
Downregulation of Perilipin1 by IMD leads to LD reconfiguration and 1 

adaptation to bacterial infection in Drosophila 2 

 3 

Lei Wang1,2,5*, Jiaxin Lin2,3,5*, Junjing Yu4, Kaiyan Yang2,3,5, Li Sun2,3,5, Hong 4 

Tang2 # and Lei Pan2,3,6 #  5 

1 Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, 6 

China 7 

2 The Center for Microbes, Development and Health; Key Laboratory of Molecular 8 

Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 9 

Shanghai 200031, China 10 

3 CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of 11 

Sciences, Beijing 100049, China 12 

4 Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 13 

Shanghai 200031, China. 14 

5 University of Chinese Academy of Sciences, Beijing 100049, China  15 

6 Lead contact 16 

 17 

* These authors contribute equally. 18 

#Correspondence: H. Tang (htang@ips.ac.cn) or L. Pan (panlei@ips.ac.cn). 19 

 20 

 21 

 22 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 19, 2021. ; https://doi.org/10.1101/2020.04.30.070292doi: bioRxiv preprint 

mailto:htang@ips.ac.cn
mailto:panlei@ips.ac.cn
https://doi.org/10.1101/2020.04.30.070292


ABSTRACT  23 

Lipid droplets（LDs）are dynamic intracellular organelles critical for lipid metabolism. 24 

Dynamic alterations in the configurations and functions of LDs during innate immune 25 

response to bacterial infections and the underlying mechanisms however, remain 26 

largely unknown. Herein, we trace the time-course morphology of LDs in fat bodies of 27 

Drosophila after transient bacterial infection. Detailed analysis shows that perilipin1 28 

(plin1), a core gene regulating lipid metabolism of LDs is suppressed by IMD/Relish, 29 

an innate immune signaling. During immune activation, downregulated plin1 promotes 30 

the enlargement of LDs, which in turn alleviates immune reaction-associated reactive 31 

oxygen species (ROS) stress. Thus, the growth of LDs is likely an active adaptation to 32 

maintain redox homeostasis in response to IMD activation. Therefore, our study 33 

provides evidence that plin1 serves as a modulator on LDs’ reconfiguration in 34 

regulating infection-induced pathogenesis, and Plin1 might be a potential therapeutic 35 

target for coordinating inflammation resolution and lipid metabolism. 36 

 37 

INTRODUCTION  38 

Immune activation is essentially accompanied by metabolic reprogramming, which 39 

redistributes accessible energy to prioritize immune protection against pathogenic 40 

infections (1, 2). Thus, stringent regulation of metabolic machinery in response to 41 

immunoreaction is critical for the host fitness. Besides carbohydrates, lipids provide 42 

another important bioenergetic and synthetic resource to the host. Not limit to this, a 43 

number of lipid metabolites in turn have been reported to play key roles in pro- or anti-44 

inflammatory pathways (3-5). In all eukaryotic and some prokaryotic cells, there are 45 
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important intracellular organelles, lipid droplets (LDs), which provide a major place for 46 

the synthesis, lysis, transfer and storage of lipids or their derived metabolites (6). LDs 47 

contain a hydrophobic core of neutral lipids, such as di/triacylglycerols or sterol esters, 48 

which is surrounded with a phospholipid monolayer decorated by different proteins (7). 49 

Previously, LDs were considered to get involved in many physiological and 50 

pathological processes just because of their main functions on storing/providing energy 51 

and/or buffering toxic lipid species through modulating enzymic or autophagic lipolysis 52 

(8, 9). So far, emerging evidences have shown that LDs also take part in immune 53 

regulation. For instance, LDs modulate functions of myeloid cell through immune-54 

metabolic reprogramming (10). LDs facilitate hosts to combat pathogens’ infections 55 

through selectively recruiting immune proteins (11, 12). Recently, a study indicated that 56 

mammalian LDs respond to bacterial lipopolysaccharide and function as innate immune 57 

hubs to coordinate host defense and cell metabolism (13). However, the role of LDs as 58 

pro- or anti-inflammatory modulators is still controversial (14), due to fact that LDs are 59 

highly dynamic organelles. The number, size and anchored proteins of LDs change 60 

quickly in response to infection or stress (15-17). These evidences also indicate that the 61 

status of LDs should be tightly controlled. Defects in the biogenesis and mobilization 62 

of LDs not only result in lipotoxicity (18, 19) but also exacerbate inflammatory 63 

responses and organelles dysfunction (20, 21). However, the role and dynamic pattern 64 

of LDs during immune process is still barely described. Especially, the factors 65 

mediating the transformation of LDs underlying immunometabolic switches have not 66 

been well identified.  67 
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 68 

LDs are non-homogenous organelles, which accommodates hundreds of variable 69 

proteins (22, 23). However, Perilipins (Plins) are the most prominent proteins that span 70 

the surface of LDs (24, 25). Each LD is usually decorated by two or more members of 71 

Perilipin family proteins and no LDs without perilipins have been identified in 72 

mammalian cells so far (26). There are five major perilipins in mammalian, named 73 

Perilipin1-5. These Perilipins differ in the expression and cellular localization in 74 

different tissues and have essential roles in the regulation of LDs’ structure and 75 

morphology (27, 28). However, whether Perilipins get involved in immune functions, 76 

probably through mediating LDs’ reconfiguration, is still obscure. In human or mouse 77 

adipocyte tissue, Perilipin1 deficiency leads to uncontrollable LDs lipolysis and 78 

infiltration of inflammatory cells (29, 30). Inhibition of lipases, such as adipose 79 

triglyceride lipase (ATGL) or hormone-sensitive lipase (HSL), can alleviate this 80 

metaflammation (31, 32). Plin1 knockout also promotes secretion of prostaglandins, 81 

the pro-inflammatory lipid metabolites, and elevates pro-inflammatory M1-type 82 

adipose tissue microphages in mice (33). In innate immunity, the expression and 83 

localization of Perilipins on LDs changed in response to LPS stimulation, which 84 

subsequently affected antimicrobial capacity (13). These evidences suggest a link 85 

between Perilipins and immunometabolic regulations.  86 

 87 

Drosophila melanogaster has emerged as a productive organism to investigate 88 

immunometabolism, due to the advantages of powerful genetic manipulation and 89 
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highly conserved mechanisms in both innate immunity and metabolism (34-36). 90 

Especially, the fat body (analogous to human liver and adipose tissue), as a major organ 91 

mediating systemic innate immunity, is an ideal place for studying the interaction 92 

between metabolism and inflammation of LDs, due to its richness in LDs (37, 38). 93 

Furthermore, Perilipins are evolutionarily conserved from fungi to human. Not like 94 

more redundant Plins in mammalian, there are only two Plins in Drosophila, Lipid 95 

storage droplet-1 (lsd1or plin1) and lsd2 (plin2) (39). Plin2 acts to promote lipid storage 96 

and LDs’ growth as a barrier for lipase (40-42), while Plin1 modulates protein flux on 97 

LDs (27, 28). They have opposite functions on the control of LDs’ morphology (27). In 98 

Drosophila, the immune deficiency (IMD) pathway is a dominant innate immune 99 

singling against Gram-negative bacterial infections, which is homologue to mammalian 100 

