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Summary

State-of-the-art methods for single-cell RNA-seq (scRNA-seq) Di↵erential Expression Analysis

(DEA) often rely on strong distributional assumptions that are di�cult to verify in practice.

Furthermore, while the increasing complexity of clinical and biological single-cell studies calls for

greater tool versatility, the majority of existing methods only tackle the comparison between two

conditions. We propose a novel, distribution-free, and flexible approach to DEA for single-cell

RNA-seq data. This new method, called ccdf, tests the association of each gene expression with

one or many variables of interest (that can be either continuous or discrete), while potentially

adjusting for additional covariates. To test such complex hypotheses, ccdf uses a conditional
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independence test relying on the conditional cumulative distribution function, estimated through

multiple regressions. We provide the asymptotic distribution of the ccdf test statistic as well as a

permutation test (when the number of observed cells is not su�ciently large). ccdf substantially

expands the possibilities for scRNA-seq DEA studies: it obtains good statistical performance in

various simulation scenarios considering complex experimental designs (i.e. beyond the two con-

dition comparison), while retaining competitive performance with state-of-the-art methods in a

two-condition benchmark.

Key words: single-cell, conditional cumulative distribution function, conditional independence test, dif-

ferential expression analysis

1. Introduction

Single-cell RNA-Sequencing (scRNA-seq) makes it possible to simultaneously measure gene ex-

pression levels at the resolution of single cells, allowing a refined definition of cell types and states

across hundreds or even thousands of cells at once. Single-cell technology significantly improves

on bulk RNA-sequencing, which measures the average expression of a set of cells, mixing the

information in the composition of cell types with di↵erent expression profiles. New biological

questions such as detection of di↵erent cell types or cellular response heterogeneity can be ex-

plored thanks to scRNA-seq, broadening our comprehension of the features of a cell within its

microenvironment (Eberwine and others, 2014).

Several challenges arise from the sequencing of the genetic material of individual cells like in

transcriptomics (see Lähnemann and others (2020) for a thorough and detailed review). Di↵eren-

tial expression analysis (DEA) is a major field of exploration to better understand the mechanisms

of action involved in cellular behavior. A gene is called di↵erentially expressed (DE) if its ex-

pression is significantly associated with the variations of a factor of interest. Single-cell data
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Distribution-free complex hypothesis testing for scRNA-seq DEA 3

have di↵erent features from bulk RNA-seq data that require special consideration for developing

DEA tools. Indeed, scRNA-seq measurements display large proportions of observed zeros, called

“dropouts”. However, this term may refer to two di↵erent types of zeros: either biological zeroes,

originating from biologically-true absence of expression in the cell ; or technical zeroes, where a

gene is expressed but not detected by the sequencing technology (Lähnemann and others, 2020),

due to technical limitations such as the scRNA-seq platform used or the sequencing depth. Fur-

thermore, both technical noises and biological di↵erences between cells in the same sample may

generate intricate variations, for instance, coming from the di↵erence of subgroup responses to

treatment.

The large amount of single-cell measurements provides an opportunity to estimate and char-

acterize the distribution of each gene expression and to compare it under di↵erent conditions

in order to identify DE genes. In fact, scRNA-seq distributions usually show complex patterns.

Therefore, the scDD method (Korthauer and others , 2016) condenses the di↵erence in distribu-

tion between two conditions into four categories: the usual di↵erence in mean, the di↵erence

in modality, the di↵erence in proportions and the di↵erence in both mean and modality. Since

scRNA-seq data analysis lay unique challenges, new statistical methodologies are needed.

Several strategies making strong distributional assumptions on the data have been proposed to

perform single-cell DEA. MAST (Finak and others, 2015) and SCDE (Kharchenko and others,

2014) are two well-know di↵erential methods, the former using a two-part generalized linear

model to take into account both the dropouts and the non-zero values by making a Gaussian

assumption of each gene and the latter relying on a Bayesian framework combined with a mixture

of Poisson and negative binomial distributions. scDD (Korthauer and others, 2016) makes use of a

Bayesian modeling framework to detect di↵erential distributions and then to classify the gene into

four di↵erential patterns using Gaussian mixtures. DEsingle (Miao and others, 2018) proposes

a zero-inflated negative binomial (ZINB) regression followed by likelihood-ratio test to compare

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445165
http://creativecommons.org/licenses/by/4.0/


4 Gauthier and others

two samples. D3E (Delmans and Hemberg, 2016) also applies a likelihood-ratio test after fitting a

Poisson-Beta distribution.

Yet, Risso and others (2018) have advanced that scRNA-seq data are zero-inflated and have

proposed to use zero-inflated negative binomial models, while Svensson (2020) have argued that

the number of zero values is consistent with usual count distributions. Then, Choi and others

(2020) illustrated that scRNA-seq data are zero-inflated for some genes but “this does not neces-

sarily imply the existence of an independent zero-generating process such as technical dropout”.

In fact, biological information (e.g. cell type and sex) may explain it. The authors also discourage

imputation as zeros can contain relevant information about the genes. In addition, Townes and

others (2019) argument that single-cell zero inflation actually comes from normalization and log-

transformation. The distribution and the sparsity of scRNA-seq data remains di�cult to model,

and – as there is no consensus on which model is the best one – it is of utmost importance to

develop general and flexible methods for analyzing scRNA-seq data which do not require strong

parametric assumptions.

