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ABSTRACT  

Background: Podocyte depletion is an established indicator of glomerular injury and predicts 

clinical outcomes. The semi-quantitative nature of existing podocyte estimation methods or 

podometrics hinders incorporation of such analysis into experimental and clinical pathologic 

workflows. Computational image analysis offers a robust approach to automate podometrics 

through objective quantification of cell and tissue structure. Toward this goal, we developed 

PodoCount, a computational tool for quantitative analysis of podocytes, and validated the 

generalizability of the tool across a diverse dataset.    

 Methods: Podocyte nuclei and glomerular boundaries were labeled in murine whole kidney 

sections, n = 135, from six disease models and human kidney biopsies, n = 45, from diabetic 

nephropathy (DN) patients. Digital whole slide images (WSIs) of tissues were then acquired. 

Classical image analysis was applied to obtain podocyte nuclear and glomerular morphometrics. 

Statistically significant morphometric features, which correlated with each murine disease, were 

identified. Engineered features were also assessed for their ability to predict outcomes in human 

DN. PodoCount has been disbursed for other researchers as an open-source, cloud-based 

computational tool. 

Results: PodoCount offers highly accurate quantification of podocytes. Engineered podometric 

features were benchmarked against routine glomerular histopathology and were found to be 

significant predictors of disease diagnosis, proteinuria level, and clinical outcomes. 

Conclusions: PodoCount offers high quantification performance in diverse murine disease models 

as well as in human DN. Resultant podometric features offers significant correlation with 

associated metadata as well as outcome. Our cloud-based end-user tool will provide a standardized 

approach for podometric analysis from gigapixel size WSIs in basic research and clinical practice.  
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1. INTRODUCTION  

Chronic kidney disease (CKD) is a state of reduced kidney function that may progress to end-stage 

kidney disease (ESKD). Driven by increasingly prevalent conditions with high incidence (e.g., 

diabetes, hypertension), CKD will account for >1.2 million deaths and unprecedented 

socioeconomic burden in 20211,2. To mitigate this, biomedical initiatives aim to identify disease-

related biomarkers with improved precision for early detection and intervention. Current studies 

look to animal models and human biopsies for guidance on prospective biomarkers. One such 

example is the assessment of highly specialized epithelial cells, podocytes, that form part of the 

glomerular filtration barrier (GFB). According to the podocyte depletion hypothesis3-6, injury-

driven loss of podocytes contributes to glomerular injury and thus CKD progression. A myriad of 

studies confirms podocyte depletion as an early determinant of proteinuria and 

glomerulosclerosis7-9. These observations rendered podocytes a measurable indicator of renal 

injury and therapeutic success in CKD. 

Unfortunately, podocyte analysis in experimental and clinical workflows is limited to semi-

quantitative methods of podocyte estimation that poorly approximate whole-slide cell counts, 

provide little-to-no morphological assessment, and overlook regional variation in podocyte 

pathology3,4,10-13. Further complicating this situation is the fact that podocyte identification on 

routine and special stains viewed under brightfield histopathology remains difficult 10. In order to 

achieve big-data podocyte studies that facilitate early detection and intervention in basic research 

and clinical practice, accurate and precise quantitative methods must be developed to identify, 

characterize and contextualize podocytes in brightfield microscopy.  

Computational image analysis offers a unique approach to refine podocyte estimation through 

objective quantification of cell and tissue structures in digital pathology. In their review, Hodgin, 
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Wiggins et al. highlight how automated podometrics will augment podocyte-centric clinical studies 

and basic research 5,14,15. Podometrics is defined as a set of techniques for quantification of well-

validated podocyte metrics, including the quantification of glomerular podocyte (nuclear) number, 

size, and density from immunohistochemistry (IHC)-labeled kidney biopsies4,5,10-14,16. Toward this 

goal, we developed PodoCount – a tool for automated podometrics in digitized kidney biopsies 

(Fig 1). Our work is enabled by recent advancements in whole-slide imaging and hardware 

technologies17,18, as well as an optimal staining technique that labels podocyte nuclei and 

glomerulus boundaries in tissue specimens.  

To validate our automated podometrics, we applied PodoCount in a multi-institutional and multi-

species dataset comprising six glomerular disease models and human diabetic nephropathy (DN). 

This dataset emulates the heterogeneity of disease pathology, sample preparation, and digitization 

characteristic of digital pathology data19-23. Computational evaluation demonstrated that 

PodoCount achieved high performance in quantifying podocyte nuclei. Subsequent statistical 

analysis suggested that computed podocyte metrics highlight subtle differences in histopathology 

essential for differentiation of wild-type and disease states as well as critical stages in DN 

progression. To ensure our pipeline’s broad applicability and accessibility, we optimized 

PodoCount across this vast dataset and developed a web-based plugin for podometrics in the cloud. 

Cloud-based podocyte counting provides a user-friendly, universally accessible environment for 

computational analysis irrespective of one’s programming experience or operating system. 

Operating at an efficient rate and high performance, PodoCount has tremendous potential to ease 

podocyte-centric experimental and clinical workflows. 
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2. METHODS 

2.1 | Disclosure. Human data collection followed protocols approved by the Institutional Review 

Board at the Seoul National University (SNU) College of Medicine (H-1812-159-998), Seoul, 

Korea. All experiments were performed according to federal guidelines and regulations. Animal 

studies were performed in accordance with protocols approved by the Institutional Animal Care 

and Use Committee at the Georgetown University, National Institutes of Health, University of 

Minnesota, and Johns Hopkins University (JHU), are consistent with federal guidelines and 

regulations, and are in accordance with recommendations of the American Veterinary Medical 

Association guidelines on euthanasia. 

2.2 | Murine and Human data. This study used data from six murine kidney disease models and 

kidney biopsies from a diabetic nephropathy patient cohort. A brief summary of each dataset has 

been provided below (Fig 2). These multi-institutional, multi-species specimens, of both male and 

female origin, feature highly variable sample preparation, imaging, staining and pathology, and 

thus comprise a dataset that exemplifies scientific rigor and reproducibility (Fig 3).  

Murine cohort: Cohort 1: An HIV-associated nephropathy (HIVAN) model was used. In this 

model, transgenic Tg26 mice on a FVB/N background feature a gag-pol-deleted HIV-1 genome24 

which manifests as collapsing glomerulopathy. Cohort 2: Wild-type FVB/N mice were subjected 

to a combination of four interventions that induce a post-adaptive form of FSGS, summarized by 

the acronym SAND. The interventional process includes 0.9% saline drinking water, angiotensin 

II infused via osmotic pump, uni-nephrectomy, and deoxycorticosterone delivered by implantation 

of a subcutaneous pellet.25,26 Cohort 2 is referred to as FSGS (SAND) throughout this study. 

Cohort 3 & 4: Two models of type-2 diabetes mellitus (T2DM) were used in this study, 

summarized as  T2DM A and T2DM B throughout this work. For T2DM A (Cohort 3), db/db mice 
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on BKS background featuring a leptin receptor mutation were used. These mice depict 

spontaneous/congenital diabetes due to leptin signaling abnormalities27. For T2DM B (Cohort 4), 

the KKAy mouse model (see description in a previous work28) was used that develop spontaneous 

diabetes of polygenic origin. Cohort 5: Aging studies were performed in 4-month-old and 21-

month-old C57BL/6 male mice obtained from the NIA aging rodent colony29. Cohort 6: An Ercc1-

/∆ Progeroid mouse model and wild-type littermate controls (15-18-week-old) on a 

C57BL/6J:FVB/N f1 background were used for the study30,31. Mice were bred and genotyped as 

previously described32.  

