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Abstract: Cortical regional identities develop through anterior-posterior (A-P) and dorsal-ventral
(D-V) prenatal genomic patterning gradients. Here we find that A-P and D-V genomic patterning
of cortical surface area (SA) and thickness (CT) is intact in typically developing and autistic
toddlers with good language outcome, but is absent in autistic toddlers with poor early language
outcome. Genes driving this effect are prominent in midgestational A-P and D-V gene expression
gradients and prenatal cell types driving SA and CT variation (e.g., progenitor cells versus
excitatory neurons). These genes are also important for vocal learning, human-specific evolution,
and prenatal co-expression networks enriched for high-penetrance autism risk genes. Autism with
poor early language outcome may be linked to atypical genomic cortical patterning starting in
prenatal periods and which impacts later development of regional functional specialization and
circuit formation.

One Sentence Summary: Genomic patterning of the cortex is atypical in autistic toddlers with
poor early language outcome.
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It is widely accepted that the autisms (ASD) arise in large part due to complex genetic
mechanisms (/, 2). The major priorities for the field are to develop an individualized understanding
of how complex genetic mechanisms cascade over development to cause phenotypic
differentiation at multiple scales and link these mechanisms to clinical outcomes with high real-
world impact and relevance (3—5). At the nexus of these priorities, our prior functional imaging
(fMRI) work showed that large-scale activity in blood leukocyte gene co-expression modules
differentially relates to language-relevant functional neural phenotypes measured in typically
developing (TD) and ASD toddlers with good (ASD Good) versus poor (ASD Poor) early language
outcome (6). This result indicates that the atypical language-relevant functional neural phenotypes
typically seen in ASD Poor (7) are driven by different underlying functional genomic mechanisms.

The genes of importance that differentially relate to language-relevant functional neural
phenotypes in ASD Poor (6) are an omnigenic (8) array of genes that are typically broadly
expressed across many tissues including the brain. Broadly expressed genes tend to be one of the
most important classes of ASD-risk genes and in the brain they show peak expression during early
prenatal periods, when cell proliferation, differentiation, neurogenesis, and migration are the
primary biological processes (9, 10). If these genes operate at early prenatal periods to affect
proliferation, differentiation, neurogenesis, and migration, this suggests that structural features of
the developing cerebral cortex such as surface area (SA) and cortical thickness (CT) may be
substantially altered in the ASD Poor subtype.

The action of broadly expressed genes during prenatal periods may also be important for
how the cortex is genomically patterned. It is well established that during prenatal periods the
cortex is patterned by gene expression gradients that follow anterior-posterior (A-P) and dorsal-
ventral (D-V) axes (//-17). This prenatal genomic patterning is the beginning of cortical
arealization processes that allow different cortical regions to develop their own cellular, functional,
and circuit identities (//, 13, 15, 16). Cortical arealization or patterning may be atypical in ASD.
Prior evidence from case-control comparisons of post-mortem cortical tissue has found
dysregulation of cortical patterning genes and attenuation of gene expression differences in frontal
versus temporal cortex (/8—20). WNT-signaling is known to affect cortical patterning (13, 15, 16,
21) and WNT-signaling abnormalities are also identified in ASD (79, 20, 22-24), particularly
within broadly expressed ASD-risk genes (/0). Therefore, if broadly expressed genes in early
prenatal periods impact the ASD Poor subtype, could this also implicate a disturbance of prenatal
genomic patterning of the cortex?

In the current work we examined these questions in a sample of n=123 toddlers (12-50
months) with and without ASD (ASD Good n=38, ASD Poor = n=38, and TD n = 47). With T1-
weighted structural MRI images, we used Freesurfer (http://surfer.nmr.mgh.harvard.edu) to extract
SA and CT measures from 12 cortical regions that parcellate the cortex by hierarchical genetic
similarity (25—-27). This cortical parcellation, known as GCLUST, was chosen in order to
maximize sensitivity for detecting genetic relationships (28). GCLUST is also sensitive to the SA
and CT genetic similarity gradients that fall along A-P and D-V axes and therefore, also maximizes
sensitivity for detecting such genetically sensitive A-P and D-V gradient effects (25-27) (see
Methods for more details).
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Since one of the most robust findings on early structural brain development in ASD is the
on-average effect of early brain overgrowth in the first years of life (4, 29-31), we started by
examining whether there are subtype differences on global measures such as total cortical volume
(CV), SA and mean CT. Statistical models controlling for age and sex identified a group effect on
total CV (F(2,193) = 14.30, p = 2.74e-6, 5° = 0.075) that is driven by the ASD Poor subtype having
on-average larger CV than the other groups (ASD Good vs ASD Poor #(125) = 1.88, p = 0.06,
Cohen’s d = -0.42; TD vs ASD Poor #(132) = -2.98, p = 0.003, Cohen’s d = -0.70; TD vs ASD
Good #(127) =-1.10, p=0.27, Cohen’s d = -0.26) (Fig. 1A). A group effect also emerged for total
SA (F(2,193) = 15.39, p = 1.14e-6, n° = 0.072) and was again driven by on-average increases in
ASD Poor relative to the other groups (ASD Good vs ASD Poor #(125) = 1.79, p = 0.07, Cohen’s
d=-0.40; TD vs ASD Poor #(132) =-2.84, p = 0.005, Cohen’s d =-0.71; TD vs ASD Good #(127)
=-1.28, p = 0.20, Cohen’s d = -0.27) (Fig. 1B). In contrast, no group differences were identified
for mean CT (F(2,193) = 2.80, p = 0.06, ° = 0.002; ASD Good vs ASD Poor #(125) =-0.24, p =
0.80, Cohen’s d = 0.03; TD vs ASD Poor ¢(132) =0.17, p = 0.86, Cohen’s d = 0.11; TD vs ASD
Good #(127)=0.37,p=0.71, Cohen’s d = 0.07). These effects illustrate that the ASD Poor subtype
drives the on-average effect of early brain overgrowth in autism. Differences in CV and total SA,
but not mean CT, is compatible with other work showing that early brain overgrowth is largely
driven by expansion of cortical SA rather than CT (32, 33). We next examined regional level SA
or CT effects when adjusting for global differences using the GCLUST parcellation (see Methods).
Here we find no evidence of SA or CT group differences for any of the 12 GCLUST regions,
indicating that the primary overall group differences in brain size are restricted to global effects in
CV and SA, rather than localized regional effects after adjusting for such global effects.
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Fig. 1: Subtype differences in total cortical volume (A) and total surface area (B). Standardized
effect sizes (Cohen’s d) are shown for each pairwise group comparison.

