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 Abstract 

Background 

Copy number variants (CNVs) are pervasive in the human genome but potential disease 
associations with rare CNVs have not been comprehensively assessed in large datasets. 
We analysed rare CNVs in genes and non-coding regions for 86,788 breast cancer cases 
and 76,122 controls of European ancestry with genome-wide array data. 

Results 

Gene burden tests detected the strongest association for deletions in BRCA1 (P= 3.7E-18). 
Nine other genes were associated with a p-value < 0.01 including known susceptibility genes 
CHEK2 (P= 0.0008), ATM (P= 0.002) and BRCA2  (P= 0.008). Outside the known genes we 
detected associations with p-values < 0.001 for either overall or subtype-specific breast 
cancer at nine deletion regions and four duplication regions. Three of the deletion regions 
were in established common susceptibility loci. 

Conclusions 

This is the first genome-wide analysis of rare CNVs in a large breast cancer case-control 
dataset. We detected associations with exonic deletions in established breast cancer 
susceptibility genes. We also detected suggestive associations with non-coding CNVs in 
known and novel loci with large effects sizes. Larger sample sizes will be required to reach 
robust levels of statistical significance. 

1 Introduction 
Copy number variants (CNVs) are pervasive in the human genome but are more challenging 
to detect with current technologies than single nucleotide variants (SNVs). Recent 
comprehensive sequencing projects 1,2 have characterised CNVs in large sample sets. The 
gnomAD project identified a median of 3,505 deletions and 723 duplications covering more 
than 50 base pairs per genome. Most deletions and duplications tend to be rare with longer 
variants tending to be rarer, suggesting negative selection against these variants.  At the 
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population level the 1000 Genomes project has mapped a large proportion of inherited CNVs 
3 and observed that 65% had a frequency below 2%.  

Some CNVs have an established role in the inherited risk of breast cancer. Rare loss of 
function variants in susceptibility genes such as BRCA1 and CHEK2 are associated with a 
large increase in risk4. While the majority of these variants are single nucleotide mutations 
and short indels, they also include longer deletions and duplications. It has been reported 
that up to a third of loss of function BRCA1 variants in some populations may be CNVs 5.  

Large-scale genome-wide association studies (GWAS) have established breast cancer 
associations with common variants at more than 150 loci, mostly in non-coding regions6-9. At 
two of the loci, deletions imputed from the 1000 Genomes reference panel have been 
identified as likely causal variants. A deletion of the APOBEC3B gene-coding region 
increases breast cancer risk10 and analysis of the tumours of the germline deletion carriers 
showed an increase in APOBEC-mediated somatic mutations.11 A deletion in a regulatory 
region was identified as a likely causal variant at the 2q35 locus12,13.  

Detecting CNVs from the intensity measurements of genotyping array probes is prone to 
producing unreliable calls due to the high level of noise. We recently developed a novel CNV 
calling method, CamCNV14, which focuses on rare CNVs and identifies outlier samples that 
may have a CNV, based on the intensity distribution across all samples at each probe. We 
showed that this approach is able to detect CNVs using as few as three probes14. Here, we 
apply this approach to a very large array genotype dataset to search for novel breast cancer 
associated CNVs. 

2 Data 
2.1 Subjects 

Data were derived from study participants in 66 studies participating in the Breast Cancer 
Association Consortium (BCAC) and genotyped as part of the OncoArray7,15 and iCOGS6 
collaborations (Supplementary Table 1). Studies included population-based and hospital-
based case-control studies, and case-control studies nested within prospective cohorts; we 
only included data from studies that provided both cases and controls. Phenotype data were 
based on version 12 of the BCAC database. Cases were diagnosed with either invasive 
breast cancer or carcinoma-in-situ. Oestrogen receptor (ER) status was determined from 
medical records or tissue microarray evaluation, where available. Analyses were restricted to 
participants of European ancestry, as defined by ancestry informative principal 
components6,7. Where samples were genotyped on both arrays, we excluded the iCOGS 
sample as the OncoArray has better genome-wide coverage. After sample quality control 
(see below), data on 36,980 cases and 34,706 controls with iCOGS genotyping, and 49,808 
cases and 41,416 controls with OncoArray genotyping, were available for analysis 
(Supplementary Table 2).  

 
2.2 Arrays 

The Illumina iCOGs genotyping array6 includes 211,155 probes for SNVs and short 
insertions/deletions. Most variants were selected because of previous association in case-
control studies for breast prostate and ovarian cancers, or for dense mapping of regions 
harbouring an association. The OncoArray includes 533,631 probes, of which approximately 
half were selected from the Illumina HumanCore backbone, a set of SNPs designed to tag 
most common variants. The remainder were selected on the basis of evidence of previous 
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association with breast, prostate, ovarian, lung or colorectal cancer risk. Approximately 
32,000 variants on the OncoArray were selected to provide dense coverage of associated 
loci and known genes. The remainder were mostly selected from lists of common variants 
ranked by p-value, with a small number from lists of candidate variants.  

