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ABSTRACT 

MiRNA Epitranscriptomics has placed a new layer of complexity in the cancer field. Despite miRNA 

editing and shifted miRNA isoforms are gaining attention due to recent improvements in next-

generation sequencing, a simultaneous study of both modifications in cancer is still missing. Here, we 
concurrently profiled multiple miRNA modifications, such as A-to-I RNA editing and shifted miRNA 

isoforms, in >13K adult and pediatric tumor samples across 38 distinct cancer cohorts from The 

Cancer Genome Atlas and The Therapeutically Applicable Research to Generate Effective 

Treatments datasets. We investigated the differences among canonical miRNAs and a wider 

comprehensive miRNAome from the expression, clustering, dysregulation, and prognostic perspective. 

Interestingly, the wider miRNAome boosted clustering results, uniquely outlining cohorts’ clinical-

pathological features. The abundance of expressed miRNA isoforms directly related to the 
activation/deactivation of critical carcinogenesis pathways. We found dysregulated modified miRNAs 

characterized by an opposite expression trend than their canonical counterparts in cancer, potentially 

impacting their targetome and function. Our study emphasizes the importance of modified miRNAs as 

potential cancer biomarkers and gene expression regulators, outlining once more the importance of 

going beyond the well-established paradigm of one-mature-miRNA per miRNA arm. 
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INTRODUCTION 

MicroRNAs (miRNAs) are a class of small non-coding RNA (ncRNA) molecules of ~21 nucleotides 

(nts) in length, expressed in eukaryotes (1, 2), which negatively regulate gene expression at the post-

transcriptional level (2). MiRNAs are involved in many developmental and cellular processes (3). Their 
dysregulation observed in several diseases (4), including cancer (5, 6), prompted the interest in 

employing such molecules as diagnostic and prognostic cancer biomarkers (7). Until recently, most 

studies on miRNAs widely relied upon the miRNA biogenesis paradigm “one mature miRNA per 

miRNA precursor arm” (1, 8). However, the latest advancements in next-generation sequencing (NGS) 

technologies unveiled a more complex scenario (9), in which some expressed miRNA molecules differ 

from their reference sequence (miRBase) (10). These miRNA variants, termed miRNA isoforms or 

isomiRs, undergo several RNA modification events, such as RNA Editing (11, 12), miRNA sequence 
alternative cleavage (13–17), and alterations at the DNA level (i.e., Single Nucleotide Polymorphisms 

– SNPs) (18, 19). The growing interest in such phenomena started to undermine the before 

mentioned well-established paradigm (10). 

The Adenosine-to-Inosine (A-to-I) RNA editing (11, 12) represents the most abundant RNA editing 

variant in mammals, affecting both splicing and translational machinery. Adenosine deaminases 

acting on RNA enzymes, ADAR1 and ADAR2, catalyze the A-to-I RNA Editing in the nucleus, binding 

double-stranded (ds) RNA regions in both coding and non-coding RNAs (12), including miRNAs (20, 

21). The RNA editing phenomenon has been associated with several human diseases (22, 23), 
including cancer (24, 25). Other groups and we assessed how a single RNA editing event occurring 

within the miRNA seed region (MSR) could compromise the miRNA-mediated gene regulation 

process, which in turn may drastically alter the miRNA targetome (21, 26, 27). Likewise, shifted 

isomiRs, which may result from imprecise cleavage of the miRNA reference sequence, could induce 

targetome differentiation (28–31). Shifted isomiRs may likely result from the imprecise cleavage 

processing by Drosha (13, 14, 32–35), in stark contrast with Dicer, which cleavages at a fixed 

distance  (36). Initially considered as artifacts (37, 38), their function has been recently re-evaluated 
(14, 16, 17, 35) as they actively interact with mRNAs (13, 15, 16, 33, 39, 40). Like the A-to-I RNA 

editing occurring within the MSR, the shifting of the 5’-end (addition/trimming of nts at 5’-end) may 

lead to a diversification of the targetome revealing a more complex role in gene regulation than 

previously expected (41). The expression profile of shifted isomiRs exhibits high variability that is 

tissue- and cell-dependent (37). In some cases, the shifted isomiRs expression results higher than 

their canonical counterparts (42). Shifted isomiRs are classified as “templated” and “non-templated” 

forms. The templated form entirely matches its original pre-miRNA sequence (14, 32). In contrast, the 

non-templated one does not feature a perfect match, possibly due to the addition of nucleotides at the 
mature level via enzymatic activity, typically at 3’-end (35). 

Even though the rising interest in the miRNA Epitranscriptome, most studies have pursued the 

investigation of a subset of miRNA modifications. Recent efforts on assessing the biological 

implications of A-to-I RNA Editing affecting canonical miRNAs (43–46), including our work (47), have 

inflated the interest in employing such molecules as potential biomarkers for cancer prognosis and 

therapy (44, 46). The existence of studies on the oncogenic role of the edited hsa-miR-200b-3p in 
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multiple cancers (46), the tumor suppressor role of the edited hsa-miR-589-3p in glioblastoma (43), 

the supporting role of the edited hsa-miR-455-5p in combination with its canonical form in melanoma 

(45), together with our work on assaying the consequences of miRNA editing in hypoxia (27), further 

consolidated the attention on such a phenomenon. Concurrently, we observed a surge of shifted 
isomiRs-oriented studies, even though mainly focused on detecting templated forms, with some 

exceptions (no insertion or deletion, up to one mismatch). A study reported the profiling of 

lymphoblastoid cell lines (LCLs) from 452 patients for the identification of population- and gender-

dependent shifted isomiRs (48). In this work, authors considered only shifted isomiRs wholly 

contained within the mature miRNA sequence extended by six nucleotides at both ends, contributing 

to the 95th-percentile of reads mapped to each miRNA arm. A similar workflow (49) was applied to 

profile 316 normal and tumor samples of Breast Cancer Invasive Carcinoma (BRCA) from The Cancer 

Genome Atlas (TCGA) (50, 51), in which the identified shifted isomiRs easily distinguished between 
normal and tumor samples, as well as among tumor subtypes. Finally, in recent years, the first pan-

cancer study focused on shifted isomiRs saw the light, offering the profiling of 32 tumor cohorts in 

TCGA (16). In this study, the authors built a “binarized” classifier that labeled shifted isomiRs as 

“present” or “absent,” obtaining overall a better tumor classification in terms of sensitivity. Although 

the studies mentioned above have proven the importance of investigating such miRNA modifications, 

there is still a lack of a broader miRNAome analysis in cancer. 

In this work, we relied on miRge 2.0 (52), one of the major pipelines for canonical miRNAs/miRNA 

isoforms profiling (53–56), given its reliability in identifying A-to-I RNA editing sites and accuracy 
comparable to a well-established miRNA editing detection approach (57, 58). Through miRge 2.0, we 

concurrently detected canonical miRNAs, templated/non-templated shifted isomiRs, modification 

events such as A-to-I RNA Editing and SNPs, as well as nucleotide insertions. We processed 

information at a large scale from the most prominent and reliable public resources, TCGA and The 

Therapeutically Applicable Research to Generate Effective Treatments (TARGET) (59), 

analyzing >13K adult and pediatric cancer samples spread across 38 distinct cohorts. In our data, the 

abundance of expressed annotated miRNA isoforms outmatched by 8-fold the number of expressed 
canonical miRNAs (miRBase v22). Among the expressed miRNA modifications, we observed a 

predominance of 3’-end shifted molecules. Both miRNA arms (5p and 3p) displayed higher mobility at 

3’-end (large trimmings/additions) over the more conservative 5’-end (small trimmings/additions). 

Interestingly, most predominant SNP forms exclusively characterized the two arms, while the A-to-I 

RNA editing sites were mainly located within the 1-10 nts region on both arms. At first, we explored 

the capability of miRNA isoforms to cluster cancer samples across cohorts. We then examined the 

differences in the abundance of expressed isomiRs across cohorts’ cancer samples, finding several 

cancer-related pathways enriched significantly. We also investigated miRNA isoforms from a 
diagnostic and prognostic standpoint. Finally, we experimentally validated gene targeting for two 

different miRNA isoforms: a shifted (no SNVs) and an edited isomiR (no shifting). By combining 

canonical miRNAs and miRNA isoforms, we obtained a higher cluster fragmentation that reflected a 

more profound clinical-pathological stratification. MiRNA isoforms resulted significantly deregulated 

across cohorts/cancer tissues, showing a distribution of modification types proportional to the one 
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observed for expressed annotated molecules. Overall Survival (OS) and Relapse Free Survival (RFS) 

prognostic signatures were significantly enriched with miRNA isoforms over canonical miRNAs, with 

multiple signatures entirely composed of miRNA isoforms. Finally, we experimentally assessed gene 

targeting exclusivity by investigating the canonical miR-101-3p and one of its shifted isomiR in lung 
adenocarcinoma, as well as the canonical miR-381-3p and one of its edited form (A-to-I editing at 

position 4) in breast cancer. 

In summary, our findings highlight the importance of considering the broader modified miRNAome, 

which actively participates in gene regulation and may offer the opportunity to discover novel cancer 

biomarkers. 

 

 

MATERIAL AND METHODS 

Cell lines 

HEK-293 (ATCC® CRL-1573™), A549 (ATCC® CCL-185™), and MDA-MB-231 (ATCC® HTB-26™) 

were seeded and grown in RPMI-1641 medium (Millipore Sigma) supplemented with 10% of fetal 

bovine serum (Millipore Sigma) and penicillin-streptomycin (100 U/mL penicillin and 0.1 mg/mL 

streptomycin) (Millipore Sigma), at 5% CO2 and 95% air environment at 37°C, with 100% relative 
humidity. All cell lines were authenticated through the short-tandem repeat profiling method and 

tested to be free of mycoplasma contamination. 

 

Cell transfection 

HEK-293, A549, and MDA-MB-231 cell lines were plated in a 6- or 12-wells plate 24 hours before 

transfection. 100 nM of miR-101-3p (full label miR-101-3p__mir-101-1__0__0__21M, see MiRNA 

Isoform Nomenclature for more details) mirVana™ miRNA Mimic (Thermo Fisher Scientific, ID# 

MC11414), miR-101-3p (-1|-2) (full label miR-101-3p__mir-101-1__-1__-2__20M, see MiRNA Isoform 

Nomenclature for more details) custom mirVana™ miRNA Mimics (Thermo Fisher Scientific, custom), 

miR-381-3p (full label miR-381-3p__mir-381__0__0__22M, see MiRNA Isoform Nomenclature for 

more details) mirVana™ miRNA Mimic (Thermo Fisher Scientific, ID# MC10242), and miR-381-

3p_4_A_G (full label miR-381-3p__mir-381__0__0__3MG18M, see MiRNA Isoform Nomenclature for 

more details) custom mirVana™ miRNA Mimics (Thermo Fisher Scientific, custom) were transfected 

using Lipofectamine™ 2000 Transfection Reagent (Thermo Fisher Scientific) diluted in transfection-

medium (RPMI-1641 without FBS or antibiotics). mirVana™ miRNA Mimic, Negative Control #1 
(Thermo Fisher Scientific), and Anti-miR™ miRNA Inhibitor Negative Control #1 (Thermo Fisher 

Scientific) were employed as scrambled controls. After 5 hours, transfection-medium was replaced 

with RPMI-1641 supplemented with 10% of fetal bovine serum and penicillin-streptomycin. After 24 

hours or 48 hours, cells were harvested and subjected to Luciferase assay or RNA isolation and 

protein lysis. 