Fewer distribution-free tools have been developed to model single-cell complex distributions

without making any parametric assumption. EMDomics (Nabavi and others, 2016) and more

recently SigEMD (Wang and Nabavi, 2018) are two non-parametric methods based on the

Wassertein distance between two histograms, the latter including data imputation to handle

the problem of the great number of zero counts. D3E o↵ers in addition the possibility to perform

either the Cramer-von Mises test or the Kolmogorov-Smirnov test to compare the expression

values’ distributions of each gene, thus delivering a distribution-free option. In a comparative

review, Wang and others (2019) illustrated that non-parametric methods, i.e. distribution-free,

perform better in distinguishing the four di↵erential distributions. Recently, Tiberi and others

(2020) presented distinct, a hierarchical non-parametric permutation approach using empiri-

cal cumulative distribution functions comparisons. The method requires biological replicates (at
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least 2 samples per group) and allows adjustment for covariates but only tackles the comparison

between two conditions to our knowledge.

However, the limitations of these state-of-the-art methods for scRNA-seq DEA are many.

The approaches based on a distributional assumption face methodological issues, as they rely on

strong distributional assumptions that are di�cult to test in practice. In fact, a deviation from the

hypothesized distribution will translate into erroneous p-values and may lead to inaccurate results.

While the increasing complexity of clinical and biological studies calls for greater tools versatility,

the majority of existing methods, whether parametric or non-parametric, cannot handle data

sets with a complex design, making them very restrictive. In fact, the most commonly used

methods remain in the traditional framework of DEA and only tackle the comparison between two

conditions. One might be interested in the genes di↵erentially expressed across several conditions

(e.g. more than two cell groups, multi-arm...) or in testing the genes di↵erentially expressed

according to a continuous variable (e.g. cell surface markers measured by flow cytometry...).

In particular, the identification of surrogate biomarkers from transcriptomic measurements is

becoming an emerging field of interest, especially in cancer therapy (Wang and others, 2007)

or in new immunotherapeutic vaccines (Cli↵ and others , 2004). Gene expression could be used

to compare treatments in observational settings. Yet in such cases, adjusting for some technical

covariates or some confounding factors is paramount to ensure the validity of an analysis, as this

external influence can impact the outcome as well as the dependent variables and thus generates

spurious results by suggesting a non-existent link between variables.

Overall, the need of testing the association between gene expression and the variables of in-

terest, potentially adjusted for covariates, makes an additional motivation for developing suitable

tools.

The complex hypothesis we aim to test consists in performing a conditional independence test

(CIT). A CIT broadens the classical independence test by testing for independence between two
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variables given a third one, or a set of additional variables (see Figure 1). Two random variables

X and Y are conditionally independent given a third variable Z if, and only if, P (X,Y | Z) =

P (X | Z)P (Y | Z). As described in Li and Fan (2020), many CIT have been developed previously

and are readily available such as discretization-based tests (Margaritis (2005), Huang and others

(2010)), metric-based tests (Runge (2018), Su and White (2007), Huang and others (2016)),

permutation-based two-sample tests (Doran and others (2014), Gretton and others (2012), Sen

and others (2017)), kernel-based tests (Muandet and others (2017), Li and others (2009)) and

regression-based tests (see Li and Fan (2020) for a short review). Yet, these CIT either su↵er

from the curse of dimensionality or are hardly applicable to a large number of observations

(Muandet and others (2017), Zhang and others (2011)). Zhou and others (2020) have converted

the conditional independence test into an unconditional independence test and then used the

Blum–Kiefer–Rosenblatt correlation (Blum and others , 1961) to develop an asymptotic test. Yet,

the latter cannot be applied when X is discrete. Those limitations make these tests impractical

in our context of scRNA-seq DEA and thus require adaptation.

Z

X
?

Y

Fig. 1. Conditional dependence graph (Li and Fan, 2020)

Performing DEA necessarily involves performing as many independent tests as there are genes.

The variables of interest may be either discrete or continuous, while the number of covariates

to condition upon may also increase. Consequently there is an urgent need for a CIT that is

both flexible and fast. Here, we propose a novel, distribution-free, and flexible approach, called

ccdf, to test the association of gene expression to one or several variables of interest (continuous
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or discrete) potentially adjusted for additional covariates. Because of the current limitations of

existing CIT and the growing interest in testing di↵erences in distribution, we make use of a CIT

based on the conditional cumulative distribution function (CCDF), estimated by a regression

technique. We derive the asymptotic distribution of the ccdf test statistic, which does not rely

on the underlying distribution of the data, as well as a permutation test to ensure a good control

of type I error and FDR, even with a limited sample size.

Section 2 describes our proposed method with both asymptotic and permutation tests. Section

3 presents several simulation scenarios to illustrate the good performances of ccdf when we

consider complex designs (i.e. beyond the two condition comparison), while a benchmark in the

two condition case shows our method retains similar performance in terms of statistical power

compared to competitive state-of-the-art methods. Section 4 compares the performances of our

method with several methods on a ”positive data set” that included di↵erentially expressed genes

as well as a ”negative data set” without any di↵erentially expressed gene. Section 5 discusses the

strengths and limitations of our proposed approach.

2. Method

In this section, we propose a new, easy-to-use, fast, and flexible test for scRNA-seq DEA. We

give both its asymptotic distribution as well as a permutation approach to obtain valid p-values

in small samples.