NF-kB/TNF pathway (35). Couple studies have revealed that IMD signaling modulate 101 

lipolysis in either fat body or intestine of flies (43, 44). And thus, LDs’ accumulation 102 

was once reported in fly gut after IMD activation (17). However, as if LDs adapt to 103 

immune response, whether and how morphological changes occur on LDs remain 104 

unclear. More importantly, the contribution of theses adaptive altered LDs to infectious 105 

pathogenesis and the underlying mechanisms mediating by LDs-anchored factors such 106 

as Plins, are still poorly understood.  107 

 108 

In this study, the alteration in morphology and number of LDs were traced dynamically 109 

during bacterial infection. Plin1 was found to respond to IMD action and then modify 110 

LDs’ morphology to alleviate inflammatory stress. Our data reveal that adaptive 111 
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modification of LDs acts as an active modulator of infection-induced pathogenesis. 112 

 113 

Results 114 

Bacterial infection modulates lipid metabolism, and particularly alters 115 

morphology of lipid droplets (LDs) in the fat body. 116 

In Drosophila, the fat body is not only a central organ mediating systemic immune 117 

responses, but also the epicenter for lipid metabolism. Thus, to decipher the mechanistic 118 

connections between innate immunity and lipid metabolism, the kinetics of fat content 119 

was tested in the fat body of Drosophila after systemic infection. Escherichia. Coli (E. 120 

coli), a non-pathogenic Gram-negative bacterium to flies, was used to perform nano-121 

injection to infect adult male fruit flies. The immune deficiency (IMD) pathway is a 122 

dominant innate immune signaling against Gram-negative bacterial infections that 123 

regulates Relish/NF-κB-dependent transcription of AMPs, such as Diptericin (Dpt) 124 

(35). Thus, by measuring the expression level of Dpt, IMD signaling activity could be 125 

monitored (45, 46). In consistent with previous report that E.coli injection resulted in a 126 

transient innate immune response within 48 hour post infection (hpi)(47), a gradient 127 

increase in IMD activity in the fat body was observed from 0 hpi to 12 hpi, and then 128 

this activity subsided to the basal level after 48 hpi (Fig.1A). Interestingly, compared 129 

to mock injection control (Supplementary Fig. S1A), the fat levels in the fat body of 130 

flies with E.coli infection steadily increased from 4 hpi to 16 hpi and then almost 131 

recovered after 48 hpi (Fig. 1A). Therefore, these results suggest a link between lipid 132 

metabolism and IMD signaling activation in the fat body of flies. 133 

 134 
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LDs are the main site for lipid metabolism, mobilization and storage (48), which 135 

prompted us to investigate whether LDs change in the fat body in response to bacterial 136 

infection. BODIPY staining of fat body cells revealed that compared to PBS injection 137 

group (Fig. 1B and 1C), E. coli infection increased the percentage of intracellular small 138 

LDs (diameter < 2 μm) at 6 hpi (Fig. 1B and 1C). And then, LDs grew bigger at 16 hpi 139 

as indicated by the decrease in the percentage of small LDs and concurrent increase in 140 

the percentage of large LDs (diameter > 4 μm). Finally, this size distribution of LDs 141 

was restored to basal levels at 24 hpi (Fig. 1B and 1C). Accordingly, the average size 142 

of LDs in fat body cells had the similar changing trend (Fig.1D). These results indicate 143 

that small LDs are prone to fuse into bigger ones during the initial 16 h after E. coli 144 

infection. 145 

 146 

The reconfiguration of LDs requires IMD signaling activation.  147 

To determine whether IMD signaling activation rather than live bacterial growth is 148 

responsible for the modification of LDs during infection, heat-killed E. coli was applied 149 

to repeat infection in wild type flies. The elevated fat levels in fat bodies were still 150 

observed at 12 hpi in WT flies (Fig. 2A). In Drosophila, peptidoglycan (PGN) from 151 

Gram-negative bacteria can bind to the receptor of PGRP-LC to active IMD signaling 152 

through transcriptional regulator Relish (35). Thus, the flies with homozygous mutation 153 

of PGRP-LC (PGRP-LC∆5) or relish (relishE20) was used for infection. In contrast to 154 

wild type flies, the phenotype of elevated fat contents in fat bodies disappeared and 155 

even reversed in these mutant flies at 12h post heat-killed E.coli injection (Fig. 2B). 156 

Moreover, IMD signaling deficiency also restricted the increase in LDs size at 16 hpi, 157 
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compared to WT controls (Fig. 2C and D). Therefore, these results suggest that IMD 158 

signaling activation is required to modify LDs’ morphology in response to bacterial 159 

infection. 160 

 161 

 162 

plin1 is involved in LDs’ morphological change induced by IMD activation.  163 

Perilipins (Plins), a group of constitutive proteins that span the surface of LDs, were 164 

reported to regulate lipid mobilization and LDs’ morphology (27, 28). There are two 165 

Perilipins in Drosophila, Plin1 and Plin2. To explore whether Plins are involved in the 166 

regulation of LDs’ reconfiguration in response to immune activation, their time-course 167 

expression was detected in the fat body by real-time PCR. E. coli infection induced a 168 

significant downregulation of plin1 mRNA levels at 4 hpi, which was then gradually 169 

restored to basal levels at 24 hpi (Fig.3A). The changing trend of plin1 expression 170 

seemed to be negatively correlated with the changes in LD’s size and IMD activity. 171 

However, the expression level of plin2 was only slightly tuned down at 4hpi and back 172 

to normal at 12h after E. coli infection (Supplementary Fig.2A). Previous study have 173 

shown that deficiency of plin2 resulted in reduced rather than enlarged size of LDs (27). 174 

Therefore, these results indicate a potential role of plin1 in the regulation of LDs’ 175 

morphology in response to IMD activation. Furthermore, either deficiency of plin1 by 176 

mutation (plin138) or specific knockdown of plin1 in fat body (UAS-plin1 RNAi driven 177 

by ppl-GAL4) promoted the formation of large LDs. Whereas, ectopic expression of 178 

plin1 in the fat body led to the accumulation of much smaller LDs, compared with 179 
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controls (Fig. 3B). These results were reminiscent of previous studies that Plin1 may 180 

function to enhance lipid mobilization and inhibit LD coalescence (49).  181 

 182 

Martik (MRT) /Putzig (PZG) complex, a chromosome remodeling complex, has been 183 

reported to suppress plin1 at transcriptional level (49). The mRNA levels of both mrt 184 

and pzg were upregulated in the fat body after bacterial infection (Fig. 3C and 3D). 185 

Interestingly, homologous alignment showed that at least one conserved binding motif 186 

of Relish existed in the promoter region of both mrt and pzg genes across Drosophila 187 

species with different evolutionary ages (Supplementary Fig. S3A and S3B). This 188 

implies a potential regulation of these genes by IMD/Relish. Peptidoglycan (PGN) 189 

derived from gram-negative bacteria can activate IMD signaling in Drosophila S2* 190 

cells in vitro (50). The treatment of PGN enhanced luciferase activity controlled by the 191 

promoter of mrt or pzg in S2* cells, which was blocked by the knockdown of Relish 192 

using dsRNA (51) (Fig. 3E and 3F). Additionally, two Relish binding motifs in 193 

truncated mrt promoter region (T-mrt(Rel), -870 to +1bp, in Supplementary Fig. S3C) 194 

were required for mrt transcription (Fig. 2G), because PGN treatment didn’t enhance 195 

