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Lorenz Wührl1, Christian Pylatiuk1,*, Matthias Giersch1, Florian Lapp1, Thomas von
Rintelen3, Michael Balke4, Stefan Schmidt4, Pierfilippo Cerretti5, and Rudolf Meier2,*

1Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany
2Department of Biological Science, National University of Singapore (NUS), Singapore
3Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
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ABSTRACT

Invertebrate biodiversity remains poorly explored although it comprises much of the terrestrial animal biomass, more than
90% of the species-level diversity, supplies many ecosystem services. Increasing anthropogenic threads also require regular
monitoring of invertebrate communities. The main obstacle is specimen- and species-rich samples consisting of thousands
of small specimens. Traditional sorting techniques require manual handling based on morphology and are too slow and
labor-intensive. Molecular techniques based on metabarcoding struggle with obtaining reliable abundance information. We
here present a fully automated sorting robot for small specimens that are detected in the mixed sample using a convolutional
neural network. Each specimen is then moved from the mixed sample to a well of a 96-well microplate in preparation for
DNA barcoding. Prior to movement, the specimen is being photographed and assigned to 14 particularly common “classes”
of insects in Malaise trap samples. The average assignment precision for the classes is 91.4 % (75-100 %) based on a
preliminary neural network that is expected to improve further as more images are used for training. In order to obtain biomass
information, the specimen images are also used to measure the specimen length and estimate the body volume. We outline
how the “DiversityScanner” robot can be a key component for tackling and monitoring invertebrate diversity by generating large
numbers of images that become training sets for species-, genus-, or family-level convolutional neural networks, once the
imaged specimens are classified with DNA barcodes. The robot also allows for taxon-specific subsampling of large invertebrate
samples. We conclude that the combination of automation, machine learning, and DNA barcoding has the potential to tackle
invertebrate diversity at an unprecedented scale.
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1 INTRODUCTION

Biodiversity science is currently at an inflection point. For decades, biodiversity declines had been mostly an academic con-

cern although many biologists already predicted that these declines would eventually threaten whole ecosystems. Unfortunately,

we are now at this stage which explains why the World Economic Forum considers biodiversity decline as one of the top three

global risks based on likelihood and impact for the next 10 years [1]. This new urgency is also leading to a reassessment of5

research priorities in biodiversity science. Biologists have traditionally focused on charismatic taxa (e.g., vertebrates, vascular

plants, butterflies) with a preference for endangered species because these taxa have more data (historical and current) and are

favored by grantors and journals. However, with regard to quantitative arguments relating to ecosystem health, these taxon biases

are poorly justified. For example, if one were to adopt a biomass point of view to terrestrial animal diversity, wild vertebrates

would receive next to no attention because they only contribute very little biomass [2]. Indeed, endangered species would receive10
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the least attention because many are functionally extinct. The same conclusions is supported when one adopts a species diversity

perspective. The largest number of multicellular species are fungi and invertebrates. The same groups would also be research

priorities if one were to adopt a functional or an evolutionary point of view given that many fungal and invertebrate clades are

much older and diverse than those taxa that contain most of the charismatic species. All these points of views suggest that

it will be critical to have efficient tools for assessing and monitor non-charismatic taxa that provide numerous ecosystem services.15

One major obstacle to pivoting attention towards those taxa that are important from a quantitative point of view are lack of

biodiversity data on many of the relevant taxa. More than 10 years ago, Robert May [3] summarized the state-of-affairs as

follows: “We are astonishingly ignorant about how many species are alive on earth today, and even more ignorant about how

many we can lose (and) yet still maintain ecosystem services that humanity ultimately depends upon.” He highlighted that20

the discovery and description of earth’s biodiversity is one of the large, outstanding tasks in biology but he also anticipated

that neglecting this task is perilous. Most of the undiscovered and undescribed diversity is in those invertebrate clades that are

nowadays often called “dark taxa”. Hartop et al. [4] recently defined these clades as those “for which the undescribed fauna

is estimated to exceed the described fauna by at least one order of magnitude and the total diversity exceeds 1.000 species.”

They dominate many biodiversity samples and contribute most of the undescribed species-level diversity. Species discovery in25

these taxa is particularly difficult because it requires the sorting of thousands of usually very small specimens that need to be

dissected for careful morphological examination.