We next examined large-scale associations between gene expression and regional SA or
CT from the GCLUST parcellation. To examine gene expression, leukocyte cells were extracted
from blood samples and microarrays were used to quantify expression from 14,426 protein coding
genes. This set 14,426 genes was then reduced to 21 gene co-expression modules using weighted
gene co-expression network analysis (WGCNA) (34). We then we used partial least squares (PLS)
analysis to test for large-scale associations between blood leukocyte co-expression modules and
SA or CT phenotypes from the GCLUST parcellation (see Methods for more details). For SA, we
identified one statistically significant latent variable (LV) pair (SA LV1: d = 3.99, p = 0.0001),
which explains 36% of the covariance between SA and gene expression. To decompose how this

4
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multivariate relationship manifests across co-expression modules and groups, in Fig. 2D we show
which co-expression modules have ‘non-zero’ relationships in each group. These ‘non-zero
modules’ have 95% confidence intervals (CIs) estimated by bootstrapping that do not include a
correlation of 0 and are thus the most important co-expression modules driving the SA LV1
relationship. In contrast, co-expression modules that we dub as ‘zero modules’ are those whereby
the 95% Cls include a correlation of 0 and thus do not reliably contribute to the overall SA LV1
relationship. Non-zero modules for SA LV1 account for a good majority (68%) of all genes
examined and this effect is compatible with ideas about omnigenic effects on complex traits such
as imaging phenotypes in ASD subtypes (6, §). Fig. 2D also shows that non-zero modules are
highly similar for ASD Good and TD groups, whereas hardly any non-zero modules are present
for ASD Poor. This similarity between ASD Good and TD can be quantified as a significant
positive correlation in the PLS correlations values for these groups (Fig. 2D-E) (r = 0.55, p =
0.008). This result indicates that the SA LV1 relationship manifests similarly in TD and ASD Good
groups. In contrast, there is a lack of correlation between ASD Poor and the other groups (ASD
Poor-ASD Good: r=0.27, p = 0.23; ASD Poor-TD: r = -0.41, p = 0.06). Therefore, SA LV1 can
be described as a large-scale SA-gene expression relationship that likely reflects a normative
phenomenon present in TD and which is also preserved in the ASD Good subtype. However, this
normative SA-gene expression relationship is absent in the ASD Poor subtype.

PLS analysis applied to CT data isolated 2 statistically significant LV pairs (CT LVI1: d =
4.30, p = 0.0001; CT LV2: d = 3.09, p = 0.0001), explaining 37% and 19% of the covariance
between CT and gene expression respectively. Similar to SA LV 1, non-zero modules for CT LV1
comprise a large majority of all genes examined (65%) and are highly similar for ASD Good and
TD, but not ASD Poor (Fig. 2D, F, G). These results indicate that CT LV1 mostly pertains to a
normative relationship preserved across TD and ASD Good, but which is absent in ASD Poor. In
contrast to CT LV1, the non-zero modules for CT LV2 are almost exclusively relevant for the
ASD Poor subtype, comprise about 48% of all genes examined, and do not show strong
correlations between groups (Fig. 2D, F, G). These results indicate that CT LV2 captures a
relationship that is specific to ASD Poor.

Given that our prior work discovered that PLS non-zero modules related to language-
relevant functional neural phenotypes are highly enriched for broadly expressed genes (6), we next
asked if SA and CT non-zero modules were similarly enriched. Indeed, SA LV1 non-zero modules
are highly enriched in broadly expressed genes (enrichment odds ratio (OR)=3.48, p = 1.90e-71)
but not brain-specific genes (OR = 1.67, p = 0.23), while no enrichments were present for zero
modules (broadly expressed, OR = 1.10, p = 0.99; brain-specific, OR = 0.94, p = 0.99). CT LV1
non-zero modules are also highly enriched in broadly expressed genes (OR= 2.96, p = 4.43e-43)
but not brain-specific genes (OR = 1.56, p = 0.55), while zero modules were not enriched in either
broadly expressed (OR = 1.10, p = 0.99) or brain-specific genes (OR = 0.94, p = 0.99). In contrast,
CT LV2 showed enrichments for broadly expressed genes in both non-zero (OR=1.90, p=1.31e-
7) and zero modules (OR = 2.43, p = 1.34e-28), but no enrichments for brain-specific genes (non-
zero modules OR = 1.21, p=0.98; zero modules OR = 1.40, p = 0.57). These results show that SA
and CT LV1 results are largely driven by the class broadly expressed genes, while for CT LV2 the
enrichment for broadly expressed genes is present, but not specific to non-zero modules.
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Fig. 2: Multivariate gene co-expression relationships with SA and CT. Panels A-C show brain
bootstrap ratios (BSR) for SA LV1 (A), CT LVI1 (B), and CT LV2 (C) for all 12 regions from the
GCLUST SA and CT parcellations. Regions that are increasingly colored red and blue are regions
that most reliably contribute to the PLS relationship. Panel D shows which co-expression modules
are ‘non-zero’ modules (dark red or dark blue) or ‘zero’ modules (white). Non-zero modules are
co-expression modules where the correlation between gene expression and SA or CT is
significantly non-zero, as indicated by 95% bootstrap confidence intervals not encompassing a
correlation of 0. These non-zero modules are the strongest contributors to the PLS relationship.
All white cells indicate ‘zero’ modules that are not sufficiently correlated in a non-zero way (e.g.,
95% bootstrap confidence intervals include a correlation of 0). Non-zero modules in dark red can
be interpreted as positive correlations with brain regions in panels A-C colored in red. However,
for brain regions colored in blue, the correlations in non-zero modules colored in dark red are
interpreted as negative correlations. These interpretations about the directionality of the
correlation are reversed when it comes to non-zero modules colored in dark blue. The final two
columns show which modules are enriched for broadly expressed or brain-specific genes. Panels
E-G show similarity in PLS correlations for all pairwise comparisons for SA LV1 (E), CT LV (F),
and CT LV2 (G). In these scatterplots each dot is a co-expression module and the x and y-axes
indicate the PLS correlations for different groups. Dots colored in dark red and dark blue indicate
the non-zero modules, while grey dots indicate zero modules. Scatterplots with the orange outline
indicate similar relationships for TD and ASD Good for SA LVI and CT LV 1.

We next investigated how genomic variability patterns SA and CT cortical phenotypes.
The patterning of PLS brain bootstrap ratios (BSR) shown in Fig. 2A-C can be used to answer this
question. BSRs indicate the directionality through which gene expression is associated with SA
and CT and can also show how these relationships manifest similarly or differently across brain
regions. It is visually evident from Fig. 2A-C that BSR patterning is not uniform across cortical
regions and varies considerably along A-P and D-V axes. With a 2-cluster solution previously
identified by Chen and colleagues (25—27) to be the genetically parcellated A-P and D-V axes of
SA and CT (Fig. 3A), we confirm that BSRs highly differ along these A-P and D-V clusters (Fig.
3C, E, G). This indicates that the relationship between gene expression and SA or CT at one pole
of the A-P or D-V axes is different relative to the other pole.


https://doi.org/10.1101/2020.08.18.253443
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.18.253443; this version posted May 20, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