 

Validation of canonical and novel miRNA-target by luciferase assay 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.18.444694doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444694


6 
 

PsiCHECK-2 vector (Promega) was employed to generate luciferase-based reporters for miRNA-

target validation. 3’ UTR of PTGS2 and SYT13 genes, containing miRNAs binding sites and ~200 nt 

flanking regions, were amplified by PCR from human genomic DNA (Promega), using the primers 

listed in Supplementary Table 1 and then inserted into the psiCHECK-2 vector, downstream to Renilla 
luciferase open reading frame. All inserted sequences were checked via Sanger Sequencing. 500 ng 

of psiCHECK™-2 vector holding the specific 3’ UTR were transfected together with 100 nM of 

mirVana™ miRNA Mimics or Negative Controls in HEK-293 cells, as described above. After 24 hours, 

cells were lysed, and Firefly (internal control) and Renilla enzymatic activity were measured using 

Dual-Luciferase® Reporter Assay System (Promega) and detected by GloMax® 96 microplate 

luminometer (Promega), according to the manufacturer`s protocol. The comparison statistical 

significance was computed using the two-tailed unpaired Student’s t-Test provided by the t.test 

function available in stats, an R (v3.4.4) package. 
 

RNA isolation, reverse transcription, and real-time RT-PCR 

The expression of canonical microRNAs, isomiRs, and target genes was analyzed by real-time RT-

PCR after designing custom TaqMan® Small RNA Assays for isomiRs detection (Thermo Fisher 

Scientific). Total RNA was isolated from cells 48 hours post-transfection using TRIzol™ Reagent 

(Thermo Fisher Scientific) according to the standard protocol and measured with the Nanodrop 2000c 

instrument (Thermo Fisher Scientific). For specific microRNAs reverse-transcription, cDNA was 

synthesized from 5 ng of total RNA using TaqMan® Small RNA Assays RT-primers (Thermo Fisher 
Scientific) with the High-Capacity cDNA Reverse Transcription Kit, 30 min 16 °C, 30 min 42 °C, 5 min 

85 °C. MicroRNA real-Time RT-PCR was performed using TaqMan™ Fast Advanced Master Mix 

according to the manufacturer`s protocol, with cataloged and custom TaqMan® Small RNA Assays 

(Thermo Fisher Scientific): miR-101-3p (assay ID 002253), miR-101-3p (-1|-2) (custom assay), miR-

381-3p (assay ID 000571), and miR-381-3p_4_A_G (custom assay). The data were normalized using 

RNU44 (assay ID 001094). 

 
Protein lysis and western blotting analysis 

Cells were lysed in Lysis buffer (50 mM Tris HCl pH 7.5, 150 mM NaCl, 10% Glycerol, and 0.5% 

Nonidet P40), supplemented with Protease inhibitors (Millipore Sigma). Then, 25 µg of proteins were 

loaded onto 4- 12% Mini-PROTEAN Tris-Tricine Precast Gels or Criterion Tris-Tricine Precast Gels 

(Bio-Rad), and electro-blotted on nitrocellulose membranes (GE Healthcare Life Science). Later, the 

membranes were blocked in blocking solution (TBS-0.05% Tween®20/fat-free milk 5%) and 

incubated overnight at 4°C with all the primary antibodies, anti-Cox2 (ABclonal Technologies), anti-

SYT13 (Thermo Fisher Scientific), and anti-Vinculin [SPM227] (Abcam), previously diluted in fat-free 
milk 3-5%. The day after, the membranes were washed three times with TBS-0.05% Tween®20 

(TBS-T) and incubated with appropriate HRP-conjugated secondary antibodies (Millipore Sigma), one 

hour at room temperature. After three additional washes, the membranes were assayed with ECL 

(Millipore Sigma), and the signal was marked and developed on Blue X-ray film (GeneMate) inside a 
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dark room.  The comparison statistical significance was computed using the two-tailed unpaired 

Student’s t-Test provided by the t.test function available in stats, an R (v3.4.4) package. 

 

MiRNA-Seq data 

The TCGA (v20) and TARGET (v20) miRNA-Seq samples (BAM file format) were retrieved via the 

Genomic Data Commons Data Portal (GDC Data Portal, https://gdc-portal.nci.nih.gov). Following the 

authorization from the data access committee (DBGap Project IDs: 11332 and 22219 for TCGA and 

TARGET repositories, respectively), samples were downloaded checking the following options: 

“sequencing reads” (Data Category), “miRNA-Seq” (Experimental Strategy), “bam” (Data Format), and 

“TCGA” and “TARGET” (Program). We adopted the TCGA and TARGET barcode to pair samples and 

clinical data, processing 33 TCGA (10,977 samples over 10,250 adult patients) and 5 TARGET (2,373 

samples over 1,123 pediatric patients) cohorts.  
 

Clinical data 

The GDC Data Portal provides cohort patients’ clinical data in JavaScript Object Notation (JSON) file 

format (e.g., clinical.cart.XXXX.json). Clinical data files are available within the GDC cart section 

along with the miRNA-Seq samples. The GDC Legacy Archive (https://portal.gdc.cancer.gov/legacy-

archive) offers additional TARGET clinical data in Microsoft Excel file format. Collected clinical data 

files were downloaded, opportunely parsed, and harmonized across cohorts. 

 
Single nucleotide DNA/RNA variant data 

After creating the proper login account, COSMIC data (v92) were downloaded by clicking on “Data” 

and “Downloads” (main menu), and then on the “CosmicNCV.tsv.gz” link located on the right side 

(“Non coding variants” section). The dbSNP (v154) database (NCBI SNP), a VCF file format, was 

downloaded via the following link: 

https://ftp.ncbi.nih.gov/snp/archive/b154/VCF/GCF_000001405.38.gz. 

Finally, A-to-I miRNA editing sites were downloaded from MiREDiBase (60). 
 

MiRNA-Seq quality check (QC) 

Downloaded BAM files were converted into FASTQ files by leveraging the bamToFastq tool (bedtools 

v2.25.0 package) (61) and finally quality-filtered through the ConDeTri tool (v2.3) (62) (parameters: -

pb=fq -lq=20 -hq=30 -minlen=15 -sc=33). The workflow is summarized in Figure 1A. 

 

MiRNA isoforms mapping and quantification 

All quality-filtered sequences were aligned to the Ensembl (www.ensembl.org) human genome (hg38) 
and annotated via an in-house designed workflow (Figure 1A). The workflow itself leveraged the 

miRge 2.0 (52), a pipeline for canonical miRNAs/miRNA isoforms annotation based on the latest 

miRBase (v22) (10) and miRGeneDB 2.0 (63) datasets. The MiRge 2.0 pipeline was executed using 

the default parameters. Noteworthy, the annotation process covered a wide range of molecules 

(Figure 1B). Annotated molecules ranged from shifted to non-shifted isomiRs, along with molecules 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.18.444694doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444694


8 
 

subjected to single nucleotide variants (SNVs), such as A-to-I RNA Editing sites, Single Nucleotide 

Polymorphisms (SNPs), and somatic mutations. Shifted isomiRs included molecules characterized by 

sequence shifting affecting the 5’, 3’, or both ends (addition or trimming of nucleotides with respect to 

their canonical miRNA sequence). Once the annotation phase concluded, the workflow enriched 
annotated molecules with additional information, such as the latest known SNPs (dbSNP), somatic 

mutations (COSMIC, TCGA, and TARGET), and A-to-I RNA Editing sites collected from 40 studies 

(Supplementary Table 2), to maximize accuracy. Finally, data were collected into tab-separated text 

files per cohort (i.e., TCGA/Lung Adenocarcinoma shortened TCGA-LUAD). 

 

MiRNA isoform nomenclature 

In this work, we designed a unique human-readable way to label each mapped miRNA isoform. A 

label is de facto a combination of the canonical miRNA, pre-miRNA, 5’- and 3’-end shifting, and a 
“Compact Idiosyncratic Gapped Alignment Report” string, shortened CIGAR 

(https://samtools.github.io/hts-specs/SAMv1.pdf). Succinctly, the CIGAR string is a standard to 

indicate base match/mismatch and other operations (e.g., insertion - I - and deletion - D), used to 

describe sequence alignments. It is essential to point out that miRge current implementation supports 

only insertion operations, potentially posing some limitations on which miRNA isoforms can or cannot 

be mapped. 

To better understand how a label looks like, let us consider the miR-21-5p__mir-21__-

1__+1__2MG21M label. It represents a mapped miR-21-5p isoform (pre-miRNA: mir-21), which 
undergoes the following modifications: 

• A single genomic nucleotide shifting (left) at 5’-end, denoted by -1; 

• A single genomic nucleotide shifting (right) at 3’-end, indicated by +1; 

• A single nucleotide modification at position 3 (i.e., an A-to-I RNA editing site), represented 
using the CIGAR string 2MG21M. The 2M and 21M indicate a perfect match between the 

miRNA isoform and the genomic reference, while at position 3 (after 2M, or two matches), we 

ended up with a G instead of A (reference). 

Above all, we extended the miRge CIGAR string paradigm, replacing each insertion (denoted with I), 

which solely involves the miRNA isoform extremities, with the mapped read’s corresponding 

nucleotide. We adopted such an extension to deal with those miRNA isoforms (same miRNA, pre-
miRNA, and shifting) which show identical CIGAR string but undergo different single nucleotide 

insertions (not reported by miRge). For the sake of clarity, we report below an example of two miRNA 

isoforms with a single nucleotide insertion at 5’-end and no shifting at 3’-end (represented by 0), 

which undergo a single nucleotide insertion at 5’-end: 

• miRge CIGAR: 

o MiRNA isoform n°1: 

§ Canonical miRNA: miR-30a-5p 
§ Pre-miRNA: mir-30a 

§ Sequence mapped: ATGTAAACATCCTCGACTGGAAG 

§ CIGAR: I22M 
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§ 5’-end shifting: -1 

§ 3’-end shifting: 0 

§ Tag: miR-30a-5p__ mir-30a__-1__0__ I22M 

o MiRNA isoform n°2: 
§ Canonical miRNA: miR-30a-5p 

§ Pre-miRNA: mir-30a 

§ Sequence mapped: TTGTAAACATCCTCGACTGGAAG 

§ CIGAR: I22M 

§ 5’-end shifting: -1 

§ 3’-end shifting: 0 

§ Tag: miR-30a-5p__ mir-30a__-1__0__ I22M 

• miRge CIGAR extension: 
o MiRNA isoform n°1: 

§ Canonical miRNA: miR-30a-5p 

§ Pre-miRNA: mir-30a 

§ Sequence mapped: ATGTAAACATCCTCGACTGGAAG 

§ CIGAR: A22M 

§ 5’-end shifting: -1 
§ 3’-end shifting: 0 

§ Tag: miR-30a-5p__ mir-30a__-1__0__ A22M 

o MiRNA isoform n°2: 

§ Canonical miRNA: miR-30a-5p 

§ Pre-miRNA: mir-30a 

§ Sequence mapped: TTGTAAACATCCTCGACTGGAAG 

§ CIGAR: T22M 

§ 5’-end shifting: -1 
§ 3’-end shifting: 0 

§ Tag: miR-30a-5p__ mir-30a__-1__0__ T22M 

 

Given the example above, it is natural and straightforward to link the label miR-21-5p__mir-

21__0__0__22M to the canonical miRNA form. The way we label mapped miRNA isoforms should 

give users a clear hint on which modifications occur, along with their precise location within the 

sequence. Finally, all novel miRNA molecules were labeled as follows: miR-n##, where ### 
represents a positive incremental integer (e.g., miR-n86-3p, and miR-n136-5p).  

