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Abstract

Motivation: The biases in Open Reading Frame (ORF) predic-
tion tools, which have been based on historic genomic annota-
tions from model organisms, impact our understanding of novel
genomes and metagenomes. This hinders the discovery of new
genomic information as it results in predictions being biased to-
wards existing knowledge. To date users have lacked a systematic
and replicable approach to identify the strengths and weaknesses
of any ORF prediction tool and allow them to choose the right
tool for their analysis.
Results: We present an evaluation framework (ORForise) based
on a comprehensive set of 12 primary and 60 secondary met-
rics that facilitate the assessment of the performance of ORF
prediction tools. This makes it possible to identify which per-
forms better for specific use-cases. We use this to assess 15 ab
initio and model-based tools representing those most widely used
(historically and currently) to generate the knowledge in genomic
databases. We find that the performance of any tool is dependent
on the genome being analysed, and no individual tool ranked as
the most accurate across all genomes or metrics analysed. Even
the top-ranked tools produced conflicting gene collections which
could not be resolved by aggregation. The ORForise evaluation
framework provides users with a replicable, data-led approach to
make informed tool choices for novel genome annotations and for
refining historical annotations.
Availability: https://github.com/NickJD/ORForise
Contact: nicholas@dimonaco.co.uk
Supplementary information: Supplementary data are avail-
able at bioRxiv online.

1 Introduction

Whole genome sequencing, assembly and annotation is now
widely conducted, due predominantly to the increase in afford-
ability, automation and throughput of new technologies (Land
et al., 2015). ORF prediction in prokaryote genomes has often
been seen as an established routine, in part due to a number
of assumptions and features such as the high density (protein
coding genes contribute ∼80-90% of prokaryote DNA) and the
lack of introns (Lobb et al., 2020; Salzberg, 2019). However, this
process involves the complex identification of a number of spe-
cific elements such as: promoter regions (Browning and Busby,
2004), the Shine–Dalgarno (Dalgarno and Shine, 1973) riboso-
mal binding site, and operons (Dandekar et al., 1998), which all
contribute to identifying gene position and order. Additionally,
the role of horizontal gene transfer (HGT) (Jain et al., 1999)
and pangenomes further complicates an already difficult process
and likely contributes to errors and a lack of data held in public
databases (Devos and Valencia, 2001; Furnham et al., 2012). Fi-
nally, our ability to characterise the functions of regions of DNA
(which has been generally reserved for model organisms and core
genes (Russell et al., 2017)) is being outstripped by the rate of
genomic and metagenomic sequence data generation from non-
model organisms and non-core gene DNA sequences.

Before the turn of the century, it was understood that a great
deal of work was still needed to address these issues. Studies had
shown that many existing ORF prediction tools systematically
fail to identify or accurately report gene families whose features

lay outside a rigid set of rules, such as non-standard codon us-
age, those which overlap other genes or those below a specified
length (Guigo, 1997; Burge and Karlinb, 1998). While there has
been much work to address this, many gene families continue to
be absent or underrepresented in public databases (Warren et al.,
2010; Huvet and Stumpf, 2014), such as short/small-ORFs (short
ORFs) (Storz et al., 2014; Duval and Cossart, 2017; Su et al.,
2013). This means that ORF prediction methodologies that use
information from existing sequences are in turn ill-equipped to
identify genes belonging to these underrepresented/missing gene
families. It is therefore of paramount importance that we un-
derstand the limits of current ORF predictors as our reliance on
automated genome annotation continues to increase (Brenner,
1999). Measures to compare both novel and contemporary ORF
prediction tools are not well established or universally employed
and novel tool descriptions tend to focus on the algorithmic im-
provements rather than carrying out a systematic assessment of
where the weaknesses in their approach lies. This prevents re-
searchers from gaining meaningful insight into the specific fea-
tures of genes which lead to them being missed or partially de-
tected, resulting in a lost opportunity to improve our understand-
ing of prokaryote genome content.

To address this, we extensively evaluate a collection of 15
widely used ORF prediction tools that form the basis of most
of the annotations deposited in public databases and therefore
have largely been used to build the genomic knowledge used by
the scientific community. We provide a comparison platform de-
veloped to allow researchers to compare 12 primary and a further
60 secondary metrics to systematically compare the predictions
from these tools and study the effect on the resulting genome
annotations for their species of interest. This allows for in-depth
and reproducible analyses of aspects of gene prediction that are
often not investigated and allows researchers to understand the
impact of tool choice on the resulting prokaryotic gene collection.

Materials and Methods

Gold standard genome annotations
Six bacterial model organisms and their canonical annotations
were downloaded from Ensembl Bacteria (Howe et al., 2020)1.
They were chosen for their phylogenetic diversity, scientific im-
portance, range of genome size, GC content, assumed near com-
plete and high quality genome assembly and annotation provided
by Ensembl Bacteria. They are presented in detail in Table 1
and further information regarding these model organisms can be
found in supplementary section 1.

For each of the chosen model organisms, two data files were
downloaded from Ensembl Bacteria; the complete DNA sequence
(∗_dna.toplevel.fa) and the GFF (General Feature Format) file
(∗.gff3 ) containing the position of each gene. The protein coding
genes (PCGs) presented in the model organism annotations from
Ensembl were taken as the gold standard (Ensembl Gold Stan-
dard - EGS) for this study. Bacterial genomes exhibit high levels
of gene density, often with little extraneous DNA, which is “com-
monly perceived as evidence of adaptive genome streamlining”
(Sela et al., 2016). Unannotated DNA represents between ∼10%-
20% of the six genomes selected and while an additional 0.38%

1Available at https://github.com/NickJD/ORForise/tree/master/Genomes
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Table 1: An overview of genome composition for the 6 model
organisms selected to evaluate ORF prediction tools compiled
from data held by Ensembl Bacteria. Data is presented for all
genes and Protein Coding Genes (PCGs) in bold square brackets.
Note the relatively broad differences in genome size, gene density
(percentage covered with annotation) and GC content.
Model
Organ-
ism