3  Methods 
3.1 CNV Calling 

CNVs were called using the CamCNV pipeline as previously described14. In brief, the log R 
(LRR) intensity measurements and B allele frequency (BAF) for each sample at each probe 
were exported from Illumina’s Genome Studio software. A principal component adjustment 
(PCA) was applied to the LRR, grouped by study, to remove noise and batch effects. After 
removing noisy probes and those in regions with known common CNVs, the LRRs for each 
probe were converted to z-scores using the mean and standard deviation from all BCAC 
samples. Circular binary segmentation was applied to the z-scores ordered by probe position 
for each sample using the DNACopy package. 16 This produces a list of segments for each 
sample by chromosome where the z-score of consecutive probes changes by more than two 
standard deviations.  Segments with a mean probe z-score between -3.7 and -14 were 
called as deletions and segments with a mean z-score between +2 and +10 as duplications. 
We restricted the calls to segments covering a minimum of three and a maximum of 200 
probes.  

As per the CamCNV pipeline, we then excluded deletions with inconsistent B Allele 
Frequency and CNVs with a shift in LRR at the sample level that was outside the expected 
range. The additional CNV exclusions are summarised in Supplementary Table 3. To 
exclude regions with a high level of noise we also excluded CNVs falling within 1Mb of 
telomeres and centromeres and a number of immune loci such as the T-cell receptor genes 
where somatic mutations in blood are often observed 17.  

3.2 Sample Quality Control 
Standard sample quality control exclusions were performed, as previously described for the 
SNP genotype analyses6,7. These include exclusions for excess heterozygosity, ancestry 
outliers, mismatches with other genotyping, and close relatives. A stricter sample call rate of 
>99% was used for the CNV analysis, compared to >95% used in the genotype analyses. 
We also excluded any participants for whom a DNA sample was not collected from blood 
and any that had been whole genome amplified. 

In addition, we used two metrics to exclude noisy samples liable to produce an excess of 
unreliable CNV calls. First, we calculated a derivative log ratio spread (DLRS) figure for each 
sample as the standard deviation of the differences between LRR for probes ordered by 
genomic position, divided by the square root of two. This measures the variance in the LRR 
from each probe to the next averaged over the whole genome and thus is insensitive to large 
fluctuations such as might be expected between different chromosomes in the same sample. 
An ideal sample would have a small DLRS as the only variance would come from a small 
number of genuine CNVs. We calculated the DLRS using the dLRs function in R package 
ADM3 (https://CRAN.R-project.org/package=ADM3) before and after the PCA. At both 
stages we excluded samples with a DLRS more than 3.5 standard deviations above the 
mean DLRS for that study. 

Second, we counted the number of short segments (between three and 200 probes) output 
by DNACopy for each sample. We observed that the distribution of segment counts was 
skewed to the right with an excess of samples with a large number of segments. We 
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calculated a cut-off for the maximum number of segments using the following formula where 
x is the segment count for each sample (based on the rationale that the distribution of the 
true number of segments should be approximately Poisson): 

y=2*sqrt(x) 

cut-off = median(y)+3.5 

The sample exclusions resulting from these QC steps are summarised in Supplementary 
Table 4. 

3.3 Association Tests 
All analyses were carried out separately for deletions and duplications. As we were only 
assessing rare CNVs, we treated all carriers as heterozygotes and did not attempt to identify 
rare homozygotes. 

To account for overlapping CNVs and imprecision in the breakpoints, we assigned individual 
CNVs to regions. To identify the regions, we moved sequentially along each chromosome, 
identifying the start as an Oncoarray probe position where deletions were observed in at 
least five samples, and then the end position as the probe position before the first probe 
where deletions were observed in fewer than five samples. Regions within five probes of 
each other were then merged together. The process was repeated for duplications. Regions 
were also merged such that the major susceptibility genes (BRCA1, BRCA2, CHEK2) were 
included within a single region. We then assigned individual CNVs to regions where at least 
90% of the CNV’s length fell within the region. For iCOGS, which generally has less dense 
probe coverage, we first assigned CNVs to the OncoArray regions where they showed > 
90% overlap. We then assigned any remaining CNVs to regions defined using the iCOGS 
probes, using the same procedure.  Using this approach, 3,306 deletion regions were 
identified from OncoArray data, 812 of which were also observed using iCOGS data, and 
541 regions identified using iCOGS alone. For duplications there were 2,203 OncoArray 
regions, with 854 also observed using iCOGS data, and 483 iCOGS specific regions. 