Human cohort: Human tissues consisted of needle biopsy samples from human T2DM patients (n 

= 45). Samples were collected from the Seoul National University Hospital Human Biobank. 

Biopsies were graded by a renal pathologist based on the Tervaert classification method33. Clinical 

metadata including estimate glomerular filtration rate (eGFR)34 and serum creatinine were 

measured during biopsy and one-year and two-years post biopsy. This study considered 

progression to ESKD within 2 years following biopsy as the main outcome. 

2.3 | Sample preparation and imaging. Sample preparation and staining procedures were 

consistent with existing protocols for IHC staining of formalin fixed, paraffin embedded (FFPE) 

tissues. Podocyte nuclei were immunohistochemically labeled in tissue sections using an antibody 

specific for p57kip2, a marker of podocyte terminal differentiation35 (primary ab75974, Abcam, 

Cambridge, UK), followed by HRP Unovue Rabbit HRP detection reagent (RU-HRP1000, 

Diagnostic BioSystems, Pleasanton, CA) and exposed to diaminobenzidine (DAB) chromogen and 

substrate (BSB0018A, Bio SB, Santa Barbara, CA). A periodic acid-Schiff (PAS) post-stain was 

applied. Hematoxylin counterstain was omitted from the traditional PAS protocol.  
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Bright-field whole slide images (WSI) were captured using an Aperio AT2 microscope (Leica 

Microsystems, Buffalo Grove, Il) or a NanoZoomer S360 slide scanner equipped with a 40X 

objective (Hamamatsu Photonics, Bridgewater, NJ). The full image dataset consisted of WSI of n 

= 135 whole murine kidney sections and n = 45 DN biopsies (Fig 2).  

2.4 | Whole slide compartmentalization of renal parenchyma. Images of podocytes and renal 

tissue compartments were extracted from WSI through image segmentation by selecting image 

regions of interest (ROIs) based on differences in color, texture, and shape36. Segmented structures 

included whole tissue sections, glomerular boundaries, and podocyte nuclei.  

Structural segmentation involved several steps. For whole tissue sections, first a representative 

color vector derived from the original red-green-blue (RGB) WSI was applied as a global mean-

based threshold to segment the tissue section from the background of the WSI. Then glomerular 

boundaries were detected using our previously published Human-AI-Loop (H-AI-L) tool37, which 

is a convolutional neural network developed for WSI segmentation of digital pathology. In the 

next step, podocyte nuclei were segmented from each detected glomerulus. Toward this goal, first 

a stain deconvolution algorithm38 was used to separate the IHC-positive (IHC+) podocyte nuclei 

from the surrounding PAS-positive (PAS+) glomerulus micro-compartments. A local-mean based 

threshold was applied to produce a binary image, with podocyte nuclei in the foreground. 

Morphological image processing techniques36 including hole-filling and size exclusion were 

applied to remove excess nuclear DAB, while marker controlled watershed39-41 separated 

overlapping nuclei.  In image processing, a watershed transformation involves analyzing the image 

as if it were a topographic map, with image intensity being represented as height on a map, and 

the addition of lines that separate regions of similar image intensity. A marker representing the 
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peak of each region may be superimposed on the map to control or guide the placement of these 

separation lines for optimal division of contiguous regions.   

2.5 | Quantitative performance analysis. Sensitivity, specificity, precision, and accuracy were 

computed in order to evaluate pipeline segmentation performance. Podocyte counts were evaluated 

by comparison with manual counts. Performance analysis was conducted for a subset of WSIs (n 

= 12, including both wild-type and mutant mice from each model) and corresponding glomerulus 

ROIs (n = 120) in order to assess the accuracy of segmentation and enumeration of podocytes. For 

all images, podocyte nuclei and tissue and glomerulus boundaries, were annotated manually to 

provide ground truth for comparison with automatic segmentations. In addition, podocytes were 

manually counted in each extracted glomerulus image for comparison with pipeline counts. For 

each of the twelve WSIs, segmentation and enumeration metrics were computed across all ROIs, 

and subsequently were computed for all WSIs.   

2.6 | Whole-slide podocyte and glomerulus feature extraction. Segmented podocyte nuclei were 

enumerated in each ROI as an estimation of glomerular podocyte count. Built-in morphological 

operations were applied to derive geometric features from both podocytes and glomeruli42. 

Geometric features included image object area, bounding box area, convex area, eccentricity, 

equivalent diameter, extent, major and minor axis lengths, orientations, perimeters, and solidities. 

A brief description of each feature is provided in Table S1. Pixel intensity statistics were derived 

from podocyte nuclei exclusively. In addition to individual feature values, feature statistics were 

computed for each single-glomerulus podocyte population as well as for the whole-slide 

glomerulus population. All morphometric features were recorded in csv file format for subsequent 

statistical analysis. 
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2.7 | Biologically-inspired podocyte feature engineering. To best measure podocyte depletion 

(Table 1), features were engineered to emulate podocyte pathology in glomerular disease. For each 

glomerulus unit, podocyte spatial density was estimated using three steps: (i) dividing the absolute 

podocyte count by the glomerular area, (ii) computing the total area of podocyte nuclei within the 

glomerulus ROI, and (iii) dividing the cumulative podocyte nuclear area by the glomerular area. 

These area-based metrics were converted to µm2 in order to place measurements within familiar 

spatial context. Feature values were recorded for subsequent analysis.  

2.8 | Statistical analysis. Data were analyzed with Minitab Statistical Software v19 [Minitab 17 

Statistical Software (2010), Minitab, State College, PA]. All analysis was completed at a 

significance level (α) of 0.05. 

Differences between groups, including, wild-type and mutant mice and male vs female mice, were 

assessed with unpaired, two-sample t-tests. Welch’s correction for unequal variances was 

performed when appropriate. Correlation analysis between murine histologic image features and 

urinary albumin/creatinine ratio (UACR) at time of sacrifice were completed using the Pearson 

correlation coefficient measure (Pearson’s R)43.  

Differences among three or more groups, including diabetic nephropathy stages, were assessed 

with one-way ANOVA, followed by post hoc Bonferroni tests for multiple comparisons. For those 

feature distributions which violated ANOVA criteria, the Kruskal-Wallis nonparametric test was 

used to compare population medians, followed by post hoc Dunn’s tests44,45. Logistic regression 

was used to study binary ESKD outcome, with a chi-square test comparing the simple linear 

regression against a null model46.  
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2.9 | Deployment of whole-slide podocyte analysis with cloud computation. HistomicsUI47, a 

distributed system with RESTful application programming interface (API), was developed by 

Kitware (Clifton Park, NY) and was used to deploy our algorithm as a plugin, thereby creating an 

online platform which would enable multiple users to detect and quantify podocytes via a web 

interface. The algorithm was packaged in the form of a Docker image using Docker software (Palo 

Alto, CA) 48-50, a framework that enables users to build and run applications in containers. The 

generated container conforms to the Slicer CLI workflow interface, which allows HistomicsUI to 

display a user interface to adjust algorithm parameters.  

2.10 | Hardware. Computational processing was performed on a Linux distribution operating 

system (Ubuntu 16.04) with two Intel Xeon Silver 4114 processors, each with 10 cores, running 

at 2.20 GHz and equipped with 64 GB of RAM. Neural network training and predictions for 

glomerulus boundary detection were performed using a NVIDIA Quadro RTX 5000 GPU (16 GB 

of memory). HistomicsUI plugin is available in a standard research computer without any GPU 

with Intel i5 6-core processor, running at 3.1 – 4.5 GHz and equipped with 16 GB of RAM.  