Genome
Size
(Mbp)

Genes
[PCGs]

Genome Den-
sity [PCGs]

GC Con-
tent

B. sub-
tilis

4.04 4,133
[4,011]

88.91%
[87.60%]

43.89%

C. cres-
centus

4.02 3,875
[3,737]

90.60%
[90.23%]

67.21%

E. coli 4.56 4,257
[4,052]

86.28%
[84.35%]

50.80%

M. geni-
talium

0.58 559
[476]

92.03%
[90.62%]

31.69%

P. fluo-
rescens

6.06 5,266
[5,178]

84.75%
[84.20%]

60.13%

S. aureus 2.76 2,556
[2,478]

83.93%
[82.76%]

32.92%

- 2.22% is attributed to non-coding annotations, there is still a
measurable portion of each genome without any annotation. This
study focuses specifically on the identification of PCGs, which
constitute the significant majority of annotated genomic regions
in the bacteria studied (82.76% - 90.62%, see Fig 1).

The PCGs from each of the 6 model organisms exhibit a range
of differences which are known to impact the ability of prediction
tools to identify them. These include, but are not limited to, GC
content, codon usage and gene length. The GC content varies
from 31.69% - 67.21% for these genomes, and even within a single
genome, the PCG GC content varies widely (see Supplementary
Fig 1 for distributions). Furthermore, the canonical ATG start
codon is used between 68.58% - 90.67% of the genes for the six
genomes (see Supplementary Table 1 for more detail).

Additionally, M. genitalium uses the codon translation table 4,
meaning one of the three universal stop codons (TGA/UGA) is
instead used to code for tryptophan (Dybvig and Voelker, 1996),
whereas the other 5 model organisms use the universal translation
table 11 (see Supplementary Table 2 for more detail). While a
similar median PCG length is shared across the six genomes, B.
subtilis and P. fluorescens have a number of long genes (> 8,000
nt, see Supplementary Figure 2) and S. aureus contains the 31,421
nt “giant protein Ebh” (Cheng et al., 2014) which is more than
twice the length of the next largest PCG in this study.

The Sequence Ontology (Eilbeck et al., 2005) describes an ORF
as “The in-frame interval between the stop codons of a reading
frame which when read as sequential triplets, has the potential of
encoding a sequential string of amino acids”. However, it is the
norm for ORFs to be reported as regions of DNA encompassed
by a start and stop codon as a start codon is expected to indicate
the start of DNA transcription (Brent, 2005). We acknowledge
the difference in ontological definition and during this study, we
refer to an ORF as the region of DNA between an in-frame start
and stop codon which is predicted to encode for an amino acid
(protein) sequence.

Prediction tools
This study specifically investigates ORF predictors, tools which
apply complex filtering after the identification of ORFs across a
region of DNA. This is different to ORF finders, which return
unfiltered ORFs (Stothard, 2000) that meet a set of pre-defined
rules such as length and in-frame start and stop codons. This fil-
tering is unique to each tool and dependent on properties such as
codon usage, GC content, ORF length, overlap and similarity to
known genes, and other more sophisticated parameters modelled
on analysis of previously studied genes and genomes. Without
such filtering methods, ORF finders would typically report many
false positives such as nested or heavily overlapping ORFs. Gen-
eMark (Borodovsky and McIninch, 1993) reports multiple varia-
tions of the same ORF with confidence scores and we chose the
longest for each ORF after assessing the results.

We selected 15 different ORF prediction tools, some of which
required a model (a rigid set of parameters pre-tuned to a partic-
ular organism), and the others which predicted ab initio from se-

quence. The tools which required a model were: GeneMark.hmm
with E. coli and S. aureus models (Lukashin and Borodovsky,
1998); FGENESB with E. coli and S. aureus models (Salamov
and Solovyevand, 2011); Augustus with E. coli, S. aureus and
H. sapiens models (Keller et al., 2011); EasyGene with E. coli
and S. aureus models (Nielsen and Krogh, 2005); GeneMark with
E. coli and S. aureus models (Borodovsky and McIninch, 1993).
Those which did not require a model were: GeneMarkS (Bese-
mer et al., 2001); Prodigal (Hyatt et al., 2010); MetaGeneAn-
notator (Noguchi et al., 2008); GeneMarkS-2 (Lomsadze et al.,
2018); MetaGeneMark (Zhu et al., 2010); GeneMarkHA (Bese-
mer and Borodovsky, 1999); FragGeneScan (Rho et al., 2010);
GLIMMER-3 (Delcher et al., 2007); MetaGene (Noguchi et al.,
2006); TransDecoder (Haas et al., 2013). Included in this list is a
number of tools which were designed for fragmentary and metage-
nomic studies: MetaGeneMark, MetaGene, MetaGeneAnnotator
and FragGeneScan. In addition, TransDecoder was developed to
predict coding regions within transcript sequences, often in eu-
karyotes. The two groups are referred to as ‘model-based’ and ‘ab
initio’ henceforth. To emulate the annotation process of a novel
or less studied genome or metagenome, each tool was run using
its default parameters. More information regarding each group
and tool, and the parameters used to run them, can be found in
Supplementary Section 3 Prediction Tools.

Whole genome annotation ‘pipelines’ such as PROKKA (See-
mann, 2014) and NCBI’s PGAP (Tatusova et al., 2016) were not
included, but the ORF prediction components embedded in these
pipelines such as Prodigal and GeneMarkS-2 were included in the
study. Multiple separate tools from the GeneMark family (Bese-
mer and Borodovsky, 2005) were included (some superseded) due
to their extensive use and impact on genomic knowledge over the
last three decades.

Comparison method

A systematic software platform ORForise (ORF Authorise) was
built to perform a fair, comparative, and informative analysis of
the different tools examining different aspects of their predictions.
Version 1.0 of the platform, written in Python3 (Van Rossum
and Drake, 2009), was used and is freely available at https://
github.com/NickJD/ORForise. It has been designed to process
the standardised GFF3 format as well as the individual output
formats produced by each tool listed in this study.