T-mrt-Luc activity any more when these two sites were removed (Fig. 2G). Thus, these 196 

results suggest that suppression of plin1 by IMD signaling might be through 197 

upregulation of mrt/pzg. All together, these results provide an explanation for LDs’ 198 

growth in the early stages of transient IMD activation. 199 

 200 

Plin1 compromises host protection against bacterial infection.  201 
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Naturally, whether Plin1 participated in the defense of bacterial infection was tested 202 

next. Since E. coli is non-pathogenic to flies, another Gram-negative bacterium, 203 

Salmonella. Typhimurium (S. typhimurium), which is a deadly pathogen for flies (52), 204 

was used to evaluate Plin1 function on immune defense. Compared to genetic controls, 205 

either plin1 deficiency (plin138) (Fig. 4A and 4B) or fat body-specific knockdown of 206 

plin1 (ppl-GAL4>UAS-plni1RNAi) (Fig. 4C and 4D) significantly prolonged the 207 

survival rate and slightly reduced bacterial loads (colony-forming units, CFUs) after S. 208 

typhimurium septic infection, indicative of enhanced resistance against bacterial 209 

infection. Conversely, ectopic expression of plin1 in the fat body (ppl-GAL4>UAS-210 

plin1) led to a dramatic increase in mortality rate of flies infected with S. typhimurium 211 

(Fig. 4E，Reducing infection OD because O.E.plin1 flies died too quickly.), or even 212 

by non-pathogenic E. coli (Fig. 4G), possibly due to uncontrolled bacterial growth (Fig. 213 

4F and 4H). However, it’s worthy to note that deficiency of plin1 did not affect anti-214 

microbial peptides (AMPs) (Diptericin, Dpt; AttacinA, AttA) response upon E. coli 215 

infection (Supplementary Fig. S4A), but specifically improved Dpt expression upon 216 

S. typhimurium infection (Supplementary Fig. S4B). Interestingly, overexpression of 217 

plin1 dampened AMPs response in both E. coli and S. typhimurium infections 218 

(Supplementary Fig. S4C and S4D). Taken together, these results suggest that 219 

adaptive downregulation of plin1 in response to IMD signaling activation protected the 220 

host against bacterial infections. 221 

 222 

Plin1-mediated reconfiguration of LDs participates in the homeostasis of 223 

intracellular ROS. 224 
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The next question is whether downregulated Plin1-induced LDs’ growth also benefit 225 

the host against bacterial infection. Sustained immune activation is a high energy-cost 226 

process, which requires active lipolysis and usually leads to excessive reactive oxygen 227 

species (ROS) accumulation due to the release and oxidation of free fatty acids, one 228 

hallmark for inflammatory damages  (18, 53). However, LDs’ growth could efficiently 229 

reduce the accumulation of free fatty acids, and probably relieve ROS-related tissue 230 

damages (54). As expect, plin1 deficiency (plin138) (Fig.5A and A1) or knockdown 231 

(UAS-plin1RNAi driven by ppl-GAL4)( Fig. 5B and B1), which promoted LDs growth, 232 

accompanied with a much lower level of ROS than that of control. In contrast, 233 

overexpression of plin1 in fat body cells（ppl-GAL4> plin1）, which transformed LDs 234 

into smaller ones, markedly increased ROS intensity (Fig. 5B and B1). These results 235 

suggest a correlation between the size of LDs and the intensity of ROS accumulation 236 

in fat body cells. To further support this notion, we skewed ROS metabolism in fat 237 

bodies through knockdown of superoxide dismutase genes (sod1 or sod2) or catalase 238 

gene (cat), all of which encode enzymes for intracellular ROS clearance (55, 56). All 239 

these flies (ppl-GAL4>UAS-sod1-RNAi, sod2-RNAi or cat-RNAi) contained elevated 240 

ROS levels (Fig.5C and 5D) and compensatory LD’s growth in fat bodies (Fig. 5E 241 

and 5F). If blocking the large LDs’ formation by simultaneous overexpression of plin1 242 

in these genetic backgrounds (Fig. 5E and 5F), much higher ROS accumulation was 243 

observed in fat bodies (Fig. 5C and 5D). All together, these results suggest that Plin1-244 

controled LDs’ reconfiguration takes part in antioxidative functions. 245 

 246 
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Downregulated Plin1 in response to IMD activation benefits flies against oxidative 247 

stress associated with bacterial infection. 248 

The activation of immune signaling, such as NF-κB or TNF signaling, often associates 249 

with ROS-induced inflammatory stress (53, 57). A transgenic allele with a gstD-GFP 250 

insertion was utilized to monitor ROS activity in vivo by measuring GFP intensity (58). 251 

Indeed, in Drosophila, infection either by non-pathogenic E.coli or by strong 252 

pathogenic S. typhimurium induced an obvious increase of intracellular ROS levels in 253 

the fat body (Fig. 6A and 6B). These results support the link between bacterial infection 254 

and accumulation of intracellular oxidative stress. If we removed this infection-255 

associated intracellular ROS by feeding flies with N-acetylcysteine (NAC), a widely-256 

used ROS scavenger, the survival of flies after pathogenic S. typhimurium infection was 257 

improved, compared to non-infected controls (Fig. 6C). It’s worthy to note that feeding 258 

flies with NAC at 12 h, not 0h, post S. typhimurium infection, benefited the fitness of 259 

flies much better. It’s likely that at time point of 12 hpi, excessive ROS accumulation 260 

had already developed, and initiate ROS of early infectious stage is useful for defense 261 

against bacteria (59, 60). These results suggest that excessive oxidative stress, which 262 

develops during bacterial infection is harmful for the host. 263 

 264 

Since LDs are major hubs for lipid metabolism in fat body cells and function on ROS 265 

clearance, it promoted us to investigate whether plin1-mediated LDs modification is 266 

involved against bacterial infection, probably through regulating intracellular ROS. At 267 

first, we found that elevated ROS levels in wild type fat bodies were diminished in fat 268 
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bodies of plin1 deficiency flies (Fig. 6D and 6E). Next, a RU486 induced fat body-269 

specific GAL4 (GS106-GAL4) was used to modulate the expression of plin1 just before 270 

S.typhimurium infection, which exclude the possible effects of plin1 on the 271 

development of flies. As expect, overexpression or knockdown of plin1 in the fat body 272 

resulted in a significant decrease or increase in LDs’ size, respectively (Fig. 6F). 273 

Downregulation of plin1 prolonged the survival rate after S.typhimurium infection (Fig. 274 

6G ), while ectopic expression of plin1 shortened the life span dramatically (Fig. 6H). 275 

Meanwhile, fluorescent probe 2’,7’-dichlorofluorescein diacetate (DCFH-DA) staining 276 

indicated an elevated intracellular ROS levels in plin1-overexpression flies and a 277 

reduced ROS levels in plin1-knockdown flies during infection (Fig. 6I and 6I1-2). 278 

Taken together, these results suggest that large LDs formation contributes to alleviate 279 

intracellular oxidative stress induced by bacterial infection and Plin1 might serve as an 280 

important modulator to promote LDs modification in response to IMD activation. 281 

