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ABSTRACT 

Arterial spin labeled (ASL) magnetic resonance imaging (MRI) is the primary method for non-

invasively measuring regional brain perfusion in humans. We introduce ASLPrep, a suite of 

software pipelines that ensure the reproducible and generalizable processing of ASL MRI data. 
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MAIN 

Despite comprising only 2% of the human body mass, the adult brain receives 

approximately 15% of cardiac output to support the intensive demands of neural computation1. 

Cerebral blood flow (CBF) is tightly linked to brain metabolism2, varies predictably across the 

lifespan3, and is increasingly seen as an important biomarker of diverse neuropsychiatric and 

neurological illnesses4.   Although the gold standard method of measuring CBF is 15O-PET, 

arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI) has evolved to become 

the dominant method for non-invasive measurement of CBF in humans due to its ease of 

implementation, lower cost, and lack of ionizing radiation5. 

The ascendancy of ASL MRI has also been accompanied by a rapid rise of both acquisition 

methods and analytic techniques5.  For example, widely used ASL MRI sequences vary in their 

labeling type, number of echo times, labeling duration, number of post-labeling delays used, image 

scaling, background suppression, and whether or not a reference (M0) image is acquired.  

Furthermore, different MRI schemes for ASL may yield markedly different output: commonly 

used schemes can provide a timeseries of control and label pairs, a single difference image, or a 

fully quantified CBF image.  When combined, these factors have limited the generalizability of 

techniques for the processing and quantification of CBF  and have slowed the pace of translational 

research6.   To address this gap, we introduce ASLPrep: a generalizable and robust software 

workflow that allows for reproducible processing of a wide range of ASL MRI data (Figure 1).  
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ASLPrep requires the metadata be recorded in Brain Imaging Directory Structure (BIDS)7 

format and leverages BIDS to automatically configure appropriate workflows based on the data 

provided.  ASLPrep is designed with a focus on reliability, and builds upon widely-used 

neuroimaging toolboxes, such as  FSL8 , FreeSurfer9, AFNI10, and ANTs11 (Supplementary Table 

1). ASLPrep also includes in-house implementations for algorithms unavailable elsewhere, for 

instance the SCORE de-noising option12, which is particularly useful for studies of populations 

with greater head motion, such as children and many patient groups.    

Building on this preprocessing workflow, ASLPrep can optionally execute advanced 

methods to quantify CBF.  In addition to the standard CBF quantification procedure, ASLPrep 

includes two different Bayesian models that incorporate information regarding brain structure: 

(BASIL13 and SCRUB14).  ASLPrep also allows users to specify if they would like to implement 

partial volume correction15 (with BASIL), which adjusts CBF according to the mixture of gray and 

white matter present in the anatomical image.  For all quantification models, regional CBF is 

summarized in a diverse set of bundled atlases or custom atlases provided by the user. 

Both minimal preprocessing and quantification workflows are transparently documented 

with a detailed visual report that generated dynamically.  Critically, each step in the workflow is 

demonstrated and its performance can be assessed for quality with “before vs. after” visualizations 

(see Supplementary Figure 1).  In addition to such visualizations, ASLPrep provides multiple 

quantitative measures of image quality (see Supplement). Like fMRIPrep16, these visual reports 

also include a “citation boilerplate” that comprehensively describes  the actual workflow 

implemented, including software versions and relevant citations to facilitate maximally transparent 

reporting in papers that use ASLPrep.   
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 ASLPrep is distributed as a Docker image that includes all dependencies 

(https://hub.docker.com/r/pennlinc/aslprep), ensuring that it can be run in nearly any computing 

environment. The modular code base of ASLPrep uses Nipype17 and is openly developed on 

GitHub (https://github.com/pennlinc/aslprep), allowing for rapid detection of bugs, integration of 

feature requests, and support for the international user base.  Prior to the release of patches or new 

versions, all changes to the underlying code of ASLPrep are subject to continuous integration 

testing via CircleCI.   Extensive documentation (https://aslprep.readthedocs.io) is version-

controlled and frequently updated, facilitating broad dissemination.   A total of more than 17,000 

data have been successfully run through ASLPrep.  

To illustrate the generalizability of ASLPrep, we processed five different datasets acquired 

with a wide range of acquisition parameters (n=3,150 total scans; see Supplementary Table S2). 

These datasets included four ASL sequences collected on Siemens scanners using pseudo-

continuous labeling (e.g. pCASL), but different encoding schemes: 2D spin echo PCASL images 

from the Philadelphia Neurodevelopmental Cohort (PNC; n=1,491), 2D gradient echo images 

from the NKI-Rockland Sample (NKI; n=1,257), a 3D stack-of-spirals spin echo acquisition from 

a study of irritability in youth (IRR; n=115), and a publicly available study of aging that used a 2D 

spiral gradient echo PCASL sequence (AGE; n=63). Furthermore, we included a study of fronto-

temporal dementia (FTD; n=110) that was collected on a GE scanner using a 3D EPI gradient echo 

sequence with pCASL.  Of these studies, two included a reference (M0 scan; IRR and FTD), and 

one (FTD) provided a difference image (∆M) rather than full label/control timeseries. For each of 

these diverse datasets, we completed both minimal preprocessing and CBF quantification.  