2.1 Conditional independence test

2.1.1 Null hypothesis. Testing the association of Y , namely the expression of a gene, with a

factor or a group of factors of interest X either discrete (multiple comparisons) or continuous

given covariates Z is equivalent to test conditional independence between Y and X knowing Z:

H0 : Y ? X | Z (2.1)
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8 Gauthier and others

Several statistical tools can be used to characterize the probability law of a random variable,

such as the characteristic function, the probability density distribution or the cumulative dis-

tribution function. The characteristic function is not often used in practice, due to its relative

analytical complexity. The probability density distribution, while more popular, remains di�cult

to estimate in practice when the number of variables increases due to the increasing number

of bandwidths to be optimized. This curse of dimensionality quickly leads to classical computa-

tional problems because of complexity growth. As for the cumulative distribution function, its

estimation does not require any parameter akin to these bandwidths, making it an e�cient tool

in high-dimensional non-parametric statistics. From this point, we built a general DEA method

including an estimation of the CCDF based on regression technique.

The conditional independence test we propose is based on CCDFs. Indeed, if a group of factors

is associated with the expression of a gene, the immediate consequence is that the CCDF of the

gene expression would be significantly di↵erent from the marginal cumulative distribution, which

overlooks this conditioning. Thus, the null hypothesis can be written as:

H0 : FY |X,Z(y, x, z) = FY |Z(y, z) (2.2)

where the CCDF of Y given X and Z is defined as FY |X,Z(y, x, z) = P(Y 6 y | X = x, Z = z). If

there are no covariates, the conditional independence test turns into a traditional independence

test as we test the null hypothesis Y ? X which is equivalent to test FY |X(y, x) = FY (y).

2.1.2 Test statistic. In this section, we propose a general test statistic for testing the null

hypothesis of conditional independence that is easy to compute. We denote Y g = (Y g
1 , ..., Y

g
n ) an

outcome vector (i.e. normalized read counts for gene g in n cells) and X
g = (Xg

1, ...,X
g
n) a s⇥n

matrix encoding the condition(s) to be tested that can be either continuous or discrete. One may

want to add exogenous variables, which are not to be tested but upon which it is necessary to

adjust the model. Let Zg = (Zg
1, ...,Z

g
n)) be a r ⇥ n matrix for continuous or discrete covariates
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to take into account. For the sake of simplicity, we drop the notation g in the remainder as we

refer to gene-wise DEA.

We have Y 2 [⇣min, ⇣max] for some known constants ⇣min, ⇣max. Let ⇣min 6 !1 < !2 < ... <

!p < ⇣max is a sequence of p ordered and regular thresholds. For each !j with j = 1, ..., p, the

CCDF FY |X,Z(!j | x, z) may be written as a conditional expectation:

FY |X,Z(!j | x, z) = E
⇥
1{Y6!j}|X = x, Z = z

⇤
= E

h
eYij |Xi = x, Zi = z

i

where eYij = 1{Yi6!j} is a binary random variable that is 1 if Yi 6 !j and 0 otherwise. We propose

to estimate these conditional expectations through a sequence of p working models:

g

⇣
E
h
eYij |Xi, Zi

i⌘
= �0j + �1jXi + �2jZi, 8i = 1, ..., n (2.3)

where �1j = (�1j1, ...,�1js) is the vector of size s referring to the regression of eYij onto Xi and

�2j is the vector of size r referring to the regression of eYij onto Zi, for the fixed thresholds

!1,!2, ...,!p. If X has no link with Y given Z, then we expect that �1j will be null. So, we aim

to test:

H0 : �1j = 0, j = 1, ..., p (2.4)

Although, there are many di↵erent test statistics associated with the null hypothesis (2.4),

we propose to use the following test statistic that can be written as

D = n

pX

j=1

sX

k=1

�2
1jk. (2.5)

2.1.3 Estimation and asymptotic distribution. In this section, we describe how to estimate �1j ,

which allows the computation of the test statistic (2.5).

While in principle any link function g(·) could be selected for the models (2.3), we select

the identity link g(y) = y for its computational simplicity, and we compute coe�cient estimates

using ordinary least squares (OLS). Because our approach requires p models for each of possibly
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thousands of genes, speed is of utmost importance, so we use OLS. Other selections of g(·) are

of course possible and could be explored at the cost of additional computation time.

We show in the Appendix that using OLS to estimate (2.3), b�1j can be expressed by

b�1j = n
�1

nX

i=1

hiỸij (2.6)

where hi is a function of the design matrix W with ith row W i = (1,Xi,Zi). These estimates

may be plugged into (2.5) to obtain the estimated test statistic bDn = n

pX

j=1

sX

k=1

b�
2

1jk.

Because of (2.6), we furthermore show in the Appendix that the asymptotic distribution of

the test statistic may be approximated by a mixture of �2
1 random variables:

bD = ũ|
Aũ+ op(1) =

psX

j=1

aj ũ
2
j + op(1) (2.7)

where ũ = (ũ1, ..., ũps) ⇠ N(0, I) are standard multivariate normal random variables and aj are

the eigenvalues of ⌃ = cov(
p
nb�1) where b�1 is a vectorized version of b�1 = (b�11,

b�12, ..., b�1p),

the s⇥ p matrix then we deduce from (2.6) formed by concatenating the s rows of b�1 one after

another.