Fortunately, there are three technical developments that promise relief. The first is already widely used. It is cost-effective DNA

sequencing with 2nd and 3rd generational sequencing technologies, which have revolutionized microbial ecology, but can also

be applied to invertebrate specimens [5]–[7]. In particular, portable nanopore sequencers by Oxford Nanopore Technologies are30

in the process of democratizing access to DNA sequence data [8]–[10]. However, the two remaining developments remain

underutilized in biodiversity science. They are automation and data processing with neural networks. Currently, automation

mostly exists in the form of pipetting robots in molecular laboratories, while data processing with neural networks is only

widely used for the monitoring of charismatic species. Bulk invertebrate samples that include most of the undiscovered and

unmonitoried biodiversity remain orphaned although thousands of samples are collected every day. They include plankton35

samples in marine biology, macroinvertebrate samples used for assessing freshwater quality, and insect samples obtained with

pitfall- and Malaise traps [11]–[14]. Automation and data processing with artificial intelligence have the potential to greatly

increase the amount of information that can be obtained from such samples [15]. The desirable end goal should be convolutional

neural nets that use images (1) to identify the specimens to species, (2) provide specimen and species counts, (3) measure the

biomass, and (4) compare the results to samples previously obtained from the same sites.40

Manual sorting and identification of specimen- and species-rich invertebrate samples is time-consuming and prone to error.

Processing with metabarcoding mostly yields presence/absence information but struggles with yielding abundance information

and can be affected by taxonomic bias [16]. New systems are needed that yield comprehensive information. Fortunately,
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computer-based identification systems for invertebrates are starting to yield promising results [17]–[19]. Particularly attractive

are deep convolutional neural nets with transfer learning [15], but they require reasonably large sets of training images which45

are hard to obtain for invertebrates given that most species are undescribed and/or difficult to identify. It is here that robotics

can have an important impact if robotic handling of specimens can be combined with taxonomic identifications based on DNA

barcodes. First steps in this direction have been taken. One system was developed for processing macroinvertebrate samples

that are routinely obtained for freshwater quality assessment. This system can size and identify stoneflies (Plecoptera) [20].

Another system focused on soil mesofauna [21]. However, these systems used a robotic arm which made them comparatively50

expensive. Many other insect sorting robots have been designed for more specific purposes. Some are for sorting mealworm

larvae (Tenebrio molitor) and can separate healthy mealworm larvae from skins, feces, and dead worms. Another commercially

available robot can sort mosquitoes [22] and is capable of distinguishing the gender of target species. However, all these

machines lack the ability to recognize a wide variety of insect specimens preserved in ethanol. A machine that is closer to

achieving this goal is the BIODISCOVER, a “robot-enabled image-based identification machine” by Arje et al. [23] which can55

identify ethanol-preserved specimens which, however, have to be fed into the machine manually one by one. After identification

all specimen are returned into the same container.

We here describe a new system that overcomes some of these shortcomings. It recognizes insect specimens based on an

overview image of a sample. Specimens below 3 mm body length are then imaged and moved into the wells of a 96-well

microplate. We demonstrate that the images are of sufficient quality for training convolutional neural nets to common taxa.60

Furthermore, the images are used to derive length measurements and a coarse estimation of biomass based on specimen volume.

Please note that we refer to the term ”classification” in the machine learning context, as assigning objects (specimens) to

different classes.

2 CONCEPT AND METHODS

The aim of the project was to develop an insect classification and sorting robot that is compact and that works reliably. It65

should also be easily reproducible, so that several systems can be set up and operated in parallel to allow high-throughput

taxonomic identification. For this purpose, a design was developed that integrates as many standard parts as possible to ensure

robustness. Furthermore, all connecting parts for the robot were designed to be produced by a standard 3D printer. The basic

design with a cube-shaped frame and 3 linear drives with accurately positioning stepper motors is based on a zebrafish embryo

handling robot [24]. The robot was equipped with two high-resolution cameras with customized lenses, suitable LED lighting70

and image recognition software. Furthermore, a transport system based on a suction pump was integrated to transfer detected

insects into the wells of a standard 96-well microwell plate. Thus, the robot system can be divided into: (1) the Transport

System, (2) the Image Acquisition System and (3) the Image Processing will be described in detail in the following. A free

parts list and the assembly instructions is provided on request.