Specifically, we evaluated the mean CBF of gray matter and white matter in each dataset, and how 

gray matter CBF evolved with age18.  While these analyses focused on CBF quantified using the 
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standard CBF quantification procedure, supplementary analyses detail results from the other 

quantification procedures packaged with ASLPrep.  

Across both datasets and workflows, pipelines automatically configured by ASLPrep 

concluded without run time errors. As part of quality assurance, 4% participants with gross motion 

(frame-wise displacement [FD] greater than 1mm) or non-physiologic CBF (e.g., a ratio of 

GM:WM CBF of less than 1) were excluded from further analyses (see Supplementary Table 3; 

final sample n=3,021). Inspection of data from individual participants (see exemplar 

Supplementary Figure 2) as well as group average CBF from each dataset (Supplementary 

Figure 3) revealed consistent performance. As expected, the distinction between gray matter and 

white matter CBF was more striking in datasets of youth and was reduced in datasets that were 

composed of older individuals (Figure 2A and Supplementary Figure 4).  When data from 

individual participants were aggregated across all datasets, the anticipated nonlinear decline of 

CBF over the lifespan was clearly evident (Figure 2B; also see Supplementary Figure 5).   

Across the over 3,000 participants evaluated, the processing time of ASL images never 

exceeded 40 minutes (when executed using 4 cores and 30 GB RAM) Nonetheless, the total 

runtime of ASLPrep was substantially longer (mean 2.5 hours), driven largely by its dependencies 

on anatomical image processing19 (see Supplementary Figure 6). However, one critical feature 

of ASLPrep is that it can consume processed anatomical images that conform to the BIDS-

derivatives standard (e.g., sMRIPrep19) obviating the need for re-processing structural images and 

dramatically accelerating runtime. This key feature is particularly important for multi-modal 

imaging studies as it allows a unique source of preprocessed anatomical information can be used, 

ensuring consistency across image types (ASL, fMRI, dMRI, etc). 
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Two limitations of the current version of ASLPrep should be noted. First, although 

ASLPrep provides a comprehensive framework for evaluating perfusion quantification workflows, 

such an evaluation is beyond the scope of this paper. Second, certain experimental ASL acquisition 

schemes (such as QUASAR20) include parameters that are not currently supported by BIDS; as 

such, these schemes cannot currently be processed by ASLPrep.   

In summary, ASLPrep allows investigators to correctly apply reproducible preprocessing 

pipelines and advanced CBF quantification methods to nearly all ASL images.  ASLPrep adapts 

its workflow to the characteristics of the input data, ensuring appropriate image processing as long 

as the data has been correctly specified in BIDS. By harnessing complementary techniques from 

multiple software packages and combining them in an interoperable framework, ASL reduces the 

burden on investigators who wish to avoid learning the details of many disparate techniques.  

Taken together, ASLPrep ensures fully reproducible and widely generalizable processing, quality 

assurance, and quantification of ASL images. 
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SOFTWARE AVAILABILITY 

         ASLPrep is available under the BSD 3-clause license at  

https://github.com/pennlinc/aslprep . Docker images corresponding to every new release of 

ASLPrep are automatically generated and made available on Docker Hub. All code used to 

perform the statistical tests are available at: https://pennlinc.github.io/aslprep_paper, under the 

BSD-3-Clause License. 

 

DATA AVAILABILITY 

 Imaging data are available with restrictions depending on the original source of the data. 

PNC data are available on dbGAP [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000607.v3.p2]. NKI neuroimaging data are openly available on the 

NeuroImaging Tools and Resources Collaboratory 

[http://fcon_1000.projects.nitrc.org/indi/enhanced/].  IRR and FTD data are available upon 

request to TDS and CM respectively. AGE data are available on Open Neuro 

[https://openneuro.org/datasets/ds000240/versions/00002]. 

 

ETHICS OVERSIGHT 

No new data were collected specifically for this study. All other data were acquired with 

IRB approval at their original institutions. The University of Pennsylvania IRB approved the PNC, 

FTD, and IRR studies.   The AGE and NKI datasets are publicly available, de-identified data 

resources.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.444998doi: bioRxiv preprint 

https://github.com/pennlinc/aslprep
https://pennlinc.github.io/aslprep_paper
https://github.com/PennLINC/aslprep/blob/master/LICENSE
https://doi.org/10.1101/2021.05.20.444998
http://creativecommons.org/licenses/by-nc-nd/4.0/


ASLPrep                  9 

REFERENCES 

1. Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up 

primate brain and its associated cost. Proc. Natl. Acad. Sci. 109, 10661–10668 (2012). 