’11 Perhaps even more striking than these differences between binary A-P and D-V partitions
’12 is that BSRs also covary along continuous A-P and D-V genetic similarity gradients. After ordering
’13 regions by genetic similarity gradients discovered by Chen and colleagues (25-27) (Fig. 3B) we
14 find that BSRs are highly correlated with the ordering along this axis of genetic similarity between
’15 regions (Fig. 3D, F, H). This indicates that large-scale blood leukocyte gene co-expression
’16 relationships with SA and CT reveal how the cortex is genomically patterned to promote the
117 development of cortical regionalization and areal identity (/3). Because SA LV1 and CT LV1 are
’18 normative effects primarily relevant for TD and ASD Good, but not ASD Poor, these results
’19 indicate that normative genomic patterning of the cortex does not occur in the ASD Poor subtype.
220 Conversely, CT in ASD Poor subtype may be patterned in a completely different way given that
121 CT LV2 was primarily relevant to this subtype and given that the BSR patterning is reversed for
122 CT LV2 compared to CT LV1 (Fig. 3E and G versus Fig. 3F and H). Given evidence of focal
)23 laminar patches throughout the cortex in ASD (35), it will be important for future work to
024 investigate further how such phenomena may be relevant to atypical CT patterning, particularly in
125 the ASD Poor subtype.
126
027 In contrast to these effects of genomic patterning along A-P and D-V gradients, we also
128 examined if the effect size of SA or CT difference between ASD subtypes and TD would similarly
29 follow A-P and D-V gradients. Prior work using lobar parcellations has suggested that case-control
230 differences in cortical size may follow an A-P gradient (36). However, effect sizes do not seem to
31 follow either the 2-cluster A-P and D-V partitions or continuous genetic similarity gradients (Fig.
32 S1). This result suggests that these cortical patterning effects are not simply effects that can be
’33 seen as on-average group differences in SA or CT and point more towards the specific importance
34 of how the underlying genomic mechanisms act to pattern SA and CT across the cortex.
235
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237 Fig. 3: Cortical patterning along genetic similarity gradients. Panel A shows the coarse 2-cluster
138 anterior-posterior (A-P) and dorsal-ventral (D-V) genetic similarity partitions identified by Chen
39 and colleagues (25—27). Panel B shows the rank ordering of regions by hierarchical genetic
240 similarity gradients discovered by Chen and colleagues (25-27). These two parcellations were
41 utilized to examine how brain BSRs may vary along these genetic similarity gradients. Panels C-
242 D show A-P and genetic similarity gradients for SA LV1. Panels E-H show D-V (E, G) and genetic
’43 similarity gradients (F, H) for CT LV (E, F) and CT LV2 (G, H).
244
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245 Because cortical regionalization begins in early prenatal periods from A-P and D-V
246 gradient patterning of gene expression (/2—-14, 17), we next assessed whether genes from SA and
247 CT non-zero modules are the same genes that play important prenatal roles in the genomic gradient
248 patterning of the cortex. Using the Development PsychENCODE dataset, we used sparse PCA
249 (37) to identify A-P (PC1) and D-V (PC2) gene expression gradients and the most important genes
250 contributing to those gradients from 12 regions of prenatal cortical tissue sampled from 12-24
251 weeks post-conception (e.g., midgestation) (Fig. 4A-C). Remarkably, non-zero module SA LV1
152 and CT LV1 gene sets are highly enriched for genes that drive the prenatal A-P and D-V gradients
153 (Fig. 4D). CT LV2 genes were also enriched for A-P and D-V prenatal gradients, but unlike SA
154 LV1 and CT LV1, the enrichments were apparent for both zero and non-zero modules (Fig. 4D).
155 These results suggest that the genes responsible for the normative SA LV1 and CT LVI
156 relationships are also genes in prenatal periods that act to initialize the regionalization and
157 patterning of cortex along A-P and D-V axes. Since SA LV1 and CT LV1 relationships are largely
158 absent in the ASD Poor subtype, this result suggests that the atypical genomic patterning of SA
59 and CT in this subtype could stem from perturbations in earlier prenatal development.