In this platform we endeavoured to choose a wide range of met-
rics that clearly and representatively capture the many intricacies
of the predictions. A number of metrics used in previous studies,
such as the number of ORFs predicted, accurate identification
of start positions or the number of genes correctly detected, can
give some indication of the ‘accuracy’ of each tool. However, it
was found during our analysis that there were many complexi-
ties in the prediction results which would not be represented by
these high-level metrics. For example, predicted ORF regions
may overlap with one or more known EGS genes but be inac-
curately extended or truncated on either the 5’ or 3’ end. It
is also common for smaller EGS genes to be mistakenly encom-
passed by larger predicted ORFs and while the nucleotide regions
of these genes are technically within the predicted regions, even if
in-frame, they do not represent the true protein coding sequence.
Therefore, clear and specific measures of accuracy that describe
the detection of the entire locus of a gene are needed. Figure
1 illustrates how we determine correct EGS gene detection, but
also explains its nuances and complexities. An example of this
is the definition of short ORFs, which in bacteria are often de-
scribed as having lengths of 100-300 nt (Storz et al., 2014; Duval
and Cossart, 2017; Su et al., 2013). However, due to hard-coded
cutoffs in many of the tools, we chose the ‘upper-bound’ of 300
nt or 100 codons to define short ORFs.

We iteratively developed 72 metrics to help provide the most
accurate and informative representation of a tool’s prediction
quality. Additionally, as part of the ORForise platform, we pro-
vide a number of Python3 post analysis scripts developed to aid
in the interrogation between the EGS gene annotations and the
ORFs predicted by each of the tools studied. These scripts were
used to extract characteristics that are useful in the investigation
of why specific EGS-genes are detected or missed.
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Figure 1: Illustration of how predicted ORFs are classified as
having detected or not detected the EGS genes. Predicted ORFs
are compared to the genes held in Ensembl. A - The predicted
ORF covers at least 75% and is in-frame with Ensembl gene and
therefore it is recorded as detected. B - The predicted ORF covers
less than 75% of the Ensembl gene and therefore is recorded as
not detected. C - The predicted ORF covers part of an Ensembl
gene but is out of frame (dotted outline) and therefore is recorded
as missed. D - The use of alternative stop codons causes the
predicted ORF to be truncated or divided into two ORFs that
span the Ensembl genes and therefore is recorded as missed.

Aggregated tool predictions
An extension to the ORForise comparison platform was built to
investigate whether an aggregation of predictions from a num-
ber of top-performing tools would perform better than individual
tools. The ORF predictions from the selected tools are com-
bined into a single data structure with duplicate ORFs filtered
out, but alternative predictions for the same locus retained and
ordered according to start position. The same comparison algo-
rithm could then be employed on the set of unique ORF predic-
tions identified by this union of the outputs of the selected tools
(Prodigal, GeneMark-S-2, MetaGeneAnnotator, MetaGeneMark
and GeneMark-S - chosen due to their individual performance)
and as with the singular comparison, for every EGS-gene, the
ORF which deviated the least from the correct locus was selected
as the closest match.

Discovering additional ORFs
To enable the aggregation of different Gold Standard and pre-
dicted ORFs, we provide GFF_Intersector to create a single GFF
representing the intersection of two existing GFFs. This also pro-
vides an option to allow the retention of genes that have a user
defined difference (default minimum 75% coverage and in-frame).

To enable the addition of predicted ORFs to an existing GFF,
we also provide the GFF_Adder tool, which produces a new GFF
containing the original genes plus the new ORFs, filtered to re-
move any ORFs that overlap existing genes by more than 50 nt
(user definable).

Results

Metrics for comparison of tools
72 different metrics were chosen for this exhaustive evaluation in
order to give the broadest possible scope to compare and con-
trast the performance of the tools. The full definitions for each
of these metrics can be found in Supplementary Section 5 and
are intended to be used as a resource for the community when
deciding which tool to apply to both novel and contemporary
genome annotation work. The following are 12 of the most in-
formative metrics, selected for their ability to represent both a
broad range and depth of different attributes which have been
used to distinguish the prediction tools.

• M1 Percentage of Genes Detected

• M2 Percentage of ORFs that Detected a Gene

• M3 Percentage difference of number of Predicted ORFs

• M4 Percentage difference of Median ORF Length

• M5 Percentage of Perfect Matches

• M6 Median Start Difference of Matched ORFs

• M7 Median Stop Difference of Matched ORFs

• M8 Percentage difference of Matched Overlapping ORFs

• M9 Percentage difference of Matched Short ORFs

• M10 Precision

• M11 Recall

• M12 False Discovery Rate

For M3, M4, M8 and M9, Percentage Difference was used to
identify differences between predicted and gold standard metrics:
100∗(ORF metric - Ensembl Gene Metric) / Ensembl Gene Met-
ric. The best score for a metric using the Percentage Difference
calculation is 0, as 0 represents no deviation from the EGS an-
notations. The ‘Matched ORFs’ identifier used for M6, M7, M8
and M9 represent the ORFs which have correctly detected an
EGS gene. M6 and M7 are calculated by taking the median
codon position differences recorded for mispredicted start or stop
codons. Metrics such as the Percentage of Perfect Matches (M5)
can give a clearer overview of a tool’s ‘accuracy’ or performance,
as it is common for a tool to misidentify either the exact start or
stop locus of a detected gene, while metrics such as Median Start
Difference of Matched ORFs (M6) can help establish the level of
inaccuracy.