 

Data aggregation, annotation, and filtering 

For each dataset/cohort, multiple samples per patient and tissue type (i.e., a patient with more than 

one Primary Solid Tumor sample) were aggregated by calculating the raw read counts expression 

average. Then, raw read counts tables were enriched with additional information, including known 

SNVs, such as SNPs from dbSNP, somatic mutations from COSMIC, TCGA, and TARGET, along 
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with 2,885 A-to-I miRNA Editing sites. A final filter discarded miRNA isoforms with not yet 

characterized (unknown) SNVs involving the first or last two nucleotides. We removed these 

molecules because these unknown SNVs could be due to potential sequencing errors or 

imperfections in the linker ligation during the construction of the cDNA library (64–66). The workflow is 
summarized in Figure 1A. 

 

Data normalization 

In this study, every downstream analysis was preceded by a normalization process. In this process, 

raw read counts were filtered and normalized, applying the criterion described below. Depending on 

the type of data to be normalized, we used Reads Per Million miRNA mapped reads (RPM) for miRNA 

isoforms and Fragments Per Kilobase Million (FPKM) for transcripts. Specifically for miRNA isoforms, 

we computed the RPM expression out of the raw read counts. An expression filtering was then 
applied to retain miRNA isoforms/genes having a minimum expression of 

 . Lastly, the set of expression-filtered molecules was used 

to extract the corresponding raw read counts from the initial table and finally normalized via the 

trimmed mean of M-values (TMM) method (67) using the calcNormFactors function available in 

edgeR (v3.24.3) (68, 69), a BioConductor (v3.6) R (v3.4.4) (70) package. 

 
High dimensionality reduction and clustering 

Aimed to investigate the benefits and drawbacks of using specific miRNA isoforms for clustering 

purposes, we benchmarked three sets of expressed molecules (minimum expression of 

) grouped according to their modification type (Supplementary Figure 

2A). In the first set, labeled “CAN,” we considered only canonical miRNAs (miRBase v22). In the 

second one, marked “ISO_wo_SNV,” we used both canonical miRNAs and shifted isomiRs with no 

SNVs. In the last set, labeled “ISO,” we considered all expressed canonical miRNAs and isomiRs, 
including the shifted ones. We applied an in-house designed workflow (Supplementary Figure 2B) to 

each set, aiming to assess molecules’ ability to cluster samples across different cohorts/cancer 

tissues. The workflow starts extracting from each cancer cohort (e.g., cancer samples in TCGA-LUAD) 

all expressed miRNA isoforms according to a minimum expression of . 

It then collects the raw reads count expression relative to the extracted miRNA isoforms, collapsing 

the data into a single massive raw read counts table and normalizing it via TMM. Afterward, a 
nonlinear dimensionality-reduction technique (Uniform Manifold Approximation and Projection - UMAP) 

(71) is applied to reduce high-dimensional data (the normalized table) into two-dimensional data, 

leveraging the Bray-Curtis distance (72). Except for the distance (metric=braycurtis), we performed 

UMAP (umap-learn Python package, v0.4.6) using its default parameters (min_dist=.1, 

n_neighbors=15, n_components=2), specifying a seed (random_state=99) for reproducibility purposes. 

The resulting lowered-dimension table is then used for sample visualization and clustering analysis 

(see Supplementary Figure 3). We applied the DBSCAN algorithm (73) to perform an unsupervised 

clustering based on UMAP two-dimensional data, leveraging the Euclidean distance. The DBSCAN 

( | )  1RPM FPKM geometric mean >ê úë û

  1RPM geometric mean >ê úë û

  1RPM geometric mean >ê úë û
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algorithm (scikit-learn Python package, v0.22.1) mainly relies on two distinct parameters: eps and 

min_samples. The eps value represents the maximum distance between two points, used to decide 

whether to group them or not. The min_samples value represents the minimum number of nearest 

neighbors (samples) for a point to be considered as a core point. Due to DBSCAN’s high sensibility to 
the eps value, the workflow calculates the optimal value using the K-Nearest Neighbor Distance. 

Having optimal eps speeds up the analysis, allowing us to explore only the min_samples parameter 

(from 3 to 25, with incremental steps of 1). All clustering results are evaluated via Adjusted Rand 

Index (ARI) (74), Adjusted Mutual Information (AMI) (75), and Fowlkes-Mallows Index (FMI) (76) 

scores. Finally, all results are filtered considering a percentage of mislabeled samples (noise) less 

than 5%. 

 

Differentially miRNA isoforms expression analysis 

To detect dysregulated abundant miRNA isoforms across cancer cohorts, we performed a differential 

expression (DE) analysis with a minimum of 5 samples per cohort/tissue type: i.e., TCGA-LUAD/Solid 

Normal Tissue, and TCGA-LUAD/Primary Solid Tumor. Input data were normalized according to the 

normalization criterion described in the “Data Normalization” section. For each molecule, linear fold 

change and statistical significance were calculated using the mean and the two-sided unpaired Mann-

Whitney U test (77). The resulting p-values were adjusted using Benjamini-Hochberg’s correction (78), 

using the fdrcorrection function from statsmodels (v0.11.1) Python package. Finally, dysregulated 

molecules with  and  were retained. 

 

Differentially genes expression analysis 

Unlike the previous section, we performed the gene differential expression analysis for the pathways 

enrichment analysis and each molecule in the two case studies: the canonical miR-101-3p and its 

shifted isomiR, and the canonical miR-381-3p and its edited form. 

For the two case studies, we grouped samples according to the first (Q1) and third (Q3) quartile of 
each molecule, investigating dysregulated genes to assess potential target variability. Instead, for the 

pathway enrichment analysis, we grouped, for each cohort/cancer tissue, samples into two groups: 

low (Q1) and high (Q3) abundant expressed miRNA isoforms.  

Input data were normalized according to the normalization criterion described in the “Data 

Normalization” section. The gene differential expression analysis was performed using edgeR 

(v3.32.1), a Bioconductor (v3.6) R (v3.4.4) package, keeping all those dysregulated genes with 

 and . 

 

Pathway enrichment analysis 

The analysis relied on differentially expressed genes generated as described above. We then 

employed the Ingenuity® Pathway Analysis (IPA) software (v01-16) to perform a pathway enrichment 

analysis for each cohort/cancer tissue. Finally, we retained all those pathways characterized by  

 and . We generated a heatmap plotting the z-scores of the most 

 0.05adjusted p value- <   1.5linear fold change >

 0.05adjusted p value- <   1.5linear fold change >

2z score- ³ 0.01p value- <
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significant pathways enriched in at least five cohorts/cancer tissues, clustering them via Bray-Curtis 

distance metric and Complete Linkage method. The heatmap was created using the clustermap 

function from the seaborn (v0.10.1) Python package.  

 
Risk score-based prognostic signature 

We individually reviewed the clinical data associated with each cohort, considering the patient’s 

survival time independent from each other and treating the censoring time as right-censored data. 

We designed a 2-stages workflow (see Supplementary Figure 4) for optimal prognostic signature 

estimation to assess miRNA isoforms effectiveness as prognostic biomarkers. 

The first stage arranges the patients’ miRNA isoforms expression data. It starts by checking whether 

the cohort/cancer tissue provides at least ten patients per event type (e.g., dead and alive for the 

Overall Survival), representing a minimum number for reliable results. Then, the raw read counts are 
extracted for the selected patients and finally normalized as per the criterion described in the “Data 

Normalization” section. The stage ends by calculating a correlation matrix out of the normalized data. 

The second stage starts exploring potential prognostic signatures by removing highly correlated 

miRNA isoforms. The stage iteratively retains those molecules with a correlation coefficient lower than 

a specific threshold, from 0.6 to 0.8, with incremental steps of 0.01. Besides the threshold, each 

iteration implements the same set of steps. The first step generates a univariate Cox proportional 

hazard regression model to assess the relationship between miRNA isoforms expression and 

patients’ survival. Observed Cox P-values are then adjusted using Benjamini-Hochberg’s correction. It 
continues performing a multivariate Cox proportional hazard regression model based on the most 

significant ( ) miRNA isoforms extracted from the univariate model. Both univariate 

and multivariate Cox regression models leverage the CoxPHFitter function from the lifelines (v0.25.4) 

Python package. Extracted miRNA isoforms are then narrowed down by keeping those molecules 

with  (multivariate model) and further reduced by applying a feature selection 

strategy. The selection strategy relies on Recursive Feature Elimination from the scikit-learn (v0.22.1) 

Python package, coupled with a Logistic Regression Model used as the estimator. 
Next, a Risk Score is computed for each patient by linearly combining the expression value and the 

regression coefficient (univariate model) related to the reduced set of miRNA isoforms (selection 

strategy), as shown below:  

  

Where n represents the number of reduced miRNA isoforms, exp the expression, and β the 

regression coefficient (univariate Cox model). Patients are then separated into high- and low-risk 

groups using the patients’ Risk Score median as a cutoff. Finally, the last step ends by generating a 

Kaplan-Meier Plot (79), a p-value (Log Rank Test), and a prognostic signature accuracy (area under 

the curve - AUC) based on the two risk groups. For the Kaplan-Meier Plot, we leveraged the survfit 

and ggsurvplot functions provided by the survival (v3.2-3) R (v3.4.4) package. 

 0.05Cox FDR <

 0.05Cox p value- <

1
 exp

n

i i
i

Risk score b
=

= ×å
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The workflow concludes by picking up the prognostic signature with the highest AUC for each 

cohort/cancer tissue. In this analysis, we investigate both Overall Survival (OS) (event: death, 

nonevent: alive) and Relapse Free Survival (RFS) (event: relapse, nonevent: no relapse). 