260

61 The evidence that SA and CT non-zero modules are enriched for genes that are important
262 for midgestational A-P and D-V expression gradients leaves open the question of what prenatal
263 cell types might drive such effects. The radial unit hypothesis (/2) suggests that symmetric cell
64 division in progenitor cell types (e.g., radial glia) in the ventricular zone leads to a substantial
265 proliferation of radial units that then each become their own cortical column and thus, leads to
66 substantial expansion of SA. Variation in this proliferative process in different parts of the
267 ventricular zone protomap regulates regional differences in SA (12, 13, 38). Programmed cell
268 death could also be another mechanism regulating SA (/3) and could implicate microglia
269 involvement. In contrast, CT is likely regulated by asymmetric cell division leading to more
270 neurons within particular cortical columns (/2) as well as intermediate progenitor cell types (/3).
271 CT is also heavily influenced by dendritic arborization (39). While arborization changes over
)72 development due to a variety of factors such as experience-dependent pruning, CT and the
)73 trajectory it follows over development is also known to be heavily influenced by genetic factors
74 even in middle-aged adults, suggesting that individual differences in CT have a genetic and
X75 neurodevelopmental origin (40, 47). Given that cell type markers from midgestational periods are
76 available (42), we next asked if specific prenatal cell type markers are enriched for genes from SA
Y77 and CT non-zero modules. In striking agreement with prenatal mechanisms hypothesized to affect
Y78 SA expansion (/2, 13), we find that SA LV1 non-zero modules show enrichments for all progenitor
¥79 cells types - ventricular and outer radial glia (VRG, oRG), cycling progenitors in S and G2M phases
280 of cell cycle (PgS, PgG2M), and intermediate progenitors (IP). In contrast, SA LV1 non-zero
181 modules are devoid of enrichments in later differentiated excitatory (ExM, ExN, ExM-U, ExDpl,
182 ExDp2) and inhibitory (InCGE, InNMGE) neurons. Several non-neuronal cells also show SA LV1
’83 enrichments, including oligodendrocyte precursors (OPC), endothelial cells (End), and microglia
'84 (Mic) (Fig. 4E; Table S1). Similar to SA LV1, CT LV1 and LV2 share enrichments for vRG
185 progenitors. IP cell types are the only other progenitor cell type enriched for CT LV1 and CT LV2
186 non-zero modules, and this effect is compatible with hypothesized effects of IP cells on CT (/3).
187 However, CT LV1 and LV2 are differentiated from the enrichment profile of SA LV1 by the
188 presence of enrichments with several types of excitatory neurons (Fig. 4F-G; Table S1). This result
189 indicates a striking contrast between the SA LV1 enrichment profile of primarily progenitor cell
90 types and are compatible with the radial unit and protomap hypotheses (/2), differential SA and
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91 CT GWAS enrichments (40), and other viewpoints regarding contributors to CT (39). These results
292 also highlight effects of non-neuronal cell types such as microglia cells. Microglia enrichments are
’93 present and particularly strong for SA LV1 and CT LV1 non-zero modules. This effect may have
294 implications for programmed cell death and pruning explanations (43) and which may be relevant
295 to ideas behind ASD-relevant broadly expressed genes and their particularly strong effects on non-
96 neuronal cell types such as microglia (/0).
297 .
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99 Fig. 4: Enrichment between PLS non-zero modules and genes involved in prenatal A-P and D-
300 V expression gradients and prenatal cell types. Panels A shows cortical brain areas sampled from
301 12-24 weeks post-conception from the Development PsychENCODE RNA-seq dataset from Li and
302 colleagues (14). AC-PCA (37) was utilized to isolate anterior-posterior (A-P) (PC1, panel B) and
303 dorsal-ventral (D-V) (PC2, panel C) expression gradients. Panel D shows -logl0 p-values for
304 enrichment tests of non-zero and zero modules for SA LVI, CT LV1, and CT LV?2 for genes isolated
305 from PCI and PC2. Panels E-F show enrichments in prenatal cell types for SA LV1 (E), CT LV1
306 (F), and CT LV2 (G). Abbreviations: A-P, anterior-posterior; D-V dorsal-ventral;, PC, principal
307 component, OR, enrichment odds ratio; vVRG, ventricular radial glia; oRG, outer radial glia; PgS,
308 cycling progenitors (S phase); PgG2M, cycling progenitors (G2/M phase),; IP, intermediate
309 progenitors;, ExM, maturing excitatory; ExN, migrating excitatory, ExM-U, maturing excitatory
310 upper enriched; ExDpl, excitatory deep layer 1; ExDp2, excitatory deep layer 2; InCGE,
311 interneuron caudal ganglion eminence; InMGE, interneuron medial ganglion eminence; OPC,
312 oligodendrocyte precursor cells;, End, endothelial cells,; Per, pericytes; Mic, microglia.
313
314 The results so far suggest that SA and CT non-zero modules are highly prenatally relevant
315 for establishing cortical patterning and regionalization and implicate several cell types that may be
316 of mechanistic importance to different ASD early language outcome subtypes. However, are the
317 SA and CT non-zero modules also functionally relevant for processes that are essential for
318 language development? Our prior work showed that PLS non-zero modules associated with
319 speech-related fMRI response (6) were highly enriched for differentially expressed genes in Area
320 X from a songbird model of vocal learning (44). To test if similar enrichments held up for SA and
321 CT non-zero modules we ran enrichment tests with vocal learning DE genes from Hilliard and
322 colleagues (44). Remarkably, we find similar types of enrichments between DE songbird vocal
323 learning genes and PLS non-zero modules in SA LV1 (OR = 2.02, p = 1.05e-4) and CT LV1 (OR
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324 = 1.90, p = 9.61e-4), but not zero modules (p >0.08) (Fig. SA-C; Table S1). For CT LV2,
325 enrichments were present at FDR <0.05 (but not FDR q<0.01) for both non-zero (OR = 1.62, p =
326 0.006) and zero modules (OR =1.61, p=0.017). These effects suggest that many genes responsible
327 for vocal learning in songbirds are conserved and highly represented specifically within SA and
328 CT non-zero modules that are relevant for groups with relatively intact language (e.g., TD and
329 ASD Good).
330
331 Language is a uniquely human ability and there is some evidence that genes implicated in
332 human-specific evolution are also relevant for autism (45—48). In prior work we found that PLS
333 non-zero modules associated with speech-related fMRI response (6) were enriched for
334 differentially expressed genes in the cortex of humans versus non-human primates (i.e. “human-
335 specific’ genes). Given that cortical SA is a phenotype that is dramatically expanded in human
336 evolution, and much moreso than CT, we investigated the hypothesis of whether SA non-zero
337 modules would be specifically enriched for human-specific genes. Using 3 lists of human
338 differentially expressed genes in prenatal, early postnatal, and adulthood periods (47), we find that
339 SA LV1 non-zero modules are specifically enriched for prenatal and adulthood human-specific
340 genes (prenatal OR = 1.86, p = 1.93e-3; adulthood OR = 1.97, p = 1.02e-5) (Fig. 5D; Table S1).
341 In contrast, no such enrichments are found with genes relevant to CT LV1 or LV2 (Fig. 5SE-F). In
342 addition to differentially expressed genes we also examined genes that are targets of human-
343 accelerated regions (HAR) or human-gained (HGE) or lossed enhancer (HLE) regions (48).
344 However, no enrichments for SA or CT were identified for HAR, HGE and HLE genes (Fig. 5D-
345 F). These results expand on the notion that human-specific genes are of relevance to ASD by
346 showing that the normative genomic mechanisms associated to SA are also genes of importance
347 for human-specific evolution. Given that the SA LV1 relationship is absent in ASD Poor, this
348 suggests that the loss of such normative associations may allow for early SA expansion and
349 possibly early brain overgrowth for ASD Poor.
;50 A Vocal Learning B Vocal Learning C Vocal Learning
SA LV1 CT LV1 CT Lv2
Song Bird OR =2.02 Non-Zero Song Bird OR =1.90 Non-Zero  Song Bird OR =1.62 Non-Zero
DE Genes p = 1.05e-4* Modules DE Genes p=9.61e-4* Modules DE Genes p =0.006 Modules
songeirt (RSN | zeo oDl (LS oo oo | BEUREl oo
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352 Fig. 5: Enrichments between PLS non-zero modules and songbird vocal learning or human-
353 specific genes. Panels A-C indicate enrichments between differentially expressed songbird vocal
354 learning genes and non-zero and zero modules for SA LV1 (A), CT LVI (B), AND CT LV2 (C).
355 Panels D-F indicate enrichments between human-specific genes and non-zero and zero modules
356 for SA LVI (D), CT LVI (E), and CT LV2 (F). Asterisks marks enrichments at FDR ¢<0.01.
357 Abbreviations: DE, differentially expressed; OR, enrichment odds ratio; SA, surface area; CT,
358 cortical thickness; LV, latent variable pair; HS, human-specific; HAR, human-accelerated region;
359 HGE, human-gained enhancer; HLE, human-lossed enhancer.

360

}61 Next, we asked whether SA and CT non-zero modules were relevant for known autism-
362 associated genomic mechanisms. SA LV1 and CT LV1 non-zero or zero modules are not enriched
363 for rare de novo protein truncating variants (49) or other genes that are annotated as autism-
364 associated in SFARI Gene (50). However, CT LV2 non-zero modules were enriched for SFARI
365 ASD genes (Table S1). Thus, at the level of ASD-risk gene mutations, CT LV2 was the only
366 feature showing enrichments with non-zero modules. This could be compatible with the nature of
367 CT LV2 being mostly specific to the ASD Poor subtype.

368

369 At the level of genes with evidence of ASD-dysregulated expression from post-mortem
370 cortical tissue, we find that both CT LV1 and LV2 non-zero modules were enriched for ASD
371 upregulated genes (57). In contrast, genes from cortically downregulated co-expression modules
372 (19) were highly enriched with genes from SA LV1 non-zero modules (Table S1). This result
373 shows an interesting contrast between CT and genes that show upregulated expression versus SA
374 and genes that show downregulated expression in ASD.

375

376 Non-zero modules from SA LV1, CT LVI1, and CT LV2 are also enriched for co-
377 expression modules that are highly transcriptionally active during prenatal periods and which
378 contain many high-penetrance ASD-related mutations (Fig. 6A-C; Table S1). This is compatible
379 with the idea that broadly expressed genes can interact and impact key ASD-risk genes,
380 particularly in prenatal periods (9, /0). Downstream targets of highly penetrant genes like FMR
381 and CHDS8 were also enriched in non-zero modules from SA LV1, CT LV1, and CT LV2.
382 However, not all of these enrichments are specific to autism-associated genes. Genes differentially
383 expressed in schizophrenia (5/) were also significantly enriched in non-zero modules across SA
384 LVI1, CT LV1, and CT LV2.