The tools were ordered by totalling the rankings for each of
these 12 metrics, across the 6 model organisms. Supplementary
Results 1 contains the results used for the ranking.This ranking,
based on a wide range of different performance measures, allows
for a comparative overview of contemporary and future tools, and
is presented in Figure 2. This figure also shows the Percentage of
Genes Detected (M1) with an overlay of the Percentage of Perfect
Matches (M5), demonstrating the inconsistency between the two
metrics for each tool. Metrics such as Percentage of Genes De-
tected (M1) and Percentage of ORFs that Detected a Gene (M2)
are informative and can be representative of a tool’s prediction
quality, however, they do not convey the complete picture when
presented in isolation. This is of particular importance for those
working with metagenomic or other fragmentary assemblies, as
the likelihood of incomplete fragments and chimeric sequences is
higher and can lead to varying mispredictions. Although the over-
all prediction quality of genes was high across most of the tools
and genomes in this study, the additional metrics produced can
be used to identify strengths and weaknesses inherent to them.
For example, GeneMark.hmm (S. aureus model and genome),
MetaGeneMark and MetaGeneAnnotator, GeneMarkS were all
ranked highest for Percentage of Genes Detected (M1) for at least
one model organism, while Prodigal and GeneMarkS were ranked
highest twice. However, when inspecting the 12 chosen metrics
(Figure 3), it was clear that there were complex differences be-
tween the prediction results of not only the highest scoring tools,
but also the lower ranked tools which were often ranked high for
some metrics.

While no tool or group of tools were consistently ranked high-
est or equally across the 12 metrics or model organisms, Meta-
GeneAnnotator ranked best for B. subtilis and M. genitalium,
GeneMarkS-2 ranked best for C. crescentus and Prodigal ranked
best for E. coli, P. fluorescens and S. aureus.

The combination of multiple metrics can be used to deter-
mine which tool should be used between two candidate tools
with the same or similar Percentage of Genes Detected (M1),
such as GeneMarkS and MetaGeneMark, which when applied
to M. genitalium both obtained an M1 score of 39.50%. Meta-
GeneMark reported a higher Percentage of Perfect Matches (M5)
(65.96% compared to 61.17%) than GeneMarkS, as can be seen
in Figure 2. In addition, GeneMarkS is ranked first for Percent-
age of Genes Detected (M1) when applied to P. fluorescens with
99.29%, compared to Prodigal which is ranked 4th with 98.49%.
However, Prodigal has the highest Percentage of Perfect Matches
(M5), 92.86% vs 87.03% for GeneMarkS, which means that more
of the genes identified by Prodigal were exact matches. In this
instance, choosing either Prodigal or GeneMarkS as the overall
highest performing tool is not arbitrary.
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Figure 2: The result of all 15 gene prediction tools (21 with chosen models) on the 6 model organism genomes, ordered by the summed
ranks across the 12 metrics. The Y axis represents the Percentage of Genes Detected (M1) by each tool in black and the Percentage of
Perfect Matched (M5) in white. M5 which represents the ability for a tool to detect the correct start codon, has more variance between
the tools than M1. Each column on the X axis represents a different tool (some model based tools were run multiple times). There is
considerable variation in how well each tool performs across the different genomes, while all tools perform relatively poorly on the M.
genitalium genome.

Model-based vs ab initio tools
It was evident that the performance of model-based tools was
less consistent across the 6 model organisms than the ab initio
tools. While they could perform as well as or better than a num-
ber of ab initio tools when the model selected was the same as
the genome annotated, when it was not, they often produced
predictions of extremely low quality. For example, GeneMark
with the E. coli model only predicted 71 ORFs for S. aureus’s
2,478 genes, of which only 18 ORFs detected an EGS-gene. How-
ever, while it could be expected that mixing different models and
genomes could cause poor quality predictions from model-based
tools, there were instances in which both model and genome were
the same and the prediction performance was also poor. In par-
ticular, in the case of EasyGene using the S. aureus model, only
49.31% of S. aureus EGS-genes were detected, a contrast from
the ∼99% detected by the majority of ab initio tools.

Intriguingly, Augustus (a model-based tool) when employed
with the E. coli model, was able to detect 96.64% of P. flu-
orescens genes. While this shows that model-based tools can
perform well even when their model and target genomes are dif-
ferent, when Augustus was applied to the same genome using
the S. aureus model, it was only able to detect 20.53%, but un-
expectedly detected 78.91% when using an H. sapiens model.
This is indicative of the inconsistency of model-based prediction
tools and the species-models they employ. In contrast, through
the ranking approach we employed, the model-based tool Gen-
eMark.hmm with the E. coli model ranked higher (7/21) than
a number of ab initio tools in both the overall ranking and for
individual metrics. Furthermore, GeneMark.hmm with the S.
aureus model was joint top in detecting the highest number of
S. aureus EGS-genes with GeneMarkS. Additionally, for each of
the model-based tools, the E. coli model performed better across
the 6 model organisms than the S. aureus model.

GC content
No significant variation was observed between the EGS-gene me-
dian GC content and that of the predicted ORFs from each tool,
even for those with poor predictions (see Supplementary Results
File 2). This is likely due to the median GC content of the
genomes being the driving factor for GC in any region of DNA,
as the majority of the genomes are protein coding. However,
when inspecting the results from Prodigal, some level of variabil-
ity was observed in the different sets of Ensembl genes according

to whether they were detected, partially matched, or missed, as
can be seen in Supplementary Table 3. E. coli and P. fluorescens
genes which were missed by Prodigal are nearly 10% lower in GC
content than both detected and partial genes.

Overlapping ORFs

The overall number of ORFs predicted to have an overlap with an-
other ORF varied across each of the tools and model organisms,
with cases of both positive and negative percentage differences
when compared to the EGS annotations (see Supplementary File
2 ‘Full Prediction Metrics’). Proportionally, the number of over-
lapping ORFs reported by ab initio tools are closer to the number
of EGS overlapping genes than those reported by the model-based
group.

Most model-based tools underpredict the proportion of over-
lapping ORFs with the exception of GeneMark E. coli for P.
fluorescens, which predicted 2,073 overlapping ORFs compared
to the 1,251 reported by Ensembl (see Supplementary Table 4
and Results files 1 & 2).

