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ABSTRACT 

Adolescence is hypothesized to be a critical period for the development of association cortex. A 

reduction of the excitation:inhibition (E:I) ratio is a hallmark of critical period development; 

however it has been unclear how to measure the development of the E:I ratio using non-

invasive neuroimaging techniques. Here, we used pharmacological fMRI with a GABAergic 

benzodiazepine challenge to empirically generate a model of E:I ratio based on multivariate 

patterns of functional connectivity. In an independent sample of 879 youth (ages 8-22 years), 

this model predicted reductions in the E:I ratio during adolescence, which were specific to 

association cortex and related to psychopathology. These findings support hypothesized shifts 

in E:I balance of association cortices during a neurodevelopmental critical period in 

adolescence. 
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MAIN 

Adolescent brain development is characterized, in part, by the continued structural and 

functional maturation of the association cortices1–10. The specificity of the developmental timing 

and localization of association cortex maturation as well as the links between association cortex 

development and long-term psychiatric outcomes have led to the hypothesis that adolescence 

functions as a critical period of development within association cortex11,12. Critical periods are 

windows of development during which experience powerfully shapes the development of neural 

circuits through heightened experience-dependent plasticity with long-term impacts on 

behavior13. These important neurodevelopmental windows are theorized progress hierarchically 

throughout development, beginning in primary sensory cortices and sequentially advance to 

secondary and higher-order cortical areas13,14. The neurobiological mechanisms that underlie 

critical periods are thought to be conserved across the cortex and have been carefully 

delineated in decades of work on early critical periods in sensory cortex13–16.  

One of the hallmark features of critical period development is the maturation of 

GABAergic inhibitory circuitry, particularly parvalbumin positive interneurons, leading to a 

reduction in the excitation to inhibition (E:I) ratio15,17. The reduction of the E:I ratio leads to an 

increase in the signal-to-noise ratio of local circuit activity as inhibition suppresses the effect of 

spontaneous activity on circuit responses in favor of stimulus-evoked activity18. This essential 

mechanism has been shown to regulate the timing of critical period development across 

visual16, auditory19, and sensorimotor cortices20. As such, if the adolescent critical period 

hypothesis is correct, a developmental reduction in the E:I ratio should unfold across 

adolescence within association cortex. 

 Evidence for E:I development in association cortex during adolescence has been largely 

limited to animal models. This work has suggested prefrontal GABAergic inhibitory circuitry 

undergoes significant modifications. Specifically, parvalbumin (PV) interneurons, a critical 
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component E:I maturation in sensory system critical periods, have been shown increase in 

prefrontal cortex during adolescence in the rat21 and non-human primate22–24. At the same time, 

the expression of GABAA receptor α1 subunits, which are primarily expressed on PV cells and 

support fast synaptic inhibition25 as well as synaptic plasticity26, also increase during 

adolescence in the prefrontal cortex of the non-human primate27,28. These neurobiological 

changes lead to important functional increases in inhibitory signaling, effectively reducing the E:I 

ratio29,30. Together, these findings are suggestive of critical period development and may 

indicate similar processes are unfolding in the human31. Translating these findings to human 

studies of development is crucial as disruptions to the E:I balance are hypothesized to play a 

significant role in the onset of psychiatric disorders32–34. However, the extent to which these 

critical period mechanisms are present in association cortex during adolescence in the human 

remains largely unexplored. Corroborating evidence has been found in postmortem studies 

which demonstrate increases in PV35 and GABAA α1 expression36, but it has been unclear how 

to measure developmental changes in the E:I ratio in vivo in humans using available 

neuroimaging techniques. This lack of in vivo measures has limited our ability to test the 

adolescent critical period hypothesis.  

Here, we leveraged a pharmacological fMRI (phMRI) experiment using a GABAergic 

benzodiazepine challenge to empirically generate a model for the effect of inhibitory modulation 

of the E:I ratio on patterns of fMRI connectivity. We confirmed the biological validity of our 

empirical model by comparing the model features to known aspects of benzodiazepine 

pharmacology as well as a functional gradient that has been shown to reflect patterns of 

excitatory and inhibitory interneuron expression37,38. We then applied our model to a large, 

independent developmental dataset to investigate E:I changes occurring in association cortex 

during adolescence. We hypothesized that patterns of functional connectivity would develop to 

reflect a reduction in the E:I ratio that is specific to association cortex. 
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RESULTS 

An empirical model of the E:I ratio 

Forty-three adult participants completed a double-blind, placebo-controlled phMRI study 

with the benzodiazepine alprazolam (86 sessions total). Alprazolam is a positive allosteric 

modulator that enhances the effect of GABA at GABAA receptors, increasing inhibition and 

reducing the E:I ratio39. Functional connectivity matrices were derived for placebo and drug 

phMRI sessions using a top performing pipeline that minimized the impact of motion artifact40. A 

linear support vector machine (SVM) classifier was trained to distinguish placebo and drug 

sessions based on the multivariate patterns of functional connectivity (Figure 1, green 

pathway). Cross-validation and permutation testing revealed that the trained SVM identified 

drug vs. placebo sessions in left-out data far better than chance (AUC = .716, ppermutation = .002; 