2.11 | Data availability. To support reproducibility, we released fully-annotated pipeline codes 

for other researchers to use, along with WSIs and pipeline outputs. We also launched our cloud-

based PodoCount plugin for the end-user community. The plugin link, all codes and 

comprehensive documentation, as well as the docker image of the web cloud interface, select 

WSIs, segmented outputs, and quantified feature files will all be made publicly available following 

manuscript publication.  
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3. RESULTS 

3.1 | Qualitative performance analysis: Visual inspection of pipeline-derived podocyte nuclear, 

glomerular, and tissue boundaries confirmed successful region detection as well as segmentation 

(Fig 4). Automated podometrics requires high-fidelity separation of closely spaced, overlapping 

podocyte nuclei, and observed segmentation results underscore the utility of a marker-controlled 

watershed for our nuclear segmentation task.   

3.2 | Quantitative performance analysis. The median performance across all twelve WSIs was 

computed (Table 1). Podocyte count error was bounded by one podocyte per glomerulus (median 

0.61, Table 2).   

3.3 | Podocyte and glomerulus feature significance across murine models. Feature-based 

comparison of podocyte and glomerulus histomorphology was computed to determine whether 

quantified image features distinguished diseased tissue from normal tissue. Statistical analysis 

focused on the following image features: podocyte count, glomerulus area, glomerular podocyte 

density, total podocyte area, and glomerular podocyte coverage. As described in Methods, 

glomerular podocyte density and glomerular podocyte coverage are equivalent to the ratios of 

podocyte count: glomerular area and total podocyte area: glomerular area, respectively.  

3.3a | Mouse-level disease indicators. Feature significance was first evaluated at the mouse level 

irrespective of biological sex (Fig 5). For each murine cohort, whole-slide podocyte and 

glomerulus features were compared between wild-type and disease using two sample t-tests (Table 

3). Populations were defined by each mouse’s mean feature values. No feature proved significant 

for the T2DM A or HIVAN models. In contrast, histologic image features were significant 

indicators of disease across the T2DM B, Aging, FSGS (SAND), and Progeroid (Ercc1-/∆) models. 
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Glomerular podocyte density was the lead indicator in the Aging and FSGS (SAND) models, 

followed by glomerular area and glomerular podocyte coverage. Podocyte count was also 

significant in the FSGS (SAND) model. In the T2DM B model, podocyte count, glomerular area, 

glomerular podocyte density and total podocyte area were highly significant; glomerular podocyte 

coverage was not. Podocyte count and glomerular area were equally and highly indicative of the 

accelerated aging phenotype observed in Ercc1-/∆ Progeroid mice. Collectively, these results 

emphasize both podocyte and glomerulus morphometrics as strong indicators of disease.  

3.3b | Glomerulus-level disease indicators. In Section 3.3a, feature values were computed at the 

mouse level by quantifying the mean feature value across all glomeruli derived from the respective 

mouse’s kidney section. Should disease manifest in a small subset of glomeruli, computation of 

the mean feature value may average out informative histopathologic phenomena. Therefore, 

comparison between wild-type and disease phenotypes was replicated at the glomerulus level, with 

test populations comprised of pooled wild-type and disease glomeruli across mice (Table 4). 

Similar feature significance was observed in the T2DM B and FSGS (SAND) models. In the Aging 

model, decreased glomerular podocyte counts were insignificant. While this result suggests an 

absence of podocyte depletion, old mice demonstrated a significant reduction in podocyte nuclear 

area, and thus this result might suggest a trend toward podocyte cell death, as nuclear condensation 

and shrinkage are fundamental apoptotic stages8,51. Glomerular area and glomerular area-driven 

features, glomerular podocyte density and glomerular podocyte coverage, were found to be 

significant. In the Ercc1-/∆ Progeroid mouse model, podocyte count, glomerular area, glomerular 

podocyte density, and total podocyte area were indicative of disease; glomerular podocyte 

coverage was not. Simultaneous reduction in glomerular area and total podocyte area resulted in 

an unremarkable difference in glomerular podocyte coverage between the Progeroid models’ 
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Ercc1-/∆ and corresponding wild-type mice. Of particular interest were the T2DM A and HIVAN 

models. Feature values were found to be significant in these models at the glomerular level of 

analysis. Pooling of glomerular phenotypes across both the wild-type and mutant mice produced 

significantly different glomerulus populations. Significant reduction in glomerular podocyte 

count, glomerular podocyte density and glomerular podocyte coverage, as well as increased 

glomerular area, were observed in diabetes affected glomeruli. Unique to the HIVAN model was 

reduction in podocyte count and glomerular podocyte density; in the absence of increased 

glomerular area, podocyte loss drove glomerular podocyte density reduction.  

3.3c | Mouse-level histologic indicators of proteinuria. Image features were correlated with 

terminal UACR to understand the relationship between renal micro anatomical integrity and 

functional outcome (proteinuria onset)52-56. Parametric Pearson correlation analysis was 

performed, comparing mice’s mean feature values with UACR measurements collected at the time 

of sacrifice. Correlation coefficients highlighted the predictive capacity of select features as well 

as each features’ relationship to proteinuria (increased UACR) (Table 5). Analysis was limited to 

those cohort studies wherein UACR was recorded: T2DM A, T2DM B, FSGS (SAND), and 

HIVAN. Significant relationships between histologic image features and terminal UACR were not 

observed in the T2DM A cohort. As mentioned before, the absence of an overt trend is attributed 

to the mild pathology characteristic of db/db mice57-59 in the T2DM A model. A subset of 

quantified image features was found to be predictive of proteinuria in the FSGS (SAND), HIVAN, 

and T2DM B models. The superior predictive capacity of glomerular podocyte density is attributed 

to the fact that this feature takes into account both absolute podocyte count and glomerular area. 

The observed shift in feature significance (e.g., glomerular podocyte count in HIVAN) upon 
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integration with clinical metrics warranted further exploration. Later analysis with respect to 

biological sex revealed a dichotomy in murine phenotype underlying feature patterns.  

3.4 | Sex-associated feature significance across murine models. To assess whether disease 

manifestation was modulated by biological sex, feature-based comparison of murine 

histomorphology was refined to the sex level. For those cohorts including both male and female 

mice – FSGS (SAND), HIVAN, and Progeroid (Ercc1-/∆) – whole-slide podocyte and glomerulus 

features were compared between wild-type and disease using two sample t-tests.  

3.4a | Mouse-level disease indicators with respect to biological sex: We performed evaluation 

of feature significance at the mouse level (Fig 6). Due to sample size limitations and the 

requirements of statistical tests, this study was conducted for HIVAN and Ercc1-/∆ Progeroid 

mouse models only. For each of these murine cohort’s male and female populations, whole-slide 

podocyte and glomerulus features were compared between wild-type and disease using two sample 

t-tests (Table 6). Progeroid No feature was found to be significant in the HIVAN cohort. Of greater 

significance were observations from the Ercc1-/∆ Progeroid cohort wherein glomerular area was of 

equal significance in both sexes, while reduced podocyte count highly indicative of disease in 

males compared to females.     

3.4b | Glomerulus-level disease indicators with respect to biological sex: To expand upon 

mouse-level observations, feature analysis for males and females was replicated at the glomerulus 

level (Table 7). In the FSGS (SAND) cohort, significant podocyte loss was unique to males. 