Associations were evaluated for each array and each region using logistic regression, to 
derive a log odds ratio per deletion/duplication. Statistical significance was evaluated using a 
likelihood ratio test. The logistic regression analyses were conducted using in-house 
software (https://ccge.medschl.cam.ac.uk/software/mlogit/). Study and ten ancestry 
informative principal components, defined separately for each array, were included as 
covariates. The results from each array were combined in a standard fixed effect meta-
analysis using the METAL software18. To avoid regions with too few observations, we 
excluded regions with fewer than 24 deletions or duplications (~0.015% of samples).  

To detect more precisely the location of association signals, we also generated results for 
each probe. We created a vector of pseudo-genotypes for each probe with samples, such 
that a deletion covering that probe was coded as 1 and all other samples were coded as 0. 
We generated a similar set of genotypes for duplications. The results were analysed using 
logistic regression, as above. 

To test for association between CNVs affecting the coding sequence of genes, in aggregate, 
and breast cancer risk, we identified samples with a deletion or duplication overlapping the 
exons of each gene. Exon positions were downloaded from the UCSC Genome Browser 
hg19 knownGene table. We used logistic regression to generate a log odds ratio (OR) for 
carriers of coding variants covering each gene, adjusted for study, as above. We generated 
results for each array and then for carriers combined across both arrays. For the combined 
analyses we treated studies with samples on both arrays as separate studies.  
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To calculate Bayesian False Discovery Probabilities (BFDPs) we assumed a log-normally 
distributed prior effect size as described by Wakefield19. The prior log(OR) was determined 
by assuming a 95% probability that the OR was less than some bound K, where K=3 for the 
regional and gene-based analysis, except for BRCA1 and BRCA2 where K=20 was 
assumed. The prior probability of association was assumed to be 0.001 for the regional 
analysis, 0.99 for BRCA1, BRCA2, ATM and CHEK2 and 0.002 for other genes. For the 
gene-based analysis only positive associations were considered as the prior evidence for all 
genes was in favour of PTVs being positively associated with risk. 

To determine whether there was a tendency for CNVs to be associated with an excess, or 
deficit, of risk across genes or regions, we computed signed z-scores as the square root of 
the chi-squared statistic for each gene, multiplied by ±1 depending on whether the effect 
estimate was positive or negative. These were ranked and normalised summed z-scores, 
based on the r most significant associations, were derived. The overall test statistic was the 
maximum summed z-score over all possible values of r: 

� � ���
� � �

1
√����

�

���

 

Where n  is the total number of genes/regions being tested. The significance of U was then 
determined by permutation, randomly permuting case-control labels within study 50 times. 

 

4 Results 
4.1 Summary of CNVs Detected 

After quality control we detected a mean of 2.9 deletions (standard deviation 1.6) and 2.5 
duplications (SD 2.0) per sample. Supplementary Table 5 shows the mean length, probe 
coverage and segment z-scores of called CNVs. Duplications tended to be longer than 
deletions: for example, deletions called on OncoArray covered a mean of 45 Kilobases (Kb) 
(SD 106 Kb) over 9.8 probes (SD 17.2), while duplications covered a mean of 109 Kb (SD 
202 Kb) over 18.9 probes (SD 36.5). CNV calls observed in multiple samples were 
concentrated in a small proportion of probes (Supplementary Table 6), with <11% of probes 
having frequency >0.01% and <2% of probes having frequency >0.5%.  

We identified called CNVs which overlapped for at least 90% of their length with rare 
deletions and duplications (frequency <1%) identified by the 1000 Genomes Project 
(Supplementary Table 5). Forty-nine percent of OncoArray deletions and 47% of iCOGs 
deletions matched a 1000 Genomes Project variant while 29% of OncoArray duplications 
and 20% of iCOGs duplications matched. In total we identified CNVs closely matching 3,273 
of the deletion variants published by the 1000 Genomes Project (~9% of total) and 1,255 of 
their duplication variants (~24% of the total).   

4.2 CNVs Associated with Overall Risk 
Association results were derived for 1,301 regions containing  deletions and  992 regions 
containing duplications. QQ plots are shown in Figure 1A for deletions and 1B for 
duplications. There was no evidence for inflation in the test statistics for duplications 
(lambda=0.98; lambda1000=1.00) and minimal evidence for deletions (lambda = 1.11; 
lambda1000=1.00).  
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Seven deletion and two duplication regions were associated with breast cancer risk at 
p<0.001 (Table 1); of these, deletions within the BRCA1 region achieved p< 10-6. The results 
for all regions are shown in Supplementary Tables 7 and 8 and include statistics on the 
number of probes covered by the calls. The results for individual probes covered by the 
regions analysed are in Supplementary Tables 9 to 12. 