Figure 2a). Sensitivity analyses confirmed that in-scanner head motion was not associated with 

our pharmacological manipulation or model performance (Supplemental Figure 1). The spatial 

pattern of estimated feature weights from the SVM model highlighted the contributions of 

subcortical regions, including the thalamus and amygdala, and also contributions throughout the 

cortex (Figure 2b).  
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Figure 1. Analysis workflow. Dataset: Two datasets were collected on the same scanner 
using highly similar acquisition parameters: a phMRI dataset using the benzodiazepine 
alprazolam (green) and a developmental fMRI sample from the Philadelphia 
Neurodevelopmental Cohort (PNC; purple). Preprocessing: Datasets were preprocessed using 
identical pipelines which included removal of nuisance signal with aCompCor 41, global signal 
regression, and task regression. Connectivity matrix generation: Connectivity matrices were 
generated from standard atlases for placebo and drug sessions from the alprazolam dataset (n 
= 43; 86 sessions total) and for the PNC dataset (n = 879). Train and validate model: The 
alprazolam dataset was used to train a linear SVM classifier to distinguish drug and placebo 
sessions using 10-fold cross-validation. Apply model: The validated alprazolam model was 
applied to the PNC dataset, generating a distance metric that reflected each participant’s 
position on a continuum from “drug-like” (lower E:I) to “placebo-like” (higher E:I). Regress model 
output on age: This metric was then regressed on age using a generalized additive model with 
penalized splines that included covariates for sex, head motion, and attentiveness. 

 

el 
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Figure 2. A multivariate model distinguishes alprazolam and placebo sessions, capturing 
E:I ratio a) Classifier performance. The binary SVM classifier identified drug and placebo 
sessions in 10-fold cross-validation with an AUC of .716 and an accuracy = 69.5% (top). The 
observed AUC and accuracy were significantly greater than a permuted null distribution 
(bottom). b) Mean absolute feature weights for all nodes from the validated SVM model. c) The 
cortical pattern of nodal SVM weights was significantly associated with transmodality using an 
established measure of macroscale cortical organization42. d) Nodal weights were also 
specifically correlated with the spatial patterns of benzodiazepine (BZD) sensitive GABAA 

receptor subunit expression. Spatial relationships were tested for significance against a spatial-
autocorrelation-preserving null distribution (BrainSMASH)43. 
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Biological validity of the E:I model 

Next, we established the biological validity of the trained E:I model. First, we compared 

the spatial pattern of cortical feature weights to a widely used functional gradient of macroscale 

cortical organization that places regions on a continuum from unimodal to transmodal function42. 

This continuum has been shown to capture variation in excitatory neuron structure, inhibitory 

interneuron expression, and excitatory to inhibitory neurotransmitter receptor density37,38. Using 

a recently-developed analytic procedure that accounts for spatial autocorrelation structure43, we 

observed a significant relationship between our model feature weights and this pattern of 

macroscale cortical organization (r = .33; p = .003; Figure 3a). This finding suggests that 

GABAergic modulation of functional connectivity patterns varies along a transmodal-to-unimodal 

gradient that in part indexes diversity in excitatory and inhibitory neurobiological properties. 

Next, we investigated whether the estimated model features corresponded to the known 

pharmacology of benzodiazepines like alprazolam. We used the Allen Human Brain Atlas44 to 

evaluate whether feature weights in the classifier aligned with spatial patterns of gene 

expression for the six GABAA subunit receptors, GABRA1-6 (corresponding to GABAA α1–6). 

Remarkably, we found evidence of a clear biological double dissociation: model features were 

significantly associated with the expression patterns of the benzodiazepine-sensitive GABAA 

subunits (α1,2,3,5) and not the benzodiazepine-insensitive GABAA subunits (α4, 6; Figure 

3b)45,46.  
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Figure 3. Model features align with cortical organization and benzodiazepine  
pharmacology a) The cortical pattern of nodal SVM weights from the multivariate E:I ratio 
model was significantly associated with transmodality using an established measure of 
macroscale cortical organization42. b) Nodal weights were also specifically correlated with the 
spatial patterns of benzodiazepine (BZD) sensitive GABAA receptor subunit expression. Spatial 
relationships were tested for significance against a spatial-autocorrelation-preserving null 
distribution (BrainSMASH43) and corrected for multiple comparison using the Bonferroni 
correction (pBonf). 
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Development of the E:I ratio during adolescence 

We next utilized our empirically generated E:I ratio model to test the hypothesis that E:I 

ratio declines as part of the critical period of association cortex development. An independent 

sample of 879 youth (aged 8-21.7 years) participated in a highly similar fMRI acquisition on the 

same scanner; this data was preprocessed using an identical pipeline. We applied our validated 