385

386 Finally, we examined enrichments with cell type specific differentially expressed genes in
387 autism (52). Here we found that only SA LV1 non-zero modules are enriched for differentially
388 expressed genes in microglia cells (Fig. 6D). No other comparisons for DE cell types were
389 statistically significant. See Fig. 6 and Table S1 for a summary of autism-associated enrichments.
390 The fact that non-zero modules are devoid of enrichments in most DE genes from specific cell
391 types is compatible with the notion that these genes are of primary relevance for early prenatal
392 periods and will not be a highly discoverable DE signal in post-mortem ASD tissue.

393
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Fig. 6: Enrichment between PLS non-zero modules and autism-associated genes. Panels A-C
indicate enrichments between different autism-associated gene lists and non-zero and zero
modules for SA LV (A), CTLVI (B), AND CT LV?2 (C). Panels D-F indicate enrichments between
differentially expressed genes in specific cell types in autism and non-zero and zero modules for
SA LVI (D), CT LVI1 (E), and CT LV2 (F). Asterisks marks enrichments at FDR q<0.01.
Abbreviations: DE, differentially expressed; OR, enrichment odds ratio; SA, surface area; CT,
cortical thickness,; LV, latent variable pair, dnPTVs, de novo protein truncating variants.
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To aid future work examining specific genes of interest, we focused on identifying high-
confidence ASD-risk genes (annotated as the ‘high-confidence’ category 1 list in SFARI Gene)
that are also SA-and prenatally-relevant progenitor and A-P patterning genes (i.e. the intersection
of SFARI ASD, SA non-zero modules, PC1 A-P genes, prenatal progenitor cell types, and ASD
prenatal co-expression modules). SON and BAZ2B were identified and these genes play roles in
splicing, cell cycle, transcriptional regulation, and chromatin remodeling. For CT LV1 genes, we
next searched for high-confidence ASD-risk genes that were also prenatally-relevant excitatory
and D-V patterning genes (i.e. the intersection of SFARI ASD, CT LV1 non-zero modules, PC2
D-V genes, prenatal excitatory cell types, and ASD prenatal co-expression modules). Here we find
ASD ‘high-confidence’ genes of ATRX, AUTS2, and BCL11A. In a similar search within CT LV2
non-zero modules of prenatal relevance to excitatory neurons and D-V patterning, we identified
ATRX, AUTS2, BCL11A4, CACNAIE, and MEIS? as high-confidence ASD-risk genes. A common
theme of all these CT-relevant genes is their role in chromatin modification and remodeling (with
the exception of CACNAIE) and their links to syndromes causing intellectual disability.
Additionally, with the exceptions of BCLI1IA and CACNAIE, all SA- and CT-relevant high-
confidence genes listed here fall into the broadly expressed gene list, highlighting the importance
of these high-impact genes in ASD biology (9).

These findings represent a significant enhancement to the mechanistic and clinical
precision of our understanding of the early brain basis behind the autisms (7). Along with our prior
work (6, 7), this work showcases that the ASD Poor subtype indeed a distinct subtype with
multiscale differentiation across development, behavior, and underlying neural systems. While
prior work showed a biological distinction in this subtype with fMRI (6, 7), this work shows that
the biology is also distinct when examining structural neural phenotypes like SA and CT. While
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127 on-average early brain overgrowth is one of the most robust findings in the literature on
128 neurodevelopment in ASD (4, 31), this work shows that the effect is driven by a subtype of ASD
129 toddlers with poor early language development and outcome.

130

131 This work also uncovers an altogether new discovery behind how cortical SA and CT
132 phenotypes are atypically genomically patterned in the ASD Poor subtype. Genomic patterning of
133 SA and CT occurs along A-P and D-V gradients, thus enabling the development of cortical areal
134 and circuit identities (//, 13, 25—27). This A-P and D-V genomic patterning of SA and CT is intact
135 in TD and ASD Good, but absent in ASD Poor (e.g., Fig. 2D). Atypical genomic patterning of the
136 cortex in ASD Poor could be the key neural explanation behind why these individuals have much
137 more pervasive and more severe behavioral difficulties and poor outcomes. Prior work has shown
138 that molecular identity defined by gene expression affects cell type specific neurophysiological
139 response (53). Thus, without intact genomic patterning of the cortex it may be that development
140 of regional or circuit level identities may be perturbed in ASD Poor and this may help explain the
41 phenotypic difficulties in complex information processing in domains like language and social
142 communication.

143

{44 The results also shed insight into the developmental and mechanistic origins at the root of
145 the ASD Poor subtype. Evidence suggests that these SA and CT-relevant genes are the same genes
{46 responsible in early prenatal periods for establishing these A-P and D-V gene expression gradients
147 across the cortex. The genes responsible for this atypical prenatal genomic patterning are massive
148 in scale, encompassing a large majority of the genes examined. This result is compatible with ideas
149 from the omnigenic model of complex traits (§). The omnigenic model also proposed that broadly
t50 expressed genes should have large impact on complex traits encompassed by neuropsychiatric
151 phenotypes and diagnoses. Indeed, broadly expressed genes manifest in this and other studies (6)
152 and are a key class of ASD genetic risk that operates at early prenatal timepoints (9, /0). In future
153 work it will be important to explore how genomic patterning of the cortex can affect other ASD
154 subtypes. Additionally, it will be important for future work to investigate how omnigenic and
155 broadly expressed genes such as those identified here may play roles in other atypical multiscale
156 phenomena in ASD.

157
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1

)12 Supplementary Materials:

)13

)14 Materials and Methods

)15

)16 Participants

)17

)18 This study was approved by the Institutional Review Board at University of California, San
)19 Diego. Parents provided written informed consent according to the Declaration of Helsinki and
)20 were paid for their participation. Identical to the approach used in our earlier studies (6, 7, 22, 54—
121 59) toddlers were recruited through two mechanisms: community referrals (e.g., website) or a
)22 general population-based screening method called the 1-Year Well-Baby Check-Up Approach
)23 (60) that allowed for the prospective study of ASD beginning at 12 months based on a toddler’s
)24 failure of the CSBS-DP Infant-Toddler Checklist (67, 62). All toddlers were tracked from an intake
)25 assessment around 12 months and followed roughly every 12 months until 3—4 years of age. All
)26 toddlers, including normal control subjects, participated in a series of tests collected longitudinally
)27 across all visits, including the Autism Diagnostic Observation Schedule (ADOS; Module T, 1, or
)28 2) (63), the Mullen Scales of Early Learning (64), and the Vineland Adaptive Behavior Scales
)29 (65). All testing occurred at the University of California, San Diego Autism Center of Excellence
30 (ACE). No randomization procedures were implemented as part of the data collection process.
31 Data collection and analyses were not performed blind to the conditions of the experiment.