 282 

Discussion 283 

Metabolic reprogramming of lipids has been widely reported to be associated with 284 

immune responses (1, 2, 61). As a major intracellular organelle for lipid metabolism 285 

and storage, LDs also seem to be involved in immune processes. Immune stimulation 286 

either by infection with bacteria (62, 63), virus (64-66), fungus(67) or protozoan 287 

parasites (68), or by cytokines inoculation (69, 70) may promote the biogenesis of LDs 288 

in mammalian leukocytes. Recently, Hash et al also reported that LDs are infection-289 

inducible organelles in the gut of Drosophila at a certain timepoint after infection (17). 290 
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Bosch et al further indicated LDs recruit antimicrobial proteins in response to LPS and 291 

function as innate immune hubs (13). However, the status and morphology of LDs 292 

change rapidly in vivo. Whether this dynamic transformation of LDs in response to 293 

immune stimulation is seldom described. Whether adaptive morphological change of 294 

LDs plays active rather than passive roles in pathogenesis, and key regulators linking 295 

LDs’ reconfiguration and infection still need further investigated.  296 

 297 

In this study (Fig.7), we carefully traced the time-course morphogenesis of LDs in the 298 

fat body along with the dynamic curve of IMD signaling activity. We found that 299 

transient IMD activation by bacterial infection promoted LDs’ growth in the fat body 300 

within 12hpi. Both LDs’ size and fat levels in the fat body was maximum when IMD 301 

activity almost achieved its peak. Previous studies show that transcriptional levels of 302 

most triglyceride synthesis genes are suppressed during the initial phase of infection 303 

(71, 72), suggesting that the substrates for LDs’ biogenesis in the fat body were 304 

probably imported lipids rather than de novo synthesized fatty acids, and IMD signaling 305 

activation is required for this process. Detailed analysis showed that plin1 306 

downregulation is critical for LDs’ growth in response to transient IMD activation, 307 

considering its expression was suppressed by IMD/Relish activated MRT/PZG 308 

complex. Although the immune response is an energy-cost process, the fat content in 309 

specific tissue such as fat body is surprisingly increasing at the early stage of immune 310 

activation. These findings prompt us to imagine that LDs’ biogenesis is likely an active 311 

host adaptation to immune challenges. To further support this hypothesis, we found that 312 
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enlarged LDs benefit the host against intracellular ROS-mediated oxidative stress 313 

induced by bacterial infection.  314 

 315 

Excessive ROS accumulation is often the main cause of inflammation/infection-316 

induced cellular damages. In fact, biological processes such as cancer, neural activity, 317 

and inflammation are all energy-intensive, rely on robust fat metabolism, which 318 

releases large amounts of free fatty acids. The excess accumulation of free fatty acids 319 

in the cytoplasm promotes lipotoxicity and ROS-induced oxidative stress (73-75). The 320 

high levels of intracellular ROS can further promote lipolysis and free fatty acids 321 

release (76). This vicious circle finally drives the host to enter a severe metaflammatory 322 

state during chronic hyperinflammation, and consequently shorten lifespan. A recent 323 

study showed that renal purge of hemolymphatic lipids can efficiently prevent ROS-324 

mediated tissue damage during inflammation (77). A similar antioxidant function of 325 

LDs was also reported in neuronal stem cell niche (78) and in cancer cells (79). In our 326 

study, blocking the breakdown and promoting the growth of LDs by downregulated 327 

plin1 could efficiently eliminate ROS accumulation and prolong flies’ lifespan after 328 

bacterial infection. However, the detailed mechanisms how large LDs prefer to prevent 329 

ROS accumulation needs further investigation. One possibility is that the formation of 330 

large LDs sequesters the release of excessive free lipids, which oxidation contributes to 331 

the main source of ROS generation. Another possibility is that the larger the LDs are, 332 

the smaller the contact areas with mitochondria are. As mitochondria provides a major 333 

place for the oxidation of lipid usually supplied by LDs (9), reduced contacts between 334 
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LDs and mitochondria might be another not-bad way to cut down ROS generation. Thus, 335 

LDs’ growth is beneficial for redox homeostasis of the host. The downregulation of 336 

Plin1 to promote the enlargement of LDs might be an effective host adaptation to 337 

resolve inflammation-associated stress in response to immune activation. 338 

 339 

Moreover, large LDs’ formation can reduce the opportunity of pathogens to utilize free 340 

fatty acids for their own growth (80-82). This is possibly one reason why plin1 deficient 341 

flies, owning bigger LDs, had lower bacterial loads after infection. In addition, larger 342 

LDs might contain more resident histones, a cationic protein, which has been reported 343 

to kill bacteria in a previous study (83). In mammals, IFN-γ treatment of M. tuberculosis 344 

infected bone-marrow derived macrophage (BMDM) can induce the formation of LDs, 345 

in which neutral lipids serve as a source to produce eicosanoids for enhancing host 346 

defense (84). A recent study made a detailed analysis that LDs recruit cathelicidin, a 347 

broad-spectrum antimicrobial peptide, in response to LPS stimulation (13). However, 348 

whether the change of LDs’ morphology alters the recruitment of LD-anchored proteins 349 

and underlying molecular and cellular mechanisms need further investigation. In our 350 

study, the reduced expression of genes encoded antimicrobial peptides was also found 351 

when plin1 overexpression (Supplementary Fig. S4C and S4D) and diptericin was 352 

upregulated after plin1 mutant flies infected with bacteria (Supplementary Fig. S4B). 353 

These results also suggest that a link between antimicrobial signaling with plin1 directly 354 

or Plin1-mediated LDs’ modification indirectly. However, the large LDs’ formation in 355 

response to bacterial infection could in turn benefit the host to combat pathogens 356 
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actively.  357 

 358 

Plin1 is an important protein factor on the surface of LDs. It has been reported to control 359 

the mobilization of lipids on LDs’ surface by recruiting kinds of enzymes (85, 86) and 360 

sufficient to alter the morphology of LDs (27). In this study, we found that the 361 

expression of plin1 rather than plin2 preferred to be regulated by innate immune 362 

signaling. This provokes us to conceive that Plin1 may serve as a bridge to link 363 

immunity and lipid metabolism through modification of LDs. In response to transient 364 

immune activation, adaptative enlarged LDs benefit the host against pathogens and 365 

inflammation-induced stress. The alternation of the levels of mammalian PlINs protein 366 

on LDs’ surface was once mentioned after LPS stimulation (13). Our study provide a 367 

possibility that perilipins might response to immune signals and play an active role in 368 

infectious pathogenesis through transforming LDs. It is worthy in the future to trace 369 

and dissect the dynamic protein compositions on the surface of LDs along the different 370 

stages of inflammation, especially the proteins interact with Plin1. In summary, we 371 

found that the Plin1-mediated LDs’ morphological alteration is not only an adaptive 372 

consequence after bacterial infection, but also actively contributes to pathogenic 373 

regulation. Therefore, reconfiguration of LDs may provide a potential therapeutic target 374 

for resolution of inflammation. 375 

 376 

Materials and Methods 377 

Drosophila stocks and bacterial strain. 378 

All flies were propagated at 25˚C on standard cornmeal food (1 L food contains 77.7 g 379 
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cornmeal, 32.19 g yeast, 10.6 g agar, 0.726 g CaCl2, 31.62 g sucrose,63.2 g glucose, 2 380 

g potassium sorbate and 15 ml 5% Tegosept),30%-55% humidity with a 12h/12h 381 

light/dark cycle. Fly resources that were used in this study as follows: w1118 were used 382 

as wild-type controls if no additional indication. plin138, UAS-plin1 mcherry, UAS-plin1 383 