Further, podocyte loss was a much stronger indicator of disease in FSGS (SAND) males compared 

to the full cohort. Sex-based disparity in podocyte count also explains the diluted significance of 

podocyte count in the FSGS (SAND) correlational analysis. Similar dichotomy was observed in 

the HIVAN cohort. Male-derived glomeruli featured significant podocyte reduction, while female-
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derived glomeruli were larger on average. Although reduction in glomerular podocyte density was 

significant for both HIVAN-affected males and females, the underlying mechanism appears 

distinct. Reduction in glomerular podocyte density is driven by podocyte loss in males and 

glomerulomegaly in females. Such trends were not observed in the Ercc1-/∆ Progeroid cohort, 

wherein feature significance was uniform across mice, irrespective of sex.  

3.4c | Mouse-level histologic indicators of proteinuria with respect to biological sex: To assess 

whether the observed histologic dichotomies were mirrored in functional outcomes, our prior 

correlational analysis was refined to the sex-level. Only those cohort studies including both male 

and females as well as terminal UACR measurements were studied. These included the FSGS 

(SAND) and HIVAN models only. Parametric Pearson correlation analysis was computed as 

before with reportage of correlation coefficients and corresponding p-values (Table 8). In the 

HIVAN cohort, no correlation was observed between image features and terminal UACR. As for 

the FSGS (SAND) cohort, the dichotomy observed between male and female glomerulus 

populations was mirrored in the current correlational analysis. Reduction in podocyte nuclear 

count was correlated with proteinuria in male FSGS (SAND) mice exclusively. Furthermore, while 

glomerular podocyte density was correlated with proteinuria in both males and females, the 

strength and significance of correlation was much greater in males. All podocyte-related features 

were predictive of proteinuria in male mice, while glomerular area was not. This observation 

emphasizes the role of podocyte loss in reduced glomerular podocyte density and glomerular 

podocyte coverage, and potentiates these features as image-based estimates for glomerular 

filtration barrier integrity and proteinuria onset7-9,60-62.  

3.5 | Patient-level feature significance in human DN: Biopsy level features were compared 

among DN subjects based on their Tervaert classification33 (Fig S1) as well as their outcome. 
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Analysis of variance was used to evaluate feature significance across Tervaert stages (Table 9). 

Post hoc tests were then applied to identify the particular DN stage(s) (Table 10). Podocyte count 

was the lead indicator of DN stage at the patient-level, with overt podocyte loss defining the 

transition from DN stage IIb to III.  Glomerular area was also significant, but to a lesser extent 

than podocyte-inclusive features (glomerular podocyte count and podocyte coverage, total 

podocyte area). Similar to podocyte count, reduction in total podocyte area and glomerular 

podocyte coverage characterized the transition from stage IIb to III. Meanwhile, pathologic 

increase in glomerular area differentiated stage IIb from IV. These observations are consistent with 

established histopathologic classification criteria33,63, discussed later.  

3.6 | Prediction of ESKD in DN. To assess the predictive power of histological image features, a 

series of binary logistic regression models were evaluated for patient progression to ESKD. Image 

features functioned as explanatory variables, while ESKD occurrence defined the response (Fig 

7). A model was fit for each feature-outcome combination (e.g., glomerular podocyte count as the 

variable and ESKD as the response). All models were assessed using (i) the Wald Chi-Squared 

Test to assess the statistical significance of the explanatory variable, and (ii) the Deviance 

Goodness-of-Fit Test to determine whether or not the model fit the data well. Measures of model 

performance as well as p-values were recorded for subsequent feature ranking (Table 11). Once 

again, statistical analysis focused on the following image features: podocyte count, glomerular 

area, glomerular podocyte density, total podocyte area, and glomerular podocyte coverage. A 

model was also fit using patients’ eGFRs at time of biopsy, as eGFR is known to be a predictor of 

ESKD in DN64,65. Quantified image features, excluding glomerular podocyte density, and eGFR 

were found to be predictive of outcome with p-value < 0.05. This result underscores the potential 

for computational histological image analysis in the assessment and prognostication of DN.  
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3.7 | Disbursement of PodoCount via the cloud: PodoCount was deployed as a cloud-based 

plugin on the Sarder Lab’s Digital Slide Archive (DSA)66 (Fig 8). This seamless integration was 

facilitated by HistomicsTK, a web-based tool that (i) allows for installation of user-defined 

algorithms as plugins in a virtual user-interface (UI), HistomicsUI, and (ii) is supported by the 

OpenSlide67 library  for handling proprietary digital pathology WSI formats. These features render 

our PodoCount plugin as a universally accessible podocyte quantification application for all users, 

irrespective of their operating system or coding experience. To quantify podocytes in their image 

data, users (i) upload a WSI of IHC-labeled kidney specimen and the corresponding glomerulus 

annotation file to the DSA, (ii) select the option for the PodoCount tool, and (iii) download the 

output image feature and podocyte annotation files. Features are summarized in .csv (comma-

separated values) format as Microsoft Excel files, while podocyte annotations are prepared as xml 

files compatible with standard desktop pathology viewers (e.g., Aperio ImageScope). To preview 

output annotations in the cloud, users need to only select the option “TranslateXMLToJson” 

included as a part of the plugin. This function automatically converts the annotation file into a 

web-format, displaying green podocyte nuclear contours in the web-viewer (Fig 8). To generate a 

glomerulus annotation file for input to PodoCount, users may apply the glomerulus detection 

plugin developed by Lutnick et al.68,69, readily available via the DSA.   

4. DISCUSSION 

In this work we introduce PodoCount, a novel tool for automated, whole-slide assessment of 

podocyte depletion. This computational tool is the first of its kind, enabling quantification of 

podocyte depletion from a holistic, big-data perspective. These claims are supported by the 

comprehensive cohort study described herein. We validated this new method in a complex dataset 

comprising male and female-derived, digital kidney specimens from six distinct mouse models (n 
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= 135 mice) as well as human diabetic nephropathy (n = 45 patients). These data were curated 

from multiple institutions and feature the highly variable stain, image, and tissue quality hindering 

development of generalizable computational frameworks19-21,23,70. PodoCount navigated this 

challenging dataset well, achieving highly precise and accurate segmentation as well as 

enumeration of podocyte nuclei. When paired with strategic feature engineering, this 

computational performance facilitated robust quantification of absolute and relative podocyte 

depletion across renal pathologies. Before delving into the unique podocyte representations, or 

physical image attributes, observed in this study, key details of our methodology must be addressed 

within the context of extant podocyte analytics. More specifically, our combination of biological 

and engineering technique informed the choice of (i) podocyte marker, and (ii) nuclear-based 

quantification from two-dimensional (2D) cross sections. We assert and will discuss the validity 

of these decisions toward scientific reproducibility and feasibility. 

4.1 | p57kip2 is a robust podocyte label: Four cell types contribute to the structure and function of 

the renal glomerulus: podocytes, parietal epithelial cells (PECs), glomerular capillary endothelial 

cells, and mesangial cells. Residing in close proximity, these cell types are immensely difficult to 

resolve in traditional stains10. Quantification of each cell population requires labeling with 

antibodies directed at cell-specific targets. An optimal marker must exploit the unique 

characteristics of podocytes to achieve sensitive and specific detection. Hallmarks of podocyte 

phenotype include cellular quiescence and limited proliferative capacity71,72. This characteristic 

dormancy is promoted by de novo expression of p57kip2 – a cyclin dependent kinase inhibitor 

modulating cell cycle arrest and terminal differentiation35. Podocyte-exclusive expression of 

p57kip2 within the glomerular microenvironment render p57kip2 a better maker than protein targets 

actively expressed by both podocytes and PECs9-11,73-75. The evolving role of podocyte 
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dedifferentiation and phenotypic transformation in glomerulopathy further complicates marker 

selection8,76,77. Podocyte-driven glomerular disease assessment requires analysis of functional 

integrity, and thus necessitates confirmation of the terminally-differentiated podocyte phenotype. 