)32

)33 Stratification of ASD Poor versus ASD Good was made on the basis of Mullen EL and RL
)34 T-scores. An ASD toddler was classified as ASD Poor if both Mullen EL and RL T-scores at the
)35 final outcome assessment was below 1 standard deviation of the T-score norm of 50 (i.e. T<40).
36 ASD Good labels were made if the toddler had either Mullen EL or RL T-scores within 1 standard
)37 deviation or above the normative T-score of 50 (i.e. T > 40). A total of n=123 toddlers had T1
)38 structural MRI and gene expression data available. From these 123 toddlers, n=76 ASD individuals
39 were examined and were split into the 2 language outcome subtypes - ASD Poor n=38 (32 male,
)40 6 female; mean age at MRI scan =29.01 months, SD at fMRI scan = 7.22, range = 12-50 months),
41 ASD Good n=38 (28 male, 10 female; mean age at fMRI scan = 29.02 months, SD at fMRI scan
)42 =9.55, range = 14-46 months) and TD n=47 (25 male, 22 female; mean age at fMRI scan =25.91
)43 months, SD at fMRI scan = 10.44, range = 13-46 months). ASD subtypes and TD did not
)44 statistically differ in age at the time of scanning (F(2,120) = 1.62, p = 0.20). For more demographic
)45 and phenotypic information, please see Table S2.

)46

)47 Blood Sample Collection, RNA extraction, quality control and samples preparation

)48

)49 Four to six milliliters of blood was collected into EDTA-coated tubes from toddlers on
)50 visits when they had no fever, cold, flu, infections or other illnesses, or use of medications for
)51 illnesses 72 hours prior blood draw. Blood samples were passed over a LeukoLOCK™ filter
)52 (Ambion, Austin, TX, USA) to capture and stabilize leukocytes and immediately placed in a -20°C
)53 freezer. Total RNA was extracted following standard procedures and manufacturer’s instructions
)54 (Ambion, Austin, TX, USA). LeukoLOCK disks (Ambion Cat #1933) were freed from RNA-later
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)55 and Tri-reagent (Ambion Cat #9738) was used to flush out the captured lymphocyte and lyse the
)56 cells. RNA was subsequently precipitated with ethanol and purified though washing and cartridge-
)57 based steps. The quality of mRNA samples was quantified by the RNA Integrity Number (RIN),
)58 values of 7.0 or greater were considered acceptable (66), and all processed RNA samples passed
)59 RIN quality control. Quantification of RNA was performed using Nanodrop (Thermo Scientific,
)60 Wilmington, DE, USA). Samples were prepped in 96-well plates at the concentration of 25 ng/ul.
)61

)62 Gene expression and data processing

)63

)64 RNA was assayed at Scripps Genomic Medicine (La Jolla, CA, USA) for labeling,
)65 hybridization, and scanning using the Illumina BeadChips pipeline (Illumina, San Diego, CA,
)66 USA) per the manufacturer’s instruction. All arrays were scanned with the Illumina BeadArray
)67 Reader and read into Illumina GenomeStudio software (version 1.1.1). Raw data was exported
168 from Illumina GenomeStudio, and data pre-processing was performed using the lumi package (67)
)69 for R (http://www.R-project.org) and Bioconductor (https://www.bioconductor.org) (68). Raw and
)70 normalized data are part of larger sets deposited in the Gene Expression Omnibus database
)71 (GSE42133; GSE111175).

)72

)73 A larger primary dataset of blood leukocyte gene expression was available from 383
)74 samples from 314 toddlers with the age range of 1-to-4 years old. The samples were assayed using
)75 the Illumina microarray platform on three batches. The datasets were combined by matching the
)76 [llumina Probe ID and probe nucleotide sequences. The final set included a total of 20,194 gene
Y77 probes. Quality control analysis was performed to identify and remove 23 outlier samples from
)78 the dataset. Samples were marked as outlier if they showed low signal intensity (average signal
)79 two standard deviations lower than the overall mean), deviant pairwise correlations, deviant
)80 cumulative distributions, deviant multi-dimensional scaling plots, or poor hierarchical clustering,
)81 as described elsewhere (55). The high-quality dataset included 360 samples from 299 toddlers.
)82 High reproducibility was observed across technical replicates (mean Spearman correlation of 0.97
)83 and median of 0.98). Thus, we randomly removed one of each of two technical replicates from the
)84 primary dataset. From the subjects in the larger primary dataset, n=123 also had MRI data and thus
)85 a total of n=105 from the Illumina HT12 platform along with n=18 from the Illumina WG6
)86 platform were used in this study. Batch was not asymmetrically distributed across one subgroup
)87 more than another, as chi-square analyses on the contingency table between subgroup and batch
)88 show no effect (y°(4) = 0.84, p = 0.93). ASD subtypes and TD toddlers also did not statistically
)89 differ in age at the time of blood sampling (F(2,120) = 1.27, p = 0.28). The 20,194 probes were
90 then collapsed to 14,426 genes based on picking the probe with maximal mean expression across
91 samples. Data were quantile normalized and then adjusted for batch effects, sex, and RIN. This
)92 batch, sex, and RIN adjusted data were utilized in all further downstream analyses. We also
)93 checked for differences in proportion estimates of different leukocyte cell types (i.e. neutrophils,
)94 B cells, T cells, NK cells, and monocytes) using the CellCODE deconvolution method (69), but
)95 found no evidence of differences across groups for any cell type (see Table S3).

)96

)97 Weighted Gene Co-Expression Network Analysis

)98

)99 We reduced the number of features in the gene expression dataset from 14,426 genes down
)00 to 21 modules of tightly co-expressed genes. This data reduction step was achieved using weighted
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)01 gene co-expression network analysis (WGCNA), implemented within the WGCNA library in R
)02 (34). Correlation matrices estimated with the robust correlation measure of biweight
)03 midcorrelation were computed and then converted into adjacency matrices that retain the sign of
)04 the correlation. These adjacency matrices were then raised to a soft power of 16 (Fig. S2). This
)05 soft power was chosen by finding the first soft power where a measure of R? scale-free topology
)06 model fit saturates. The soft power thresholded adjacency matrix was then converted into a
)07 topological overlap matrix (TOM) and then a TOM dissimilarity matrix (e.g., I-TOM). The TOM
)08 dissimilarity matrix was then input into agglomerative hierarchical clustering using the average
)09 linkage method. Gene modules were defined from the resulting clustering tree, and branches were
)10 cut using a hybrid dynamic tree cutting algorithm (deepSplit parameter = 4) (Fig. S2). Modules
)11 were merged at a cut height of 0.2, and the minimum module size was set to 100. Only genes with
)12 a module membership of r > 0.2 were retained within modules. For each gene module, a summary
)13 measure called the module eigengene (ME) was computed as the first principal component of the
)14 scaled (standardized) module expression profiles. We also computed module membership for each
)15 gene and module. Module membership indicates the correlation between each gene and the module
)16 eigengene (see Table S4). Genes that could not be clustered into any specific module are left within
)17 the MO module, and this module was not considered in any further analyses. Further WGCNA
)18 analyses were run separately within each group in order to check for preservation of detected
)19 modules across groups at a soft power threshold of 16. These analyses all indicated high levels of
)20 preservation (Zsummary>10) (70) for all detected modules for each pairwise group comparison
)21 (Fig. S3).