E:I model to the developmental dataset without further tuning and obtained the model-estimated 

distance from the classification hyperplane. This metric reflects a participant’s position on the 

continuum between “drug-like” (lower E:I) and “placebo-like” (higher E:I). To capture both linear 

and nonlinear effects in a rigorous statistical framework, we then regressed this metric on age 

using a generalized additive model with penalized splines (Figure 1, purple pathway). We found 

that age was positively associated with patterns of GABA-modulated functional connectivity, 

reflecting an age-related reduction in E:I ratio. Significant reductions occurred between ages 

12.9 and 16.7 years (Fs(Age) = 3.11, p = .037; Supplemental Table 1, “All connections”). The 

age-related reduction in E:I ratio was robust across multiple alternative parcellation schemes 

(Supplemental Table 2; Supplemental Figure 2).  

Age-related reductions in the E:I ratio are specific to association cortex 

We hypothesized that age-related reductions in E:I ratio during adolescence were 

specific to association cortices. To test this hypothesis, we trained two additional models that 

restricted input features to connections to the most transmodal (Figure 4a, blue) or unimodal 

(Figure 4a, green) parts of the cortex. Both models significantly distinguished drug from placebo 

phMRI sessions (Figure 4a). However, when applied to the developmental dataset, significant 

age-related reductions in the E:I ratio were only observed for the model trained on connections 

with transmodal cortex (transmodal: Fs(Age) = 9.96, p = .0017; unimodal: Fs(Age) = 3.59, p = .058; 

transmodal vs. unimodal: F s(Age) = 5.96, p = .015; Figure 4b). These results suggest that 

transmodal association cortices undergo a reduction in E:I ratio during adolescence, consistent 
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with a critical period of development. 

 

 

Figure 4. Transmodal areas undergo E:I ratio development during adolescence. a) Model 
performance for unimodal and transmodal classifiers. SVM classifiers were trained and 
validated for connections to the most transmodal (green) and most unimodal (blue) areas only. 
Dashed lines indicate acquisition field of view for the phMRI dataset. Both models performed 
significantly better than a permuted null distribution (middle: ROC curves for each model; right: 
null distributions from 1,000 null permutations). b) Models trained on transmodal and unimodal 
data were applied to the developmental dataset, generating a distance metric for each 
participant where greater values represent patterns of functional connectivity consistent with a 
lower E:I ratio. Individuals had lower estimated E:I ratio with age in transmodal cortex (left) but 
not in unimodal cortex (center). This pattern was confirmed by a significant effect of age on 
within subject change in transmodal vs. unimodal distance scores (right). *p<.05, **p<.01, n.s. 
not significant. 
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Analysis of dimensions of psychopathology 

Finally, we investigated whether individual differences in dimensions of 

psychopathology47 were associated with the E:I ratio of association cortex. We found that mood 

disorder symptomatology, but not other psychopathology dimensions, moderated age-related 

differences in estimated transmodal E:I ratio. Specifically, individuals with greater lifetime mood 

disorder symptoms displayed a relatively stable E:I ratio over development instead of the 

normative reduction of the E:I ratio (Age*Mood interaction: F = 7.64, p = .0058).  

 

DISCUSSION 

We utilized a unique combination of human phMRI and developmental fMRI data to 

provide novel evidence for an essential component of critical period development: 

developmental reductions in the E:I ratio. Our approach generated an empirical fMRI model of 

the E:I ratio that showed a remarkable degree of correspondence to known GABAergic 

benzodiazepine neuropharmacology and which could be applied to a large, independent sample 

of youth. Consistent with our hypothesis, this approach revealed that patterns of functional 

neurodevelopment in adolescence are consistent with developmental reductions in the E:I ratio 

that are specific to association cortex. Further, we show that individual differences in this 

process are associated with individual differences in lifetime mood symptom burden, in 

alignment with models positing that E:I abnormalities underlie the emergence of 

psychopathology11,32,33,48–51. Together, these findings support the hypothesis that critical period 

mechanisms shape association cortices during adolescence. 

Critical period development has been predominantly associated with early sensory 

cortex development. Since the first studies of critical period development in the visual cortex 

almost 60 years ago52–54, a wealth of prior work has elucidated the mechanisms that shape 

critical period plasticity in these areas. These studies have identified the maturation of local 
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inhibitory circuitry, particularly PV interneurons, and its resulting impact on the E:I balance as an 

essential critical period mechanism15,18. This phenomenon is necessary for the opening of the 

critical period window, facilitates critical period plasticity, and is present in critical periods across 

sensory modalities18,19,26,55. The results of this study suggest that this phenomenon also occurs 

in association cortex during human adolescence.  