Correct detection of EGS overlapping genes is also a problem.
By totalling and averaging the Percentage Difference of Matched
Overlapping ORFs (M8), we were able to observe a clear differ-
ence between the two tool groups with respect to their ability to
detect correct overlapping EGS genes (see Supplementary Tables
4 and 5). The inability of the tools to account for the unusual
nature of the M. genitalium genome was shown again with an
average M8 across all tools of -88.21%, compared to the average
of -27.77% for the other 5 genomes.

Furthermore, when making predictions for E. coli, while model-
based tools such as Augustus and EasyGene with the E. coli
model can closely predict the proportion of overall overlapping
ORFs (Percentage Difference of -1.42% and -2.30% respectively),
due to the poorer performance of these tools for correctly detect-
ing EGS genes, their M8 scores for matched overlapping ORFs
were substantially lower than the average score of the ab ini-
tio tools (grouped average of -52.89% as opposed to -23.62% -
see Supplementary Table 5). Prodigal exemplifies this difference
between the two tool groups. It was able to predict all overlap-
ping EGS from P. fluorescens and S. aureus, whereas even when
paired with the same model and genome, model-based tools con-
tinued to perform poorly.

4

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445150doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445150
http://creativecommons.org/licenses/by/4.0/


U
T
S
R
Q
P
O
N
M
L
K
J
I

H
G
F
E
D
C
B
A

M1 M3 M5 M7 M9 M11
M2 M4 M6 M8 M10 M12

Metric

To
ol

Rank

1

3

5

7

9

11

13

15

17

19

21

Overall rankings Tool

A :  Prodigal

B :  GeneMarkS − 2

C :  MetaGeneAnnotator

D :  MetaGeneMark

E :  GeneMarkS

F :  MetaGene

G :  GeneMark.hmm  E.coli Model

H :  GeneMark − HA

 I :   Augustus  E.coli Model

J :  FragGeneScan

K :  GLIMMER − 3

L :  EasyGene  E.coli Model

M :  Augustus  S.aureus Model

N :  Transdecoder

O :  GeneMark.hmm  S.aureus Model

P :  FGENESB  E.coli Model

Q :  GeneMark  E.coli Model

R :  EasyGene  S.aureus Model

S :  FGENESB  S.aureus Model

T :  GeneMark  S.aureus Model

U :  Augustus  H.sapiens Model

Metrics

 M1: Percentage of genes detected 
(min 75% and correct frame)

 M2: Percentage of ORFs that detected a gene

 M3: Percentage difference of all ORFs

 M4: Median length difference

 M5: Percentage of perfect matches

 M6: Median start difference of matched ORFs

 M7: Median stop difference of matched ORFs

 M8: Percentage difference of matched ORFs 
overlapping another ORF

 M9: Percent difference of short matched ORFs

M10: Precision

M11: Recall

M12: False Discovery Rate

U
T
S
R
Q
P
O
N
M
L
K
J
I

H
G
F
E
D
C
B
A

M1 M3 M5 M7 M9 M11
M2 M4 M6 M8 M10 M12

Metric

To
ol

B.subtilis

U
T
S
R
Q
P
O
N
M
L
K
J
I

H
G
F
E
D
C
B
A

M1 M3 M5 M7 M9 M11
M2 M4 M6 M8 M10 M12

Metric

To
ol

C.crescentus

U
T
S
R
Q
P
O
N
M
L
K
J
I

H
G
F
E
D
C
B
A

M1 M3 M5 M7 M9 M11
M2 M4 M6 M8 M10 M12

Metric

To
ol

E.coli

U
T
S
R
Q
P
O
N
M
L
K
J
I

H
G
F
E
D
C
B
A

M1 M3 M5 M7 M9 M11
M2 M4 M6 M8 M10 M12

Metric

To
ol

M.genitalium

U
T
S
R
Q
P
O
N
M
L
K
J
I

H
G
F
E
D
C
B
A

M1 M3 M5 M7 M9 M11
M2 M4 M6 M8 M10 M12

Metric

To
ol

P.fluorescens

U
T
S
R
Q
P
O
N
M
L
K
J
I

H
G
F
E
D
C
B
A

M1 M3 M5 M7 M9 M11
M2 M4 M6 M8 M10 M12

Metric

To
ol

S.aureus

Figure 3: Heatmaps showing rankings of the tools by the 12 chosen metrics, overall and for each organism in turn. The tools are
shown ordered by the summed ranks across the 12 metrics. While red is ‘better’ and blue is ‘worse’, it is clear that across the 6 model
organisms, no tool stands out for these 12 metrics chosen as most representative. For example, for C. crescentus, GeneMark with E.
coli model ranked 12th overall but reported the most accurate number of overlapping Genes. For P.fluorescens, Prodigal was the overall
highest ranked tool even though GeneMarkS detected the highest number of Ensembl genes. M. genitalium on the other hand, which
uses an alternative stop codon, has some very interesting results showing the difficulty to identify it’s genes by all tools. The pale
coloured bands represent tools ranking the same for a particular metric.
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Short ORFs

Figure 4 summarises the gene lengths of detected, partially de-
tected and missed genes when predicted by Prodigal. It shows
that the EGS genes which were missed by Prodigal for each
genome were substantially shorter in length than the genes which
were detected (apart fromM. genitalium). However, for the other
5 model organisms, whose combined median length of missed
genes is 317, less than half the combined median length of 837.5
of those detected (Fig 4), it is alternative start codon selection
which influences whether a predicted EGS is Shortened or elon-
gated.

The proportion of Short genes in the six Ensembl genomes be-
low 300 nt ranged from 4.8% to 13.6% for each of the 6 model
organisms. All tools predicted many short ORFs for M. genital-
ium because they were incorrectly truncated due to its alternative
stop codon usage. On average, Ab initio tools were shown to be
more likely to correctly detect EGS Short genes across the other
5 model organisms (see Supplementary Tables 4 and 5). Inter-
estingly, unlike overlapping ORFs, short ORFs were more often
overpredicted but few were actually accurate when compared to
the EGS. However, ab initio tools were much better suited to
reporting the correct proportion of short ORFs for all 6 genomes,
often reporting the same proportion (see Supplementary Table
5). While M. genitalium does exhibit the highest divergence in
proportional reporting of short ORFs, ab initio tools were still
less divergent.