The BRCA1 locus contains multiple deletions across the gene. The CHEK2 region (OR 1.94, 
p=0.0003) covers the whole gene but nearly all the calls correspond to a deletion of exons 
nine and ten, which was previously observed in 1% of breast cancer cases and 0.4% of 
controls in Poland 20. We observed the deletion in 0.9% of Polish cases and 0.5% of 
controls.  

The most significant association (OR=0.69 P=0.00001) for duplications covers a large region 
on 17p13.3 with multiple long variants overlapping shorter duplications. The OncoArray 
results by probe show the strongest associations at a series of probes (17: 814529-850542) 
in the first intron of NXN, with the lowest P-value at 17: 819141 (OR=0.45, P=0.002). The 
most significant probe position on iCOGs was also in this region (17:836631, OR=0.58, 
P=0.09) (Figure 2). 

 

4.3 Associations with Risk of Breast Cancer Subtypes 
 

We repeated the analyses restricting cases to those with ER-positive, ER-negative and triple 
negative disease. Deletions and duplications with p-values below 0.001 are shown in Tables 
2 and 3 and the results for all regions are in Supplementary Tables 13 and 14. An 
association was observed for BRCA1 for all subtypes, with the exception of duplications for 
ER-positive disease.  The odds ratio for BRCA1 deletions was higher for ER-negative 
disease (OR=27.03; 95% CI, 15.66 to 46.67) than ER-positive (OR =2.81; CI, 1.56 to 5.08; 
P=8.46E-28 for the difference), while for CHEK2 the odds ratio was higher for ER-positive 
disease (OR=2.32;CI,1.56 to 3.44) than ER-negative (OR=1.36; CI,0.66 to 2.82; P=0.11 for 
the difference), consistent with the known subtype-specific associations for deleterious 
variants in these genes 21.  

In total we observed five deletion and two duplication regions with p-values < 0.001 that 
were not below this threshold in the overall risk analysis. The strongest novel association for 
ER-positive was for an intronic deletion in ITGBL1 (OR = 3.3, P=0.00007, P for difference by 
ER-status=0.18).  For ER-negative disease the strongest novel association was with an 
intergenic deletion between ABCC4 (MRP4) and CLDN10 (OR=2.16, P=0.0002, P for 
difference by ER-status=0.02).  Neither of these associations was significant for the other 
subtype. For triple negative disease, the strongest evidence of association was found for an 
intergenic duplication between TMC3 and MEX3B (OR=2.39 P= 0.00009) and for two 
separate deletions upstream of the DDX18 gene: 2:118258797-118389164 (OR= 6.56, P= 
0.00001) and 2:117973154- 118107795 (OR=4.54, P= 0.0008). The association at these two 
deletions was driven by the same samples, with 75% of the carriers of the first deletion  
observed to have the second deletion and normal copy number at the 62kb gap between the 
deletions.  
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4.4 Associations at Established Common Susceptibility 
Loci 

Three of the most significant associations were observed within regions harbouring known 
breast cancer susceptibility loci for breast cancer. The most significant (OR=1.42;CI,1.21 to 
1.67; P=0.00015) was upstream of FGFR2 and consistent with a 28 kb deletion in the 1000 
Genomes Project data (chr10:123433204-123461492).  Three independent risk signals have 
been previously identified at this region22,23. The effect size for the CNV was larger than 
those previously reported for these common SNPs (largest OR=1.27;CI,1.22 to 1.25). The 
CNV is in linkage disequilibrium with two of the SNPs identified as likely causally associated 
variants: rs35054928 (D’ = 0.82) and rs2981578 (D’ = 0.88). Conditioning on those SNPs 
reduced somewhat the strength of the association for the deletion (OR =1.30;CI 1.10 to 
1.53;P=0.002, Supplementary Table 15).   

The third strongest signal (OR=4.9 P=0.00001) in the deletion analysis for overall breast 
cancer was at 8: 132199447-132252439, 144Kb downstream of ADCY8. The strongest 
GWAS signal in this region lies in an intron of ADCY8 (lead SNP rs73348588, OR =1.13, P= 
8.2e-7)7. A 3kb deletion in intron 4 of KLF12 was associated with ER-negative disease (OR 
= 2.4, P= 0.0007, P for difference by ER-status=0.01). This is 389kb distant from common 
SNPs, located between KLF12 and KLF5, associated with ER-negative disease (rs9573140, 
OR = 0.94, P=3.62e-9) 24. The KLF12 and ADCY8 deletions are not in strong linkage 
disequilibrium with the corresponding GWAS signals and conditioning on these SNPs did not 
alter the strengths of the association for the CNVs (Supplementary Table 15) . 