)22

)23 MRI Data Acquisition and Analyses

)24

)25 Imaging data were collected on a 1.5 Tesla General Electric MRI scanner during natural
)26 sleep at night; no sedation was used. Structural MRI data was collected with a T1-weighted IR-
)27 FSPGR sagittal protocol (TE = 2.8 ms, TR = 6.5 ms, flip angle = 12 degrees, bandwidth = 31.25
)28 kHz, FOV = 24 cm, slice thickness = 1.2 mm). Cortical surface reconstruction was performed
)29 using FreeSurfer v5.3 (http://surfer.nmr.mgh.harvard.edu/) (7/—73), which uses routinely acquired
)30 Ti-weighted MRI volumes (74), includes tools for estimation of brain morphometry measures such
)31 as cortical thickness and surface area (75, 76), and enables inter-subject alignment via nonlinear,
)32 surface-based registration to an average brain, driven by cortical folding patterns (77). FreeSurfer
)33 has been validated for use in children (78) and used successfully in large pediatric studies (79, 80).
)34 Total cortical volume, surface area (SA) and mean cortical thickness (CT) were computed based
)35 on the Desikan-Killiany parcellation. Regional SA and CT values were computed from a 12-region
)36 parcellation reported by Chen and colleagues (26, 27) based on genetic similarity in monozygotic
)37 twins. This parcellation scheme, known as GCLUST, is highly relevant for our purposes here,
)38 since the parcellations are based on genetic patterning. Thus, GCLUST should help increase
)39 statistical power while also minimizing multiple comparisons. The GCLUST parcellation is also
)40 important as it can be used to leverage information about genetic similarity gradients (e.g., rank
)41 ordering of regions by fuzzy clustering) in further analyses. The 2-cluster anterior-posterior (A-P)
)42 or dorsal-ventral (D-V) partitions discovered by Chen and colleagues (26, 27) are also relevant in
)43 further analyses for A-P and D-V gradient questions. For all 12 regions of the SA and CT GCLUST
)44 parcellation, global effects were controlled for by dividing SA values by the mean SA, and for CT
)45 we subtracted mean CT from each region, as was done in prior papers using this parcellation
)46 scheme (26, 27).
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)47

)48 MRI-Gene Expression Association Analysis

)49

)50 To assess multivariate MRI-gene expression relationships we used partial least squares
)51 (PLS) analysis (81, §2). PLS is widely used in the neuroimaging literature, particularly when
)52 explaining multivariate neural responses in terms of multivariate behavioral patterns of variation
)53 or a design matrix. Given that the current dataset is massively multivariate both in terms of MRI
)54 and gene expression datasets, we used PLS to elucidate how variation in SA or CT covaries with
)55 gene expression as measured by module eigengene values of co-expression modules. PLS allows
)56 for identifying such relationships by finding latent MRI-gene expression variable pairs (LV) that
)57 maximally explain covariation in the dataset and which are uncorrelated with other MRI-gene
)58 expression LV pairs. The strength of such covariation is denoted by the singular value (d) for each
)59 brain-gene expression LV, and hypothesis tests are made via using permutation tests on the
)60 singular values. Furthermore, identifying brain regions that most strongly contribute to each LV
)61 pair is acheived via bootstrapping, whereby a brain bootstrap ratio (BSR) is created for each region,
)62 and represents the reliability of that region for contributing strongly to the LV pattern identified.
)63 The brain BSR is roughly equivalent to a Z-statistic and can be used to threshold data to find voxels
)64 that reliably contribute to an LV pair.

)65

)66 The PLS analyses reported here were implemented within the plsgui MATLAB toolbox
)67 (www.rotman-baycrest.on.ca/pls/). Here we ran 2 separate PLS analyses - one on SA and another
)68 on CT. Neuroimaging data entered into the PLS analyses come from the 12 region GCLUST
)69 parcellations for SA and CT. Because the TD group differed in the proportion and males versus
)70 females compared to the ASD groups, we used a linear model to remove the effect of sex from the
)71 SA and CT data. This SA and CT data with the sex effect removed was input into the PLS analysis.
)72 For gene expression data, we input module eigengene values for all 21 co-expression modules. For
)73 statistical inference on identified MRI-gene expression LV pairs, a permutation test was run with
)74 10,000 permutations. To identify reliably contributing regions for MRI-gene expression LV's and
)75 to compute 95% confidence intervals (ClIs) on MRI-gene expression correlations, bootstrapping
)76 was used with 10,000 resamples. Gene co-expression modules whereby 95% Cls do not encompass
)77 0 are denoted as ‘non-zero’ association modules. All other modules where 95% Cls include 0 are
)78 denoted as ‘zero’ modules.

)79

)80 From the PLS results we tested whether groups show similar correlation patterns across
)81 modules. To test this question, we computed Pearson correlations on the PLS correlation values
)82 for all pairwise group comparisons. Groups with similar PLS correlations will show statistically
)83 significant correlations. We also used the brain bootstrap ratios (BSR) from the PLS analysis to
)84 identify whether BSRs covary along the genetic similarity gradients and A-P and D-V partitions
)85 discovered by Chen and colleagues (26, 27). Pearson correlations were used to identify correlations
)86 with genetic similarity gradients, while independent-samples t-tests were used to compare A-P and
)87 D-V partitions.

)88

)89 Gene Set Enrichment Analyses

)90

)91 We analyze enrichment between genes from PLS non-zero and zero modules and a host of
)92 other gene lists defined by a variety of criteria (see below for details). For these gene set enrichment
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)93 analyses, we utilized custom R code written by MVL
)94 (https://github.com/mviombardo/utils/blob/master/genelistOverlap.R) that computes
)95 hypergeometric p-values and enrichment odds ratios. The background pool for these enrichment
)96 tests was always set to 14,426. After all enrichment tests were computed, results are interpreted
)97 only if the enrichment was statistically significant after FDR correction for multiple comparisons
)98 at a threshold of FDR <0.01.

)99

100 Prenatal Gene Expression Gradients and Cell Types

101

102 To assess gradients in prenatal gene expression we utilized RNA-seq data from the
103 Development PsychENCODE dataset (http://development.psychencode.org) (/4). The data
104 utilized was already preprocessed as described by Li and colleagues (/4) (e.g., normalized, batch
105 effects removed) and summarized to RPKM. Sample data from all 12 available cortical regions
106 from 12-22 weeks post-conception were utilized in order to capture the midgestational window of
107 interest. Before running the analysis we removed low expressing genes with log2(RPKM) below
108 2. The primary analysis to identify expression gradients was an adjustment-for-confounds
109 principal components analysis (AC-PCA) (37) which allowed for adjustment due to repeat
10 measurements from the same donor across sampled brain regions. Rank ordering of regions by A-
[11 P and D-V axes were utilized to statistically confirm that PC1 and PC2 components follow A-P
[12 and D-V gradients. Subsets of the most important genes for the top two principal components were
113 identified with a sparse AC-PCA analysis, whereby the sparsity parameter, c2, was selected based
114 on a grid search with 10-fold cross validation. These PC1 and PC2 gene sets were used in
L15 enrichment tests with PLS non-zero or zero modules.

|16

L17 We also examined enrichments between PLS non-zero and zero modules and prenatal cell
18 types identified from single cell RNA-seq on midgestational prenatal brain tissue (42). These cell
|19 types included several classes of progenitor cells (ventricular radial glia, vRG; outer radial glia,
120 oRG; cycling progenitors (S phase), PgS; cycling progenitors (G2/M phase), PgG2M; intermediate
121 progenitors, IP), excitatory neurons (migrating excitatory, ExN; maturing excitatory, ExM;
122 maturing excitatory upper enriched, ExXM-U; excitatory deep layer 1, ExDp1; excitatory deep layer
123 2, ExDp2), inhibitory neurons (interneuron CGE, InCGE; interneuron MGE, InMGE), and other
(24 non-neuronal cell types (oligodendrocyte precursors, OPC; pericytes, Per; endothelial cells, End,
125 microglia, Mic).