Our findings align with a growing literature characterizing inhibitory maturation during 

this developmental stage. Animal models and post mortem human studies have shown 

maturation of inhibitory neurobiology in the prefrontal cortex during adolescence, including 

increasing expression of PV interneurons and GABAA α1 receptor subunits21,23,27,28. These 

processes increase functional inhibition, reducing the E:I ratio and increasing the signal-to-noise 

ratio of circuit activity18,29,30,56. Computational simulations have suggested that these 

maturational also facilitate high-frequency oscillatory capability30. This is consistent with human 

EEG studies showing increased gamma-band oscillatory power during adolescence57,58. Finally, 

two recent magnetic resonance spectroscopy studies have showed increases in GABA levels 

relative to glutamate levels in frontal cortex during adolescence59,60. Though it is not possible to 

examine the functional effect of these changes on the E:I ratio using spectroscopy, these 

findings align with a model of developmental reduction in the E:I ratio during adolescence. This 

body of prior work cohere with the findings presented here, and are consistent with a critical 

period model of adolescent association cortex development. Just as sensory critical period 

plasticity refines neural circuits underlying sensory processing, the critical period for association 

cortex may facilitate the plasticity of circuits that underlie the higher-order cognitive processes 

refined during adolescence and are thought to be dependent on association cortex2,6,11.  

It should be noted that there are two classes of critical period mechanisms: Facilitating 

factors which open the critical period window and facilitate plasticity, and braking factors which 

stabilize neural circuits and physically limit future plasticity13,15. The maturation of inhibition and 
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the resulting reduction in the E:I ratio are critical period facilitators13. Using generalized additive 

models, which can flexibly capture linear and nonlinear effects while penalizing overfitting, we 

found that the model fit for age-related reductions in the association cortex E:I ratio was linear. It 

is important to note that this does not necessarily mean that critical period plasticity is linearly 

increasing or that the critical period window is persistently open over the entire age range 

reported here. The developmental reduction in the E:I ratio is indicative of critical period 

opening, but it does not provide information about critical period closure. Closure of the 

adolescent critical period would be dependent upon the development of braking factors, such as 

myelination and the formation of perineuronal nets (PNN)61–63, which may follow distinct 

developmental trajectories. Consistent with a critical period model, many studies have provided 

evidence of myelination of association cortex and large white matter pathways linking 

association cortex to other areas of the brain that continues into adulthood, including 

histological64, myelin mapping65–69, and diffusion imaging70–72. At present, studies of PNN 

formation are limited to postmortem methods and animal models which have demonstrated 

developmental increases in PNN formation in the prefrontal cortex from adolescence to 

adulthood73–76. Together, these studies indicate that critical period braking factors are forming 

during the transition from adolescence to adulthood, stabilizing neural circuits and closing the 

critical period window. However, in order to precisely demarcate the opening and closing of 

critical period plasticity during adolescence, future work is needed that jointly investigates the 

developmental timecourse of critical period facilitators, such as the E:I ratio reported here, and 

critical period braking factors. 

Mood-related psychopathology typically first emerges during adolescence, with 

adolescent onset predicting greater illness chronicity and comorbidity77,78. Here, we observed 

that beginning in adolescence, youth with greater burden of mood symptoms exhibit an altered 

trajectory of E:I development within the association cortex. Specifically, greater lifetime mood 
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symptom burden was associated with reduced development of inhibition in transmodal regions 

of the brain. Many studies have linked the occurrence of psychopathology with E:I 

disruption32,33,48,49,79, and cross-species research has specifically implicated GABA-mediated E:I 

disruptions in the etiology of mood psychopathology80–82. Specifically, animal studies have 

shown that initial reductions in GABAergic inhibition lead to downstream reductions in 

glutamatergic transmission, and to alteration of the normal E:I balance33,48,83. Human studies 

have provided convergent evidence, demonstrating reduced GABA levels in the brain in those 

with depression84 as well as reduced glutamate in individuals with more severe anhedonia85. 

Conversely, the pharmacologic enhancement of GABAergic signaling within association regions 

has been shown to have antidepressant effects33,80,86. As such, our study supports the 

hypothesis that the pathophysiology of depression in part involves altered glutamatergic and 

GABAergic signaling33,48. Moreover, it places this hypothesis within a neurodevelopmental 

framework—underscoring how E:I disruptions can manifest due to atypical critical period 

development.  

 Finally, we note that the approach used in this study highlights the potential for phMRI 

data to generate insights into independent datasets to inform new hypotheses. We combined 

machine learning and phMRI using a GABAergic alprazolam challenge to generate an empirical 

model for the effect of GABAergic modulation on patterns of fMRI connectivity. As evidence for 

the efficacy of this approach, the trained model could not only significantly predict drug versus 

placebo sessions in unseen data, but the model features demonstrated a remarkable 

correspondence with known benzodiazepine neuropharmacology. Notably, the model features 

were significantly associated with the GABA receptor most strongly implicated in critical period 

development, the GABAA α1 receptor. The model performance and underlying interpretability of 

the learned features highlights the biological validity of this method. Whereas in this study we 

applied this method to an independent developmental dataset to provide insights into the critical 
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period mechanisms unfolding during adolescence, future work could apply this approach to 

other datasets to inform new research questions.  