To our knowledge, p57kip2 is the only marker widely validated in the literature for podocyte 

terminal differentiation35.  

4.2 | Podocyte nuclear representations are strong indicators of cellular pathology: Podocytes 

exemplify the structure-function relationship that transcends biological fields. Fine processes, 

representing cytoplasmic projections, delicately wrap about the glomerular capillaries to form a 

highly selective barrier at the filtration interface, influenced by charge and size. In disease states, 

these delicate processes fuse, trading off filtration integrity and fluid balance for cell survival, at 

the cost of allowing proteinuria and promoting glomerulosclerosis8,60. Based on this pathobiology, 

measuring cytoplasmic surface area seems a logical approach to assessing podocyte depletion. 

However, quantification of podocyte cytoplasmic area does not equate to glomerular podocyte 

number. The complex morphology of podocyte cytoplasm undermines the ability to individually 

assess highly interdigitated cells. This morphological intricacy also requires well-refined staining 

to ensure objective quantification of cytoplasm.  

Popular podometric approaches have used immunofluorescence and state-of-the-art microscopy to 

identify and measure podocyte cytoplasm12,13,78,79. While innovative, some of these studies still 

rely on a nuclear label to (i) irrefutably identify a cell as a podocyte, and (ii) estimate podocyte 

depletion. Furthermore, several results suggest that nuclear-based podocyte quantification is more 

than sufficient. For example, in a transgenic mouse and a dose-dependent model of podocyte 

depletion, glomerular podocyte density – a nuclear-based feature – proved to be a lead indicator 

of podocyte depletion13. In addition, nuclear volume was confirmed as a positive indicator of 
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podocyte hypertrophy13. Average podocyte nuclear volume increased dramatically in mild and 

moderately podocyte-depleted mice, compared to control. All the while, podocyte nuclear-to-

cytoplasmic ratio was consistent across murine phenotypes. Podocytes scaled evenly in size, with 

increasingly significant correlation between nuclear and cytoplasmic volume observed for mice 

with progressive podocyte depletion13. Finally, podocytes are rarely binucleate, suggesting that 

enumeration of nuclear profiles provides an estimation of absolute count80. These observations 

suggest that podocyte nuclei provide a strong foundation for both computations of glomerular 

podocyte density as well as assessment of podocyte depletion.  

4.3 | 2D nuclear-based quantification outperforms its 3D, whole-cell counterparts: Support 

for nuclear-based quantification of podocyte depletion is augmented by the need for feasibility. 

Dimensionality is an important consideration. While informative, 3D podocyte visualization is not 

essential for objective quantification of depletion. According to Puelles et al., podocyte 

enumeration in adjacent tissue sections can provide a discrepant number of podocytes per 

glomerulus13. However, this observation was based on a single glomerulus.  

PodoCount, the computational pipeline that we describe here, analyzes whole murine kidney 

sections, computing podocyte depletion statistics from large glomerulus populations (n = 100 per 

kidney cross-section, on average)4. When comparing disease states, across a cohort of fifty (e.g., 

the Ercc1-/∆ Progeroid mouse cohort), sample size quickly grows to n = 2500 glomeruli per murine 

phenotype. From probability theory and the law of large numbers, we know that as our glomerular 

sample population increases, quantified glomerular features will converge to the true, mean 

value81,82. Therefore, the ability of PodoCount to efficiently quantify podocyte depletion at large-

scale favors optimal estimation of glomerular podocyte depletion, compared to less scalable 3D or 

other 2D methods considering serial tissue sections.  
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Prior studies report another key finding: the correlation of podometric estimates between 2D and 

3D methods. Podocyte counts derived via 2D and 3D approaches are significantly correlated, as 

were nuclear-based estimates of glomerular podocyte density13. Irrespective of disease status, 

glomerular podocyte density was strongly and highly correlated between 2D and 3D methods (R 

= 0.94; p < 0.001)13. The same held true for cytoplasm-based quantification of depletion (R = 0.87; 

p < 0.001)13. Significant correlation, across features and disease phenotypes, raises a question as 

to whether 3D assessment is absolutely essential for podometric assessment of glomerular disease. 

High resolution 3D methods are costly, both with respect to time and resources. Optical sectioning 

requires access to state-of-the-art confocal microscopy systems as well as an abundance of time 

and money for fluorescence staining. Our method provides for efficient, large-scale podocyte 

analysis from IHC-labeled tissues, without introducing (i) the bias characteristic of common 

methods, (ii) the time-consuming, impracticality of gold-standard stereological techniques, or (iii) 

the costs of fluorescence-based methods. Successful incorporation of podometric analysis in 

experimental and clinical workflows is contingent upon a method that maximizes feasibility and 

reproducibility while also minimizing cost.  

All of this being said, PodoCount’s ability to generalize across heterogeneous digital pathology 

datasets allows us to complete nuclear-based quantification of podocyte depletion from an 

unprecedented, big data perspective. PodoCount can be used to explore diverse biological 

hypotheses is not limited to podocytes. The tool sets the stage for ubiquitous quantification of 

intraglomerular cell populations from immuno-labeled nuclei.  The infrastructure is already in 

place to study, for example, fluctuations in resident cell populations amidst glomerulomegaly79. 

Following such studies, our method could be expanded to quantify podocyte cytoplasm and thus 

whole podocytes.  
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4.4 | Podocyte depletion as a ubiquitous indicator of renal disease: According to the podocyte 

depletion hypothesis, podocyte depletion may manifest (i) absolutely, as a reduction in glomerular 

podocyte count, or (ii) relatively, when pathologic increase in glomerular area reduces podocyte 

spatial density3. Both modes of depletion may coincide78, as observed in several of our cohorts 

(Tables 3-4, 6-7). Through our comprehensive study, we learned that podocyte metrics are 

reproducibly indicative of disease; even in the absence of benchmark histopathology (e.g., 

glomerulomegaly63). We also found that podocyte representations are unique to a disease model, 

and in some cases to biological sex.  

Histologic image features evaluated for statistical significance in this work were glomerular 

podocyte (nuclear) count, glomerular area, glomerular podocyte density, total podocyte area, and 

glomerular podocyte coverage. On the mouse level, these features differentiated murine 

phenotypes across models. Namely, in our second diabetic model, T2DM B, glomerular podocyte 

count, glomerular area, glomerular podocyte density, and total podocyte area were equally 

significant indicators of disease. Both absolute and relative depletion are consistent with diabetic 

pathology83, as is increased glomerular area. Urinary albumin measured at time of sacrifice 

supports these results, with all four features strongly predictive of proteinuria. Similarly, in the 

Aging model, we observed reduced glomerular podocyte density, increased glomerular area, and 

thus relative podocyte depletion were characteristic of older mice. These findings are consistent 

with the pathology of aging nephrons16,78. Further, in the FSGS (SAND) model, both absolute and 

relative podocyte depletion were observed, with significant reduction in glomerular podocyte 

density, coverage, and count, as well as increased glomerular area. Glomerular podocyte coverage 

was markedly more significant than podocyte count. We believe that this disparity in significance, 

as well as the combination of absolute and relative depletion, is a product of biological sex. When 
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we refined our analysis to the sex level and pooled glomeruli across mice, we found that absolute 

reduction in podocyte count was unique to male mice. UACR measured at time of sacrifice 

supports this conclusion, with podocyte count strongly predictive of proteinuria in males 

exclusively. The FSGS (SAND) model is designed to emulate post-adaptive FSGS. Given that the 

incidence and severity of FSGS is often greater in males, the FSGS (SAND) model and thus our 

podocyte metrics may reflect a pro-male phenotype. Moreover, in the Ercc1-/∆ Progeroid model, 

absolute podocyte depletion and increased glomerular area were identified as indicators of 

accelerated aging.  