4.5 Gene Burden tests 
We performed gene burden tests based on CNVs that overlapped exons. Analyses were 
restricted to genes in which at least 24 CNVs were identified, leaving 645 genes with 
deletions (Supplementary Table 16) and 1596 genes with duplications (Supplementary Table 
17). QQ plots are shown in Figures 1C for deletions and 1D for duplications. The lambda for 
inflation was 1.18 (; lambda1000=1.00) for deletions and 1.07 (; lambda1000=1.00) for 
duplications.  

For deletions, we found 10 genes with P < 0.01 (Table 4), the most significant being BRCA1 
(OR=7.66, P= 3.72E-18). Four of these 10 genes (ATM, BRCA1, BRCA2, CHEK2) are 
known breast cancer susceptibility genes.21 Deletions were also observed in two other 
known susceptibility genes: PALB2 (23 cases, 9 controls, OR=2.02, P=0.09) and RAD51C 
(21 cases, 9 controls, OR=2.04, P=0.08). The most significant novel association was for 
SUPT3H (OR=0.27, P=0.0004). 

For duplications we observed 15 genes with P < 0.01 (Table 5). The most significant 
association was for VPS53 (OR = 0.5, P= 0.0009). This gene and ABR (OR=0.61  P= 0.008) 
both lie within the region on 17p which had the strongest association in the regional analysis. 
These associations were driven by duplications in different samples, with only one 
duplication in one sample overlapping both genes.  Duplications were associated with an 
increased risk for only four of the 15 genes; the most statistically significant was RSU1 
(OR=3.4, P= 0.004). There was also some evidence of association with risk for duplications 
in BRCA1 (OR = 1.75, P =0.01). However, analysis restricted to duplications that included 
exon 12 of BRCA1 showed clearer evidence of association (34 carriers, OR = 4.7 P= 
0.0001), consistent with one of the more frequent known BRCA1 duplications that results in 
a frameshift25. 

The gene burden subtype results are shown in Supplementary Tables 18 and 19. The 
strongest associations were observed for BRCA1 deletions for ER Negative (OR = 33, 
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P=5.5E-35) and Triple Negative (OR =49 P=7.1E-34) disease, CHEK2 deletions for ER 
positive disease (OR = 2.14 P=0.0001) and ATM deletions for ER positive disease 
(OR=4.85, P=0.0001). No additional genes significant at P<0.0001 were found.  

 

4.6 Direction of effect tests 
In the gene burden and individual probe analyses we observed a directional effect, whereby 
the strongest associations for deletions tended to increase risk and those for duplications 
tended to be protective.  To test whether these associations deviated from what would be 
expected by chance, we computed ranked summed z-score tests and evaluated the 
significance of the maximum test statistic by permutation. Results are summarised in Table 
6. The statistic for deletion regions was more significant than any of the permuted statistics 
(P=0.04) but was reduced to P=0.12 after removing the known genes BRCA1 and CHEK2. 
The significance of the gene burden test for deletions also was reduced from P=0.04 to 
P=0.2 when the known genes were removed. The statistic for the duplication regions was 
lower than any of the 50  permutations  (P=0.04).  The gene burden analysis for duplications 
was not significant.   

5 Discussion 
We used the largest available breast cancer case-control dataset, comprising more than 
86,000 cases and 76,000 controls with array genotyping, to test for associations with rare 
CNVs. Using the intensities from genotyping arrays to detect CNVs is not ideal due to a high 
level of noise and uncertainty in the calling, particularly for duplications. However, in tests of 
known CNVs and replication of calls between duplicate samples, the CamCNV method 
shows reasonable levels of sensitivity and specificity14. The main focus of this analysis was 
low frequency CNVs (<1% frequency) since higher frequency CNVs can generally be 
studied through imputation to a reference panel. In the 0.05%-1% frequency range, we could 
detect ~20% of the CNVs identified by the 1000 Genomes project. For some loci we only 
had evidence from one array because the probes do not exist to detect the variants on the 
other array.  Thus, while this array-based approach provides power to evaluate the CNVs 
that can be assayed, much denser arrays or direct sequencing would be required to provide 
a complete evaluation of the contribution of CNVs.  

In support of the reliability of the method, we detected evidence for both deletions and 
duplications in BRCA1, which was stronger for ER-negative disease, and for deletions in 
CHEK2 , which were stronger for ER-positive disease. The latter appeared to be driven by a 
single founder deletion in East European populations.  Weaker evidence of association was 
also observed for deletions in other susceptibility genes (BRCA2, ATM, PALB2, RAD51C); 
the ORs were consistent with those seen for deleterious SNVs and indels. 21 In total, around 
0.5% of cases in our analysis had a deletion in one of the known susceptibility genes with 
the proportion rising to ~1% for cases diagnosed under 50 years of age. The majority of 
coding deletions are expected to affect only part of the gene, with one study  observing that 
a quarter covered only a single exon.26 To detect all of these using array data would require 
at least three probes per exon. The OncoArray has this level of coverage for a few genes, 
including BRCA1 and BRCA2, but the coverage is lower for most genes and many coding 
CNVs will have been missed.  

