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Abstract 1 

Precise segmentation of infant brain MR images into gray matter (GM), white matter (WM), and 2 

cerebrospinal fluid (CSF) is essential for studying neuroanatomical hallmarks of early brain 3 

development. However, for 6-month-old infants, the extremely low-intensity contrast caused by 4 

inherent myelination hinders accurate tissue segmentation. Existing convolutional neural 5 

networks (CNNs) based segmentation model for this task generally employ single-scale 6 

symmetric convolutions, which are inefficient for encoding the isointense tissue boundaries in 7 

limited samples of baby brain images. Here, we propose a 3D mixed-scale asymmetric 8 

convolutional segmentation network (3D-MASNet) framework for brain MR images of 9 

6-month-old infant. We replaced the traditional convolutional layer of an existing to-be-trained 10 

network with a 3D mixed-scale convolution block consisting of asymmetric kernels (MixACB) 11 

during the training phase and then equivalently converted it into the original network. Five 12 

canonical CNN segmentation models were evaluated using both T1- and T2-weighted images of 13 

23 6-month-old infants from iSeg-2019 datasets, which contained manual labels as ground truth. 14 

MixACB significantly enhanced the average accuracy of all five models and obtained the largest 15 

improvement in the fully convolutional network model (CC-3D-FCN) and the highest 16 

performance in the Dense U-Net model. This approach further obtained Dice coefficient 17 

accuracies of 0.931, 0.912, and 0.961 in GM, WM, and CSF, respectively, ranking first among 18 

30 teams on the validation dataset of the iSeg-2019 Grand Challenge. Thus, the proposed 19 

3D-MASNet can improve the accuracy of existing CNNs-based segmentation models as a 20 

plug-and-play solution that offers a promising technique for future infant brain MRI studies. 21 

 22 

 23 
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1. Introduction 1 

Modern advanced magnetic resonance (MR) imaging on the human baby brain enables 2 

researchers to chart the normal and abnormal early brain development of local regions, 3 

connections, and network topologies (Cao et al., 2017; Hazlett et al., 2017; Wang et al., 2019a; 4 

Wen et al., 2019; Xu et al., 2019; Zhao et al., 2019). The accurate image segmentation into gray 5 

matter (GM), white matter (WM), and cerebrospinal fluid (CSF) is important for producing 6 

quantitative and comparable metrics of brain tissues for early brain studies (Li et al., 2019). 7 

Notably, tissue segmentation of 6-month-old infants is extremely challenging due to the 8 

isointense phase in which the opposing changes in intensity of GM and WM lead to 9 

indistinguishable image tissue boundary (Fig. 1). An effective segmentation approach, often 10 

regarded as the gold standard, is manual annotation based on longitudinal and multimodality data 11 

(Wang et al., 2019b). However, this approach is limited by high labor costs, specialized expert 12 

knowledge, and high inter- and intra-rater variations (Makropoulos et al., 2018). Developing fast, 13 

automatic, and accurate brain segmentation algorithms is a crucial and continuous goal for MR 14 

images of infants at 6 months of age. 15 

 16 

 17 

 18 

 19 

Figure 1. Data of a 6-month-old infant from the training set in iSeg-2019. The isointense brain 20 
appearance of an axial slice in T1-weighted (T1w) and T2-weighted (T2w) images. An axial view of the 21 
manual segmentation label (ground truth) and the corresponding brain tissue intensity distribution of the 22 
T1w image (distribution). 23 
 24 

 25 
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1.1. Classical machine learning methods with hand-crafted features exhibit reasonable 1 

performance.  2 

In past years, machine learning-based brain segmentation methods leveraging multimodal 3 

images have achieved better performance than traditional atlas-based methods for MR images of 4 

6-month-old infants (Wang et al., 2014; Wang et al., 2012b). Specifically, Wang et al. obtained 5 

reasonable performance by utilizing random forest classifiers to effectively integrate context 6 

features of multimodal information (Wang et al., 2015) and further by introducing prior 7 

anatomical tissue knowledge (Wang et al., 2018a). Additionally, also based on multimodal 8 

images, Sanroma et al. combined multi-atlas label fusion (MLF) approaches (Wang et al., 2012a; 9 

Wu et al., 2014) with learning-based methods (Hao et al., 2014; Moeskops et al., 2015) to 10 

achieve an improved segmentation accuracy (Sanroma et al., 2018). However, these methods 11 

considerably relied on hand-crafted features of a single image modality, such as Harr-like or 12 

gaussian convolved designs, making it difficult to identify critical complementary information in 13 

images from multiple modalities (Sanroma et al., 2018; Wang et al., 2015; Wang et al., 2018a; 14 

Wang et al., 2014). 15 

 16 

1.2. Deep learning-based methods that automatically extract effective hierarchy features 17 

improve results.  18 

Recently, advances in deep learning techniques (LeCun et al., 2015) have motivated researchers 19 

to refine many canonical convolutional neural networks (CNNs) (Bui et al., 2019; Long et al., 20 

2015; Nie et al., 2018; Nie et al., 2016; Zhang et al., 2015), such as DenseNets (Huang et al., 21 