2. Dolui, S., Li, Z., Nasrallah, I. M., Detre, J. A. & Wolk, D. A. Arterial spin labeling versus 

18F-FDG-PET to identify mild cognitive impairment. NeuroImage Clin. 25, 102146 (2020). 

3. Satterthwaite, T. D. et al. Impact of puberty on the evolution of cerebral perfusion during 

adolescence. Proc. Natl. Acad. Sci. 111, 8643–8648 (2014). 

4. Hays, C. C., Zlatar, Z. Z. & Wierenga, C. E. The Utility of Cerebral Blood Flow as a 

Biomarker of Preclinical Alzheimer’s Disease. Cell. Mol. Neurobiol. 36, 167–179 (2016). 

5. Alsop, D. C. et al. Recommended Implementation of Arterial Spin Labeled Perfusion MRI for 

Clinical Applications: A consensus of the ISMRM Perfusion Study Group and the European 

Consortium for ASL in Dementia. Magn. Reson. Med. 73, 102–116 (2015). 

6. Borogovac, A. & Asllani, I. Arterial Spin Labeling (ASL) fMRI: Advantages, Theoretical 

Constrains and Experimental Challenges in Neurosciences. International Journal of 

Biomedical Imaging vol. 2012 e818456 https://www.hindawi.com/journals/ijbi/2012/818456/ 

(2012). 

7. Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and 

describing outputs of neuroimaging experiments. Sci. Data 3, 160044 (2016). 

8. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. 

NeuroImage 62, 782–790 (2012). 

9. Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012). 

10. Cox, R. W. & Hyde, J. S. Software tools for analysis and visualization of fMRI data. 

NMR Biomed. 10, 171–178 (1997). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.444998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444998
http://creativecommons.org/licenses/by-nc-nd/4.0/


ASLPrep                  10 

11. Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in 

brain image registration. NeuroImage 54, 2033–2044 (2011). 

12. Dolui, S. et al. Structural Correlation-based Outlier Rejection (SCORE) algorithm for 

arterial spin labeling time series: SCORE: Denoising Algorithm for ASL. J. Magn. Reson. 

Imaging 45, 1786–1797 (2017). 

13. Chappell, M. A., Groves, A. R., Whitcher, B. & Woolrich, M. W. Variational Bayesian 

Inference for a Nonlinear Forward Model. IEEE Trans. Signal Process. 57, 223–236 (2009). 

14. Dolui, S. (ISMRM 2016) SCRUB: A Structural Correlation and Empirical Robust 

Bayesian Method for ASL Data. http://archive.ismrm.org/2016/2880.html. 

15. Chappell, M. A. et al. Partial volume correction of multiple inversion time arterial spin 

labeling MRI data. Magn. Reson. Med. 65, 1173–1183 (2011). 

16. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. 

Methods 16, 111–116 (2019). 

17. Gorgolewski, K. et al. Nipype: A Flexible, Lightweight and Extensible Neuroimaging 

Data Processing Framework in Python. Front. Neuroinformatics 5, (2011). 

18. Wood, S. N. Generalized Additive Models: An Introduction with R, Second Edition. 

(CRC Press, 2017). 

19. Esteban, O., Markiewicz, C. J., Blair, R., Poldrack, R. A. & Gorgolewski, K. J. 

sMRIPrep: Structural MRI PREProcessing workflows. (Zenodo, 2020). 

doi:10.5281/zenodo.4313270. 

20. Petersen, E. T., Lim, T. & Golay, X. Model-free arterial spin labeling quantification 

approach for perfusion MRI. Magn. Reson. Med. 55, 219–232 (2006). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.444998doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444998
http://creativecommons.org/licenses/by-nc-nd/4.0/


ASLPrep                  11 

 

 

Figure 1 | Overview of ASLPrep. Input data to ASLPrep include ASL images, anatomical (T1 

weighted) images, and (optionally) M0 reference images. Anatomical preprocessing is executed 

using standard tools (as implemented in sMRIPrep), while ASL preprocessing is done with 

ASLPrep. CBF computation and denoising can be executed using multiple options, including the 

standard CBF procedure, and can optionally include SCORE, SCRUB, and BASIL with or 

without partial volume correction (PVC).  Importantly, ASLPrep generates extensive quality 

indices, as well as a visual report of each step.  Finally, regional CBF is summarized according to 

standard or custom atlases.   
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Figure 2 | ASLPrep provides generalizable pre-processing across sequences, scanners, and 

the lifespan. (A) Cerebral blood flow (CBF) within gray matter (GM) and white matter (WM) for 

each dataset.  CBF is higher in GM than in WM in all datasets, but this difference is attenuated in 

studies of older adults, including those with fronto-temporal dementia (FTD).  (B) GM CBF 

declines predictably across the lifespan.  Data aggregated across all datasets reveals a predictable 

pattern when modeled using generalized additive models with penalized splines. GM CBF declines 

steeply in youth, is relatively stable during adulthood, and declines again after age 60. 
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