Partial matches

The number of missed genes was low across the tools studied,
with the exception of M. genitalium and some outliers from the
model-based tools such as GeneMark, Augustus and EasyGene.
However, we also found many genes that were incorrectly re-
ported on the 5’ or 3’ end. These misannotations, which we have
called ‘partial matches’ if in the correct frame and accounting for
>= 75% of a gene, constitute either an elongation or truncation
of the protein product of the gene and therefore potentially have
an unknown impact on the resultant sequence. A large number
of genes were incorrectly reported on the 3’ end for M. genitalium
by each tool. These 3’ prime truncated ORFs are explained by
the alternative use of TGA as a stop codon (normally used to en-
code tryptophan). The stop codons predicted for M. genitalium
by all the prediction tools were the same ‘TGA,TAG,TAA’ as for
the EGS-genes of the other five model organisms.

Unlike 3’ prime misprediction, a large number of genes from
all six genomes were predicted with alternative start codons (see
Supplementary Results File 2). This was true for all tools and es-
pecially a problem for C. crescentus with a relatively low 68.58%
ATG start codon usage for all EGS-genes. The genes for which
Prodigal was unable to obtain a ‘Perfect Match’ (M5), was just
37.40%. Prodigal used a much higher level of ATG (80.87%) for
this set of partially detected genes. This misidentification of start
codon usage was a consistent problem among all the tools and
genomes studied. However, for E. coli, the level of misidenti-
fication was lower. Table 2 shows, as an example, the number
of times the correct or incorrect start codons were selected by
Prodigal, across all six model organisms, including the number
of incorrectly chosen instances of the start codon (e.g. a different
ATG further upstream of the real ATG).

Aggregated tool predictions

Combined prediction approaches have previously been utilised to
harness the prediction power from multiple tools to increase the
number of genes detected (Yok and Rosen, 2011; Tatusova et al.,
2016). For each of the model organisms, taking the union of the
top 5 tool predictions did provide a small increase in the num-
ber of Genes Detected (M1) (and a reduction of partial matches)
compared to that of the ‘best tool’ (tool with highest percentage
of Genes Detected (M1)) for any particular organism. However,
even with this extreme case of using the union of all tool pre-
dictions, the increase in M1 was negligible (average increase of
0.47%) and came at the expense of predicting a large number of
additional incorrect ORFs, as can be seen in Table 3. Even in
the case of M. genitalium, the M1 was not improved more than
0.21% with the union prediction.

Table 2: Start codon substitution table for genes which were
misreported on the 5’ prime end by Prodigal, combined for the
six model organisms. Column headers represent Ensembl an-
notated start codons and row headers represent the incorrectly
predicted start codons, having chosen an alternative further up-
stream or downstream of the true start codon. The last row,
‘Correct codon’, shows the numbers of Perfect Match ORFs by
Prodigal with the specified start codons. Further start codons
with low usage were combined into the category labelled ‘other’.

Correct codon
ATG GTG TTG CTG Other

Incorrect ATG 817 371 357 19 24
Incorrect GTG 106 76 49 4 0
Incorrect TTG 81 47 37 3 3
Incorrect CTG 0 0 0 0 1
Incorrect other 0 0 0 0 0
Correct codon 14933 1321 847 0 0

Improving historic annotations

Using the GFF_Adder tool, we investigated the the potential of
Prodigal to add additional ORFs to the EGS annotations. Table
4 shows that there are more than 60 additional predicted ORFs
that can be found for each of our model organisms, and more
than 270 for E. coli and P. fluorescens.

Discussion

Ab initio tools usually perform better than
model-based

We found that ab initio tools usually perform better than model-
based tools. While no one tool performed the best or worst across
all metrics, the ab initio tools Prodigal, GeneMarkS-2, MetaGe-
neAnnotator, MetaGeneMark and GeneMarkS were ranked first
to fifth respectively, across our 12 metric ranking (Figure 3).

Strains of the same species can exhibit large intraspecies vari-
ation (Van Rossum et al., 2020). Additionally, genes resulting
from horizontal transfer, which is more frequent within species
(Van Rossum et al., 2020), are likely to contain features from the
donor strains which the rigid model-based methods are unable
to recognise. GeneMark, a model-based tool, published in 1993,
even when both target genome and model were E. coli, was iden-
tified as one of the worst performing tools in this study, possibly
driven by the well-known large open pangenome of this species
(Lukjancenko et al., 2010). The same was observed for S. au-
reus. While model-based tools can perform well even when their
model and target genomes are different, in the case of Augustus,
which when applied to the C. crescentus genome using the S.
aureus model, it was only able to detect 3.93% EGS genes, but
unexpectedly detected 78.75% when using the H. sapiens model.
Unsurprisingly, model-based predictors have therefore fallen out
of development and use over the last decade and ab-initio based
tools such as Prodigal, GeneMarkS-2 and GLIMMER3 have be-
come ubiquitous.

Codon usage has a large influence on accuracy

We found that codon usage has a large influence on accuracy due
to its influence on start and stop codon choice, even in model
organisms.

The recoding of a stop codon as an amino acid is rare and seems
to be taxa specific (Dybvig and Voelker, 1996). While many of
the tools offered the ability to change codon tables (often ac-
counting for TGA specifically), the correct codon tables or codon
preferences for each genome cannot be known in advance of an-
notation of a novel organism. Despite this, we would expect that
they should be able to predict a significant proportion of genes,
even in the absence of the knowledge of a different codon usage
table. Some tools such as Prodigal will assess a genome using
both the universal and Mycoplasma translation table, however
remarkably this did not increase the accuracy of the tool when
analysing M. genitalium genome (see Figure 2). Overall TGA
was never predicted as tryptophan-coding in this genome by any
tool (see Supplementary Results 2).
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Figure 4: Lengths of Ensembl annotated genes, those which were partially detected by Prodigal and those which were missed, for each
model organism. The x-axis is truncated at 3,000 nt. With the exception of M. genitalium, the distributions of lengths of the missed
genes are generally to the left of the distributions of the detected genes. Thus Short genes are commonly overlooked by Prodigal and
other tools.