A key issue is the appropriate level of statistical significance to apply to these analyses. For 
the gene burden tests, P<2.5x10-6, as used in exome-sequencing, seems an appropriate 
level. It is less clear what is appropriate for non-coding variants. A level of P<5x10-8 has 
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become standard in GWAS and has been shown to lead to acceptable replication, but this 
seems over-conservative for CNVs, which are more likely to be deleterious. Consistent with 
this, for at least two of the ~200 common susceptibility loci, the likely causal variant is a 
CNV, a higher fraction than expected given the relative frequencies of CNVs and SNPs. 
Based on frequency analysis of whole-genome sequence data Abel et al. 1  estimated that 
rare CNVs are >800 times more likely to be deleterious than rare SNVs and >300 times 
more likely than rare indels. On the other hand, the significance level for non-coding CNVs 
should logically be more stringent than for the gene burden tests. Taken together, a 
significance level of ~10-6 seems appropriate, while associations at P<0.001 may be worth 
following up in future studies. In our analyses only the association at BRCA1 (both in the 
overall and gene burden tests) passes the higher threshold.  We also calculated Bayesian 
False Discovery Probabilities (BFDPs)19 (Supplementary Tables 20 and 21) for our 
associations using prior probabilities of 0.001 for regions and 0.002 for genes. Outside the 
known genes none of the BDFPs gave a probability below 10%, with the lowest BFDP of 
0.11 for the deletion in the FGFR2 locus. For a CNV observed with a frequency of 0.1% 
(n=91 samples in the OncoArray dataset) we had 40% power to detect an association with 
an odds ratio of 2 but only 1.5% power to detect an association with an odds ratio of 1.5. An 
OR of 2, comparable to that seen for deleterious variants in ATM and CHEK2, may be 
plausible for rare coding CNVs or non-coding CNVs that have a significant effect on gene 
expression. Larger sample sizes will clearly be required to evaluate rare CNVs with more 
modest associations. 

In addition to the BRCA1 and CHEK2 loci, we found associations in three known 
susceptibility regions identified through GWAS, harbouring FGFR2, ADCY8 and KLF12. In 
each case, the variants are rarer than the established associated variants, but confer higher 
risks. The ADCY8 and KLF12 deletions are not in linkage disequilibrium with the associated 
SNPs. The FGFR2 deletion is in linkage disequilibrium with two of the likely causal common 
SNPs although there was still evidence of association with the deletion, albeit weaker, after 
conditional analysis. In-silico and functional analysis clearly demonstrate that FGFR2 is the 
target of the previously established variants22,23; it will be interesting to establish if the same 
is true for the CNV.   

Excluding loci in known susceptibility regions, the strongest evidence of association was for 
a 12kb deletion ( 13:102121830-102133956) in the second intron of ITGBL1 (OR = 3.3, 
P=0.00007 in the ER-positive analysis). This deletes a promoter flanking region (Ensembl 
ID: ENSR00001563823) and CTCF binding site (Ensembl ID:  ENSR00001062398) active in 
mammary epithelial cells. There is experimental evidence that ITGBL1 expression, mediated 
by the RUNX2 transcription factor, enables breast cancer cells to form bone metastases27.   

In the gene burden analysis, the strongest novel association was for deletions within 
SUPT3H, which were associated with a reduced risk. SUPT3H encodes human SPT3, a 
component of the STAGA complex which acts as a co-activator of the MYC oncoprotein28. 
SUPTH is located within the first intron of the RUNX2 transcription factor and the syntenic 
relationship between the two genes is highly evolutionarily conserved 29.  RUNX2 has a role 
in mammary gland development and high RUNX2 expression is found in ER-negative 
tumours.30 The PCDHGB2 association appears to be due to a single variant (5:140739812-
140740918) that deletes the first exon but as this gene is part of the protocadherin gamma 
gene cluster it is also possible that the deletion may be having an effect on one of the five 
genes that overlap PCDHGB2. It also deletes a promoter active in mammary epithelial cells 
(ENSR00001342785).  The next strongest signals were for  MEAK7 (OR=2.19 P= 0.001), a 
gene implicated in a mTOR signalling pathway31, and MAD1L1 ((OR=2.00 P=0.005),  a 
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component of the mitotic spindle-assembly that has been suggested as a possible tumour 
suppressor32.   