Together, these findings support the hypothesis that critical period mechanisms, such as 

the reduction of the E:I ratio, shape association cortices during adolescence. Studying 

development from a critical period perspective provides a powerful mechanistic framework for 

understanding how experience and neurobiology interact to shape long-term cognitive, social, 

and psychiatric outcomes. Importantly, a critical period model of adolescent development can 

draw on the history of detailed work on sensory critical periods to generate testable hypotheses 

for the mechanisms unfolding during adolescence in association cortex. Understanding these 

mechanisms are a necessary prerequisite to understanding of how experience, environment, 

and neurobiology contribute to differing neurodevelopmental trajectories in health and mental 

illness. This work thus lays the groundwork for future studies of the unique impact of experience 

on neurodevelopment and also suggests the possibility of targeted interventions during this 

critical window of vulnerability to psychopathology34,87. 
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METHODS 

Participants and experimental procedures 

Alprazolam sample 

The alprazolam sample and study procedures have been described in detail in our 

earlier work88. Briefly, forty-seven adults participated in a double-blind, placebo controlled 

pharmacological imaging study using the benzodiazepine alprazolam. Each participant 

completed two identical experimental sessions approximately one week apart. In one session, 

participants were given a 1 mg dose of alprazolam, and in the other they were given an identical 

appearing placebo. The order of administration was counter-balanced across participants. 

During both sessions, participants completed an emotion identification task that lasted 10.5 

minutes while functional MRI (fMRI) data was collected. Task-related fMRI results have been 

previously reported88. Four participants were excluded due to excess head motion in at least 

one session (see below) for a final sample of 43 participants and 86 sessions total (ages 20.9 - 

59.4; M = 40.3, SD = 13.12, male/female = 24/19). Study procedures were approved by the 

University of Pennsylvania IRB, and all participants provided written informed consent. 

Developmental sample 

Neuroimaging data were obtained from a community-based sample of 1,476 youth (ages 

8 – 21.9, M = 14.63, SD = 3.43; male/female = 698/778) that were part of the Philadelphia 

Neurodevelopmental Cohort (PNC). Data collection procedures and sample characteristics have 

been previously described in detail47,89,90. Functional MRI data were collected while participants 

performed the same emotion identification task as the alprazolam sample; this is also described 

in previous work89. From this original sample, 306 participants were excluded based on health 

criteria, including psychoactive medication use at the time of study, medical problems that could 

impact brain function, a history of psychiatric hospitalization, and gross structural brain 
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abnormalities. A total of 234 participants were excluded from further analysis due to head 

motion (see below) and 56 were excluded for poor structural image quality. In sum, following 

health exclusions and rigorous quality assurance, we retained 879 participants (ages 8.0 - 21.7 

at first visit, M = 14.95, SD = 3.24; male/female = 383/496).  

 

Neuroimaging acquisition 

Alprazolam sample 

All data were collected on a Siemens Trio 3T as previously reported88. Whole-brain 

structural data were obtained with a 5-minute magnetization-prepared, rapid acquisition 

gradient-echo T1-weighted image (MPRAGE) using the following parameters: TR 1620ms, TE 

3.87 ms, field of view (FOV) 180x240 mm, matrix 192x256, effective voxel resolution of 1 x 1 x 

1mm. BOLD fMRI data were obtained as a slab single-shot gradient-echo (GE) echoplanar 

imaging (EPI) sequence using the following parameters: TR = 3000, TE = 32 ms, flip angle = 

90°, FOV = 240 mm, matrix = 128 X 128, slice thickness/gap = 2/0mm, 30 slices, effective voxel 

resolution of 1.875 x 1.875 x 2mm, 210 volumes. As previously described88, data were acquired 

in a FOV that included temporal, inferior frontal, and visual cortices as well as subcortical 

structures (Figure 3a; gray boxes).  

Developmental sample 

All neuroimaging data were collected on the same Siemens Trio 3T scanner as was 

used for the alprazolam dataset. The neuroimaging procedures and acquisitions parameters 

have been previously described in detail89. Briefly, structural MRI was acquired with a 5-min 

MPRAGE T1-weighted image (TR = 1810 ms; TE = 3.51 ms; TI = 1100 ms, FOV = 180 × 

240 mm2, matrix = 192 × 256, effective voxel resolution = 0.9 × 0.9 × 1 mm3). BOLD fMRI was 

acquired using similar acquisition parameters to the alprazolam dataset. BOLD fMRI scans were 
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acquired as single-shot, interleaved multi-slice, GE-EPI sequence sensitive to BOLD contrast 

with the following parameters: TR = 3000 ms, TE = 32 ms, flip angle = 90°, FOV = 192 × 

192 mm2 (whole brain acquisition), matrix = 64 × 64; 46 slices, slice thickness/gap = 3/0 mm, 

effective voxel resolution = 3.0 × 3.0 × 3.0 mm3, 210 volumes.  