 
MiRNA isoform-target prediction 

All miRNA isoform-target predictions were generated by isoTar v1.2.1 (80). IsoTar leverages state-of-

the-art prediction tools, such as miRmap (v1.1) (81), TargetScan (v7.0) (82), PITA (v6) (83), 

RNAhybrid (v2.1.2) (84), and miRanda (v3.3a) (85). IsoTar focuses on solely seed regions of 7-8 

nucleotides in length (7mer-A1, 7mer-m8, 8mer), with no mismatch or G:U base pairs (wobbles). All 

predictions were performed using isoTar default parameters. 

 

 
RESULTS 

MiRNA isoforms profiling 

To investigate miRNA isoforms at a large scale, we used miRNA-Seq sample data from two large 

cancer datasets, TCGA and TARGET. Both datasets provide insights into a wide range of adult and 

pediatric cancers and are considered the most prominent and reliable public resources. We 
processed 33 TCGA (10,977 samples over 10,250 adult cancer patients) and 5 TARGET (2,373 

samples over 1,123 pediatric cancer patients) cohorts (Materials and Methods). The cohorts’ essential 

characteristics are summarized in Table 1. An in-house workflow (Figure 1A; Materials and Methods) 

was employed to perform canonical miRNAs/isomiRs annotation. The annotation process covered 

both shifted and non-shifted isomiRs, with the last ones characterized by sequence shifting affecting 

the 5’, 3’, or both ends (addition/trimming of nucleotides with respect to their canonical miRNA 

sequence). The process also annotated molecules subjected to Single Nucleotide Variants (i.e., SNPs, 

A-to-I RNA Editing sites, somatic mutations), hereafter called SNVs. At first, the workflow leveraged 
the miRge 2.0 pipeline. It then extended the annotation results with additional information, such as the 

latest known SNPs (dbSNP), somatic mutations (COSMIC, TCGA, and TARGET), and A-to-I RNA 

Editing sites collected from 40 studies (Supplementary Table 2), to maximize accuracy. Finally, a data 

filtering phase discarded all those annotated miRNA isoforms having SNVs not yet characterized 

(unknown) involving the first or last two nucleotides (Figure 1A). On average, we identified 2,569 

303 (SD) expressed molecules (minimum expression of , Reads Per 

Million) per cohort. We also identified eight novel expressed miRNA isoforms, labeled as miR-n### 

(Materials and Methods). Notably, TCGA-TGCT (testicular germ cell tumors) and TCGA-GBM 

(glioblastoma multiforme) cohorts displayed the highest number of expressed miRNA isoforms (Figure 

1C). Overall, the amount of expressed miRNA isoforms was about 8-fold the number of expressed 

canonical miRNAs (miRBase v22). Of all identified RNA modifications, the 3’-shifted isomiRs 

represented the most abundant one, highly present in TCGA-TGCT, TCGA-THYM (thymoma), TCGA-

UCS (uterine carcinosarcoma), TCGA-GBM, TCGA-LAML (acute myeloid leukemia), TARGET-RT 

(rhabdoid tumors), TCGA-SKCM (skin cutaneous melanoma), TCGA-PCPG (pheochromocytoma and 

±   1RPM geometric mean >ê úë û
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paraganglioma), and TCGA-ACC (adrenocortical carcinoma). The TCGA-LAML showed the highest 

number of expressed 5’-shifted isomiRs, along with TARGET-ALL-P3 (acute lymphoblastic leukemia 

phase 3), TCGA-READ (rectum adenocarcinoma), TCGA-TGCT, TCGA-COAD (colon 

adenocarcinoma), TCGA-UCEC (uterine corpus endometrial carcinoma), TCGA-LUSC (lung 

squamous cell carcinoma), TCGA-OV (ovarian serous cystadenocarcinoma), and TCGA-THYM. The 

TCGA-GBM, TCGA-UVM, TCGA-THYM, TCGA-ACC, TARGET-ALL-P2 (acute lymphoblastic 

leukemia phase 2), TCGA-PCPG, TCGA-LAML, TCGA-TGCT, and TARGET-RT cohorts exhibited the 

highest number of expressed miRNA isoforms with known SNVs (i.e., SNPs and somatic mutations). 

Besides, the TCGA-GBM, TCGA-PCPG, TARGET-ALL-P2, TCGA-TGCT, TCGA-UVM (uveal 

melanoma), TARGET-ALL-P3 (acute lymphoblastic leukemia phase 3), TCGA-ACC, TCGA-SKCM, 

and TCGA-THCA (thyroid carcinoma) were the most enriched cohorts with A-to-I miRNA editing sites 

(Supplementary Table 3). Lastly, the TCGA-CHOL (cholangiocarcinoma), TCGA-GBM, TCGA-PAAD 
(pancreatic adenocarcinoma), TCGA-MESO (mesothelioma), TCGA-ACC, TCGA-PCPG, TCGA-

DLBC (lymphoid neoplasm diffuse large b-cell lymphoma), TCGA-THYM, and TCGA-ESCA 

(esophageal carcinoma) cohorts displayed the uppermost number of unknown SNVs. 

To investigate the potential differences due to Drosha and Dicer cleavage on generating miRNA 

isoforms across each miRNA arm, we assessed the abundance of modification types (Supplementary 

Table 3 - “Expressed molecules across arms”). Overall, the 3’-shifted isomiR (no SNVs) represented 

the predominant modification in both arms. We later took a closer look at the 5’- and 3’-end shifting 

extent for the two arms. On average, the 5p arm 5’-end showed the highest stability (Supplementary 
Table 3 - “5p arm - Shifting”), with ~83% expressed isomiRs characterized by no shifting at all (5’-end 

untouched, no nucleotide added or trimmed) and ~10% with one nucleotide trimmed (one nucleotide 

removed at 5’-end). Similarly, the 3p arm 5’-end displayed comparable stability (Supplementary Table 

3 - “3p arm - Shifting”), although a bit lower (~75%), promoting the addition (~9%) and trimming 

(~12%) of one nucleotide at 5’-end, respectively. By stark contrast, the 3’-end revealed higher mobility. 

The percentage of expressed isomiRs with no 3’-end shifting plunged to ~30% (5p arm) and ~33% 

(3p arm). In much the same way (Supplementary Table 3 - “Arms shifting comparison”), the two arms 
consistently showed trimming of 5 (~4%), 4 (~4%), 3 (~6%), 2 (~10%), and 1 (~21%) nucleotides, 

along with the addition of 1 (~14%) to 2 (~5%) nucleotides. We examined the SNVs distribution along 

a hypothetical miRNA isoform sequence of ~26 nts long to include the farthest known SNV observed 

in our expressed molecules. Interestingly, the A-to-G, C-to-T, G-to-A, and T-to-C represented the 

most predominant SNP forms in both 5p and 3p arms (Supplementary Table 3 - “5p and 3p arms – 

SNPs”). They were scattered along the whole sequence length, with the last three highly located 

close to the 3’-end. Switching to the 5p arm, the G-to-T, T-to-A, and T-to-G forms were primarily 

located near the 3’-end, nearby the 21st nucleotide. Aside, the remaining fewer present forms were 
somehow scattered along the sequence. Notably, the 5p arm was more susceptible to somatic 

mutations, even though no particular somatic mutation form emerged above the others 

(Supplementary Table 3 - “5p and 3p arms - Somatic mut.”). A-to-I RNA editing sites were mainly 

located within the 1-10 nts region (seed region included) in both 5p and 3p arms, with few additional 

sites involving the 15-24 nts region (Supplementary Table 3 - “5p and 3p arms - A-to-I RNA Edit.”). 
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Altogether, the distribution of modification types was somehow balanced between 5p and 3p arms, 

with the 5p arm leading by up to 1% more expressed molecules over the 3p arm. 

Finally, to gain some insights on the mechanisms that may lead to the isomiRs accumulation in 

cancer, we explored the differences in the abundance of expressed miRNA isoforms across cohorts’ 
cancer samples. For each cohort/cancer tissue, we compared samples characterized by a low (first 

quartile) against a high (third quartile) number of expressed miRNA isoforms. Here, we retained 

significantly dysregulated genes with  and  

(Materials and Methods). We then performed a pathways enrichment analysis via Ingenuity® Pathway 

Analysis (IPA) software, keeping all those pathways characterized by  and   

 (Supplementary Table 4). Finally, in Supplementary Figure 1, we reported the most 

significant pathways enriched in at least five cohorts/cancer tissues. The difference in the abundance 

of expressed miRNA isoforms between the two groups, low and high, characterized the 
activation/deactivation of several critical pathways involved in proliferation, metastasis, tumor immune 

escape, invasion, and angiogenesis, such as the ILK, HIF1α, and Rac signaling pathways, PD-1/PD-

L1 cancer immunotherapy pathway, and regulation of the epithelial-mesenchymal transition (EMT) by 

growth factors pathway. 

 
MiRNA isoforms-based clustering reveals unique clinical-pathological stratification 

Purely for clustering purposes, we benchmarked three sets of expressed molecules 

( ) grouped according to their modification type (Supplementary Figure 

2A; Materials and Methods). We investigated the benefits and drawbacks of using specific sets of 

molecules by assessing their ability to cluster samples across different cohorts/cancer tissues. We 

moved from a set to another, increasing the number and type of molecules considered. In the first set, 

labeled “CAN,” we considered only canonical miRNAs (miRBase v22). In the second one, marked 
“ISO_wo_SNV,” we used both canonical miRNAs and shifted isomiRs without SNVs. In the last set, 

labeled “ISO,” we employed all expressed canonical miRNAs and isomiRs, including the shifted ones. 

We applied an in-house designed workflow to each of the three sets (Supplementary Figure 2B; 

Materials and Methods), extracting expressed molecules from every cohort and condensing them into 

a single massive table (expressed molecules as rows, cohorts’ cancer samples as columns). To deal 

with high dimensional data, we applied a nonlinear dimensionality-reduction technique (Uniform 

Manifold Approximation and Projection - UMAP) (71) (Supplementary Figure 2B; Materials and 
Methods) to reduce high-dimensional data into a two-dimensional matrix for data visualization and 

evaluation. Finally, based upon the reduced two-dimensional matrix, we performed an unsupervised 

clustering by leveraging the DBSCAN algorithm (73) to test the sets’ clustering capability.  

By benchmarking the three sets, we observed a general trend in which the ISO set reached a higher 

clustering ability (Figure 2A), a result assessed by the Adjusted Rand Index (AMI), Adjusted Mutual 

Information (AMI), and Fowlkes-Mallows Index (FMI) scores. The ISO-based clustering outlined a 

better separation of cohorts’ cancer samples than the other two sets (Figure 2B). We then examined 

 0.05adjusted p value- <   1.5linear fold change >

2z score- ³

0.01p value- <

  1RPM geometric mean >ê úë û
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clustering results from a clinical-pathological perspective, focusing solely on available and most 

significant clinical-pathological features ( ) (Supplementary Table 5). 