Significant features were not observed in the T2DM A or HIVAN models. Absence of feature 

significance was attributed to mild disease pathology in db/db or Tg26 mutants showing variable 

expressivity. We also believe that incomplete penetrance in a subset of mice undermined feature 

significance at the mouse level. When pooled across all mice of a given murine phenotype, wild-

type and mutant glomerulus populations were significantly different for both models. Refinement 

of analysis to the sex level left findings unchanged. Unlike the FSGS (SAND) model, unique 

pathologies were not observed on the basis of sex. Expansion of our statistical analysis to the 

glomerulus level pointed to absolute podocyte depletion, with significant reduction in glomerular 

podocyte count and coverage, but no change in glomerular area. UACR measurements collected 

at time of sacrifice support the above conclusions, with a subset of HIV-afflicted mature mice 

failing to manifest proteinuria. Similar to the diabetic nephropathy study, discussed next, clinical 

measures of kidney function (e.g., UACR, eGFR) provided a ground truth or baseline for 

validation of murine phenotypes.  

From the human DN cohort, we learned that podocyte image features are a valuable prognostic 

tool. Podocyte metrics successfully differentiated patients (n = 45) Tervaert classification, 
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highlighting the transition from stage IIb to III as a key turning point in diabetic nephropathy 

pathology (Table 10). Intriguingly, PodoCount metrics predicted patient outcomes just as well as 

eGFR measured at time of biopsy – a clinical indicator of CKD64. Our engineered feature for total 

podocyte area proved to be the best predictor of patient progression to ESKD, when compared to 

eGFR and glomerular area. These findings underscore the prognostic power of podometrics and 

potentiate our PodoCount tool as a valuable addition to the clinical toolbox.  

4.5 | PodoCount transcends the limitations of current techniques: To ensure both universal 

accessibility and reproducibility, we established PodoCount in the cloud. As a cloud-based plugin 

to our lab’s DSA, any researcher or clinician can now study podocyte metrics independent of their 

coding experience or computer’s operating system. We have provided a direct, public link to our 

web-based plugin, as well as all of our data and codes (See Data Availability). Researchers, 

clinicians, and the simply curious, alike, may choose to experiment with our data or analyze their 

own. Further the shared docker image will allow anyone to reproducibly establish our developed 

tool in their own server as a web-plugin via HistomicsUI for end-users.  PodoCount is to our 

knowledge the first podocyte analytic optimized across an internationally sourced, multi-

institutional dataset, offering whole-slide podocyte quantification at the touch of a button. 

PodoCount transcends computational pathology barriers, exemplifying how biological and 

engineering expertise can produce a tool with unprecedented accessibility and generalizability that 

potentiates cloud-based analysis as an avenue for podometric standardization.  
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Figure 1: A robust tool for whole-slide podocyte quantification was developed.  

 

Legend. Shown is a flow-chart of the image analysis pipeline for quantification of podocyte depletion in 

immunohistochemically-labeled kidney specimen. Whole slide images (WSI) of kidney tissues and corresponding 

glomerulus annotation files are entered into a dedicated informatics pipeline, which segments podocytes, glomeruli, 

and tissue sections from WSI in order to (i) enumerate podocytes and (ii) obtain podocyte and glomerulus 

morphometrics.   
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Figure 2: A rigorous dataset was used to develop and validate our method.  

 

T2DM, type-II diabetes mellitus; FSGS (SAND), a post-adaptive model of FSGS, focal segmental 

glomerulosclerosis; HIVAN, human immunodeficiency virus-associated nephropathy. 

 

Legend. The image dataset contains light-microscopic images of kidney tissues from six mouse models of 

glomerular disease and five stages of human diabetic nephropathy (DN). Shown are the numbers of wild-type and 

mutant or disease-induced mice.  The murine cohort totaled 135 samples and included both normal and diseased 

mice. Two distinct models of type-II diabetes mellitus were studied and are denoted as T2DM A and T2DM B. The 

SAND intervention (saline, angiotensin II, uninephrectomy, and deoxycortisone) models post-adaptive FSGS, and 

thus the model is termed FSGS (SAND). The mouse SAND, HIVAN, and Progeroid syndrome studies include both 

males and females, while the T2DM A, T2DM B, and Aging mouse models included only males. The human DN 

study included both male and female subjects.  
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Figure 3: PodoCount manifests scientific rigor and reproducibility.  

 

Legend. PodoCount is a generalizable computational tool for podocyte quantification. This tool successfully assessed 

multi-institutional and multi-species data featuring highly variable sample preparation, imaging, and staining, and 

diverse histopathology. This dataset exemplifies the inherently challenging nature of digital pathology data, which 

drives the need for generalizable computational frameworks.  
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Figure 4: Whole-slide image segmentation enabled quantification of nuclear and tissue structure.  

 

Legend.  Classical image analysis techniques were applied whole-slide images, in order to segment tissue boundaries 

(dark blue) and identify immunohistochemically-labeled podocyte nuclei (red). Glomerulus boundaries (cyan) were 

detected using the H-AI-L tool (Lutnick et al., Nature Machine Intelligence, 2019) which is a convolutional neural 

network for glomerular boundary detection.  
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Figure 5: Podocyte and glomerular morphometrics for wild-type mice and disease phenotypes at the mouse 

level. 

 

Legend. T2DM A, Type-II diabetes mellitus A, the db/db model; T2DM B, Type-II diabetes mellitus B, the KKAy 

model; Aging, modeled after the NIA agent rodent colony; FSGS (SAND), the model of post-adaptive FSGS driven 

by SAND treatment; HIVAN, HIV-associated Nephropathy, the Tg26 model of collapsing glomerulopathy often 

classified as a form of FSGS; Progeroid, the accelerated aging model driven by Ercc1-/∆. 

Violin plots showing measurements included glomerular podocyte count (PC), glomerulus area (GA) glomerular 

podocyte density (GPD), total podocyte area (TPA), and glomerular podocyte coverage (GPC). These measurements 

were compared across murine models. PC is defined as the number of podocyte nuclei per glomerular image. GA is 

the area of the glomerulus cross-section. TPA is computed as the cumulative area of labeled podocyte nuclei per 

glomerulus cross-section. GPD is computed as the ratio of absolute podocyte count to glomerulus cross-sectional area. 

Similarly, GPC is computed as the ratio of total podocyte area to glomerulus cross-sectional area. All metrics were 

converted to microns to facilitate biological interpretation. Plots illustrate the distribution of feature values across 

disease models with each black dot corresponding to a single glomerulus or data point.  
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Figure 6: Female (A) and male mice (B) each demonstrate distinct podocyte morphometrics in a subset of 

models.  

 

 

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

Legend.  Data are shown as violin plots for wild-type controls (WT) and three glomerular disease models (M). The 

FSGS (SAND), HIVAN, and Progeroid (Ercc1-/∆) models in this study included both male and female mice, and thus 

statistical analysis was completed to assess whether podocyte depletion was unique to female or male mice in each 

model. A) Plots illustrate the distribution of feature values across females in each disease model. B) Plots illustrate 
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the distribution of feature values across males in each disease model. Each black dot corresponds to a single 

glomerulus or data point.  
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Figure 7: Glomeruli derived from Diabetic Nephropathy (DN) kidney biopsies demonstrate distinct podocyte 

and glomerulus morphometrics based on patient outcome.  