For the purpose of insect handling, a petri-dish with full-ethanol preserved insects is placed in the robot, which are then75
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classified, measured and sorted in a microwell plate. The setup provided for this purpose consists of a 50 x 50 x 50cm main

frame, in which all components except the control panel are located. Figure 1 shows the sorting robot. The the x-, y-, and z-axis

can be seen as well as the petri dish and the micro wellplate. For the operation of the robot by the user, a touch screen with

graphical user interface (GUI) is mounted on the front side.

2.1 Transport System80

The transportation system is based on a three-axes robot for transferring insects from a petri dish to a microwell plate and to

position a camera for a detailed view (C2) of a single specimen. The transportation system with its three axes is illustrated in

Figure 1.

Figure 1. The DiversityScanner with 1: x-axis; 2: y-axis; 3: z-axis; 4: Petri dish; 5: Micro wellplate; 6: Overview
camera (C1), 7: Detail camera (C2). The electronics box with Raspberry Pi, motor control unit, and the syringe pump are in the
lower part of the sorting robot and therefore not visible in this view. The status of both, insect position determination and status
of the sorting process are displayed on a touch screen, where the sorting process can also be started and stopped.

The x- and y-axes of the robot are realised by LEZ1 linear drives (Isel AG, Eichenzell, Germany) and connected to the outer

frame of the robot at half height. Both linear drives are driven by high-precision stepper motors with little tolerance to ensure85
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good positioning accuracy. The y-axis is connected orthogonally to the shaft slide of the x-axis and is transported by it. The

shaft slide of the y-axis transports both, the camera (C2) and the z-axis with the suction hose. In order to move the suction hose

in the z-direction (=up and down) the z-axis is driven by a AR42H50 spindle drive with stepper motor (Nanotec Electronic

GmbH & Co. KG, Feldkirchen, Germany). All three axes are controlled by a single TMCM-3110 motor controller (Trinamic,

Hamburg, Germany) that allows for precise, fast and smooth movements of the axes. The motor controller was located in a box90

at the bottom of the robot along with other electronics, so that it is protected from water and ethanol droplets. The transport

system is controlled by a Raspberry Pi single-board computer that was programmed in Python software, specially developed

for the sorting robot. In order to pick up insects from a petri dish and discharge them in a well of a 96-well microplate a

suction hose with a pipette tip is positioned by the transportation system. The hose is connected to a LA100 syringe pump

(Landgraf Laborsysteme HLL GmbH, Langenhagen, Germany), that is also controlled by the Raspberry Pi. The sorting process95

is illustrated in Figure 2.

Figure 2. Process-chain for the classification and sorting process.

The sorting system includes two cameras with different lenses: the overview camera (C1) and the detailed view camera (C2).

The first camera (C1) is a Ximea MQ042CG-CM camera with a CK12M1628S11 lens (Lensation GmbH, Karlsruhe, Germany)

with a focal length of 16mm and an aperture of 2.8 is positioned directly above the petri dish to take a detailed overview image

of all insects inside. This image is used for detecting insects and their position within the Petri dish for the sorting process.100

Figure 3 (a) shows an exemplary image of the overview camera.

The second camera (C2) ia a Ximea MQ013CG-E2 camera with a telecentric Lensation TCST-10-40 lens with a magnification

of 1x. This camera has to be moved by the x and y axes of the robot above the position of an insect to take a detailed image of it

for classification, measuring and length determination. Figures 4 and 6 show examplary images from the detail camera.

2.2 Image Processing Software105

Three different software algorithms are used: The first algorithm determines the position of each object within the square

petri dish. The second one measures the length and volume of each insect. The third algorithm is based on an artificial neural

net to classify insects into different classes.

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.17.444523doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444523
http://creativecommons.org/licenses/by/4.0/


(a) The native image of the square Petri dish has a size of 120x120mm (b) After image processing a blue line was drawn into the image,
located 10 mm from the edge of the Petri dish to define the area in
which the object positions are determined. Green circles represent the
positions of detected objects that meet the conditions of size and
sufficient distance from other objects.

Figure 3. Sample image obtained with the detail camera (C2) before and after processing.

(a) The native image has a size of 6.4x4.8mm and shows a
Hymenoptera Ichneumonidae

(b) After image processing the length and volume of the head,
mesosoma, metasoma and the total length are displayed

Figure 4. Specimen image obtained with the detail camera (C2) before and after processing.