RNAi and ppl-GAL4 were kindly gifted from Dr. Xun Huang (Institute of Genetics and 384 

Developmental Biology, CAS). UAS-gstD-GFP was kindly gifted from Dr. ZhiWei Liu 385 

(Shanghai Ocean University). w1118, w[1118];P{w[+mW.hs]=Switch1}106, PGRP-L
Δ

386 
5
 ,RelishE20 were obtained from Bloomington stock center. All flies used in this study 387 

were male. Two bacterial strain, E. coli (DH5a) and S. typhimurium (SR-11) (a gift from 388 

Dr. ZhiHua Liu, Institute of Biophysics, CAS) were used in this study. 389 

 390 

Cloning and double-strand RNAs 391 

To construct the mrt and pzg reporter vector (mrt-luc and pzg-luc), the mrt and pzg 392 

promoter sequence (about -1500 bp or -1000 bp to 0 bp) was PCR amplified from 393 

Drosophila genomic DNA and introduced into pGL3 vector (Progema) at HindIII 394 

restriction site by using recombination technology (Hieff Clone® Plus One Step 395 

Cloning Kit, YEASEN). All the plasmid constructs were verified by nucleotide 396 

sequencing. pAC5.1-renilla plasmid as a normalized reporter. Double-stranded RNAs 397 

(dsRNAs) against relish or GFP used in the luciferase reporter assay were synthesized 398 

using MEGAscript T7 kit (Invitrogen). Primers used for PCR amplification are listed 399 

in Supplementary Table 1. 400 

 401 

Infection and survival rate counting  402 

Bacterial strains used in this study are E. coli (DH5a) and Salmonella typhimurium (S. 403 

typhimurium). Two days before infection, both bacteria from glycerol stocks were 404 

streaked onto Luria Broth (LB) agar plates and grown overnight at 37℃. The plate 405 

could be stored at 4 °C for up to 1 week. A single colony was inoculated to 6 ml fresh 406 

LB medium and grown at 37°C with shaking (200 rpm). Grow the bacteria to an OD600 407 

of 0.7 to 0.8 (about 3.5 hours). The bacterial culture was pelleted with sterile phosphate-408 

buffered saline (PBS) to the desired concentration. We injected 50.6 nl of bacterial 409 

suspension into dorsal prothorax of each fly with Nanoject II injector (Drummond). All 410 

flies used were 1 week old after eclosion. The final optical density (O.D. / ml) at 600 411 

nm for injection were E. coli (O.D. 10) and S. typhimurium (O.D. 6 or O.D. 3). For 412 

E.coli infection, each fly obtained about 1x10^6 CFUs. For S. typhimurium infection, 413 

each fly obtained the lower dose (about 2x10^5 CFUs) or the higher dose (about 1x10^6 414 

CFUs) according to the experiment design. Infected flies about 23 per vial were 415 

maintained at 25°C. Death was recorded at the indicated time point, and alive flies were 416 

transferred to fresh food every day for the survival analysis and CFUs assay. 417 

 418 

Bacterial loads assay 419 

To monitor bacterial loads of the flies during infection, the number of colony forming 420 

units (CFUs) grown on LB agar plate was determined as follow: 5 living flies were 421 

randomly collected in a 1.5 ml EP tube, rinsed with 70% ethanol two times by vertex 422 

for 10s to sterile the surface adherent bacteria, then rinsed with sterile deionized water 423 
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two times by vertex for 10 s, and then homogenized in 200 μl of sterile PBS with three 424 

fly body volumes of ceramic beads (diameter: 0.5 mm) in the Minilys apparatus (Bertin 425 

TECHNOLOGIES) at highest speed for 30 s. The suspensions obtained were then 426 

serially diluted in PBS and plated on LB agar. Specially noted for S. typhimurium 427 

plating, PBS was substituted with PBS + 1% Triton X-100. For the bacterial load at 428 

zero time point, flies were allowed to rest for 10 min after bacterial injection before 429 

plating as described above. The agar plate was maintained at 37℃ for 18 hours before 430 

CFUs counting. CFUs were log10 transformed.  431 

 432 

Cell culture, transfection and luciferase assay 433 

S2* cells (a gift from Dahua Chen, Institute of Zoology, CAS) were maintained in 434 

Drosophila Schneider’s Medium (Invitrogen) supplemented with 10% heat-inactivated 435 

fetal bovine serum (Gibco), 100 units/ml of penicillin, and 100 mg/ml of streptomycin 436 

at 28°C. Transient transfection of various plasmids, dsRNA was performed with 437 

lipofectamine 3000 (Invitrogen), according to the manufacturer’s manual. Luciferase 438 

reporter assays were carried out using a dual-luciferase reporter assay system 439 

(Promega). Where indicated, cells were treated with PGN (35 µg/µl, 6 h) purified from 440 

Erwinia carotovora carotovora 15 (Ecc15) referring to previous study(87). 441 

 442 

qRT-PCR 443 

For quantification of mRNA level, about 20 flies carcass/fat body tissue were dissected 444 

in sterile PBS buffer on ice at indicated time points post infection, immediately 445 

homogenized in 200 μl cold TRIzol with three fly body volumes of ceramic beads 446 

(diameter: 0.5 mm), then supplied additional 300 μl TRIzol to reach total 500 μl volume 447 

and samples were stored at -80℃.RNA extraction was referred to the manual of 448 

commercial kit (Magen, Hipure Total RAN Plus Micro Kit), this kit can effectively 449 

remove genomic DNA contamination. cDNA was synthesized by using the kit (abm, 450 

5X All-In-One MasterMix) with total 1μg isolated RNA as template in a 20 μl reaction 451 

system. Quantitative real-time PCR (qRT-PCR) was performed using a SYBR green kit 452 

(abm, EvaGreen supermaster Mix) on an ABI 7500 or ViiATM 7 thermocycler (Life 453 

Technology). Samples from at least four independent biological replicates per genotype 454 

were collected and analyzed. House-keeping gene rp49 as the reference gene for data 455 

normalization. Primer data for qRT-PCR are provided in Supplementary Table 1.  456 

 457 

Lipid droplet staining and counting 458 

For lipid droplet staining, adult male carcass/fat body tissues were dissected and fixed 459 

in 4% fresh prepared paraformaldehyde (PH=7.5) in PBS for 10 min on ice. Tissues 460 

were then rinsed twice with PBS (3 min each time), then incubated in PBS containing 461 

1μg/ml of BODIPY 493/503(Invitrogen) dye or 0.5 μg/ml Nile Red (Sigma) for 30 min 462 

on ice, DAPI (1μg/μl, final concentration) was added to stain nuclei at last 5 mins of 463 

staining process. After staining, tissues were rinsed three times with PBS (3 mins each 464 

time), then mounted in mounting medium (Vector, H-1000) for microscopy analysis. 465 