Overall, the CAN-, ISO_wo_SNV-, and ISO-based findings somehow supported one another in 

clustering results (Supplementary Figure 3A-C). For instance, in the TCGA-LIHC and TCGA-TGCT 

cohorts, both CAN and ISO_wo_SNV sets grouped patients according to their clinical stages 

(Supplementary Figure 3A-B). At the same time, both CAN and ISO sets significantly clustered 

patients in the TCGA-STAD cohort, though reflecting different clinical-pathological features 
(Supplementary Figure 3A, 3C).  

By including miRNA isoforms data (ISO_wo_SNV and ISO sets), we obtained a more refined 

classifier, which highlighted, in some cohorts, additional subclusters with clinical-pathological 

relevance. Unlike the CAN set, both ISO_wo_SNV and ISO sets aggregated the TCGA-ESCA and 

TARGET-AML cancer samples in the same way. In TCGA-ESCA, patients were split according to 

their histological type, squamous (C6 in ISO_wo_SNV, C12 in ISO) and adeno (C11 in ISO_wo_SNV, 

C13 in ISO). In TARGET-AML, cancer samples were grouped in two clusters, C0 and C3, consistently 

with their cytogenetic complexity, a well-known prognostic marker (Supplementary Figure 3B-C; 
Supplementary Table 5). Notably, besides having a lower cytogenetic complexity, cluster C0 included 

cancer samples that harbored chromosomal translocations commonly associated with good prognosis, 

t(9;11)(p22;q23) and inv(16) (86, 87). In stark contrast, cluster C3 was enriched with FLT3-ITD 

positive samples associated with poor survival (88).  

Finally yet importantly, the three sets were able to cluster cohorts’ cancer samples exclusively. The 

CAN set uniquely partitioned cancer samples in TCGA-HNSC, distinguishing among patients graded 

as well (G1) (cluster C17) and poorly (G3) (cluster C5) differentiated (Supplementary Figure 3A). The 
ISO_wo_SNV set separated the TCGA-KIRP patients according to their clinical stage (Supplementary 

Figure 3B). Furthermore, the ISO set clustered the TCGA-COAD and TCGA-READ cohorts’ patients 

into two groups, in which cluster C23 was characterized by lymphatic invasion and the presence of a 

history of polyps. In TCGA-LUSC, patients were grouped according to their clinical stages 

(Supplementary Figure 3C; Supplementary Table 5). 

 

Differentially abundant miRNA isoforms across cancer tissues 

To determine whether miRNA isoforms were dysregulated across cohorts/cancer tissues, we 
performed a differential expression (DE) analysis comparing primary solid, recurrent solid, metastatic, 

and normal tissues. Amid expressed molecules ( ), we estimated both 

linear fold change and statistical significance for each molecule, using mean and two-sided unpaired 

Mann-Whitney U test (77), respectively (Materials and Methods), adjusting the resulting p-values via 

Benjamini-Hochberg’s correction (78). The most significantly dysregulated molecules were retained 

according to an  and  (Supplementary Table 

6). The resulting molecules were characterized by a similar trend outlined in the “MiRNA Isoforms 

Profiling” paragraph (Figure 1B). They were affected mainly by 3’-end shifting in almost all 

cohorts/comparisons, followed by miRNA isoforms with both 5’- and 3’-end shifting. A summary of the 

 0.01Chi Square p value- - <

  1RPM geometric mean >ê úë û
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distribution of dysregulated molecules per cohort/comparison over miRNA isoform modification types 

is reported in Figure 3A. Notably, we identified four novel dysregulated miRNA isoforms, labeled as 

miR-n### (Materials and Methods). We then examined the modification types distribution across 5p 

and 3p arms (Supplementary Table 7 - “Mod. types distribution - Arms”). The 5p arm showed ~1.12% 

±0.46 (SD) additional molecules than the other arm in most cohorts/comparisons. Once again, the 3’-

end shifting modification (no SNVs) exhibited the highest number of dysregulated molecules in both 

arms. Considering the subtle difference between the 5p and 3p arms, we decided to aggregate the 

two arms’ contribution, reporting the most noticeable results in Figure 3B. The 5’-end was confirmed 

to be the most stable of the two ends, with ~70-84% dysregulated molecules characterized by no 5’-

end shifting, in sharp contrast to the 3’-end, whose stability sank to ~27-37% (Figure 3B; 
Supplementary Table 7 - “5’- and 3’-end shifting”). The 5’-end was characterized by the addition and 

trimming of one nucleotide, while the 3’-end displayed a broader shifting, trimming 1 to 5 nts and 

adding 1 to 2 nts (Figure 3B; Supplementary Table 7 - “5’- and 3’-end shifting”). 

Moving the attention to known DNA SNVs, we identified the G-to-T, C-to-T, and G-to-A forms to be 

the most frequent variants affecting upregulated molecules, whereas downregulated molecules mainly 

faced G-to-A, C-to-T, and C-to-A modifications (Figure 3B; Supplementary Table 7 - “SNPs-Somatic 

mut. distribution”). These known DNA SNVs were spread along the whole sequence length in both 
upregulated and downregulated molecules. Finally, A-to-I RNA editing sites were still primarily located 

within the 1-10 nts region (seed region included), with few exceptions in the 15-24 nts region (Figure 

3B; Supplementary Table 7 - “A-to-I RNA Edit. distribution”). 

 

Dysregulated canonical miRNAs and isomiRs with opposite expression trend in cancer reveal 

different behavior 

Taking a closer look at the dysregulated canonical miRNAs across cohorts, we observed 104 out of 

573 canonical miRNAs being characterized by an opposite expression trend compared to their miRNA 

isoforms (Supplementary Table 8). In this regard, we searched for a candidate among the 104 

canonical miRNAs to assess the potential gene targeting shifting between miRNA isoforms and their 

canonical counterparts. Interestingly, the canonical miR-101-3p appeared to be downregulated in 6 

cohorts (TCGA-LUAD, TCGA-LIHC, TCGA-HNSC, TARGET-RT, TARGET-WT, and TCGA-CHOL), 

with the sole TCGA-LUAD cohort reporting miRNA isoforms lacking SNVs, also confirmed by previous 
studies (90, 91). 

We elected to investigate the canonical miR-101-3p and one of its isomiRs in lung adenocarcinoma 

(TCGA-LUAD), comparing primary solid against normal tissue.  Our interest in investigating such a 

canonical miRNA was corroborated by a recent work in which authors assessed one isomiR of 

canonical miR-101-3p in the human brain (92). Furthermore, the authors demonstrated the isomiR 

ability to negatively modulate the expression of five validated miR-101-3p targets, leading them to 

consider the isomiR as a miR-101-3p functional variant. 

In our work, we studied one isomiR, labeled as miR-101-3p (-1|-2), characterized by one nucleotide 
added at 5’-end, termed “-1,” and two nucleotides trimmed at 3’-end, termed “-2” (see Materials and 

Methods). As shown in Figure 4A, the two molecules were characterized by an opposite expression 
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trend, with the canonical miRNA resulting downregulated in cancer samples. Dysregulated genes 

were retained based on their significance (Materials and Methods) and opposite expression trends 

(i.e., miRNA up and genes down, or vice versa) (Supplementary Table 9). Finally, the set of 

dysregulated targets was intersected with the list of predicted gene targets generated by isoTar (93) 
(Supplementary Table 9), requiring a minimum consensus of two prediction tools. Out of the reduced 

set of genes, we elected PTGS2 (COX-2), a gene studied in several cancers (94–100), which is a 

validated target for miR-101-3p and overexpressed in lung cancer (Liu et al., 2015). PTGS2 promotes 

tumor growth, angiogenesis, and tissue invasion. It also induces resistance to therapeutic agents, 

compromising tumor immunity and apoptosis (101, 102). In line with the literature, we demonstrated 

the direct binding (Figure 4B) through luciferase assay (Figure 4C) between this oncogene and the 

downregulated canonical miR-101-3p. After miR-101-3p ectopic overexpression in HEK-293 cells, we 

observed ~40% reduction of luciferase activity compared to the scramble negative control (SCR) 
(Figure 4C). On the other hand, overexpression of miR-101-3p (-1|-2) resulted in a minor (20%) 

reduction of luciferase activity (Figure 4C). After transfecting the canonical miR-101-3p (Figure 4D), 

western blotting experiments (Figure 4E) highlighted a significant downregulation of endogenous 

PTGS2 in the A549 lung cancer cell line, while no variation of PTGS2 was observed transfecting miR-

101-3p (-1|-2) (Figure 4E). Our findings demonstrated that of the two molecules, only the 

downregulated canonical miR-101-3p exclusively targeted PTGS2, which in turn is upregulated in 

lung cancer. Even though the two miRNA molecules rise from the same locus, they showed different 

behavior. In fact, in stark contrast with the shifted isomiR, these results corroborated the tumor 
suppressor role of the canonical miR-101-3p in lung cancer. 

 

Dysregulated A-to-I Edited miRNA isoforms in cancer 

In addition to investigating shifted isomiRs, we measured the A-to-I RNA editing abundance across 

cancer cohorts/comparisons, detecting 169 unique dysregulated A-to-I edited miRNA isoforms 
(Supplementary Table 6) that originated from 43 distinct miRNA arms. Looking closely, the edited 

miR-381-3p (A-to-I RNA editing at position 4) resulted in one of the most diffused dysregulated 

molecules among the before-mentioned ones. Its downregulation interested 11 out of 22  

cohorts/comparisons, a trend also confirmed by previous studies (44, 46) and observed in several 

tumors (103–108), including breast cancer (109–115). 

In this work, we examined the canonical miR-381-3p and one of its edited forms in the breast cancer 

cohort (TCGA-BRCA), labeling both molecules as miR-381-3p and miR-381-3p_4_A_G, respectively. 
The expression of the two molecules exhibited a significant downregulation in cancer samples (Figure 

4F). In line with the previous section, we applied a similar workflow (Materials and Methods) to assess 

potential target variability between the two molecules. After retaining significantly dysregulated genes 

(Supplementary Table 9) characterized by an opposite expression trend (miRNA down, genes up), we 

crossed them with the list of gene targets predicted by isoTar (Supplementary Table 9). Out of the 

reduced set of potential direct targets for miR-381-3p_4_A_G, we elected to study SYT13, an 

oncogene involved in different cancers (116, 117). By using luciferase reporter vectors containing the 

3’ UTR of the gene and the two miRNA molecules (canonical and edited one) in HEK-293 cells, we 
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demonstrated a direct binding between SYT13 and miR-381-3p_4_A_G (Figures 4G), as highlighted 

by the reduced luciferase activity of ~80% (Figure 4H). After miR-381-3p_4_A_G overexpression 

(Figure 4I), western blotting experiments in TNBC MDA-MB-231 cells corroborated our findings 

(Figure 4J), demonstrating a significant downregulation of SYT13 (~50%), as depicted by 
densitometry (Figure 4J). Once again, our results pointed out the importance of not limiting studies 

solely to canonical miRNAs, as outlined by the edited miRNA’s ability to target one oncogene 

exclusively. 