After BRCA1, the most significant association for ER Negative disease in the gene burden 
analysis was for CYP2C18 which overlaps CYP2C19 ( ER-negative OR=2.6, P=0.002; triple-
negative OR=4.4, P=0.0002).  A previous analysis of CNVs and breast cancer in the Finnish 
population identified a founder mutation reaching an overall  frequency of ~ 3% and reported 
a possible association at this locus for triple negative (OR 2.8, p=�0.02) and ER-negative 
breast cancer (OR =2.2  p=0.048).33  

The results from duplications are harder to interpret as there are often longer duplications 
overlapping whole genes with shorter variants covering some part of their length. For the 
gene burden analysis there was little evidence of strong associations. In the regional 
analysis, the two strongest associations cover multiple genes. The strongest evidence of 
association (OR=0.69 P=1.1E-05) was for a 1.5 Mb region at the start of chromosome 17 
(17:13905- 1559829). The probe-specific and gene burden results highlighted some stronger 
signals within this region, for example within NXN and VPS53, but the direction of effect was 
consistent across the region with 80% of the OncoArray probes having an odds ratio of 0.75 
or lower (Figure 2).  For the 0.4Mb duplication region on chromosome 21 (OR= 2.23 
P=0.0001) the probe-specific results from OncoArray highlighted that the signal is specific to 
a shorter intergenic region (21:33421860- 33459975) between HUNK and LINC00159.  

We observed some evidence of an aggregate directional effect, both for genes and non-
genic regions, such that the deletions in aggregate were associated with increased risk. 
There was also some suggestion that duplications, in aggregate, were associated with a 
reduced risk.  These results suggest that additional associations are present that could be 
established with a larger dataset. A new GWAS, Confluence 
(https://dceg.cancer.gov/research/cancer-types/breast-cancer/confluence-project), aims to 
double the available sample size for breast cancer. This GWAS includes probes specifically 
designed to assay some of the most significant CNVs observed in this study (those 
significant at P<0.001), and the sample size should be sufficient to confirm or refute these 
associations. 
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Tables 

Table 1. CNVs associated with overall risk 

Type Locus Chr. 
Start 

(Build37) End 
Total 

Carriers 
Odds 
Ratio 

Lower 
CI 

Upper 
CI 

Direction 
(OncoArray, 

iCOGs) P-value 

Deletion BRCA1 17 41188342 41363651 195 6.27 4.02 9.79 ++ 6.32E-16 

Deletion Intergenic_FGFR2_ATE1 10 123435817 123461066 630 1.42 1.21 1.67 ++ 1.42E-05 

Deletion Intergenic_ADCY8_EFR3A 8 132199447 132250643 42 4.88 2.24 10.61 ++ 6.36E-05 

Deletion KLHL1 13 70652321 71029916 1761 0.85 0.77 0.92 -- 2.31E-04 

Deletion CHEK2 22 29083731 29123846 141 1.94 1.35 2.79 ++ 3.26E-04 

Deletion SUPT3H 6 44908728 45244478 32 0.23 0.1 0.52 -? 4.25E-04 

Deletion Intergenic_GALNT1_C18orf21 18 33350917 33359197 123 1.92 1.32 2.78 ?+ 6.24E-04 

Duplication 17p13.3_VPS53;NXN 17 13905 1559829 577 0.69 0.59 0.82 -- 1.08E-05 

Duplication 21q22.11_HUNK_LINC00159 21 33410933 33863246 102 2.23 1.47 3.38 ++ 1.48E-04 
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Table 2. Subtype associations for deletions 

Subtype Locus Chr. Start 
(Build37) 

End Total 
Carriers 

Odds 
Ratio 

Lower 
CI 

Upper 
CI 

Direction 
(OncoArray, 

iCOGs) 

P-value 

ER Positive Intergenic_FGFR2_ATE1 10 123435817 123461066 478 1.52 1.27 1.81 ++ 5.04E-06 

ER Positive CHEK2 22 29091788 29102967 79 2.36 1.56 3.44 ++ 3.03E-05 

ER Positive ITGBL1 intronic 13 102122905 102133221 58 3.29 1.83 5.92 +? 7.29E-05 

ER Positive Intergenic_ADCY8_EFR3A 8 132199447 132250643 31 4.95 2.20 11.30 ++ 1.07E-04 

ER Positive BRCA1 17 41188342 41363651 57 2.81 1.55 5.08 ++ 6.41E-04 

ER Negative BRCA1 17 41188342 41363651 112 27.03 15.66 46.67 ++ 2.62E-32 

ER Negative Intergenic:ABCC4_CLDN10 13 95991263 96004144 134 2.16 1.43 3.26 +? 2.46E-04 

ER Negative KLF12 intronic 13 74356683 74357984 93 2.39 1.49 3.82 +? 2.89E-04 

ER Negative Intergenic_DPP10_DDX18 2 118258797 118389164 44 3.34 1.64 6.80 ++ 8.84E-04 