 

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

The DN cohort featured patients that did and did not progress to ESKD. Plots illustrate the distribution of feature 

values for both outcomes with each black dot corresponding to a single glomerulus or data point.  
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Figure 8: Our tool was converted into a cloud-based plug-in to provide for user-friendly, universally accessible 

podocyte quantification.  

 

The described podocyte quantification pipeline was converted into a web plug-in for our lab’s cloud-based WSI 

archiver and viewer. Upon upload of digitized kidney histopathology, users may apply our PodoCount (bright green) 

plug-in for whole-slide podocyte nuclear enumeration and morphometric analysis. Quantified morphometrics are 

output as Microsoft Excel feature files for user download. Whole-slide podocyte annotation files compatible with 

standard desktop digital pathology viewers (e.g., Aperio ImageScope) are also output. Figure features a diabetic 

nephropathy stage IIb kidney biopsy. 
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Table 1. Histologic image features were selected for statistical analysis based on established Podometrics. 

Feature Definition 

PC 

Also referred to as absolute podocyte count. The quantity of podocyte nuclei per 

glomerulus unit. Given that bi-nucleate podocytes are rare, nuclear enumeration provides 

an accurate estimation of glomerular podocyte count. 

GA The cross-sectional area of the glomerulus unit. 

GPD 
Also referred to as glomerular podocyte density. Computed as the ratio of podocyte count 

to glomerulus area. Approximates the spatial density of podocytes. 

TPA 
Also referred to as cumulative podocyte area. Computed as the cumulative area of 

podocyte nuclei for a given glomerulus. 

GPC 
Also referred to as glomerular podocyte coverage. Computed as the ratio of total podocyte 

nuclear area to glomerulus cross-sectional area.    

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

Podocyte metrics are invaluable tools for prognostication. Podometric methodology describes how computation of 

podocyte nuclear count, size and spatial density, relative to glomerulus area, provides for quantitative modeling of 

progressive glomerular disease. Motivated by these works, PodoCount was designed to quantify podocyte depletion 

through image features engineered from digitized renal histopathology. The simple feature set – PC, GA, GPD, TPA, 

and GPC – emulates the podometric analytical approach.   
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Table 2: Computational performance analysis revealed highly precise and accurate podocyte enumeration as 

well as image segmentation.  

Segmentation Sensitivity Specificity Precision Accuracy 

Tissue 0.99 0.99 0.99 0.99 

Glomeruli 0.97 0.99 0.91 0.99 

Podocytes 0.85 0.99 0.92 0.98 

 

Quantification Percent Error    

Podocytes 0.61%*    

*Absolute values reported. Tends towards underestimation 0.61%. 

 

Sensitivity, specificity, precision, and accuracy were studied for image segmentation tasks, while percent error was 

used to evaluate podocyte enumeration. Performance analysis was completed for a subset of whole-slide images (WSI) 

(n = 6 each of control and disease) and glomeruli (n = 10 glomeruli per WSI). When compared with manual ground 

truth, pipeline segmentations and counts proved highly precise and accurate; underestimating by less than one 

podocyte per glomerulus.  
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Table 3: Podocyte and glomerulus morphometrics differentiated wild-type and disease phenotypes at the mouse 

level.  

  T2DM A T2DM B Aging FSGS (SAND) HIVAN Progeroid 

  db/m db/db C57BL/6 KKAy Young Old No Tx SAND WT Tg26 WT Ercc1-/∆ 

n 6 4 10 10 6 5 11 8 11 13 20 31 

PC 0.188 0.001** 0.739 0.036* 0.165 <0.001*** 

GA 0.602 <0.001*** 0.005** 0.002** 0.842 <0.001*** 

GPD 0.222 <0.001*** <0.001*** <0.001*** 0.495 0.061 

TPA 0.911 <0.001*** 0.363 0.198 0.749 0.055 

GPC 0.474 0.303 0.002** 0.006** 0.954 0.745 

 

T2DM, type-2 diabetes mellitus; WT, wild-type; n, number of mice. 

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

For each mouse model, pipeline-computed features were ranked based on their ability to differentiate between wild-

type and diseased mice. In the T2DM B, Aging, FSGS (SAND), and Progeroid models, image features were significant 

indicators of disease. Podocyte morphometrics were of equal or greater significance than glomerular features. For 

those models wherein image features proved insignificant, statistical analysis would be reduplicated at the glomerulus 

level; no features were significant in the HIVAN model. 

Statistical conclusions are based on two-sample t-tests comparing population means at a significance level of 0.05. 

Asterisks flag levels of significance: p < 0.05*, p < 0.01**, p < 0.001***. 
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Table 4: Podocyte and glomerulus morphometrics universally differentiate wild-type and disease populations 

at the glomerulus level.  

  T2DM A T2DM B Aging FSGS (SAND) HIVAN Progeroid 

  db/m db/db C57BL/6 KKAy Young Old No Tx SAND WT Tg26 WT Ercc1-/∆ 

n 1396 958 773 970 527 603 1068 808 648 656 3788 5670 

PC 0.007** <0.001*** 0.439 <0.001*** 0.002** <0.001*** 

GA <0.001*** <0.001*** <0.001*** <0.001*** 0.650 <0.001*** 

GPD <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** 

TPA 0.974 <0.001*** 0.007** <0.001*** 0.390 <0.001*** 

GPC <0.001*** 0.001** <0.001*** <0.001*** 0.198 0.736 

 

T2DM, type-2 diabetes mellitus; WT, wild-type; n, number of mice. 

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

For those models wherein image features proved insignificant, statistical analysis was reduplicated at the glomerulus 

level. Pipeline-computed features were ranked based on their ability to differentiate between wild-type and diseased 

glomeruli in each model. Across all models, image features were significant indicators of disease. Podocyte 

morphometrics were of equal or greater significance than glomerular features. Notably, in the HIVAN model, 

podocyte metrics were significant while GA was not.  

Statistical conclusions are based on two-sample t-tests comparing population means at a significance level of 0.05. 

Asterisks flag levels of significance: p < 0.05*, p < 0.01**, p < 0.001***. 
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Table 5: Significant correlations were observed between histological image features and murine urinary 

albumin creatinine ratio (UACR) at time of sacrifice.  

  T2DM A T2DM B FSGS (SAND) HIVAN 

  db/m db/db C57BL/6 KKAy No Tx SAND WT Tg26 

n 6 4 10 10 11 8 11 13 

 R2 p-value R2 p-value R2 p-value R2 p-value 

PC -0.481 0.159 0.670 0.002** -0.465 0.052 -0.344 0.108 

GA 0.402 0.249 0.856 <0.001*** 0.643 0.004** 0.533 0.009** 

GPD -0.537 0.110 -0.809 <0.001*** -0.765 <0.001*** -0.539 0.008** 

TPA 0.173 0.632 0.827 <0.001*** -0.353 0.151 0.017 0.940 

GPC -0.296 0.407 -0.256 0.305 -0.659 0.003** -0.312 0.148 

 

T2DM, type-2 diabetes mellitus; No Tx, no SAND treatment; WT, wild-type; n, number of mice. 

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

UACR measurements were available for four of six mouse models: T2DM A, T2DM B, FSGS (SAND), and HIVAN. 

In the latter three models, select podocyte and glomerulus image features were highly correlated with UACR. More 

specifically, a reduction in GPD and GPC, as well as increase in GA, were significantly correlated with UACR increase 

in mice.  

