G75950.1 7.00 10

150_2_924 - - P3,T1,T2,T3 P3,T2 1 JX406479.1 Pheno Auxin response factor 6 (ARF6) AT1G30330.2 2.00 10

154_1_715 - < P3 - 1 JX406480.1 Stress Pectin methylesterase 39 (PME39) AT4G02300.1 2.00 10

154_1_845 - < P3,T2 T1 1 

154_1_251 - < - T1 1 

154_1_390 - - - T1 1 

154_2_371 - - P3,T2,T3 T2 1 JX406481.1 Stress Pectin methylesterase 3 (PME3) AT3G14310.1 6.00 10-

155_2_911 - - P2 - 1 JX406482.1 Stress Polygalacturonase 2 (PG2) AT1G70370.1 2.00 10-

62_1_148 - - P3 - 1 JX406489.1 Stress Heat shock protein 70 (HSP70) AT3G12580.1 2.00 10

91_2_1441 - - P3,T1 P3,T1 1 JX406491.1 Stress Catalase 2 (CAT2) AT4G35090.1 6.00 10

91_2_57 - - P3 - 1 JX406491.1 

134_2_834 - - - P3 1 JX406493.1 Pheno Metallothionein 2a (MT2A) AT3G09390.1 2.00 10

QB_c10460-202 - - - T1 2 c10460 Pheno Na na na 

QB_c10512-206 - < P3,T2,T3 T3 2 c10512 Pheno NAC domain-containing protein 72,  Responsive to 
desication 26 (ANAC72) 

AT4G27410.2 7.00 10

QB_c10517-414 - - P2,P3 - 2 c10517 Pheno Hypothetical protein AT4G02040.1  

QB_c10517-841 - - T1 - 2 c10517 

SB_c5654-1048 - - T3 - 2 c5654 Pheno Glucose-methanol-choline (GMC) oxidoreductase 
family protein 

AT5G51950.1 6.00 10

QB_c6167-1062 - - T2 - 2 c6167 Pheno Leucine-rich repeat (LRR) family protein AT1G33590.1 3.00 10-

SB_c6451-300 - - - T3 2 c6451 Pheno Translocase of the inner membrane 9 (TIM9) AT3G46560.1 6.00 10

QB_c7172-467 - - - P1 2 c7172 Pheno Aba-hypersensitive germination 3 (AHG3) AT3G11410.1 1.00 10

SB_c7640-125 - - P2 - 2 c7640 Pheno Leucine-rich repeat (LRR) family protein AT3G19320.1  

SB_c968-1354 - - P2 - 2 c968 Pheno Picloram Resistant30 (PIC30) AT2G39210.1 0

SB_c968-192 - - P2 - 2 c968 

SB_c968-719 - - P2 - 2 c968 

SB_c968-935 - - P2 - 2 c968 

QB_c13130-798 - - T3 - 2 c13130 Pheno Ndr1/hin1-like AT2G35980.1 3.00 10

QB_c13152-130 - - P1,T3 - 2 c13152 Pheno Na na na 

ctrlfagus_c13215-
830 

- - T2 T2 2 c13215 Ctrl Glyceraldehyde-3-phosphate dehydrogenase c 
subunit 1 (GAPC1) 

AT3G04120.1 9.00 10
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SB_c13339-608 - - P2 P3 2 c13339 Pheno Fasciclin-like arabinogalactan family protein (FLAs) AT5G16920.1 3.00 10

QB_c13406-208 - - P2 - 2 c13406 Pheno Seed storage 2S albumin superfamily protein AT2G37870.1  

SB_c13429-427 - - - P3 2 c13429 Pheno ARABINOGALACTAN PROTEIN 30 (AGP30), Pistil-
specific extensin-like protein precursor  

AT2G33790.1 9.00 10

QB_c13549-857 < < - - 2 c13549 Pheno NAC domain-containing protein 72,  Responsive to 
desication 26 (ANAC72) 

AT4G27410.2  

SB_c13643-626 - - P3 - 2 c13643 Pheno Pathogenesis-related thaumatin superfamily protein  AT1G19320.1 3.00 10

QB_c15642-205 - - T1 - 2 c15642 Pheno Embryonic cell protein 63 (ECP63),  AT2G36640.1 2.00 10

SB_c15868-233 - - P3,T1 - 2 c15868 Pheno Bifunctional inhibitor/lipid-transfer protein/seed 
storage 2S albumin superfamily protein 

AT3G52130.1 1.00 10

QB_c15913-724 - - T2 - 2 c15913 Pheno Low-temperature-induced 65 kda protein (LTI65), 
responsive to dessication  

AT5G52300.2 1.00 10

QB_c15913-902 - - T2 T2 2 c15913 Pheno Low-temperature-induced 65 kda protein (LTI65), 
responsive to dessication  

AT5G52300.2 1.00 10

ctrlfagus_c15935-
232 

- - T3 - 2 c15935  Tubulin alpha-2 chain (TUA2) AT1G50010.1 9.00 10

QB_c170171-048 - - T2 - 2 c17017 Pheno Low-temperature-induced 65 kda protein (LTI65), 
responsive to dessication  

AT5G52300.2 2.00 10
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