Determination of Object Position: Most objects are insects, or parts of insects, but there can also be debris or other objects.

After the overview image is taken, various image processing operations have to be performed to detect the objects: (1) A110

median filter removes noise from the image, (2) a conversion from a RGB-image to a gray scale image is performed, (3) an

adaptive threshold filter segregates the objects and (4) a contour finder identifies the boundaries of all objects. Two conditions

must be met for objects to be detected: first, their size must be within a specified interval, and second, the distance between an

6
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object and neighbouring objects must exceed a minimum threshold value. If a cluster of objects is present, then the objects in

the cluster fall below the specified minimum distance and are therefore not considered until they are separated. This ensures115

that only one single object is picked up during pipetting. Additionally, an accessible area within the petri dish has been defined

that has a distance of ten millimeters from the edge to ensure that the insects can be reached (blue line in Figure 3) (b). Finally,

all objects are color-coded. The coordinates of the detected objects are stored in a list, which is then used to control the position

of the pipetting tip. After an object is removed, a new overview image is taken to determine the new coordinates of the objects,

as they might have moved due to the pipetting of an object. This position identifying process continues until no more objects120

are detected or all wells of the 96-well microplate are filled with one insect each.

Object Dimensions: The length and volume of the insect body should be determined automatically and stored for estimating

biomass. So, several image processing operations are then performed on each specimen image. First, the contour is determined

using morphological operators. Only those surfaces are selected which have a minimum value. If more than one surface is

found (e.g. two body parts of the same specimen separated by a light area), they are connected so that there is only one contour.125

Within this contour, points are placed randomly, which are used to create a regression. The more points are used, the more

accurate the regression and thus the estimate of the insect length is. To find the dividing lines of the head, thorax and abdomen,

straight lines are placed at right angles to and along the regression line. Only those points of a line are considered that lie within

the contour in the process. Subsequently, the dividing line between the head and thorax or between the thorax and abdomen is

determined by examining the changes in length. To estimate the volume, a straight line is drawn through each body part. After130

that additional perpendicular straight lines are drawn which must be within the body contour. Now the distance and length of

the straight lines can be used to determine the volume slice by slice. The determined lengths and volumes of the individual body

parts as well as the total length are displayed on the screen of the sorting robot and the measurements are stored. All operations

are implemented using the free OpenCV program library (version 4.5.1) and the Python programming language (version 3.8.6).

Please note that the results for volume estimation are only accurate if the body parts are rotationally symmetrical. This works135

relatively well for Hymenoptera, but yields less precise measurements for Diptera. A correct determination for all insect

classes is only possible if a second detail camera were to take another image from a right-angle perspective. This is not yet

implemented.

2.3 Insect Classification

In order to recognize different classes of insects and identify specimens to classes, machine learning algorithms were140

applied, based on convolutional neural nets (CNN).

Data Set: In a first trial only images from other image databases (e.g. Biodiversity of Singapore Image Database and

Zoologische Staatssammlung München were used. However, the first classification results were poor which was presumably

due to differences in the morphology of imaged specimens. We subsequently used our own images with the detailed camera for

the training image data set. We used 5 Malaise trap samples from 3 different locations in Germany near the small towns and145
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villages of Rastatt, Kitzing and Framersbach and 2 from the Province of L’Aquila, Italy: Valle di Teve and Foresta Demaniale

Chiarano-Sparvera. Thus, a mix of own images from different Malaise trap samples was used. The images for our target taxa

were not equally distributed but reflected the abundances of each taxon in the Malaise trap samples. [11]. In total 4,325 color

images in 15 classes were used for training, while 1,115 images were used for testing.

Class Number of images Class Number of images
Diptera Acalyptratae 594 Diptera Calyptratae 79

Diptera Cecidomyiidae 467 Diptera Chironomidae 192
Diptera Dolichopodidae 140 Diptera Empididae & Hybotidae 446

Diptera Mycetophilidae & Keroplatidae 440 Diptera Phoridae 837
Diptera Psychodidae 129 Diptera Sciaridae 363

Hemiptera Cicadellidae 137 Hymenoptera Braconidae 113
Hymenoptera Diapriidae 255 Hymenoptera Ichneumonidae 133

Table 1. Classes and the number of images that were available for training, validation and testing.