Table 3: Aggregated tool predictions provide a small increase in Percentage of Genes Detected (M1) but over-predict a large number
of additional ORFs. Here we compare the ‘best tool’ (tool with highest M1 score) predictions versus ‘aggregated tools’ (combination of
predictions from top 5 ranked tools; Prodigal, GeneMark-S-2, MetaGeneAnnotator, MetaGeneMark and GeneMark-S) for the percentage
of detected genes, partial matches and additional over-predictions made by the aggregated tools which did not detect an Ensembl Gold
Standard (EGS) gene. GeneMark.hmm results are reported for S. aureus as even though it performed joint best with GeneMarkS (M1),
it reported a higher proportion of Perfect Matches (M5).

Model Organ-
ism

EGS
PCGs

Best Tool Best Tool Detected
[Partial Matches]

Aggregate Detected
[Partial Matches]

Best
Tool
ORFs

Aggregate Extra
ORFs [Percentage
Increase]

B. subtilis 4,011 MetaGeneAnnotator 99.85% [1.40%] 100% [0.37%] 4,058 1,692 [41.09%]
C. crescentus 3,737 MetaGeneMark 92.83% [31.62%] 93.66% [23.17%] 3,770 1,304 [34.59%]
E. coli 4,052 Prodigal 98.05% [5.94%] 98.82% [1.57%] 4,253 1,635 [38.44%]
M. genitalium 476 Prodigal 39.92% [32.63%] 40.13% [30.89%] 995 426 [42.81%]
P. fluorescens 5,178 GeneMarkS 99.29% [12.97%] 99.92% [3.05%] 5,513 1,891 [34.03%]
S. aureus 2,478 GeneMark.hmm

(S. aureus model)
99.60% [4.58%] 99.84% [0.28%] 2,582 774 [29.98%]
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Table 4: Numbers of additional ORFs predicted by Prodigal that
can be added to Ensembl gene annotations. Additional ORFs are
chosen if there are no fewer than 50 nucleotides overlap with an
Ensembl gene.

Model Organism Ensembl Genes Add’l Prodigal ORFs
B. subtilis 4,011 62
C. crescentus 3,737 64
E. coli 4,052 270
M. genitalium 476 70
P. fluorescens 5,178 293
S. aureus 2,478 74

While ATG is used for 80% of start codons in the canonical
annotations for most prokaryote genomes, some species and even
some species-spanning gene families have been shown to use very
different start codon profiles (Villegas and Kropinski, 2008). The
use of different start codons in prokaryote genomes has often been
correlated to the genome-wide GC content: at extreme low and
high GC (< 30% and > 80%), ATG and GTG respectively are
often more prominent. In our study the extreme example of this
was C. crescentus which uses ATG as a start codon only 69% of
the time. This is likely driven by its GC content of 67%. All of
the tools performed poorly at predicting the correct start codon
in this species (Figure 2). This has been reported in the litera-
ture, specifically in relation to the lack of translation initiation
sequence motifs traditionally used by prediction tools to identify
the frame and start locus of a gene (Schrader et al., 2014). This
is not unique to C. crescentus and as shown in Table 2, for all 6
model organisms incorrect start codon selection resulted in either
elongated or truncated coding sequences (see Supplementary Re-
sults 2). The analysis of E. coli exhibited the lowest divergence
between EGS and predicted start codon selection (see Supple-
mentary Results 2 for more detail), possibly as a result of its
historic use as a model organism and having the largest use of
the canonical ATG start codon in this study. Studies continue to
investigate the possible fluidity of gene start codon selection and
how some genes recorded in genomic databases may either have
been annotated with the wrong start codon, or even require the
annotation of multiple alternative start positions and therefore
start codons (Villegas and Kropinski, 2008; Meydan et al., 2019;
Baranov et al., 2015).

Metagenomic annotation approaches are suit-
able for whole genome sequences
Interestingly, tools made specifically for metagenomic and frag-
mented genome annotation performed better than most single
genome tools (tools ranked 3rd, 4th and 6th were developed
for metagenome annotation), possibly indicating that even ‘com-
plete’ genomes may themselves still harbour elements of sequenc-
ing and assembly error which these types of algorithms have been
designed to account for. Most genomes submitted to databases
such as the NCBI Genome repository (Haft et al., 2017) are
incomplete and can contain hundreds of fragments which can
make gene prediction an even more difficult task. As S. Salzberg
said in 2019 “Paradoxically, the incredibly rapid improvements
in genome sequencing technology have made genome annotation
less, not more, accurate.” (Salzberg, 2019). This indicates that
future annotation work performed on non-model and more di-
verse organisms may benefit from approaches implemented by
metagenomic tools.

Short genes and overlapping genes are often mis-
reported
We found that short ORFs and overlapping ORFs are often mis-
reported and that many tools still have hard-coded limitations
and weightings against these types of genes, with model-based
tools performing especially poorly.

It has been well-established in the literature that Short genes
are likely under-represented across genomic databases, and there-
fore, possibly even within the gold standard Ensembl data used
in this study (Storz et al., 2014; Duval and Cossart, 2017; Su
et al., 2013). The growing acceptance that Short genes are not
only common in prokaryotic genomes but also have important
roles (Andrews and Rothnagel, 2014), is at odds with many tools

still containing hard-coded limitations for minimum ORF length
and algorithmic weights against short ORFs. As might be ex-
pected because of its re-coding of TAG, M. genitalium proved
challenging for all tools to accurately identify PCGs, resulting
in the early truncation of a large proportion of genes and an
increase in predicted short ORFs. This often led to the tools
predicting additional spurious short ORFs in the missed regions.
However, for the other genomes, most tools also predicted too
many short ORFs (9.07% and 39.10%, for ab initio and model-
based tools respectively), but paradoxically still managed to miss
a large proportion of Short genes in the Ensembl annotations
(missing 26.38% and 53.69% for ab initio and model-based tools
respectively) (see Supplementary Table 6-8 and Results File 2).