To quantify the average lipid droplet size, the average diameter of the three largest lipid 466 

droplets per cell was measured generally, with the exception of plin1 deficiency 467 
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associated flies, we measured their biggest lipid droplets in one cell (27). 30 fat body 468 

cells of each genotype fly randomly selected from eight confocal images were used to 469 

analysis the lipid droplet size. To count the size distribution of lipid droplets, the 470 

average percentage of the indicated size range of lipid droplets per cell from 30 fat body 471 

cells were determined by using the “Analyze Particles” tool embedded in ImageJ 472 

software (https://imagej.nih.gov/ij/). To quantify the fluorescence intensity of GFP on 473 

the surface of lipid droplets, confocal images acquired from eight fat bodies were 474 

measured by ImageJ software. 475 

 476 

Glyceride detection 477 

Glyceride amounts were measured using a TG Quantification Kit (BIOSINO, TG kit). 478 

Briefly, for whole body glyceride quantification, groups of 12 one-week old male flies 479 

were collected and weighted (about 10 mg) in a 1.5 ml EP tube, then immediately stored 480 

at -80℃ for subsequent assay. Stored flies were homogenized in 200 μl lysis buffer 481 

(10mM KH2PO4, 1mM EDTA, PH=7.4) with three fly body volumes of ceramic beads, 482 

and inactivated in water bath at 75°C for 15 min. The inactivated homogenate was 483 

homogenized again for 30 s and kept on ice ready for assay. For each glyceride 484 

measurement, 3 μl of homogenate was incubated with 250 μl reaction buffer at 37°C 485 

for 10 min. After removal debris by centrifugation (2000 rpm, 2 min), 150 μl of clear 486 

supernatant was used to perform a colorimetric assay in 96 well plate (Corning® Costar) 487 

for absorbance reading at 505 nm. Glyceride level was normalized with fly weight in 488 

each homogenate (unit: nmol/mg.fly). For fat body glyceride quantification, 25 fly’s 489 

carcass/fat body tissues were dissected and following assay as described above. 490 

Glyceride level was normalized with per 25 flies (unit: nmol/25.fly). 491 

 492 

RU486 treatment  493 

RU486 induction was described as before (88). Briefly, A 10 mg/ml stock solution of 494 

RU486 (mifepristone; Sigma) was dissolved in DMSO. Appropriate volumes of RU486 495 

stock solution was diluted with water containing 2% ethanol to final concentration of 496 

50 μg/ml.100 μl of the diluted RU486 solution was dipped onto the surface of fresh 497 

food in vials (Diameter: 2 cm). The vials were then allowed to dry at room temperature 498 

for half day or 4℃ for overnight. Flies were transferred to RU486-contained food and 499 

raised in 25℃ and fresh food was changed every two days. 500 

 501 

NAC Treatment 502 

N-acetyl-L-cysteine (NAC) (Beyotime) fresh solution was prepared by dissolving 0.5 503 

g of NAC powder in 10 ml distilled water, the solution could be aliquoted into 1 ml per 504 

EP tube and frozen or stored at -80 °C. 100 μl of NAC solution was dipped onto the 505 

surface of fresh food in vials (Diameter: 2 cm). The vials were then allowed to dry at 506 

room temperature for half day or 4℃ for overnight. Flies were transferred to NAC-507 

contained food and raised in 25℃ and fresh food was changed every day. 508 

 509 

ROS detection 510 

We used two methods to detect ROS in fat body, which are gstD-GFP reporter flies and 511 
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dichlorofluorescein diacetate (DCFH-DA) labeling. The oxidative stress reporter 512 

construct gstD-GFP for evaluating cellular ROS levels has been describe before (58). 513 

Briefly, the carcass/fat body of transgenic flies containing a gstD-GFP reporter 514 

construct were dissected in sterile PBS, fixed in 4% formaldehyde for 10 min on ice, 515 

rinsed twice with ice-chilled PBS (3 min each time), then the flaky fat body cells 516 

attached to the inner carcass shell were dissected out to mount and confocal image 517 

(Vector, H-1000). DCFH-DA (Beyotime, Reactive Oxygen Species Assay Kit) labeling 518 

of fresh dissected carcass/fat body tissues was performed according to the 519 

manufacturer’s manual, which based on the ROS-dependent oxidation of DCFH-DA to 520 

fluorescent molecule 2'-7'dichlorofluorescein (DCF). In brief, the tissues were 521 

incubated with PBS containing 20 μM DCFH-DA for 30 min at 30℃, washed with 522 

sterile PBS for three times (3 min each) to remove free DCFH-DA that do not uptake 523 

by the cell, then the flaky fat body cells attached to the inner carcass shell immediately 524 

were dissected out to mount and confocal image (Vector, H-1000). It should be noted 525 

that the slices were confocal imaged using the exact same settings for control and 526 

experimental groups. The fluorescence intensity is proportional to the ROS levels, 527 

fluorescence intensity of GFP or DCF was quantified by using ImageJ software. 528 

 529 

Microscopy and software 530 

LSM700 (Leica) and Olympus FV-1200 confocal laser scanning microscopy were used 531 

for imaging. Captured images were analyzed by implemented soft respectively. ImageJ 532 

(https://imagej.nih.gov/ij/) was used for analysis of fluorescence intensity and lipid 533 

droplets size.  534 

 535 

Statistical analyses 536 

All replicates are showed as the mean ± SD or mean with range. Statistical significance 537 

was determined using a paired Student’s t-test for two measurements, one-way ANOVA 538 

(Tukey's HSD) with a multiple t-tests and Multiple t-tests for pairwise comparisons. 539 

Kaplan–Meier test for survival curves comparison. All data processing was used with 540 

GraphPad Prism 7.0.  541 

 542 

Sample size choice. The sample size was determined according to the number of data 543 

points. Batches of experiment were carried out to ensure repeatability and the use of 544 

enough animals for each data point. 545 

 546 

Randomization. Measures were taken to ensure randomization. Each experimental 547 

batch contained more animals than the number of data points, to ensure randomization 548 

and the accidental exclusion of animals. In vitro analyses were usually performed on a 549 

specimen from animals at each data point to ensure a minimum of three biological 550 

replicates. 551 

 552 

Blinding. Data collection and data analysis were routinely performed by different 553 

people to blind potential bias. All measurement data are expressed as mean ± s.d. to 554 