Each sample contains a wide variety of insect taxa but only the common ones can be covered by the trained CNN. To be150

able to process images of insects that do not belong to any of the 14 classes, an additional residual class is created. This class

consists of different taxa and images of body parts (mainly legs and wings), each of which has too few images for its own class.

In total there are 693 images in this residual class.

Data Augmentation: Since the database consists of only 5,018 images for training the CNN, data augmentation was performed

to increase both, the number of images and the invariance within a class. The following image processing operations were155

applied randomly to the images: rotation, width shift, height shift, shear, zoom, horizontal flip and fill mode nearest.

Network Architecture: As a base model for classification, the VGG19 architecture was used [25]. To apply transfer-learning,

the model was initialized with pre-trained ImageNet weights and the last layer was removed. For the new classification layer,

a global average pooling, a dense layer with 1,024 units and a relu-activation, and a linear layer with a dropout rate of 0.4

were added. For the final classification, a softmax and a L2-regularization with a value of 0.02 are applied. In total the model160

has about 20.5 million parameters and the input size of an image is 224x224 pixels. The number of nodes in the last layer

corresponds to the number of classes in the experiment. For training, the parameters of the original model were frozen and

only the classification layer was trained. Afterwards, the whole model was optimized, where training was applied to all layers.

To get an impression whether the neural network selects the decisive features of an insect for classification, heat maps were

generated. These class activation maps are obtained by a global average pooling layer. Figure 5 a-d show examples for four165

different specimen. The warmer the colour, the more crucial they are for classifying an insect. The network focused on these

areas for classification.
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(a) Hymenoptera Diapriidae: The focus is on the antennae, head,
mesosoma and the wing venation.

(b) Diptera Calyptratae: Here, the focus is on the head and the eye.

(c) Diptera Keroplatidae and Mycetophilidae: The focus is on the
thorax and the legs

(d) Diptera Psychodidae: In this class the focus is only on the wings

Figure 5. Heatmaps (Class activation maps) of four different insect classes.

Setup: The model is implemented in Keras (version 2.4.3) based on Tensorflow (version 2.2.1) and all experiments are

conducted in the Python programming language (version 3.8.6). The networks were trained on a single board computer (Nvidia,

Santa Clara, California, USA) as well as on more powerful GPUs using the online tool Colabatory.170

3 RESULTS

Currently, the sorting robot can pipette insects up to 3 mm length, as larger insects do not fit through the pipetting tip.

Detected insects can be classified by the algorithm into 14 different classes of insects. All other insect classes and non-insect

objects are combined in the class ”other”. The classification results are provided in Table 2. Examples of insects from the

different classes are displayed in Figure 6 a-o. The overall working principles of the DiversityScanner are summarized by the175

following video clip: https://www.youtube.com/watch?v=ElJ5VSHa4OI.
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Class (Taxon) Result Class (Taxon) Result
Diptera Acalyptratae 91% Diptera Psychodidae 89%
Diptera Calyptratae 83% Diptera Sciaridae 92%

Diptera Cecidomyiidae 91% Hemiptera Cicadellidae 100%
Diptera Chironomidae 97% Hymenoptera Braconidae 82%

Diptera Dolichopodidae 86% Hymenoptera Diapriidae 100%
Diptera Empididae & Hybotidae 87% Hymenoptera Ichneumonidae 75%

Diptera Keroplatidae & Mycetophilidae 99% Other 81%
Diptera Phoridae 97%

Table 2. Classification results for the 15 classes. These classes include 14 one or more higher insect taxa and one class for all
other objects and not specified insects.

(a) Diptera Acalyptratae (b) Diptera Calyptratae (c) Diptera Cecidomyiidae (d) Diptera Chironomidae

(e) Diptera Dolichopodidae (f) Diptera Empididae &
Hybotidae

(g) Diptera Keroplatidae &
Mycetophilidae

(h) Diptera Phoridae

(i) Diptera Psychodidae (j) Diptera Sciaridae (k) Hemiptera Cicadellidae (l) Hymenoptera Braconidae

(m) Hymenoptera Diapriidae (n) Hymenoptera Ichneumonidae (o) Other Insects (e.g. Psocoptera)

Figure 6. Examples of 14 classes and one class of other insects.
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The best classification result was achieved for the classes of Hymenoptera Diapriidae and Hemiptera Cicadellidae, where

all insects were correctly classified, whereas insects of the class Diptera Dolichopodidae had the lowest correct classification

rate. Two different automated sorting processes are possible: Either one insect after the other can be classified and sorted until

the last well of the 96-well microplate is filled, or only insects of a predefined class are pipetted into the well plates until no180

insect of this class can be found.