Preprocessing of neuroimaging data 

All preprocessing was performed using fMRIPrep 20.0.7 (RRID:SCR_016216;91, which is 

based on Nipype 1.4.292, and XCP Engine (PennBBL/xcpEngine: atlas in MNI2009 Version 

1.2.3; Zenodo: http://doi.org/10.5281/zenodo.4010846; 40,93. The neuroimaging data from the 

alprazolam and developmental datasets were processed using identical pipelines as described 

below. 

Anatomical data preprocessing 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) 

with N4BiasFieldCorrection94, distributed with ANTs 2.2.095, and used as T1w-reference 

throughout the workflow. The T1w-reference was then skull-stripped with 

a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using 

FAST in FSL 5.0.996. Volume-based spatial normalization to MNI2009c standard space was 

performed through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-

extracted versions of both the T1w reference and the T1w template.  

Functional data preprocessing  

The alprazolam dataset consisted of two BOLD acquisitions per participant (drug and 

placebo session) which were preprocessed individually. The developmental dataset consisted of 

one BOLD acquisition per participant. All BOLD acquisitions were processed with the following 
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steps. BOLD runs were first slice-time corrected using 3dTshift from AFNI 2016020797 and 

then motion corrected using mcflirt (FSL 5.0.9;96. A fieldmap was estimated based on a phase-

difference map calculated with a dual-echo GRE sequence, processed with a custom workflow 

of SDCFlows inspired by the epidewarp.fsl script and further improvements in HCP Pipelines98. 

The fieldmap was then co-registered to the target EPI reference run and converted to a 

displacement field map with FSL’s fugue and other SDCflows tools. Based on the estimated 

susceptibility distortion, a corrected BOLD reference was calculated for a more accurate co-

registration with the anatomical reference. The BOLD reference was then co-registered to the 

T1w reference using bbregister (FreeSurfer) which implements boundary-based registration99. 

Co-registration was configured with nine degrees of freedom to account for distortions 

remaining in the BOLD reference. Six head-motion parameters (corresponding rotation and 

translation parameters) were estimated before any spatiotemporal filtering using mcflirt. Finally, 

the motion correcting transformations, field distortion correcting warp, BOLD-to-T1w 

transformation and T1w-to-template (MNI) warp were concatenated and applied to the BOLD 

timeseries in a single step using antsApplyTransforms (ANTs) with Lanczos interpolation. 

Confounding time-series were calculated based on the preprocessed BOLD data. The 

global signal was extracted within the whole-brain mask. Additionally, a set of physiological 

regressors were extracted to allow for component-based noise correction (CompCor, Behzadi et 

al. 2007). Anatomical CompCor (aCompCor) principal components were estimated after high-

pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-

off). The aCompCor components were calculated within the intersection of the aforementioned 

mask and the union of CSF and WM masks calculated in T1w space, after their projection to the 

native space of each functional run (using the inverse BOLD-to-T1w transformation). 

Components were also calculated separately within the WM and CSF masks. In this study, for 

each aCompCor decomposition, the k components with the largest singular values were 
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retained, such that the retained components' time series were sufficient to explain 50 percent of 

variance across the nuisance mask (CSF and WM). The remaining components were dropped 

from consideration. The head-motion estimates calculated in the correction step were also 

placed within the corresponding confounds file. The confound time series derived from head 

motion estimates and global signals were expanded with the inclusion of temporal derivatives 

and quadratic terms for each100.  

Subject-level timeseries analysis was carried out in XCP Engine using FILM (FMRIB's 

Improved General Linear Model)101. All event conditions from the emotion identification task88,89 

were modeled in the GLM as 5.5 second boxcars convolved with a canonical hemodynamic 

response function. Each of the five emotions (fear, sad, angry, happy, neutral) was modeled as 

a separate regressor. The temporal derivatives and quadratic terms for each task condition as 

well as the confounding aCompCor, global signal, and motion timeseries described above were 

included as nuisance regressors. Task regression has been shown to produce patterns of 

BOLD fMRI connectivity that are highly similar to those present at rest102, and convergent 

results from several independent studies that have shown that functional networks are primarily 

defined by individual-specific rather than task-specific factors (Gratton et al., 2018). The 

nuisance regression pipeline used here has been shown be a top-performing procedure for 

mitigating motion artifacts40. Consistent with our prior work, participants in the alprazolam 

dataset were excluded from future analyses if mean framewise displacement exceeded 0.5 mm 

in either session. A more stringent threshold of 0.3 mm was applied to the developmental 

dataset; head motion was also included as a covariate in all developmental models (see below). 