maximally show derivations, unless otherwise specified. 555 
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Fig. 1. E. coli infection switches lipid metabolism and LDs morphology in the fat body. 646 
(A) Relative Dptericin(Dpt) mRNA expression and glyceride level in the fat body of 647 
wild type flies at indicated time points post E. coli  infection. The mean values of Dpt 648 
mRNA expression or glyceride level was connected by dash line. The fold change of 649 
mRNA expression was normalized to that of 0 h and four independent repeats (n =20 650 
flies per repeat) were performed at each time point. Total glyceride level of 25 flies’ fat 651 
body tissues was quantified in six biological replicates at each time point. (B and C) 652 
BODIPY staining (green) of LDs in the fat body of wild type flies at indicated time 653 
points post E. coli infection. Nuclei of fat body cells were stained with DAPI (blue). 654 
Scale bar: 10 μm. The corresponding statistics of the distribution of LDs’ size was 655 
shown in (C) for E. coli infection (n =30 cells for each time point). Eight fat bodies 656 
were examined for each time point.(D) The statistics of LDs’ size (n =30 cells) in the 657 
fat body of wild type flies at indicated time point post E. coli infection. Each scattering 658 
dot represents the data from one fat body cell. Error bars represent the mean ± s.d. (A-) 659 
and mean with range (D). Data were analyzed by One-way ANOVA with Tukey’s 660 
multiple-comparison test (A, D). *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. 661 
See also in Supplementary Figure 1. 662 
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Fig. 2. IMD signaling pathway is required for the alteration of lipid metabolism and 690 
LDs morphology upon infection. (A) Relative Dptericin (Dpt) mRNA expression 691 
(black) and Fat levels (Grey) in the fat body of wild type flies at indicated time points 692 
post heat-killed E. coli (HK-E. coli) infection. The fold change of mRNA expression 693 
was normalized to that of 0 h and four independent repeats (n =20 flies per repeat) were 694 
performed at each time point. Total fat levels of 25 flies’ fat body tissues was quantified 695 
in six biological replicates at each time point. (B) Relative glyceride level in the fat 696 
body of wild type and IMD pathway mutants (Relish and PGRP-LC). Each value of 697 
glyceride level was normalized to that of 0h of wild type. Each data contains four 698 
independent repeats (25 flies’ fat body tissues per repeat). (C and D) BODIPY staining 699 
(green) of LDs (C) and the corresponding statistics of LDs’ size (n =30 cells) (D) in the 700 
fat body of IMD pathway mutant flies and corresponding genetic control flies. Eight fat 701 
bodies were examined for each sample. Error bars represent mean ± s.d. (A-B) or mean 702 
with range (D). Data were analyzed by One-way ANOVA with Tukey’s multiple-703 
comparison test (A-B) and Multiple t-tests (D). Scale bar: 20 μm. *p < 0.05; ** p < 704 
0.01;*** p < 0.001; ns, no significance. 705 
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Fig. 3. plin1 responds to IMD activation through Mrt/Pzg complex, and regulates LDs’ 734 
morphology. (A) Relative plin1 mRNA levels in the fat body of wild type flies at the 735 
indicated time points post E. coli infection. Flies treated with sterile PBS were used as 736 
a control. The fold change of mRNA expression was normalized to that of 0 h. (B) 737 
BODIPY staining (green) of LDs in the fat body of indicated flies. Nuclei of fat body 738 
cells were stained with DAPI (blue). Eight fat bodies were examined for each genotype. 739 
(C and D) Relative mrt (C) and pzg (D) mRNA levels in the fat body of wild type flies 740 
post E. coli infection. Flies treated with sterile PBS were used as a control. The fold 741 
change of mRNA expression was normalized to that of 0 h. Four independent repeats 742 
(n=20 flies fat body tissues per repeat) were performed at each time point for each group. 743 
(E and F) Relative luciferase activities of mrt (E) (Full length promoter of -1.5kb to 744 
+1bp including all predicted Relish Binding motifs in Fig. S3) reporter or pzg (F) (1.5 745 
KB upstream of TSS, all predicted Relish binding sites are covered) reporter in S2* cells 746 
after double strand RNA (dsRNA) and PGN (35 μg/ml) treatment. All data were 747 
normalized to dsGFP control group at 0 h. (G) Relative luciferase activities of T-mrt 748 
(Rel) and T-mrt reporter in S2* cells after PGN (35 μg/ml) treatment. All data were 749 
normalized to T-mrt (Rel) group at 0h. Three independent repeats were performed at 750 
each time point for each treatment. Error bars represent the mean ± s.d.. Data were 751 
analyzed by One-way ANOVA with Tukey’s multiple-comparison test (A, C-D), 752 
Multiple t-tests (A) and Student’s t test (E-G). Scale bar: 20 μm. *p < 0.05; **p < 0.01; 753 
***p < 0.001; ns, no significance. See also in Supplementary Figure 2 and 3. 754 
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Fig. 4. plin1 participates in the susceptibility of flies to bacterial infection. (A and B) 778 
Survival curves (A) and bacterial loads (CFUs) (B) of wild type and plin138 flies (n =60) 779 
post S. typhimurium infection. (C and D) Survival curves (C) and bacterial loads (CFUs) 780 
(D) of ppl-GAL4>plin1 RNAi and control flies (n =60) post S. typhimurium infection. 781 
(E and F) Survival curves (E) and bacterial loads (CFUs) (F) of ppl-GAL4>plin1 and 782 
control flies (n =60) post S. typhimurium infection. (G and H) Survival curves (G) and 783 
bacterial loads (CFUs) (H) of ppl-GAL4>plin1 and control flies (n =60) post E. coli 784 
infection. Values of plotted curves represent mean ± s.d. (A, C, E, G) of at least three 785 
independent repeats. Each scattering dot (CFUs) represents one technical replicate, line 786 
represents the mean of four independent repeats (B, D, F, H). Data were analyzed by 787 
Kaplan–Meier (A, C, E, G) and Multiple t-tests (B, D, F, H). *p < 0.05; ** p < 0.01; 788 
*** p < 0.001, ns, no significance. See also in Supplementary Figure 4. 789 
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Fig. 5. Plin1-mediated reconfiguration of LDs is involved in the regulation of 822 
intracellular ROS. (A and B) ROS level indicated by DCFH-DA staining (green) in the 823 
fat body of indicated flies. The statistics of fluorescence intensity was plotted in (A) for 824 
plin138 and in (B) for ppl-GAL4>plin1 and ppl-GAL4>plin1-RNAi flies and their 825 
genetic controls, respectively. Dashed circle indicated LDs. Eight fat bodies were 826 
examined for each sample and each scattering dot represents the data from one image. 827 
(C and D) ROS levels indicated by DCFH-DA staining (green) in the fat body of 828 
indicated one-week old adult flies and control flies (C). The corresponding fluorescence 829 
intensity was quantified in (D). Eight fat bodies were examined for each sample and 830 
each scattering dot represents the data from one image. (E and F) BODIPY staining 831 
(green) of LDs (E) and the corresponding statistics of LDs’ size (n =30 cells) (F) in the 832 
fat body of indicated flies. Eight fat bodies were examined for each sample. Error bars 833 
represent the mean with range. Data was analyzed by Student’s t test (A-B, D, F) and 834 
One-way ANOVA with Tukey’s multiple comparison test (D, F). Scale bar: 20 μm.*p 835 
< 0.05; ** p < 0.01; *** p < 0.001, ns, no significance. 836 
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Figure 6
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Fig. 6. Downregulated Plin1 benefits flies against bacterial infection through reducing 866 
oxidative stress. (A and B) ROS level indicated by GFP intensity (green) of gstD-GFP 867 
reporter in the fat body of wild type flies infected with E. coli (upper panel) or S. 868 
typhimurium (lower panel) at indicated time points. The statistics of GFP intensity was 869 
plotted in (B) for E. coli infection and S. typhimurium infection. Eight fat bodies were 870 
examined for each sample and each scattering dot represents the data from one image. 871 
(C) Survival curves of wild type flies (n=60 flies) with or without NAC treatment at 872 
indicated time post S. typhimurium infection. (D and E) ROS level indicated by DCFH-873 
DA staining (green) in the fat body of indicated flies at 16 h post E.coli infection. (F) 874 
BODIPY staining (green) of LDs in the fat body of GS106-GAL4>plin1 and GS106-875 
GAL4>plin1 RNAi flies after treatment with (lower panel) or without (upper panel) 876 
RU486 treatment. Eight fat bodies were examined for each sample. (G and H) Survival 877 
curves of above flies (n =60) post S. typhimurium infection. (I) ROS level indicated by 878 
DCFH-DA staining (green) in the fat body of indicated flies with (lower panel) or 879 
without (upper panel) RU486 treatment. The statistics of fluorescence intensity was 880 
plotted in (I1) for GS106-GAL4>plin1 and in (I2) for GS106-GAL4>plin1 RNAi flies. 881 
Eight fat bodies were examined for each sample and each scattering dot represents the 882 
data from one image. Error bars represent the mean with range (B, E, I). Values of 883 
plotted curves represent mean ± s.d. of at least three independent repeats (C, G-H). 884 
Data was analyzed by One-Way ANOVA with Tukey’s multiple-comparison test (B), 885 
Student’s t test (E, I) and Kaplan–Meier (C, G-H). Scale bar: 20 μm. *p < 0.05; **p < 886 
0.01; ***p < 0.001, ns, no significance. 887 
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Fig. 7. The schematic diagram of LDs’ morphogenesis mediated by Plin1 during 910 
infection-induced pathogenesis. LD’s growth induced by downregulation of plin1 in 911 
response to IMD signaling activation post bacterial infection. And enlarged LDs 912 
provides antioxidant role and benefits the host for anti-infection.  913 
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SUPPLEMENTAL INFORMATION 954 