We may then compute p-values by comparing the observed test statistic bDn to the distribution

of
Pps

j=1 baj�2
1, where baj is an estimate of aj based on a consistent estimator for ⌃ (see Appendix

for details). Therefore, this allows us to derive a p-value for the significance of a gene with regards

to the variable(s) to be tested. In practice, we make use of Davies (1980) approximation to com-

pute p-values for the mixture of �2s, implemented in the CompQuadForm R package (Duchesne and

De Micheaux, 2010). Note that we obtain a simple limiting distribution without relying on any

distributional assumptions on the gene expression. In fact, based on the results in Li and Duan

(1989), our test will be asymptotically valid as long as there exist any g(·) and any �0j ,�1j ,�2j

such that (2.3) holds. Lastly, the great number of tests requires the Benjamini–Hochberg (Ben-

jamini and Hochberg, 1995) correction afterwards, which is automatically applied to the raw

p-values in the R package of ccdf.
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2.1.4 Permutation test Permutation tests are a simple way to obtain the sampling distribution

for any test statistic, under the null hypothesis that there is no link between the outcome Y and

the variable X. The observations of X can then be shu✏ed. Permutation tests are recommended

when the number of observations is too small, so that the asymptotic distribution can not be

assumed to hold. When the sample size n is low, we propose to perform permutations to estimate

the empirical distribution of bDn (2.5) under the null hypothesis (2.4). We distinguish two cases:

i) testing the association between Y and X without any covariate and ii) testing the association

between Y and X given a covariate Z.

i) In the absence of covariates. Under the null hypothesis, Y and X are independent, so the

observations of X are exchangeable. Hence, we can randomly permute the observations of X.

ii) In the presence of covariates. When we need to perform a conditional independence testing

with a covariate Z, the observations ofX are not exchangeable without conditioning on Z. Indeed,

if we randomly permute the observations of X, we break not only the link between X and Y but

also the link between X and Z. To preserve the dependency between X and Z, we are facing two

cases: (a) if Z is a categorical variable and (b) if Z is continuous. In case (a), we randomly switch

X within the groups defined by the categories of Z. Under scenario (b), the permutations become

tricky. The idea is to permute two observations of X only if the two corresponding observations

of Z are close. To do so, a conditional permutation strategy based on the distance between the

observations of Z is described in the supplementary material. Following the appropriate method,

we can permute the observations of X.

Under i), we are able to compute the test statistic (2.5) from the observations of Y and the

permuted observations of X while under ii), the test statistic is obtained from the observations

of Y and Z as well as the permuted observations of X. Then, under the null hypothesis, B

permutation-based test statistics {D⇤
1 , ..., D

⇤
B} are calculated and p-values are computed as bp =

1
1+B

⇣
1 +

PB
b=1 1{ bDn6D⇤

b }

⌘
, to avoid getting zero p-values (Phipson and Smyth, 2010), where D⇤

b
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is the test statistic obtained in the b-th permutation. Finally, we apply the Benjamini–Hochberg

correction to the raw p-values to obtain FDR-adjusted p-values.

2.2 Practical considerations for computational speed up

2.2.1 Adaptive permutations The disadvantage of using permutations could be the onerous

computation times, especially when dealing with large sample size, which is more often encoun-

tered in single-cell DEA than in bulk DEA. The software computes 1,000 permutations by default

for all the genes, but an adaptive procedure may provide similar accuracy at much lower compu-

tational cost. When calculation times appear to be too excessive, the user can switch to adaptive

permutations. According to some pre-defined rules, the number of permutations is increased at

each step to get su�cient numerical precision on the p-values only for certain genes. By default,

the method computes 100 permutations for all genes, then we add 150 permutations for the genes

with a p-value less than 0.1, bringing the total number of permutations for these genes to 250.

Then, for the genes with an associated p-values less than 0.05, we perform 250 permutations

more and finally the genes with a p-values less than 0.01, we add 500 permutations to reach

1,000 permutations for a reduced bunch of genes. If the computation times are still too long, the

user can choose the number of p-values thresholds and the di↵erent limit values. The number of

permutations executed at each step is also configurable.

2.2.2 Evaluation thresholds Selecting the thresholds !1,!2, . . . ,!p where the CCDF is evalu-

ated may be di�cult in practice. If too few thresholds are selected, then important changes in

FY |X,Z(!j | x, z) may not be detected. One could instead select the thresholds to match the

unique observations of Y , even though this selection technically violates the assumption that the

thresholds are fixed and independent of the data. Yet, this technical violation does not appear to

adversely a↵ect the performance of our approach in simulations (see Section 3), and ccdf selects
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Distribution-free complex hypothesis testing for scRNA-seq DEA 13

the thresholds to match the unique observations of Y by default.

However, there may be an important computational cost to selecting so many thresholds: the

number of linear regressions required to estimate all �1s is then equal to the sample size. So

when analyzing data from a large number of cells, one gets an equally large number of regressions

to estimate along with a large matrix ⌃, significantly increasing the computation time. One

solution to reduce computation times (both for the asymptotic test and the permutation test) is

to decrease the number of evaluated thresholds and thus the number of estimated �1s as well as

the dimension of ⌃.

Instead of going through all the unique values of Y , one can choose a regular sequence of

thresholds. Since single-cell RNA-seq data are count data, we propose spacing these thresholds

according to a logarithmic scale, i.e., to better focus on the values where the CCDFs will not be

too close to 1. This way, ccdf statistical power is maximized as variations in distributions are

more likely to appear for smaller values (this point is all the more important as the number of

thresholds is small).