 

Prognostic miRNA Isoform Signature 

We designed an in-house 2-stages workflow (Supplementary Figure 4; Materials and Methods) to 

estimate each cohort/cancer tissue’s best performing prognostic signature for Overall Survival (OS) 

and Relapse Free Survival (RFS). The cohorts’ clinical characteristics are summarized in Table 2. 
Out of the 26 cohorts/cancer tissues examined, only 12 (OS) and 9 (RFS) led to significant (Log Rank 

Test-based ) prognostic signatures (Figure 5; Supplementary Table 10) with an 

Area Under the Curve (AUC) . Notably, the TCGA-ACC and TCGA-UVM cohorts provided 

statistically significant signatures for both OS and RFS. The 21 identified signatures were associated 

with four distinct cancer tissues (GDC nomenclature): primary solid tumor (T), primary blood-derived 

cancer – peripheral blood (PBDP), recurrent blood-derived cancer – bone marrow (RBDB), and 

primary blood-derived cancer – bone marrow (PBDB). 
Among OS signatures (Supplementary Figure 5A; Supplementary Table 10), TARGET-ALL-P2 was 

characterized by three signatures of four (cancer tissue: PBDP), eight (cancer tissue: RBDB), and 

eleven molecules (cancer tissue: PBDB), with the solely PBDB signature including one canonical 

miRNA (hsa-miR-4772-3p). The 6- in TARGET-AML (cancer tissue: PBDP), the 8- in TCGA-ACC 

(cancer tissue: T), the 17- in TCGA-LIHC (cancer tissue: T), and the 4-molecules signature in TCGA-

PRAD (prostate cancer, cancer tissue: T) they all included the canonical miRNA hsa-miR-1287-3p, 

hsa-miR-362-5p, hsa-miR-584-5p, and hsa-miR-625-3p, respectively (Supplementary Table 10). 

Interestingly, TCGA-LGG (lower-grade glioma, cancer tissue: T) represented the sole cohort to 
contain six canonical miRNAs (hsa-let-7f-5p, hsa-miR-99b-3p, hsa-miR-155-5p, hsa-miR-346, hsa-

miR-551b-3p, and hsa-miR-6720-3p) out of 17 molecules (Supplementary Table 10). Besides, the 

TCGA-LAML (cancer tissue: T, nine molecules), the TCGA-MESO (cancer tissue: T, nine molecules), 

the TCGA-THCA (cancer tissue: T, four molecules), and the TCGA-UVM (cancer tissue: T, two 

molecules) signatures included no canonical miRNA. 

The RFS signatures (Supplementary Figure 5B; Supplementary Table 10) referred to the solely 

primary solid tumor (cancer tissue: T). Only three out of nine signatures held canonical miRNAs. In 

particular, the TCGA-ESCA three-molecules signature included hsa-let-7f-5p; the TCGA-HSNC 
twelve-molecules signature comprised hsa-miR-2355-5p and hsa-miR-4677-3p; the TCGA-KIRP 

three-molecules signature contained hsa-miR-199b-5p. The remaining signatures in TCGA-ACC (1 

molecule), TCGA-KICH (1 molecule), TCGA-PCPG (2 molecules), TCGA-SKCM (1 molecule), TCGA-

STAD (5 molecules), and TCGA-UVM (1 molecule) embodied no canonical miRNA. The complete list 

0.01p value- <

0.7³
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of identified signatures, their miRNA isoforms, and additional details are reported in Supplementary 

Table 10. 

 

DISCUSSION 

The quick brown fox jumps over the lazy dog. Several scientific contributions have magnified our 

understanding of the so-called miRNA Epitranscriptome, inflating the interest in RNA modifications 

such as SNPs (19), A-to-I RNA editing (11, 12, 43–45, 47, 118), as well as shifted isomiRs (16, 41, 48, 

49, 55), a product of the imprecise miRNA sequence cleavage (13, 14, 32, 35). Although the studies 

mentioned above have examined miRNA modifications individually, the concurrent occurrence of two 
miRNA modifications, A-to-I miRNA editing and shifted isomiRs, has yet to be adequately explored. 

In this work, we simultaneously estimated the abundance and implications of a broader set of RNA 

modifications, processing data at a large scale from the most prominent and reliable public resources, 

TCGA and TARGET, in a pan-cancer setting. Through miRge 2.0 (52), one of the major pipelines for 

canonical miRNAs/miRNA isoforms profiling (53–56), we profiled >13K adult and pediatric cancer 

samples spread across 38 distinct cohorts. At first glance, several miRNA isoforms displayed a higher 

expression than their canonical miRNAs, which are the reference molecules in biological databases 

such as miRBase (v22). In particular, the abundance of expressed miRNA isoforms exceeded by 8-
fold the number of expressed canonical miRNAs. A closer look at the distribution of modification types 

among expressed miRNA isoforms outlined a predominance of 3’-end shifts, which equally impacted 

both 5p and 3p arms due to potentially no differences in Drosha and Dicer cleavage. Affected by the 

addition/trimming of two or more nucleotides, the 3’-end showed higher mobility than the more 

conservative 5’-end (15). Interestingly, the lower presence of more extended additions (addition of 

three or more nts at 3’-end) could be explained via degradation processes carried out by some 

enzymes that remove the exceeding part spurting out the RISC complex (119). As is well known, both 

5’- and 3’-end fulfill different functionalities. The first carries out the miRNA-mRNA partial base-pairing 
through the MSR, though the 3’-end is proven to be critical for the miRNA-mRNA interaction 

stabilization (28–30), especially in the presence of mismatches or bubbles (120). In light of this, the 

main reason for the high number of expressed 3’-end shifted molecules could be explained as the 

cell’s attempt to modulate miRNAs activity, perhaps trying to overcome the weakness of specific 

miRNA-mRNA bindings under particular conditions (120). Likewise, the 5’-end shifting could be the 

effort of replacing missing canonical miRNAs or the necessity for a targetome shifting (121). 

Interestingly, more than 40% of dysregulated edited miRNA isoforms reported at least one A-to-I 
editing site within the MSR. These observations may indicate the tendency of the A-to-I RNA editing 

phenomenon to give rise to dysregulated miRNA isoforms in cancer, which could exhibit a different 

targetome and biological function with respect to their canonical counterpart (12). Besides, the 

distribution of the most representative known DNA variant forms (top-five) observed across 

dysregulated miRNA isoforms mostly fall near the 3’-end (between the 21st and 23rd nucleotides), 

potentially impinging either the miRNA lifespan or the targeting stability (66, 119). Lastly, we explored 

the underlying differences in the abundance of expressed miRNA isoforms in each cohort/cancer 

tissue from a functional standpoint. We compared cancer samples characterized by lower (first 
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quartile) and higher (third quartile) number of expressed molecules. The functional analysis 

corroborated our hypothesis that miRNA isoforms actively regulate critical genes in cancer. In fact, 

our results show the activation/deactivation of several critical pathways involved in proliferation, 

metastasization, tumor immune escape, invasion, and angiogenesis, such as the ILK, HIF1α, and Rac 
signaling pathways. 

We then explored the canonical miRNAs/miRNA isoforms’ ability to cluster cancer samples across 

cohorts, benchmarking three different sets of molecules according to specific RNA modifications. 

Moving on from using only canonical miRNAs (CAN set) to employ all expressed molecules (ISO set - 

canonical miRNAs and miRNA isoforms) allowed us to gain a higher cluster fragmentation that 

reflected an in-depth clinical-pathological stratification. Notably, in the ISO_wo_SNV- and ISO-based 

clustering results, the TARGET-AML cancer samples were significantly separated into two subclusters 

characterized by patients without (better prognosis) and with FLT3-ITD mutation (increased relapse 
risk and reduced overall survival). In the TCGA-COAD and TCGA-READ cohorts, cancer samples 

were clustered according to lymphatic invasion. Nonetheless, the three sets exclusively clustered 

cancer samples in TCGA-HNSC (CAN set), TCGA-KIRP (ISO_wo_SNV set), TCGA-COAD, TCGA-

READ, and TCGA-LUSC (ISO set). Overall, the combination of canonical miRNAs/miRNA isoforms 

(ISO set) boosted the quality of our results, uniquely outlining clinical-pathological features in cohorts 

where the other sets failed. Altogether, our results depicted a more complex scenario in which 

canonical miRNAs and miRNA isoforms seemed to work tightly together to uncover the underlying 

histopathological differences among cancers. The exclusion of one of the two may substantially limit 
our understanding of tumor heterogeneity. 

Both canonical miRNAs and miRNA isoforms resulted significantly dysregulated across all 

cohorts/cancer tissues. These results may suggest that miRNA isoforms are not the product of 

Drosha or Dicer’s arbitrary cleavage, but they are actively expressed and dysregulated across several 

human cancers. Of the 573 canonical miRNAs dysregulated across cohorts/cancer tissues, we 

identified 104 characterized by an opposite expression trend compared to their miRNA isoforms. 

Supported by previous studies (90, 91), we investigated as the first case study the downregulated 
canonical miR-101-3p and its upregulated shifted isomiR (one nt longer at 5’-end, and two nts shorted 

at 3’-end) in lung adenocarcinoma primary tumors (TCGA-LUAD). Aiming at assessing differences in 

targeting efficiency, we examined dysregulated and predicted gene targets for the two molecules. Our 

choice fell on PTGS2 (COX-2), an oncogene in lung cancer (Liu et al., 2015), which is a validated 

canonical miR-101-3p target gene in different cancers (94–100). Although the predicted binding sites 

for both miRNA molecules and PTGS2’s 3’ UTR were comparable in terms of binding free energy, we 

experimentally proved that the sole canonical miR-101-3p was able to target PTGS2, corroborating 

the difference in terms of gene targeting for the miRNA molecules. In the second case study, we 
assessed the targetome shifting between two downregulated molecules, the canonical miR-381-3p 

and its edited form (A-to-I editing site at position 4). In our results, the edited miR-381-3p resulted 

among the most downregulated molecules across cohorts/cancer tissues. While the role of the 

canonical miR-381-3p is broadly acknowledged as a tumor suppressor (107, 108), particularly in 

breast cancer (112, 115), very little is known about the edited form in cancer (44, 46). We investigate 
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SYT13 in breast cancer (TCGA-BRCA), an oncogenic gene in different cancers (116, 117, 122–127). 

Unlike the canonical miR-381-3p, which did not show any binding site, our predictions and 

experiments outlined the ability of the edited miR-381-3p to exclusively regulate the SYT13 

expression, suggesting it as a potential tumor suppressor in breast cancer. Finally, the survival 
analysis results highlighted once again the miRNA isoforms predominance over canonical miRNAs. 

Of all 21 significant prognostic signatures identified, only nine contained at least one canonical miRNA. 

Interestingly, almost all signatures contained unique molecules, with a few exceptions. 

In conclusion, even though their role is still not well understood, miRNA isoforms may somehow work 

together with canonical miRNAs to support their function. Our study emphasized the importance of 

moving forward from the paradigm of one-single-mature-miRNA per miRNA arm to the wider 

miRNAome. Through these novel potential diagnostic and prognostic cancer biomarkers, we may be 

able to shine additional lights on those mechanisms related to cancer progression through the study 
of gene regulation via the wider miRNAome. 
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The TCGA (v20) and TARGET (v20) miRNA-Seq samples, patients’ clinical-pathological data, and 

somatic mutations used during this study can be downloaded via http://portal.gdc.cancer.gov. 