Supplemental Information includes four figures, and one table.  955 

Supplementary Figure Legends 956 
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Fig. S1. IMD signaling modifies lipid metabolism and LDs morphology. Related to 995 
Figure 1. (A) Relative Dptericin (Dpt) mRNA expression (black) and glyceride level 996 
(gray) in the fat body of wild type flies at indicated time points after sterile PBS 997 
injection. The fold change of mRNA expression was normalized to that of 0 h and four 998 
independent repeats (n =20 flies per repeat) were performed at each time point. Total 999 
glyceride level of 25 flies’ fat body tissues was quantified in six biological replicates at 1000 
each time point. Error bar mean ± s.d. Data were analyzed by One-Way ANOVA with 1001 
Tukey’s multiple-comparison test. *p < 0.05; **p < 0.01; ***p < 0.001, ns, no 1002 
significance.  1003 
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Fig. S2. Plin2 expression of fat body upon E.coli infection. Related to Figure 3. (A) 1039 
Relative plin2 mRNA expression in the fat body of wild type flies at indicated time 1040 
points post E.coli infection. The fold change of mRNA expression was normalized to 1041 
that of 0 h and at least three independent repeats (n =20 flies per repeat) were performed 1042 
at each time point. Error bar mean ± s.d. Data were analyzed by One-Way ANOVA with 1043 
Tukey’s multiple-comparison test. *p < 0.05; **p < 0.01; ***p < 0.001, ns, no 1044 
significance. 1045 
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Fig. S3. Relish/NF-κB potentially regulates the transcription of mrt or pzg in 1083 
Drosophila subgroups. Related to Figure 3. (A and B) Predicted Relish/NF-κB-binding 1084 
motifs in the promoter locus of mrt (A) and pzg (B) genes of five Drosophila subgroups. 1085 
Dmel, Drosophila melanogaster; Dsim, D. simulans; sec, D. sechelia; Dyak, D. yakuba; 1086 
Dere, D. erecta. S1-S5 represent the location site (red color) of conserved binding 1087 
motifs of Relish. Sequence alignment is analyzed by BLAST in flybase website. TSS: 1088 
transcription start site. (C) Schematic diagram of the mrt promoter locus and the 1089 
plasmid constructs used for luciferase assay. The full length (mrt:-1.5k to +1bp), 1090 
truncated length (T-mrt (Rel):-870 to +1bp) and mutant length (T-mrt:-870 to +1bp 1091 
without binding motifs) of mrt promoter were indicated. 1092 
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Fig. S4. Overexpression plin1 compromises AMP responses. Related to Figure 4. (A 1127 
and B) Relative diptericin (Dpt) and attacin-A (AttA) mRNA expression in the fat body 1128 
of plin138 mutant flies and wild type flies at indicated time points post E. coli (A) or S. 1129 
typhimurium (B) infection. Four independent repeats were performed (n = 20 per 1130 
repeat). (C and D) Relative diptericin (Dpt) and attacin-A (AttA) mRNA expression of 1131 
ppl-GAL4> plin1 flies and ppl-GAL4> + control flies at indicated time points post E. 1132 
coli (C) and S. typhimurium (D) infection. Four independent repeats were performed (n 1133 
= 20 per repeat). Error bars represent mean ± s.d. Data was analyzed by Multiple t-tests. 1134 
**p < 0.01; ***p < 0.001.  1135 
 1136 
Table S1: Primers used in this study. 1137 

Genes Forward primer  Reverse primer 

qRT-PCR primers 

Rp49 AGATCGTGAAGAAGCGCACCAAG CACCAGGAACTTCTTGAATCCGG 

Dpt GGCTTATCCGATGCCCGACG TCTGTAGGTGTAGGTGCTTCCC 

AttA CACAACTGGCGGAACTTTGG AAACATCCTTCACTCCGGGC 

plin1 CAGCGCATACCACTGGTCTAT GCATTACCGATTTGCTTGACAG 

plin2 CGAGCGCCTCCTTGAATAC AGAACTCTTGCCATTCTGCAC 

mrt GGAGGATATTCTCGGAGTGGAGC GCTTCCTGCCTCGTAGTCGAAC 

pzg GCTGAGGAACCACAACCATCTGAC GTAACCTCGCCTTCGCCAGATT 

Primers for plasmid construction and dsRNA synthesis 

F-mrt(Rel)-luc CGAGATCTGCGATCTAAGTATAACG

TCGTAGCGCACACGCACACC 

CAGTACCGGAATGCCAAGCTGGGT

GCACCCTTTGATCAAGGTCTT 

pzg-luc CGAGATCTGCGATCTAAGTACACAG

TAGCAGCACAACGGAGACG 

CAGTACCGGAATGCCAAGCTCTGT

AGCAGTTCTCGACGGACGCGT 

T-mrt(Rel)-luc CGAGATCTGCGATCTAAGTAGCCAC

TTTGTCGCAGTGTATCTGT 

CAACAGTACCGGAATGCCAGCTGG

GTGCACCCTTTGATCAAG 

T-mrt-luc CGAGATCTGCGATCTAAGTACGTTA

GCTTTTTGCTGTCATTCGT 

CCAACAGTACCGGAATGCCAGATG

CTGTTGGAAAACAAGCAA 

dsRelish TAATACGACTCACTATAGGGAGATC

AAACACGTGCCGC 

TAATACGACTCACTATACCCAGACT

CACGCTCTGTCTC 

dsGFP TAATACGACTCACTATAGGGAGAAT

GGTGAGCAAGGGCGAGGA 

TAATACGACTCACTATAGGGAGACT

TGTACAGCTCGTCCATGC 
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