3. Simulation study

3.1 Comparisons with state-of-the-art methods in the two conditions case

We compared the performance of our method ccdf with three state-of-the-art methods, MAST,

scDD and SigEMD, to find di↵erentially distributed (DD) genes. We have selected methods imple-

mented on R that have shown good results in Wang and others (2019) benchmarks and specially

designed for single-cell data (excluding methods for bulk RNA-seq like edgeR and DESeq2). Also,

we considered methods that use normalized (and therefore continuous) counts as input, so that

the results of our simulations are comparable. We generated simulated count data from negative

binomial distributions and mixtures of negative binomial distributions. Since MAST, scDD and

SigEMD require continuous input, we transformed the counts into continuous values while pre-
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serving as much as possible the count nature of the data (i.e. negative binomial assumption). To

do so, we added a small Gaussian noise with mean equal to 0 and variance equal to 0.01 to the

simulated counts. 500 simulated datasets were generated including 10,000 genes each, of which

1,000 are di↵erentially expressed under a two conditions setting for 7 di↵erent sample sizes n (20,

40, 60, 80, 100, 160, 200). The observations were equally divided into the two groups. Korthauer

and others (2016) classified four di↵erent patterns of unimodal or multi-modal distributions:

• di↵erential expression (DE): two unimodal distributions with a di↵erent mean in each con-

dition.

• di↵erential proportion (DP): two bimodal distributions with equal component means across

conditions; the proportion in the low mode is 0.3 for condition 1 and 0.7 for condition 2.

• di↵erential modality (DM): one unimodal distribution in condition 1 and one bimodal

distribution in condition 2 with one overlapping component. Half of the cells in condition

2 belongs to each mode.

• both di↵erential modality and di↵erent component means within each condition (DB):

one unimodal distribution in condition 1 and 1 bimodal distribution in condition 2. The

distributions have no overlapping components. The mean of condition 1 is half-way between

the overall means in condition 2. Half of the cells in condition 2 belongs to each mode.

We used these four di↵erential distributions to create our own simulations. Specifically, we

simulated 250 DD genes, 250 DM genes, 250 DP genes and 250 DB genes. Plus, 9,000 non-

di↵erentially expressed genes are simulated according to two non-di↵erential scenarios (see Sup-

plementary Materials for the simulation settings).

Figure 2 shows the Monte-Carlo estimation over the 500 simulations of the type-I error and

the statistical power as well as the false discovery rate and true discovery rate, according to

increasing samples sizes. The type-I error is computed as the number of significant genes among
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the true negative and the power as the number of significant genes among the true positive. After

Benjamini-Hochberg correction for multiple testing, the FDR is computed as the number of false

positives among the genes declared DD and the TDR as the number of true positives among

the genes declared DD. The p-value nominal threshold is fixed to 5%. The three state-of-the-art

methods as well as ccdf exhibit good control of type-I error and no inflation of FDR. The four

methods present a high overall True Discovery Rate. However, MAST shows a lack of power of about

23% for a sample size equal to 200. The True Positive rate (after Benjamini-Hochberg correction)

for each scenario for all the methods is shown Figure 3. The three leading methods perform

well in finding the traditional di↵erence in mean (DE) as soon as a number of 60 observations is

reached. ccdf is less powerful for a sample size of 20 and 40 cells but shows the same performances

with a larger sample size. The di↵erence in modality (DM) is well detected by all the methods

with a slight advantage for SigEMD in low sample sizes (from 20 to 60 cells). The di↵erence in

proportion (DP) is not favorable for the asymptotic test of ccdf until 160 observations but the

permutation test exhibits higher power. The asymptotic test requiring a su�ciently large number

of observations to converge, the permutation test is more e�cient for a lower number of cells.

SigEMD and scDD are the most e↵ective in detecting DP genes. Even though MAST shows good

power for DE, DM and DP genes, it fails to detect DB genes. In fact, MAST is designed to detect

di↵erence in the overall mean (traditional di↵erential expression), which is absent in DB scenario.

The di↵erence in modality and in di↵erent component means is then overlooked as expected with

its parametric model. SigEMD, scDD and both ccdf’s tests present competitive performances.

Generally speaking, ccdf retains competitive performance with the state-of-the-art in this two

condition benchmark, which makes it a method particularly adapted to traditional DEA. Even

though ccdf is a non-parametric method, the asymptotic test is relatively reasonable in terms

of computation times, especially compared to SigEMD (see Table 1). If the computation times

seem too large, we recommend to use the adaptive thresholds strategy explained section 2.2.2
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and in particular for the permutation test, we recommend to switch to the adaptive permutations

described section 2.2.1.

Table 1. Computation times for the state-of-the-art methods and ccdf in the two condition case, for
n = 100, using 16 cores

Method Computation times in minutes

ccdf asymptotic test 3
ccdf permutation test 1385
ccdf permutation test with adaptive permutations 750

SigEMD 1680
MAST 1.4
scDD 0.05
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Fig. 2. Overall Type-I error, Power, FDR and TDR under the 2 conditions case with in-

creasing sample size. For ccdf, we perform the asymptotic test and the permutation test.

3.2 Multiple comparisons

This second scenario deals with a multiple comparisons design where cell observations were split

into 4 di↵erent groups. Count data were generated from negative binomial distributions and mix-

tures of negative binomial distributions and transformed into continuous values as in section 3.1.

500 simulated datasets were generated including 10,000 genes each, of which 1,000 are di↵eren-

tially expressed under a four conditions setting for 7 di↵erent sample sizes n (40, 80, 120, 160,
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Fig. 3. True positive rate under the 2 conditions case for the four DD scenarios with in-

creasing sample size. DE: di↵erence expression in mean. DM: di↵erence in modality. DP: di↵erence
in proportion. DB: both di↵erential modality and di↵erent component means within each condition. For
ccdf, we perform the asymptotic test and the permutation test.