 

Connectivity matrix generation 

Fully preprocessed fMRI data were used to generate mean timeseries within a set of 

atlas-defined brain regions for each participant. Cortical regions were defined according to the 
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Schaefer 400 parcel cortical atlas103. To accommodate the restricted FOV of the alprazolam 

BOLD acquisition, the atlas was masked such that only parcels with greater than 95% coverage 

were included in connectivity analyses. Subcortical regions were defined using the Automated 

Anatomical Labeling (AAL) atlas104. Subcortical areas included the left and right caudate, 

putamen, accumbens, pallidum, thalamus, amygdala, hippocampus, and parahippocampal 

area. These cortical and subcortical atlases were combined and used to generate mean 

timeseries for each region in each dataset. Functional connectivity was calculated as the 

correlation coefficient of the timeseries for each pair of regions (20,503 unique pairs). As part of 

sensitivity analyses, we repeated this process after defining cortical areas using Schaefer 200 

parcellation103, the Multi-modal Parcellation atlas105, the Gordon cortical atlas106, or the AAL104. 

 

Pharmacological classification analysis 

We used a linear support vector machine (SVM) to classify drug vs. placebo sessions in 

the alprazolam dataset based on multivariate patterns of functional connectivity. Linear SVMs 

find a hyperplane to separate two classes of data by maximizing the margin between the closest 

points (the support vectors; 107. SVMs were implemented in R using the e1071 library109 and 

were trained using a linear kernel and the default parameters. Model performance was 

evaluated using 10-fold cross-validation, iteratively selecting data from 90% of participants as 

training data and testing the trained model on data from the remaining 10% of participants. 

Across testing sets, the prediction accuracy and area under the receiver operating curve (AUC) 

were calculated to evaluate model performance. To ensure our results were not driven by a 

specific cross-validation split, we repeated the entire 10-fold cross-validation procedure 100 

times, drawing the 10-fold subsets at random each time. Performance metrics were finally 

averaged across the 100 iterations of the cross-validation procedure. 
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To evaluate if model performance (i.e., the accuracy and the AUC) was significantly 

better than expected by chance, we performed a permutation test110. Specifically, we re-applied 

the cross-validation procedure 1,000 times, each time permuting the session labels (drug and 

placebo) across the training samples without replacement. Significance was determined by 

ranking the actual prediction accuracy versus the permuted distribution; the p-value of the 

accuracy and AUC was calculated as the proportion of permutations that showed a higher value 

than the observed value in the real, unpermuted data.  

Analysis of feature weights 

After cross-validation and significance testing, we trained the model on all participants 

and extracted the feature weights for further analysis. First, we calculated the absolute value of 

the weights and summed them across all connections (edges) for a given region (node) to 

compare the overall contribution of each region to the model, irrespective of the sign of the 

feature weights110. Next, to evaluate the spatial pattern of the feature weights, we calculated the 

mean signed feature weight for each node, reflecting the directionality of the effect of the drug 

manipulation according to the trained model. We then used this feature map to assess the 

biological validity of our trained model. Specifically, we calculated the spatial correlation 

between this pattern of nodal feature weights with two sets of cortical features. The first was the 

widely used principal gradient of macroscale cortical organization42, which places each cortical 

region on a continuum between unimodal (i.e. sensorimotor cortices) to transmodal (i.e. 

association cortices) function. The second set of cortical features was selected based on the 

known pharmacology of benzodiazepines like alprazolam. Alprazolam is a positive allosteric 

modulator of the GABAA receptor, and of the six GABAA α subunits (α1-6), only subunits α1, α2, 

α3, and α5 are benzodiazepine sensitive46,111. To quantify the spatial distribution of the six 

GABAA α subunits, we extracted the microarray gene expression patterns for their 

corresponding GABAA receptor genes (GABRA1-6) from the Allen Human Brain Atlas (data 
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available at https://www.meduniwien.ac.at/neuroimaging/mRNA.html)44,112. For each of the six 

gene expression maps, we quantified the mean expression value within each cortical parcel and 

calculated the spatial correlation with the pattern of nodal SVM weights. 

 To test the significance of the spatial correlation between our pattern of cortical feature 

weights and each of the biological brain maps, we compared the observed correlation value to a 

null distribution generated with BrainSMASH (Brain Surrogate Maps with Autocorrelated Spatial 

Heterogeneity; https://brainsmash.readthedocs.io/; 43. The spatial autocorrelation of brain maps 

can lead to inflated p-values in spatial correlation analyses and must be accounted for in the 

creation of null models. BrainSMASH addresses this by generating permuted null brain maps 

that match the spatial autocorrelation properties of the input data. We used BrainSMASH to 

generate 10,000 spatial-autocorrelation-preserving null permutations based on the input data 

and the pairwise distance matrix for the cortical parcellation, generating a null distribution of 

spatial correlation coefficients. We calculated two-tailed p-values by squaring all correlation 

values (i.e. spatial R2) and calculating the proportion of times the null distribution exceeded the 

observed value.  