Additional single nucleotide DNA variants were downloaded from COSMIC (v92) at 

https://cancer.sanger.ac.uk/cosmic and dbSNP (v154) 

at https://ftp.ncbi.nih.gov/snp/archive/b154/VCF, while A-to-I miRNA Editing sites were retrieved from 

MiREDiBase (v1). 
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TABLE AND FIGURES LEGENDS 

 

Figure 1. Data preprocessing workflow, isomiRs classification, and modification types 

distribution 

(A-C) In-house data preprocessing workflow (A), examples of annotated isomiRs (B), and distribution 

of expressed molecules across cohorts and modification types (C). See Supplementary Table 2 for 

the complete list of A-to-I RNA editing sites employed by the workflow. See Supplementary Table 3 

for more detailed information regarding the distribution of modification types of expressed molecules 

across 5p and 3p arms, the shifting amount at 5’- and 3’-ends, along with the number of molecules 
affected by SNPs, somatic mutations, and A-to-I RNA editing sites. 

 

Figure 2. MiRNA isoform-based clustering better delineates clinical-pathological stratification 

(A-B) Clustering benchmarks results related to three different sets (CAN, ISO_wo_SNV, and ISO) of 

molecules (A) and a comparison between the three sets to highlight their ability to separate cohorts’ 

cancer samples (B). Panel A reports quality scores (Adjusted Rand Index - ARI, Adjusted Mutual 

Information - AMI, and Fowlkes-Mallows Index - FMI) and the number of identified clusters for each 

set. Panel B compares clustering based on CAN, ISO_wo_SNV, and ISO sets, highlighting cancer 
sample separation. See Supplementary Figure 2A-B for more detailed information on how we defined 

the three sets (A) and the designed workflow (B) for data visualization and benchmarking. See 

Supplementary Figure 3A-C for a complete comparison between CAN-, ISO_wo_SNV-, and ISO-

based clustering. See Supplementary Table 5 for more detailed information on the most prominent 

and significant clinical-pathological features taken into account for clustering-based clinical-

pathological analysis. 

 

Figure 3. MiRNA isoforms dysregulated across cohorts and tissues 

(A-B) Distribution of dysregulated molecules per cohort/comparison and modification type (A), and 

most prominent modification types (5’- and 3’-end shifting, SNPs/somatic mutations, and A-to-I RNA 

editing sites) (B). See Supplementary Table 6 for the complete information on dysregulated molecules 

across cohorts/comparisons, and Supplementary Table 7 for detailed information on all modification 

types affecting dysregulated molecules (5’- and 3’-end shifting, SNPs/somatic mutations, and A-to-I 

RNA editing sites). 

 

Figure 4. MiRNA isoforms experimental gene targeting validation 

(A-E) miR-101-3p and miR-101-3p (-1|-2) experimental targeting validation in lung cancer cells. 

Expression of both miR-101-3p miRNA isoforms in normal and tumor samples in TCGA-LUAD cohort 

(A). Graphical representation of the binding site between the PTGS2 3’ UTR and the two miRNA 

isoforms, miR-101-3p (canonical miRNA) and miR-101-3p (-1|-2) (isomiR) (B). Luciferase assay for 

psiCHECK-2-PTGS2 3’ UTR WT construct co-transfected with mirVana™ miRNA mimics for miR-

101-3p, miR-101-3p (-1|-2), and negative scramble miRNA control (SCR) in HEK-293 cells performed 

24 hours after the transfection (C). Histograms report the expression of miR-101-3p and miR-101-3p 
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(-1|-2) in the A549 lung cancer cell line after 48 hours from the transfection with specific mirVana™ 

miRNA mimics for both miRNA isoforms and the negative scramble miRNA control (D). Western 

blotting depicts the downregulation of PTGS2 protein in A549 cells after miR-101-3p overexpression 

(E). Densitometric quantification of western blotting signals from three independent experiments 
(Figure 4E) was performed using ImageJ (U. S. National Institutes of Health, Bethesda, Maryland, 

USA, https://imagej.nih.gov/ij/, 1997–2018) (E). (F-J) miR-381-3p and miR-381-3p_4_A_G 

experimental targeting validation in Triple-Negative (TN) breast cancer cells. Expression of both miR-

381-3p miRNA isoforms in normal and breast cancer samples in TCGA-BRCA cohort (F). Graphical 

representation of STY13 3’ UTR binding with miR-381-3p_4_A_G (edited miRNA) (G). Luciferase 

assay for psiCHECK-2-SYT13 3’ UTR WT construct (H) co-transfected with mirVana™ miRNA mimics 

for miR-381-3p, miR-381-3p_4_A_G, and negative scramble miRNA control (SCR) in HEK-293 cells 

performed 24 hours after the transfection. qRT-PCR shows the increment of miR-381-3p and miR-
381-3p_4_A_G after specific mirVana™ miRNA mimics transfection compared with negative scramble 

miRNA control (SCR) in MDA-MB-231 breast cancer cells (I). Western blotting represents the 

downregulation of SYT13 protein (J) in MDA-MB-231 cells after miR-381-3p_4_A_G upregulation via 

mirVana miRNA mimic transfection. The histogram reports densitometric quantification of western 

blotting signals from three independent experiments (J), were performed using ImageJ (U. S. National 

Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997–2018). Pictures are 

representative of at least three experiments. The fold of increase in the graphics is the mean values of 

3 replicates.  was considered statistically significant. Annotations for * 

, ** , and *** are provided 

accordingly. Error bars indicate the standard deviation (SD) for the three biological replicates. See 

Supplementary Table 9 for more details. 

 

Figure 5. Overall and Relapse Free Survival risk score-based signature 

(A-B) Overview of risk score-based signatures for Overall Survival (A) and Relapse Free Survival (B), 

supplied with the number of molecules in each signature, the corresponding p-value (Log Rank test), 
and the area under the curve (AUC) score. See Supplementary Figure 4, Supplementary Figure 5, 

and Supplementary Table 10 for more detailed information regarding the workflow employed for 

results generation, the complete list of Kaplan-Meier curves for both OS and RFS signatures, and the 

list of molecules for each signature, respectively. 

 

Table 1. TCGA/TARGET cohorts basic characteristics 

The table reports cohorts’ essential characteristics, including the number of cases, age at diagnoses, 

gender, and race. 
 

Table 2. TCGA/TARGET cohorts clinical characteristics 

The table shows cohorts’ clinical characteristics for both Overall Survival (OS) and Relapse Free 

Survival (RFS), including the number of cases, stages, number of events/no events (censored). 
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Table 1. TCGA/TARGET cohorts basic characteristics 

Cohort Cancer type No. of 
Cases 

Age at 
diagnoses 

(Mean ± SD /NA) 
Gender 

(M/F/NA) 
Race 

(White/AA/Other/NA) 

TARGET-ALL-P2 Acute Lymphoblastic 
Leukemia - Phase II 191 6.8 ± 5.3 /0 101/90/0 133/20/7/31 

TARGET-ALL-P3 Acute Lymphoblastic 
Leukemia - Phase III 38 8.4 ± 5.3 /0 21/17/0 1/1/0/36 

TARGET-AML Acute Myeloid Leukemia 701 9.1 ± 6.1 /22 344/335/22 502/77/33/89 
TARGET-RT Rhabdoid tumors 66 1.2 ± 2.2 /0 35/31/0 49/8/0/9 
TARGET-WT Wilms tumor 127 4.1 ± 2.8 /0 53/74/0 95/18/0/14 
TCGA-ACC Adrenocortical carcinoma 80 46.4 ± 15.9 /0 31/49/0 67/1/1/11 

TCGA-BLCA Bladder Urothelial 
Carcinoma 409 68.0 ± 10.6 /1 302/107/0 324/23/44/18 

TCGA-BRCA Breast invasive 
carcinoma 1079 58.6 ± 13.2 /17 12/1066/1 746/182/62/89 

TCGA-CESC 

Cervical squamous cell 
carcinoma and 
endocervical 

adenocarcinoma 

307 48.2 ± 13.8 /2 0/307/0 211/30/30/36 

TCGA-CHOL Cholangiocarcinoma 36 63.0 ± 12.8 /0 16/20/0 31/2/3/0 
TCGA-COAD Colon adenocarcinoma 444 66.8 ± 13.1 /4 231/211/2 213/59/12/160 

TCGA-DLBC 
Lymphoid Neoplasm 
Diffuse Large B-cell 

Lymphoma 
47 56.3 ± 14.1 /0 22/25/0 28/1/18/0 

TCGA-ESCA Esophageal carcinoma 184 62.5 ± 11.9 /0 157/27/0 114/5/45/20 
TCGA-GBM Glioblastoma multiforme 5 0 ± 0 /5 0/0/5 0/0/0/5 

TCGA-HNSC Head and Neck 
squamous cell carcinoma 524 60.9 ± 11.9 /1 383/141/0 449/47/13/15 

TCGA-KICH Kidney Chromophobe 66 51.5 ± 14.3 /0 39/27/0 58/4/2/2 

TCGA-KIRC Kidney renal clear cell 
carcinoma 516 60.5 ± 12.1 /0 335/181/0 445/56/8/7 

TCGA-KIRP Kidney renal papillary cell 
carcinoma 291 61.5 ± 12.1 /5 214/77/0 207/61/8/15 

TCGA-LAML Acute Myeloid Leukemia 188 54.9 ± 16.2 /0 101/87/0 171/13/2/2 

TCGA-LGG Brain Lower Grade 
Glioma 512 43.0 ± 13.4 /2 281/230/1 471/21/9/11 

TCGA-LIHC Liver hepatocellular 
carcinoma 373 59.3 ± 13.4 /4 254/119/0 183/17/163/10 

TCGA-LUAD Lung adenocarcinoma 513 65.3 ± 9.9 /30 239/274/0 387/52/8/66 

TCGA-LUSC Lung squamous cell 
carcinoma 478 67.4 ± 8.6 /9 354/124/0 333/30/9/106 

TCGA-MESO Mesothelioma 87 63.0 ± 9.8 /0 71/16/0 85/1/1/0 

TCGA-OV Ovarian serous 
cystadenocarcinoma 489 59.9 ± 11.5 /11 0/486/3 422/32/18/17 

TCGA-PAAD Pancreatic 
adenocarcinoma 178 64.6 ± 10.9 /0 98/80/0 157/6/11/4 

TCGA-PCPG Pheochromocytoma and 
Paraganglioma 179 47.3 ± 15.1 /0 78/101/0 148/20/7/4 

TCGA-PRAD Prostate 
adenocarcinoma 494 61.0 ± 6.8 /11 494/0/0 146/7/2/339 

TCGA-READ Rectum adenocarcinoma 161 64.2 ± 11.8 /1 86/74/1 81/6/1/73 
TCGA-SARC Sarcoma 259 60.8 ± 14.7 /1 119/140/0 227/18/6/8 

TCGA-SKCM Skin Cutaneous 
Melanoma 448 58.1 ± 15.6 /8 276/172/0 425/1/12/10 

TCGA-STAD Stomach 
adenocarcinoma 436 65.7 ± 10.7 /9 281/155/0 273/13/88/62 



 
 
List of cohorts and their essential characteristics, including the number of cases, age at diagnoses, 

gender, and race (White, African American (AA), others). 