200, 320, 400). The observations were then equally divided into four groups. Instead of generat-

ing two distributions for each gene as in section 3.1, we created four distributions and therefore

new DD scenarios for this specific DEA simulation: multiple DE, multiple DP, multiple DM and

multiple DB (more details in the Supplementary Materials). The non-di↵erentially genes are also

simulated in a specific fashion described in the Supplementary Material. The idea of di↵erential

distribution patterns was converted into a multiple di↵erential distribution setting. For exam-

ple, the multiple DD scenario consists in four distributions with four di↵erent means. Since the

other approaches can not handle this type of design, only ccdf with the asymptotic test and the

permutation test is run.

Figure 5 shows that both versions of ccdf have great power to identify DE and DM genes as

the sample size increases. DP and DB genes require larger number of cells to achieve su�cient

power (from n > 200).
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Fig. 4. Overall Type-I error, Power, FDR and TDR for ccdf under the 4 conditions case

with increasing sample size. ccdf is the only method capable of dealing with more than 2 conditions.
We perform the asymptotic test and the permutation test.
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Fig. 5. True positive rate under the 4 conditions case for the four DD scenarios with in-

creasing sample size. DE: di↵erence expression in mean. DM: di↵erence in modality. DP: di↵erence in
proportion. DB: both di↵erential modality and di↵erent component means within each condition.ccdf is
the only method capable of dealing with more than 2 conditions. We perform the asymptotic test and
the permutation test.

3.3 Two conditions comparison given a covariate Z

As represented in Figure 1, a potential confounding covariate Z can interfere the test of the link

between the outcome Y and the variable X. Then, it is needed to adjust to the confounding

variable by carrying out a CIT. We aim to emphasize the importance of taking into account

Z, thanks to our approach, by showing the erroneous results obtained not doing so. For this
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Fig. 6. Overall Type-I error, Power, FDR and TDR under the 2 conditions comparison given

a confounding variable with increasing sample size. For ccdf, we perform the asymptotic test and
the permutation test.

purpose, we simulated a confounding variable Z from a Normal distribution. The values of the

variable to be tested X depends on the quartile of Z, creating a strong link between X and Z.

Y is constructed from X for DE genes and from Z for non-DE genes, the last case is particularly

misleading if one do not take into account Z (see simulation settings in Supplementary Material).

We simulated 10,000 genes of which 1,000 are di↵erentially expressed for several sample sizes

n (20, 40, 60, 80, 100, 160, 200). ccdf permutation test was excluded in this simulation scheme

because of the large amount of time to compute. In fact, when we have to adjust for a covariate,

the permutation test is not suited to such large sample sizes and number of genes because of the

underlying permutation strategy.

MAST is able to adjust for covariates like ccdf so we expect good performances from both

of them. Conversely, scDD and SigEMD can not control for counfounding variables that might

impact the detected DE genes. The results of the benchmark between MAST, scDD, SigEMD and

ccdf are depicted in Figure 6. Under the alternative hypothesis, we created a large di↵erence

in the mean of the normal distributions between the two conditions in order to make DE genes

easier to identify. We see therefore that scDD, SigEMD and ccdf exhibit high power at all sample
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sizes whereas MAST tends to be less powerful for a given size. As expected, the link between Y

and Z is very confusing for scDD, SigEMD which interpret it as a link between Y and X, since

X is constructed from Z. Consequently, we observe a consistent rise of Type-I error. ccdf and

MAST perfectly control the Type-I error. In addition, scDD and SigEMD su↵er greatly in terms of

TDR as the number of cells is increasing. In fact, fewer real discoveries are found meaning that

more genes are identified as significant while being actually false positive, which is in line with

the drastically inflated FDR. Dealing with this complex design, ccdf outperforms the leading

methods by controlling the Type-I error as well as the FDR and by providing a powerful test.

This simulation study highlights the importance of taking into account the confounding variables

that may exist. Otherwise, DEA may lead to inaccurate results and a potential huge amount of

false positives.

It is worth mentioning that ccdf can adjust for more than one covariate using the asymptotic

test while preserving relatively fast calculation times. The permutation test is for now limited to

one adjustment variable and the computation times are obviously increased due to the permuta-

tion strategy.

4. Real data set analysis

To be in a more realistic context with a greater number of zeros, a positive control data set and a

negative control data set described in Wang and others (2019) were used in order to compare the

performances of several methods. The genes with a variance equal to zero were removed from the

datasets and counts were converted into log-transformed transcript per millions (TPM) values.

4.1 Positive control dataset

Islam and others (2011) dataset includes 22,928 genes measured across 48 mouse embryonic stem

cells and 44 mouse embryonic fibroblasts. We considered 1,000 genes validated through qRT-PCR
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Table 2. Number of detected DE genes, and sensitivities of the state-of-the-art methods and ccdf tools
using positive control real data for an adjusted p-value of 0.05

Method Number of DE genes (TP/1000 gold standard)

ccdf 9,353 0.734

SigEMD† 3,702 0.488
scDD† 2,638 0.351
MAST† 734 0.198

† results from Wang and others (2019).

experiments as a gold standard gene set in the same fashion as Wang and others (2019) in order

to compute true positive rate. A gene is defined as a true positive if it is found as DE by the

method and belongs to the gold standard set (Moliner and others , 2008). For ccdf, SigEMD, scDD

and MAST, the number of DE genes for an adjusted p-value of 0.05 and the number of true positive

over the 1,000 gold standard genes are given in Table 2.

ccdf leads to the highest true positive rate (0.706) and enables to identify 21.8% more genes

in common with the top 1,000 genes compared to SigEMD (0.488). scDD shows a true positive rate

of 0.351 and MAST exhibits the lowest rate (0.198) of all the tools.