Transmodal and unimodal classification models 

Our primary hypothesis was that E:I ratio reductions would be specific to association 

cortices during youth. In order to test this hypothesis directly, we trained two additional models 

after applying an a priori feature selection step. Specifically, we thresholded the top and bottom 

quartiles of cortical parcels based on their position in the principal gradient of functional 

organization42, with the top 25% representing transmodal association cortex and the bottom 

25% representing unimodal sensory cortex. We then created two new feature sets that 

restricted the input features to connections to these transmodal or unimodal areas only. This 

selection procedure ensured that the resulting numbers of features were equal between the two 
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feature sets (9,541 features per model). We then trained and validated the transmodal and 

unimodal models according the procedures described above. 

 

Developmental analyses 

Application of the pharmacological model to the developmental dataset 

After training and validating the pharmacological benzodiazepine models, we applied the 

models to the functional connectivity data for each participant in the developmental sample. For 

each participant, each model yielded the distance from the classification hyperplane that 

separates the two classes (drug vs. placebo). Observations close to the hyperplane (distance 

values near zero) are less representative of the class, and those further from the hyperplane are 

more representative. The distance metric is such that values greater than zero indicate more 

“drug-like” patterns of functional connectivity and values less than zero indicate more “placebo-

like” patterns of connectivity. As the pharmacological effect of alprazolam is to increase 

GABAergic inhibitory signaling, more “drug-like” patterns reflect greater GABA-ergic inhibitory 

modulation of functional connectivity. As such, more “drug-like” patterns were interpreted to 

reflect a reduced E:I balance relative to more “placebo-like” patterns. These distance metrics 

were normally distributed and thus provided a continuous measure of E:I balance for use in 

further analyses. We first applied the model trained on all the input features and then applied 

the transmodal- and unimodal-specific models, generating three sets of distance values per 

participant. 

Developmental regression models 

To assess the developmental trajectory of E:I balance, we modeled the classification 

distance metrics from each model as a function of age using penalized splines within a 

generalized additive model (GAM). GAMs allow us to flexibly capture linear or nonlinear age 

effects while penalizing overfitting. To test for windows of significant change across the age 
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range, we calculated the first derivative of the smooth function of age from the GAM model 

using finite differences and then generated a simultaneous 95% confidence interval of the 

derivative following the method described by Simpson 113 and implemented using the gratia 

library114 in R. Intervals of significant change were identified as areas where the simultaneous 

confidence interval of the derivative does not include zero. To test if the effect of age on 

classification distance differed between the transmodal and unimodal SVM models, we 

calculated the residualized change115 in transmodal vs. unimodal distance scores by regressing 

the unimodal distance out of transmodal distance. We then regressed the residualized change 

score on age using a GAM. All models included sex as a covariate as well as head motion and 

attentiveness as covariates of no interest. Head motion was quantified as mean framewise 

displacement during the fMRI acquisition. Attentiveness was quantified as the number of 

response omissions during the emotion identification task; this covariate was included to control 

for potential effects of arousal on model performance as alprazolam can cause drowsiness. All 

GAMs were fit using the mgcv library116 in R.  

Analysis of dimensions of psychopathology 

 As previously described47,117,118, PNC participants underwent a clinical assessment of 

psychopathology. Multiple domains of psychopathology symptoms were evaluated using a 

structured screening interview (GOASSESS); we used this data to investigate whether 

dimensions of psychopathology moderated developmental reductions in E:I balance. As has 

been detailed in prior work47,117,118, factor scores were derived from the clinical assessments 

using a bifactor confirmatory factor analysis model that included a general factor for overall 

psychopathology as well as four specific factors that primarily represent anxious-misery (mood 

& anxiety) symptoms, psychosis-spectrum symptoms, behavioral symptoms (conduct and 

ADHD), and fear symptoms (phobias). Importantly, all five factors are orthogonal and can be 

considered jointly in analysis of imaging data. In order to sample a broad range of factor scores, 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.19.444703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444703
http://creativecommons.org/licenses/by-nd/4.0/


27 
   

we expanded our inclusion criteria to include individuals with a history of psychiatric 

hospitalization (N = 1018; ages 8 – 21.7; M = 15.0, SD = 3.23, male/female = 462/556). We 

analyzed these data in a GAM that included age-by-factor score interactions for each factor 

from the bifactor model. Interactions were fit as bivariate smooth interactions with penalized 

splines using tensor interaction smooths (`ti` in mgcv).  

Data and code availability 

The developmental dataset is publicly available in the Database of Genotypes and Phenotypes 

(dbGaP accession phs000607.v3.p2). Pharmacological imaging data is available upon 

reasonable request. All code used for pharmacological classification analyses and 

developmental analyses are available at https://pennlinc.github.io/Larsen_EI_Development/. 
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