Correlation results between PC, GA, GPD, TPA, GPC and UAR were evaluated with parametric Pearson analysis (R2 

and p values reported). Values used for correlative analysis are pooled from assessment of renal microanatomical 

integrity at time of sacrifice and the corresponding functional outcome (UACR) at time of sacrifice. Asterisks flag 

levels of significance: p < 0.05*, p < 0.01**, p < 0.001***. 
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Table 6: Male and female mice demonstrate distinct podocyte morphometrics in disease.   

 Male Female 

  HIVAN Progeroid HIVAN Progeroid 

  WT Tg26 WT Ercc1-/∆ WT Tg26 WT Ercc1-/∆ 

n 5 5 11 11 6 8 9 19 

PC 0.177 <0.001*** 0.541 0.012* 

GA 0.531 <0.001*** 0.250 0.001** 

GPD 0.389 0.083 0.216 0.173 

TPA 0.741 0.023* 0.899 0.522 

GPC 0.947 0.829 0.658 0.811 

 

WT, wild-type; n, number of mice. 

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

For those cohorts containing both biological sexes, feature significance was compared between male and female 

populations. A) HIVAN: No features were significant on the sex level. B) Progeroid: Reduction in PC was highly 

significant in male mice. Increase in GA was significant for both male and female mice.  

Statistical conclusions are based on two-sample t-tests comparing population means at a significance level of 0.05. 

Asterisks flag levels of significance: p < 0.05*, p < 0.01**, p < 0.001***. 
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Table 7: Glomeruli derived from male and female mice demonstrate distinct podocyte morphometrics in 

disease.   

 Male Female 

  FSGS (SAND) HIVAN Progeroid FSGS (SAND) HIVAN Progeroid 

  No Tx SAND WT Tg26 WT Ercc1-/∆ No Tx SAND WT Tg26 WT Ercc1-/∆ 

n 850 172 593 638 1815 2597 218 496 932 1066 1973 3073 

PC <0.001*** 0.001** <0.001*** 0.548 0.162 <0.001*** 

GA <0.001*** 0.325 <0.001*** <0.001*** 0.069 <0.001*** 

GPD <0.001*** 0.003** <0.001*** <0.001*** <0.001*** <0.001*** 

TPA <0.001*** 0.271 <0.001*** <0.001*** 0.851 <0.001*** 

GPC <0.001*** 0.001** 0.030* <0.001*** 0.304 0.047* 

 

No Tx, no SAND treatment; WT, wild-type; n, number of glomeruli. 

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

Feature significance was evaluated at the glomerulus level for male as well as female mice. Image features were 

ranked based on their ability to differentiate between wild-type and diseased glomeruli in each model. Across all 

models, image features were significant indicators of disease. Podocyte morphometrics were of equal or greater 

significance than glomerular features. A) FSGS (SAND) and HIVAN: PC was a significant indicator of disease in 

males exclusively. B) Progeroid: All features were significant in both male and female derived glomeruli.  

Statistical conclusions are based on two-sample t-tests comparing population means at a significance level of 0.05. 

Asterisks flag levels of significance: p < 0.05*, p < 0.01**, p < 0.001***. 
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Table 8: Significant correlations were observed between histological image features and murine urinary 

albumin creatinine ratio (UACR) at time of sacrifice. 

 Male Female 

  FSGS (SAND) HIVAN FSGS (SAND) HIVAN 

  No Tx SAND WT Tg26 No Tx SAND WT Tg26 

n 9 2 5 5 2 5 6 8 

 R2 p-value R2 p-value R2 p-value R2 p-value 

PC -0.736 0.010* -0.336 0.377 -0.048 0.918 -0.070 0.811 

GA 0.463 0.152 0.488 0.182 0.695 0.083 0.476 0.085 

GPD -0.780 0.005** -0.544 0.130 -0.763 0.046* -0.373 0.189 

TPA -0.684 0.020* 0.108 0.781 -0.055 0.905 0.039 0.894 

GPC -0.747 0.008** -0.101 0.796 -0.552 0.199 -0.147 0.617 

 

No Tx, no SAND treatment; WT, wild-type; n, number of mice. 

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

Sex-specific UACR measurements were available for two of six mouse models: FSGS (SAND) and HIVAN. A) FSGS 

(SAND): In male mice, podocyte morphometrics were highly correlated with UACR; GA was not. In female mice, 

GPD was correlated with UACR. B) HIVAN: No features were significantly correlated with UACR for either sex. 

Correlation results between PC, GA, GPD, TPA, GPC and UACR were evaluated with parametric Pearson correlation 

analysis (R2 and p values reported). Values used for correlative analysis are pooled from assessment of renal 

microanatomical integrity at time of sacrifice and the corresponding functional outcome (UACR) at time of sacrifice. 

Asterisks flag levels of significance: p < 0.05*, p < 0.01**, p < 0.001***. 
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Table 9: Podocyte and glomerulus morphometrics differentiated diabetic nephropathy stages at the patient 

level.  

Feature p-value (n = 45) 

PC 0.005** 

GA 0.041* 

GPD 0.058 

TPA 0.012* 

GPC 0.014* 

 

n, number of patients. 

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

Pipeline-computed features were ranked based on their ability to differentiate between diabetic nephropathy stages 

defined by the Tervaert classification scheme. PC was the most significant indicator of disease in diabetic nephropathy, 

followed by TPA and GPC; GA was the least significant indicator.  

Statistical conclusions are based on one-way ANOVA comparing population means at a significance level of 0.05. 

H0: At least one population mean is different. Asterisks flag levels of significance: p < 0.05*, p < 0.01**, p < 0.001***.  
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Table 10: Significant differences in podocyte and glomerulus morphometrics are consistently observed between 

diabetic nephropathy (DN) stages IIb and III.  

Feature Significantly different diabetic nephropathy stages p-value (n = 45) 

PC IIb from III 0.005** 

GA IIb from IV 0.041* 

GPD III from IIa, IIb, and IV 0.058 

TPA IIb from III 0.012* 

GPC IIb from III 0.014* 

 

n, number of patients. 

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

Pairwise tests were completed to identify which DN stages underlie significant differences in patient feature data. 

Asterisks flag levels of significance: p < 0.05*, p < 0.01**, p < 0.001***. 
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Table 11: Podocyte morphometrics are significant predictors of patient outcome in Diabetic Nephropathy 

(DN).   

Variable Coefficient 95% CI 
p-value of Wald 

test 

Chi-square score of model 

fit (df = 1) 

p-value of Chi-square 

score 

PC -0.503 [0.337, 0.970] 0.037* 7.749 0.005** 

GA -0.001 [0.999, 0.999] 0.024* 7.631 0.006** 

GPD -0.001 [0.998, 1.001] 0.1628 2.139 0.144 

TPA -0.024 [0.957, 0.997] 0.023* 10.325 0.001** 

GPC -0.063 [0.887, 0.994] 0.031* 6.969 0.008** 

eGFR 0.303 [1.017, 1.802] 0.038* 5.011 0.025* 

 

eGFR, estimated glomerular filtration rate at time of biopsy. 

Glomerular podocyte count, PC; glomerulus area, GA; glomerular podocyte density, GPD; total podocyte area, TPA; 

glomerular podocyte coverage, GPC. 

Binary logistic regression models were evaluated for feature-based prediction of patient outcome in diabetic 

nephropathy. Each pipeline-computed image feature was evaluated as the explanatory variable in prediction of ESKD 

incidence (response variable). Response frequency was fourteen out of forty-five patients. Coefficients, p-values and 

confidence intervals reported. Asterisks flag levels of significance: p < 0.05*, p < 0.01**, p < 0.001***.  
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