4.2 Negative control dataset

To get false positive rate, we used the dataset from Grün and others (2014). We selected 80

samples under the same condition. To create 10 datasets, we randomly divided these 80 cells into

2 groups of 40 cells. As there is no di↵erence between the two groups, not a single gene is to be

found in each dataset. Performance evaluations are compared across methods in Table 2.

ccdf and MAST do not detect any genes which was expected. Although all the cells are under

the same condition, scDD and SigEMD identified respectively 5 and 50 DE genes.
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Table 3. Number of the detected DE genes and false positive rates of the state-of-the-art methods and
ccdf using negative control real data for an adjusted p-value of 0.05

Method Number of detected DE genes False positive rate

ccdf 0 0

scDD† 5 0.0007
MAST† 0 0
SigEMD† 50 0.007

† results from Wang and others (2019).

5. Discussion

We propose a new framework for performing CIT, with an immediate application to di↵erential

expression analysis of scRNA-seq data. Our approach can accommodate complex designs, e.g.

with more than two experimental conditions or with continuous responses while adjusting for

several additional covariates. ccdf is capable of distinguishing di↵erences in distribution by using

a CIT based on the estimation of CCDFs through a linear regression. The resulting asymptotic

test is attractive due to the low computation times, especially dealing with a high number of

observations. Yet, for small samples sizes (e.g. due to experimental design or cost limitations

in data acquisition), we cannot always rely on an asymptotic test. Consequently, a permutation

test is proposed in such cases. Performing permutations is obviously time consuming, but as it

is necessary only for small sample sizes, computation times remain reasonable in such settings.

Nevertheless, easy parallelization of the permutation test can alleviate this problem. Furthermore,

an adaptive procedure, for both the number of permutations and the number of thresholds, is

implemented in order to accelerate ccdf while preserving a su�cient statistical power along with

numerical precision for the lowest p-values. Per-gene asymptotic tests can also be computed in

parallel to speed up computations. The proposed approach has been fully implemented in the

user-friendly R package ccdf available on Github and soon to be on CRAN.

While ccdf can be applied to many types of data thanks to its flexibility, it has been specifi-

cally tailored for the need of scRNA-seq data DEA. In the simulation study, ccdf exhibits great
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results and versatility in complex designs such as multiple conditions comparison, and also al-

lows to analyze data when the experiment design includes confounding variables while most of

the competing methods cannot. Finally ccdf maintains great power while ensuring an e↵ective

control of FDR.

Tiberi and others (2020) recently proposed non-parametric permutation approach that also

compares empirical CDF. While distinct shares some common ideas with ccdf, the two ap-

proaches widely di↵ers in their test statistics and capabilities. On the one hand distinct requires

multiple samples and only addresses the two groups comparison, while on the other hand ccdf

provides an asymptotic test and can accommodate more complex experimental designs.

The number of evaluating thresholds considered in ccdf directly impacts both its computa-

tion time but also potentially its statistical power. To optimize this trade-o↵ and to maintain

the performances while reducing the computational cost, we propose to use a sequence of evenly

spaced thresholds alongside the log-scale of the observations. Besides, instead of choosing a reg-

ular sequence of thresholds, one can prefer to manually chose the di↵erent thresholds at which

CCDFs are computed and compared, e.g. using prior knowledge to emphasize some areas of the

distribution.

We did not discuss pre-processing normalization of the data, a corner stone of bulk and

single-cell RNA-seq data analysis. Many normalizations have been explored such as Transcript-

per-million (TPM), scran (Lun and others , 2016), SCnorm (Bacher and others , 2017) or BASiCS

(Vallejos and others , 2015) (see Lytal and others (2020) for a comparative review of di↵erent

normalizations for scRNA-seq data). As a distribution-free approach, ccdf can support any nor-

malization method, and this choice is ultimately left to the responsibility of the user.

Although the linear regression estimation of the CCDF is e�cient, di↵erent parameterizations

can be considered (e.g. logistic regression which would be more natural). Currently ccdf cannot

analyse multi-sample data, such as biological replicates or repeated measurements. It would be
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straightforward to incorporate this structure directly into the working model in the regression

equation (2.3). ccdf would thus be able to perform multi-sample analysis while keeping the

advantage of its asymptotic test, at the cost of an increased computational burden. Besides,

other test statistics could be investigated based on the same CIT.

6. Software

The proposed method has been implemented in an open-source R package called ccdf, available

at https://github.com/Mgauth/ccdf. All R scripts used for the simulations and the real data set

analyses in this article were performed using R v3.6.3 and can be found at the same GitHub

repository.
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Lähnemann, David, Köster, Johannes, Szczurek, Ewa, McCarthy, Davis J, Hicks,

Stephanie C, Robinson, Mark D, Vallejos, Catalina A, Campbell, Kieran R,

Beerenwinkel, Niko, Mahfouz, Ahmed and others. (2020). Eleven grand challenges in

single-cell data science. Genome biology 21(1), 1–35.

Li, Chun and Fan, Xiaodan. (2020). On nonparametric conditional independence tests for

continuous variables. Wiley Interdisciplinary Reviews: Computational Statistics 12(3), e1489.

Li, Ker-Chau and Duan, Naihua. (1989). Regression Analysis Under Link Violation. The

Annals of Statistics 17(3), 1009 – 1052.