For overlapping genes, while ab initio tools performed better
than model-based tools (see Supplementary Tables 4-5), in gen-
eral they both under-predicted the number of overlapping genes
across the genomes (on average -6.07% and -30.15% for ab initio
and model-based tools respectively) (see Supplementary Tables
4-5 and Results File 2). No tool was able to correctly detect
more than 20% of M. genitalium’s overlapping EGS genes. Over-
lapping and nested genes have now become an area of renewed
interest for their potential impact on genomic organisation and
evolution (Huvet and Stumpf, 2014; Krakauer, 2000). For exam-
ple, mokC in E. coli, believed to be a regulatory peptide, com-
pletely overlaps hokC and enables hokC expression (Pedersen and
Gerdes, 1999) and no tool was able to detect both genes correctly.

Overall, the tools struggled to handle overlapping gene loci,
and often returned either only one or neither of the overlapping
coding regions in their predictions. This may be due to the man-
ner in which many tools filter multiple candidate ORFs for a
single locus leading to sub-optimal predictions. For example,
Prodigal reports an ORF in C. crescentus on the positive strand
at 23,760-24,074 when in fact the EGS-gene is 23,550-24,170 on
the negative strand. The unallocated space (24,074-24,170) re-
sulted in Prodigal reporting the next downstream ORF starting
at 24,091, instead of 24,133 (as in the Ensembl annotation), er-
roneously including 5’ UTR in the predicted CDS.

There are now tools to identify putative short ORFs in both
prokaryotes and eukaryotes (Bartholomaus et al., 2020; Ji et al.,
2020). However, our results suggest that the identification of
short ORFs and overlapping ORFs can not be done independently
without consequences for annotation accuracy.

Historic bias affects gene prediction today

Overall we have observed an increase in accuracy in tools over
time as can be seen with the different versions of GeneMark com-
pared here: the overall rankings of model-based GeneMark (1993)
(with E. coli/S. aureus models), ab initio GeneMarkS (2001) and
ab initio GeneMarkS-2 (2018) are 20/17, 5 and 2 respectively.
However, GeneMarkS (2001) performed better than its succes-
sor GeneMarkS-2 (2018) for 5 out of the 12 metrics in Figure 3
including Percentage of Genes Detected (M1) in P. fluorescens,
M. genitalium and B. subtilis (see Supplementary Results File
1). The performance of GeneMarkS (2001) in M1 may reflect
its use for an extended period of time in the NCBI Prokaryote
Annotation Pipeline. Possibly as a result of this, many of the
genes GeneMarkS (2001) detected, were originally identified by
the tool itself. Similarly, all model-based tools performed at their
best across the 12 metrics and 6 model organisms when using
their E. coli model, hinting at the impact of historical research in
this organism. Advances in the realms of machine learning and
statistical modelling have the greatest potential to address these
issues but are also likely to be the most prone to historical biases
in the databases. Many of the rules, such as standard ORF length
and codon usage, are inferred from previously predicted PCGs.
The existence of annotation errors and omissions in various se-
quence databases is well established and unlikely to be resolved
in the near future (Bork and Bairoch, 1996; Karp, 1998) with-
out significant coordination between repositories (Klimke et al.,
2011). Additionally much of the sequence information is derived
from model organisms will become of less relevance as greater
numbers of novel organisms are sequenced (Hunter, 2008).

These issues have been raised previously: In 2009, the “Best
Practices in Genome Annotation” meeting report listed a num-
ber of areas of concern put forward by attendees (Madupu et al.,
2010) including tool choice, strategy to update and correct previ-
ous annotations, tracking of changes in databases, prioritisation
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of certain genes for experimental evaluation, documented pro-
cesses and keeping up with technological advances. The work
presented here addresses the issue of tool choice, but there is still
much of the recommendations to be realised. The lack of any pre-
vious detailed systematic overview of method performance may
also have played a part in these biases not being addressed to
date.

Conclusion
We have presented a comprehensive set of metrics which distin-
guish ORF prediction tools from each other and make it possi-
ble to identify which performs better for specific use-cases. The
ORForise evaluation framework enables users to evaluate new and
existing annotations and generate consensus and aggregate gene
predictions. We have demonstrated that certain types of genes,
such as short genes, overlapping genes and those with alternative
codon usage, are still elusive, even to the most advanced ab ini-
tio techniques. Worryingly, the performance of any tool seems
to depend on the genome that is being analysed. For instance,
Prodigal which ranked best overall, was ranked first for E. coli, S.
aureus and P. fluorescens, MetaGeneAnnotater was ranked first
for B. subtilis and M. genitalium and GeneMarkS-2 was ranked
first for C. crescentus (see Supplementary file Results 3). Addi-
tionally, no individual tool ranked as the most accurate across
all genomes for the Percentage of Genes Detected (M1) (the sin-
gle metric historically used to assess tool performance) or any
other individual metric. This is likely to have a measurable im-
pact on downstream genomic and pangenomic studies. However,
overall we found Prodigal to be one of the most well-rounded
tools, not only detecting the highest number of EGS-genes for
two very diverse model organisms (E. coli and M. genitalium),
but also performing overall best when ranked across the 12 met-
ric rankings and 6 model organisms. It was also overall best for
Perfect Matched genes (M5). However as outlined earlier, it was
not always ranked first for all genomes, further suggesting that
users should choose tools carefully, based on the organism and
question they are studying. Finally, we advise against generating
aggregated ab initio annotations from multiple tools where no
gold standard exists, as this results in poor overall performance.
However, additional cycles of annotation with tools designed to
identify putative ORFs in the intergenic regions of gold standard
annotations, show promise for improving current prokaryotic ge-
nomic knowledge.
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