Triple Neg. BRCA1 17 41188342 41363651 72 40.55 21.70 75.76 ++ 3.64E-31 

Triple Neg. Intergenic_DPP10_DDX18 2 118258797 118389164 40 6.56 2.83 15.18 ++ 1.13E-05 

Triple Neg. Intergenic_DPP10_DDX18 2 117973154 118107795 48 4.54 1.88 10.97 ++ 7.92E-04 

 

Table 3. Subtype associations for duplications 

Subtype Locus Chr. Start 
(Build37) 

End Total 
Carriers 

Odds 
Ratio 

Lower 
CI 

Upper 
CI 

Direction 
(OncoArray, 

iCOGs) 

P-value 

ER Positive 17p13.3_VPS53;NXN 17 13905 1559829 454 0.67 0.55 0.81 -- 4.44E-05 

ER Positive 21q22.11_HUNK_LINC00159 21 33410933 33863246 77 2.55 1.6 4.06 ++ 7.88E-05 

ER Positive 15q13 15 28440287 32797352 1250 0.83 0.75 0.93 -- 6.95E-04 

ER Negative BRCA1 17 41188342 41363651 42 5.93 2.31 15.19 +- 2.09E-04 

Triple Neg. BRCA1 17 41188342 41363651 35 10.80 3.33 35.02 +- 7.29E-05 

Triple Neg. Intergenic_TMC3_MEX3B 15 81960409 82104822 231 2.39 1.55 3.71 ++ 9.25E-05 
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Table 4. Gene burden results for deletions 
Gene Cases  Controls Odds 

Ratio 
Lower 
CI 

Upper 
CI 

P-value 

BRCA1 171 22 7.66 4.84 12.13 3.72E-18 

CHEK2 103 48 1.83 1.29 2.61 7.66E-04 

SUPT3H 10 25 0.27 0.13 0.59 9.24E-04 

PCDHGB2 25 3 7.03 2.10 23.52 1.55E-03 

MEAK7 59 24 2.19 1.34 3.58 1.66E-03 

ATM 35 8 3.43 1.56 7.51 2.11E-03 

MAD1L1 54 25 2.00 1.23 3.26 5.53E-03 

NPHP1 477 351 1.22 1.06 1.41 6.13E-03 

ZNF320 29 7 3.28 1.39 7.73 6.63E-03 

BRCA2 65 33 1.81 1.17 2.81 7.82E-03 

 

Table 5. Gene burden results for duplications 
Gene Cases  Controls Odds 

Ratio 
Lower 
CI 

Upper 
CI 

P-value 

VPS53 40 65 0.50 0.33 0.75 9.46E-04 

ATP12A 48 66 0.57 0.39 0.84 3.97E-03 

USP18 12 23 0.34 0.17 0.71 4.16E-03 

RPS6KA2 10 22 0.32 0.14 0.70 4.20E-03 

RSU1 21 8 3.40 1.47 7.84 4.23E-03 

AC008132.1 7 17 0.26 0.10 0.66 4.49E-03 

PNPLA4 479 346 1.23 1.06 1.42 5.30E-03 

NLGN4X 291 320 0.79 0.67 0.93 5.55E-03 

ZNF439 31 9 2.98 1.37 6.45 5.72E-03 

TRIM6 5 19 0.24 0.09 0.67 6.34E-03 

RP11.363G10.2 13 27 0.39 0.20 0.78 7.39E-03 

USP31 7 18 0.30 0.12 0.73 8.02E-03 

TRDN 15 29 0.42 0.22 0.80 8.26E-03 

ABR 51 69 0.61 0.42 0.88 8.88E-03 

DNAJC15 109 67 1.52 1.11 2.09 9.29E-03 

 

Table 6. Direction of Effect Results 

Category Analysis 
ustat 

Max.ustat of 
50 

simulations 

Min. ustat of 
50 

simulations 

Simulations with 
larger/smaller 

ustat  

P-value 

Deletion regions 9.48 6.96 -7.81 0 0.04 

Deletion regions 
minus known1 

5.9 6.96 -7.81 2 0.12 

Duplication regions -9.2 6.54 -6.99 0 0.04 

Gene Deletions 9.18 5.64 -9.67 0 0.04 

Gene Deletions 
minus known2 

5.01 5.64 -9.67 4 0.20 

Gene Duplications -4.33 5.96 -11.26 33 1.29 
1. BRCA1, CHEK2 regions excluded; 2. BRCA1, CHEK2, ATM, BRCA2 removed. 
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Figures 

Figure 1. QQ plots for association of deletion regions (A), duplication regions (B), gene 
burden analysis for deletions (C) and gene burden for duplications (D). 

 

 

Figure 2. Plot of log odds ratios for probes within the 17p13.3 duplication region showing 
genes and 1000 Genomes CNVs from Ensembl.  
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