126

127 Tissue-specific enrichments

128

129 To better understand how genes expressed in blood leukocytes could be brain-relevant we
130 annotated gene co-expression modules based on enrichments in genes known from expression
131 across multiple tissues to be either broadly expressed or brain-specific. Both of these categories
132 contain genes that are expressed in cortical tissue, but differ in the pattern of expression across
133 other non-neuronal tissues. To define these lists we downloaded transcript per million (TPM)
134 normalized gene expression from 10,259 samples across 26 tissues from the GTEx dataset
135 (https://www.gtexportal.org) (83, 84). In addition to brain and nerve tissue, the dataset included
136 transcriptome data from 24 non-neuronal tissues, including: Adipose, Adrenal Gland, Blood
137 Vessel, Breast, Blood, Skin, Colon, Esophagus, Heart, Liver, Lung, Salivary Gland, Muscle,
138 Ovary, Pancreas, Pituitary, Prostate, Small Intestine, Spleen, Stomach, Testis, Thyroid, Uterus,
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and Vagina (Table S2). We next defined a gene expressed in a tissue if it met two criteria. First,
the gene TPM expression level was > 3 in at least half of the samples from the tissue. Second, the
median expression of the gene was equal or larger than its 25-percentile expression in GTEx cortex
samples. The second criterion was included to account for the differences in the base expression
level of the genes and their dosage dependent translation and function. Broadly-expressed genes
were defined as genes that were expressed in > 50% of non-neuronal tissues (i.e., tissues other than
brain and nerve). The broadly-expressed and brain-specific genes included genes that were
expressed in the adult cortex based on GTEx dataset.

Vocal learning enrichments

To test for enrichment between PLS non-zero modules and gene sets of functional
relevance for language processes, we examined genes that are differentially expressed in a song
bird vocal learning model. Song birds are often used as animal models relevant for the vocal
learning component of language (44, 85, 86). We investigated enrichments with differentially
expressed genes taken from a microarray dataset of Area X of song birds (44). To identify
differentially expressed (DE) genes between singing versus non-singing birds, we re-analyzed this
dataset (GEO Accession ID: GSE34819) using limma (87), and DE genes were identified if they
passed Storey FDR q<0.05 (88). These DE genes were also used for enrichment tests in our prior
work examining gene expression relationships with language-relevant functional neural
phenotypes measured with fMRI (6).

Human-specific enrichments

Given the uniquely human nature of language, we also tested hypotheses regarding
enrichments with genes that are transcriptionally different in the cortical tissue between humans
and other non-human primates across prenatal, early postnatal and adult periods (47). In addition,
we also examined enrichments with genes linked to human accelerated regions (HAR), human-
gained enhancers (HGE) in prenatal and adult tissue, and human-lossed enhancers (HLE) (48).

Autism-associated enrichments

Ample evidence suggests that prenatal periods are critical for ASD (4, 9, 89-91). To test
enrichment with prenatal ASD-associated co-expression modules, we utilized co-expression
modules from a study that analyzed the Allen Institute BrainSpan dataset (92). Parikshak and
colleagues analyzed only cortical regions from BrainSpan and identified M2 and M3 as prenatally
active and enriched for rare protein truncating variants with high penetrance for ASD (89). We
also tested enrichments with gene lists known to be associated with ASD, either from genetic
evidence or evidence from cortical transcriptomic dysregulation. In particular, we examined a list
of 102 rare de novo protein-truncating variants (dnPTV) associated with ASD (49), genes listed as
ASD-associated in SFARI Gene (https://gene.sfari.org) in categories S, 1, 2, and 3 (downloaded
on July 16, 2020) (50), and DE genes and cortical co-expression modules measured from ASD
post-mortem frontal and temporal cortex tissue (/9, 51). To contrast ASD DE genes to genes that
are DE in other psychiatric diagnoses that are genetically correlated with autism, we also use DE
genes in schizophrenia (SCZ DE) and bipolar disorder (BD DE) from the same study that identified
ASD DE genes (57). To go beyond DE genes identified in bulk tissue samples, we also examined
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ASD DE genes identified in specific cell types - particularly, excitatory (ASD Excitatory) and
inhibitory (ASD Inhibitory) neurons, microglia (ASD Microglia), astrocytes (ASD Astrocyte),
oligodendrocytes (Oligodendrocyte), and endothelial (ASD Endothelial) cells (52). Finally, we
also tested for enrichments with known downstream targets of highly penetrant mutations known
to be associated with ASD — FMRP and CHDS. For each, we had lists of downstream targets for
two independent studies (93—96), where the overlap for FMRP targets was 3.71% and 27.61% for
CHDS targets.
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Figures S1-S3
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Fig. S1: Lack of A-P and D-V gradients in effect size of group comparisons. Panel A shows a
depiction of the A-P and D-V partitions defined by Chen and colleagues (26, 27). Panel B shows
how the genetic similarity gradient defined by Chen and colleagues (26, 27) manifests via
numbered ordering of brain regions along that gradient. Panels C-E show standardized effect size
(Cohen’s d) for group comparisons of TD vs ASD Good (C), TD vs ASD Poor (D), and ASD Good
vs ASD Poor (E). The top row of panels C-E are for the A-P partition, while the bottom row in
each panel is for the D-V partition. Panels F-H show scatterplots of standardized effect size by
genetic similarity gradient for each group comparison of TD vs ASD Good (F), TD vs ASD Poor
(G), and ASD Good vs ASD Poor (H). Comparisons for SA are shown in the top of each panel in
F-H, while CT is shown at the bottom.
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Fig. S2: Soft power and TOM dendrogram from WGCNA analysis. On the left of this figure we
show the soft power plot for the main WGCNA analysis including data from all groups. A
horizontal red line depicts soft power topology model fit R? of 0.9, where the chosen soft power of
16 is located. On the right of this figure is the TOM dendrogram with modules labeled at the
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Fig. §3: Module preservation when WGCNA analysis is run separately on each group. This
figure shows the module preservation Zsummary statistic for WGCNA analyses run separately on
each group in order to show that networks are highly preserved (Zsummary>10) across groups.
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Tables S1-S4

Table S1: Table annotating overlap of each gene with gene sets used in enrichment analyses.

Table S2: Summary of clinical and demographic variables.

Table S3: ANOV A stats from Cell CODE deconvolution of leukocyte cell types.

Table S4: WGCNA module assignments for each gene and module membership scores.
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