4 DISCUSSION

The use of CNNs for the identification of charismatic species is starting to be routine [26]–[28]. However, these methods

are largely unavailable for small invertebrates although they comprise most of the multicellular animal species and contribute

many ecosystem services. The main problem is not the availability of invertebrate samples, but the lack of CNNs which185

cannot be trained because there are few sets of training images. We believe that the best strategy for changing this undesirable

situation is by combining automated imaging with DNA barcoding. Each “DiversityScanner” robot can process several

invertebrate samples per day. Each contains thousands of specimens that can be imaged with minimal manual labour. After

imaging, the specimens are moved into microplates for DNA barcoding. Once barcoded, the images can be re-labeled with

approximately species-level identifications given that most animal species have species-specific barcodes, or they can be190

assigned to family- or genus-level based on DNA sequence similarities. Common species, genera, and families rapidly acquire

sufficiently large sets of images that can then be used for training CNNs. Indeed, for the most common “classes” of insects

in Malaise traps, we already had enough images for creating such networks after partially imaging only five Malaise trap samples.

Some biologists doubt that CNNs will be sufficiently powerful to yield species-level identifications for closely related195

species and we agree that it remains unclear whether species-level identifications can be achieved [15], [19]. However, we

believe that the main limitation is not the CNN but the image quality and orientation of the insects. Fortunately, these limitations

can be overcome by using high-quality cameras and obtaining large numbers of specimen images in different orientations. This

is particularly straightforward once specimens have been pre-sorted to putative species based on DNA barcodes. As illustrated

by the BIODISCOVER robot, large numbers of images can be obtained rapidly for the same set of specimens by inserting200

them into a cuvette; i.e., one could obtain a sufficiently large number of training images even for fairly rare species. Once the

CNNs have been trained for a sufficiently large number of species, the DiversityScanner could identify most specimens in

routine samples based on images. DNA barcoding would only be needed for those specimens that are not identifiable based on

visual information. These are more likely to belong to rare and new species so that the DiversityScanner would also become a

powerful tool for discovering new species in samples. This ability would be particularly important in the 21st century because205

new species continue to arrive at well-characterized sampling sites. Some of these species recently shifted their distribution in

response to climate change while others may be new anthropogenic introductions. For both it would be desirable to have an

early-warning system based on automated workflows.
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We designed the automatic classification and sorting robot for smaller insects, because they are particularly abundant. The

design of the robot focused on reproducibility and low-cost (<5,000C), so that many robots can sort a large number of insects210

simultaneously. This makes the robot an attractive alternative to manual identification and sorting. After modification, the

DiversityScanner will also be suitable for many additional purposes. For example, larger specimens could be handled by

modifying the suction tip diameters or installing a gripper with a sensor-based feedback system that ensures that the specimens

are not damaged. A particularly attractive modification would also be the ability to subsample a sample. For example, some

invertebrate samples are dominated by a few taxa whose exhaustive treatment may not be needed for monitoring. The robot215

could then be instructed to only fill/identify 2-3 microplates’ worth of specimens for these taxa. Conversely, the user could

specify that only certain taxa should be moved to microplates or different taxa should be moved to different microplates.

The latter would be particularly useful if the specimens are supposed to be barcoded using different molecular markers or

taxon-specific DNA extraction or PCR recipes should be used. Many additional modifications are conceivable. For example,

only specimens belonging to one gender could be selected given that often only the morphology of one sex is species-specific.220

Thus, we believe that robots like the DiversityScanner have the potential to solve some of the problems that were out-

lined by Robert May. Biodiversity discovery and monitoring can be greatly expedited and accelerated, in particular for the

”dark taxa” that have been largely ignored in the past, because of the problems associated with their handling and identification.

Of course, the DiversityScanner can only address some of the challenges. For example, newly discovered species will still have225

to be described and described species matched to types. Even when all the species have been described or identified, we will

still know very little about the ecological roles that the species play within ecosystems. Fortunately, molecular approaches to

diet analysis and life history stage matching can help [29], [30], but ecosystems routinely consist of thousands of species. This

means that automation and data analysis with the tools of AI will become increasingly important.
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