 

TCGA-TGCT Testicular Germ Cell 
Tumors 150 32.0 ± 9.3 /16 134/0/16 119/6/4/21 

TCGA-THCA Thymoma 506 47.3 ± 15.8 /0 136/370/0 334/27/53/92 
TCGA-THYM Thyroid carcinoma 124 58.2 ± 13.0 /1 64/60/0 103/6/13/2 
TCGA-UCEC Uterine Carcinosarcoma 550 63.9 ± 11.2 /15 0/539/11 367/107/33/43 

TCGA-UCS Uterine Corpus 
Endometrial Carcinoma 57 69.7 ± 9.2 /0 0/57/0 44/9/3/1 

TCGA-UVM Uveal Melanoma 80 61.6 ± 13.9 /0 45/35/0 55/0/0/25 



Table 2. TCGA/TARGET cohorts clinical characteristics 

   Overall Survival (OS) Relapse-Free Survival (RFS) 

Cohort # 
Cases 

Stages 
(I/II/III/IV/NA) 

# 
events 

# 
censored 

Median 
Follow-

UP 
(Months) 

# 
events 

# 
censored 

Median 
Follow-

UP 
(Months) 

TARGET-ALL-P2 191 0/0/0/0/191 80 68 56.05 0 0 0.00 

TARGET-ALL-P3 38 0/0/0/0/38 12 17 29.33 0 0 0.00 

TARGET-AML 701 0/0/0/0/701 265 413 59.30 0 0 0.00 

TARGET-RT 66 2/13/27/0/24 32 26 7.98 0 0 0.00 

TARGET-WT 127 17/49/41/14/6 52 75 54.27 0 0 0.00 

TCGA-ACC 80 9/37/16/16/2 29 51 39.42 36 39 27.40 

TCGA-BLCA 409 2/131/139/135/2 179 229 17.87 79 232 16.50 

TCGA-BRCA 1079 182/609/244/20/24 149 929 27.57 31 363 33.27 

TCGA-CESC 307 163/70/46/21/7 71 236 21.27 26 172 21.12 

TCGA-CHOL 36 19/9/1/7/0 18 18 21.50 17 13 10.72 

TCGA-COAD 444 73/168/125/65/13 101 340 22.30 30 1 21.80 

TCGA-DLBC 47 7/17/5/12/6 9 38 26.37 6 21 26.37 

TCGA-ESCA 184 18/82/62/16/6 77 107 13.35 43 126 12.60 

TCGA-GBM 5 0/0/0/0/5 0 0 0.00 0 0 0.00 

TCGA-HNSC 524 27/85/92/320/0 223 300 21.50 64 107 23.77 

TCGA-KICH 66 21/25/14/6/0 9 56 74.93 10 54 73.67 

TCGA-KIRC 516 253/55/123/82/3 172 344 39.38 2 32 13.60 

TCGA-KIRP 291 180/25/52/16/18 44 246 25.62 18 140 20.40 

TCGA-LAML 188 0/0/0/0/188 114 63 12.17 0 0 0.00 

TCGA-LGG 512 0/0/0/0/512 124 385 22.60 65 186 20.13 

TCGA-LIHC 373 173/86/85/5/24 129 243 19.83 102 174 13.78 

TCGA-LUAD 513 277/121/84/24/7 182 322 21.88 31 156 18.40 

TCGA-LUSC 478 230/158/80/6/4 199 273 22.25 30 139 17.00 

TCGA-MESO 87 10/16/45/16/0 73 13 17.10 48 32 11.80 

TCGA-OV 489 1/27/374/80/7 308 177 34.87 60 0 18.43 

TCGA-PAAD 178 21/147/3/4/3 93 85 15.48 56 106 13.08 

TCGA-PCPG 179 0/0/0/0/179 6 173 25.17 15 163 23.48 

TCGA-PRAD 494 0/0/0/0/494 10 484 30.80 60 44 24.87 

TCGA-READ 161 29/48/50/24/10 26 134 20.58 10 0 27.15 

TCGA-SARC 259 0/0/0/0/259 98 161 31.57 91 141 22.52 

TCGA-SKCM 448 74/128/164/23/59 210 229 37.47 221 215 27.58 

TCGA-STAD 436 58/128/180/43/27 168 263 14.07 45 177 13.42 

TCGA-TGCT 150 59/14/14/0/63 4 130 42.03 30 99 28.80 

TCGA-THCA 506 284/52/113/55/2 16 490 31.50 25 355 33.98 

TCGA-THYM 124 0/0/0/0/124 9 114 41.77 16 107 38.13 

TCGA-UCEC 550 339/49/123/28/11 88 450 30.32 28 165 34.47 

TCGA-UCS 57 22/5/20/10/0 35 22 20.37 29 25 12.97 

TCGA-UVM 80 0/39/37/4/0 23 57 26.13 17 62 22.33 

 



Cohorts’ clinical characteristics, including the number of cases, stage, number of events/no events 

(censored) for Overall and Relapse Free Survival. 
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SUPPLEMENTARY FIGURE AND TABLE LEGENDS 
 

Supplementary Figure 1. Significant pathways enriched in at least five cohorts/cancer tissues 

The figure shows significant ( 2z score� t  and 0.01p value� � ) pathways enriched in at least five 

cohorts/cancer tissues. Pathways and cohorts/cancer tissues are clustered according to the Bray-

Curtis distance metric and Complete Linkage method. 

 

Supplementary Figure 2. Sample visualization and clustering workflow 

(A-B) The figure shows how we defined the three sets to benchmark (A) and the designed workflow 

used for data visualization and benchmarking (B). The three sets (CAN, ISO_wo_SNV, and ISO) 

encompassed expressed molecules based on specific modification types. In particular, the “CAN” set 

considered only canonical miRNAs (miRBase v22); the “ISO_wo_SNV” one used both canonical 

miRNAs and shifted isomiRs without SNVs; the “ISO” set employed all expressed canonical miRNAs 

and isomiRs, including the shifted ones. The workflow extracts expressed molecules from every 

cohort, condensing the information into a single massive table (expressed molecules as rows, 

cohorts’ samples as columns). A nonlinear dimensionality-reduction technique (Uniform Manifold 

Approximation and Projection - UMAP) (McInnes et al., 2018) is applied to reduce high-dimensional 

data into a two-dimensional matrix for data visualization and evaluation. The reduced two-dimensional 

matrix is then used to perform an unsupervised clustering by leveraging the DBSCAN algorithm (Ester 

et al., 1996) to test the sets’ clustering capability. 

 

Supplementary Figure 3. Dataset-based clustering comparison 

(A-C) Comparison between CAN- (A), ISO_wo_SNV- (B), and ISO-based cancer samples clustering 

(C). Panels (A-C) display only clusters related to the most prominent and significant clinical-

pathological features we considered (Supplementary Table 4). Each panel shows common and 

unique cohorts identified by the three sets. Clusters and their IDs are highlighted throughout the figure. 

Coloring is used to highlight clusters within the same set/cohort. 

 

Supplementary Figure 4. Risk Score-Based Prognostic Signature Discovery workflow 

The figure shows the 2-stages workflow designed for prognostic signature discovery for Overall 

Survival (OS) and Relapse Free Survival (RFS). 

 

Supplementary Figure 5. Risk Score-Based Prognostic Signatures 

The figure shows the complete list of Overall Survival (OS) and Relapse Free Survival (RFS) Kaplan-

Meier curves, each one associated with a specific risk score-based signature. 

 

Supplementary Table 1. Primers list for cloning and sequencing of target genes 3’ UTRs 

List of primers used for cloning and sequencing experiments. See Materials and Methods for more 

details. 
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Supplementary Table 2. A-to-I RNA editing sites 

The table reports the list of known A-to-I RNA Editing sites available in MiREDiBase (v1). 

 

Supplementary Table 3. Expressed canonical miRNAs/miRNA isoforms distribution over 

modification types and miRNA arms 

The table shows the distribution of modification types of expressed molecules over 5p and 3p arms, 

the shifting extent at 5’- and 3’-ends, along with the number of molecules subjected to SNPs, somatic 

mutations, and A-to-I RNA editing sites. 

 

Supplementary Table 4. Enriched pathways across cohorts/cancer tissues 

The table reports significant pathways enriched in at least one cohort/cancer tissue, retained 

according to 2z score� t  and 0.01p value� � . 

 

Supplementary Table 5. Clustering clinical-pathological features 

The table reports the most prominent and significant clinical-pathological features per cohort 

considered to investigate clustering results from a clinical standpoint. Features are grouped according 

to each benchmarked set of molecules (CAN, ISO_wo_SNV, and ISO). 

 

Supplementary Table 6. Dysregulated miRNA isoforms across cohort/cancer tissues 

The table reports the complete list of dysregulated molecules across cohorts/cancer tissues, retained 

according to a   1.5linear fold change !  and an   0.05FDR adjusted p value� � . 

 

Supplementary Table 7. Distribution of dysregulated miRNA isoform across modification types 

The table outlines the distribution of dysregulated molecules and modification types across 5p and 3p 

arms, filtered according to a   1.5linear fold change !  and an   0.05FDR adjusted p value� � . 

The table provides additional information on the distribution of dysregulated molecules with 5’- and 3’-

end shifting, SNPs/somatic mutations, and A-to-I RNA editing sites. 

 

Supplementary Table 8. Dysregulated miRNA isoforms with opposite trends 

The table reports canonical miRNAs characterized by an opposite expression trend than their miRNA 

isoforms across cohorts/comparisons. Molecules are retained according to a 

  1.5linear fold change !  and an   0.05FDR adjusted p value� � . 

 

Supplementary Table 9. Dysregulated genes supplied with predicted targets for the selected 

case studies 

The table shows the dysregulated genes between the first (Q1) and third (Q3) quartiles of each case 

study: canonical miRNAs miR-101-3p and miR-381-3p, isomiR miR-101-3p (-1|-2), and edited miRNA 
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miR-381-3p_4_A_G. Whether available, each dysregulated gene is supplied with a predicted target 

consensus generated via isoTar, based on five prediction tools: PITA, RNAhybrid, TargetScan, 

miRanda, and miRmap. 

 

Supplementary Table 10. Risk score-based signatures list 

The table reports the most prominent and significant risk score-based signatures for Overall Survival 

(OS) and Relapse Free Survival (RFS), each one supplied with the molecules list, the area under the 

curve score (AUC), and p-value. Canonical miRNAs are highlighted in grey. 
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