Li, Qi, Maasoumi, Esfandiar and Racine, Jeffrey S. (2009). A nonparametric test for

equality of distributions with mixed categorical and continuous data. Journal of Economet-

rics 148(2), 186–200.

Lun, Aaron TL, Bach, Karsten and Marioni, John C. (2016). Pooling across cells to

normalize single-cell rna sequencing data with many zero counts. Genome biology 17(1), 75.

Lytal, Nicholas, Ran, Di and An, Lingling. (2020). Normalization methods on single-cell

rna-seq data: An empirical survey. Frontiers in Genetics 11, 41.

Margaritis, Dimitris. (2005). Distribution-free learning of bayesian network structure in con-

tinuous domains. In: Proceedings of the 20th National Conference on Artificial Intelligence -

Volume 2 , AAAI’05. AAAI Press. p. 825–830.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445165
http://creativecommons.org/licenses/by/4.0/


28 REFERENCES

Miao, Zhun, Deng, Ke, Wang, Xiaowo and Zhang, Xuegong. (2018). Desingle for de-

tecting three types of di↵erential expression in single-cell rna-seq data. Bioinformatics 34(18),

3223–3224.

Moliner, Annalena, Ernfors, Patrik, Ibanez, Carlos F and Andäng, Michael.

(2008). Mouse embryonic stem cell-derived spheres with distinct neurogenic potentials. Stem

cells and development 17(2), 233–243.

Muandet, K., Fukumizu, K., Sriperumbudur, B. and Schölkopf, B. (2017). Kernel Mean

Embedding of Distributions: A Review and Beyond .

Muandet, Krikamol, Fukumizu, Kenji, Sriperumbudur, Bharath and Schölkopf,

Bernhard. (2017). Kernel mean embedding of distributions: A review and beyond. Founda-

tions and Trends R� in Machine Learning 10(1-2), 1–141.

Nabavi, Sheida, Schmolze, Daniel, Maitituoheti, Mayinuer, Malladi, Sadhika and

Beck, Andrew H. (2016). Emdomics: a robust and powerful method for the identification of

genes di↵erentially expressed between heterogeneous classes. Bioinformatics 32(4), 533–541.

Phipson, B. and Smyth, G. (2010). Permutation p-values should never be zero: Calculating

exact p-values when permutations are randomly drawn. Statistical Applications in Genetics

and Molecular Biology 9.

Risso, Davide, Perraudeau, Fanny, Gribkova, Svetlana, Dudoit, Sandrine and

Vert, Jean-Philippe. (2018). A general and flexible method for signal extraction from

single-cell rna-seq data. Nature communications 9(1), 1–17.

Runge, Jakob. (2018). Conditional independence testing based on a nearest-neighbor estimator

of conditional mutual information. In: International Conference on Artificial Intelligence and

Statistics. pp. 938–947.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445165
http://creativecommons.org/licenses/by/4.0/


REFERENCES 29

Sen, Rajat, Suresh, Ananda Theertha, Shanmugam, Karthikeyan, Dimakis, Alexan-

dros G and Shakkottai, Sanjay. (2017). Model-powered conditional independence test.

In: Advances in neural information processing systems. pp. 2951–2961.

Su, Liangjun and White, Halbert. (2007). A consistent characteristic function-based test

for conditional independence. Journal of Econometrics 141(2), 807–834.

Svensson, Valentine. (2020). Droplet scrna-seq is not zero-inflated. Nature Biotechnol-

ogy 38(2), 147–150.

Tiberi, Simone, Crowell, Helena L, Weber, Lukas M, Samartsidis, Pantelis and

Robinson, Mark D. (2020). distinct: a novel approach to di↵erential distribution analyses.

bioRxiv .

Townes, F William, Hicks, Stephanie C, Aryee, Martin J and Irizarry, Rafael A.

(2019). Feature selection and dimension reduction for single-cell rna-seq based on a multinomial

model. Genome biology 20(1), 1–16.

Vallejos, Catalina A, Marioni, John C and Richardson, Sylvia. (2015). Basics:

Bayesian analysis of single-cell sequencing data. PLoS Comput Biol 11(6), e1004333.

Wang, Tianyu, Li, Boyang, Nelson, Craig E and Nabavi, Sheida. (2019). Comparative

analysis of di↵erential gene expression analysis tools for single-cell rna sequencing data. BMC

bioinformatics 20(1), 40.

Wang, Tianyu and Nabavi, Sheida. (2018). Sigemd: A powerful method for di↵erential gene

expression analysis in single-cell rna sequencing data. Methods 145, 25–32.

Wang, Xi-De, Reeves, Karen, Luo, Feng R, Xu, Li-An, Lee, Francis, Clark, Ed-

win and Huang, Fei. (2007). Identification of candidate predictive and surrogate molecular

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445165
http://creativecommons.org/licenses/by/4.0/


30 REFERENCES

markers for dasatinib in prostate cancer: rationale for patient selection and e�cacy monitoring.

Genome biology 8(11), 1–11.

Zhang, K., Peters, J., Janzing, D. and Schölkopf, B. (2011). Kernel-based conditional

independence test and application in causal discovery. In: Uncertainty in Artificial Intelligence:

Proceedings of the Twenty-seventh Conference. AUAI Press. pp. 804–813.

Zhou, Yeqing, Liu, Jingyuan and Zhu, Liping. (2020). Test for conditional independence

with application to conditional screening. Journal of Multivariate Analysis 175, 104557.

[Received August 1, 2010; revised October 1, 2010; accepted for publication November 1, 2010 ]

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445165
http://creativecommons.org/licenses/by/4.0/