2017) and U-Net (Ronneberger et al., 2015), for isointense brain MR image segmentation tasks 22 

on 6-month-old infants (Nie et al., 2018; Nie et al., 2016; Zhang et al., 2015) by adjusting or 23 

adding specific connectional pathways within or across neural layers. These approaches enhance 24 

the effective delivery and fusion of the semantic information in multimodal features and have 25 

achieved improved performance compared to classic machine learning approaches. Specifically, 26 

Bui et al. improved DenseNets by concatenating fine and coarse feature maps from multiple 27 

densely connected blocks and won the iSeg-2017 competition (Bui et al., 2019). Dolz et al. 28 

proposed a semi-dense network by directly connecting all of the convolutional layers to the end 29 

of the network (Dolz et al., 2020) and further extended it into a HyperDenseNet by adding dense 30 

connections between multimodal network paths (Dolz et al., 2018). Similarly, Zeng et al. 31 
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modified the classical U-Net network by constructing multi-encoder paths for each modality to 1 

effectively extract targeted high-level information (Zeng and Zheng, 2018). Wang et al. designed 2 

a global aggregation block in the U-Net model to consider global information in the decoder path 3 

of feature maps (Wang et al., 2020). Interestingly, inspired by the superiority of DenseNets and 4 

U-Net, the densely connected U-Net (DU-Net) model with a combination of these two types of 5 

networks was proposed for both tissue segmentation and autism diagnosis (Wang et al., 2018b). 6 

To promote the development of 6-month-old infant brain MRI segmentation, the MICCAI iSeg 7 

grand challenge was established (iSeg-2017/2019) and has become a benchmark in this field 8 

(Sun et al., 2021; Wang et al., 2019b). 9 

 10 

1.3. Limitations in current CNN-based segmentation frameworks.  11 

Although great efforts have been made, limitations still exist in the current CNN-based 12 

segmentation methods for the infant brain. First, all these CNN-based methods employ a 13 

single-scale convolution operation while underrating the fine-grained tissue edge information at 14 

multiple levels. Adult brain segmentation frameworks (de Brebisson and Montana, 2015; 15 

Kamnitsas et al., 2017) have tried to introduce multi-scale information by resampling input 16 

patches into different resolutions. These approaches are unsuitable for infant brain segmentation 17 

task because the small sizes and fuzzy tissue appearance of baby brain image may cause large 18 

loss of fine-grained features in low-resolution patches. The multi-resolution pathways also need 19 

additional trainable parameters that are expensive for the insufficient labeled samples in infant 20 

brain segmentation. Second, all these models use traditional symmetric convolution operators 21 

that uniformly apply grid sampling of the multimodal feature maps. This type of convolution 22 

may underemphasize the knowledge learned in skeleton part of kernels, which has been proved 23 

more valuable than corner positions (Ding et al., 2019). Third, all previous methods focused on 24 

improving network architectures, such as modality fusion pathways (Dolz et al., 2018; Zeng and 25 

Zheng, 2018), interlayer connections (Bui et al., 2019; Dolz et al., 2020; Dolz et al., 2018) or 26 

information integration modules (Wang et al., 2020). These network designs need seasoned 27 

expertise experiences and underrate the value of effective feature extractions at convolutional 28 

filter levels. Fourth, integration of these approaches for a better performance is difficult due to 29 

their variable network layouts, time-consuming hyperparameter tuning and excessive graphics 30 

processing unit (GPU) memory usage (Dolz et al., 2018; Wang et al., 2020). 31 
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1.4. Our contribution.  1 

Our goal is to obtain a CNN-based building block for 6-month-old infant brain image 2 

segmentation 1) that can enhance the capacity and efficiency of multi-scale feature extraction for 3 

local brain tissues of multimodal images, 2) is independent of network layouts and thus 4 

transplantable in existing segmentation models in a plug-and-play way, and 3) that can increase 5 

performance without much additional hyperparameter tuning or computational burden. In this 6 

paper, we propose a 3D mixed-scale asymmetric segmentation network (3D-MASNet) 7 

framework by embedding a well-designed 3D mixed-scale asymmetric convolution block 8 

(MixACB) into existing segmentation CNNs to perform segmentation on 6-month-old infant 9 

brain MR images (Fig. 2). Specifically, MixACB splits the input feature map into multiple 10 

groups and applies multiple 3D asymmetric convolutions with different kernel sizes 11 

independently for each group. To further decrease the computational burden during the inference 12 

phase, the parameters of each group of asymmetric convolutions in MixACB were further fused. 13 

We first evaluated the effectiveness of the MixACB on five canonical CNN networks using the 14 

iSeg-2019 training dataset. We next compared the performance of our method with that of 29 15 

approaches proposed in the MICCAI iSeg-2019 Grand Challenge on the iSeg-2019 validation 16 

dataset. The experimental results revealed that the MixACB significantly improved the 17 

segmentation accuracy of various CNNs, among which DU-Net (Wang et al., 2018b) with 18 

MixACB achieved the best-enhanced average performance and obtained the highest Dice 19 

coefficients of 0.931 in GM, 0.912 in WM, and 0.961 in CSF, ranking first in the iSeg-2019 20 

Grand Challenge. All codes are publicly available at 21 

https://github.com/RicardoZiTseng/3D-MASNet. 22 

 23 

2. Methods and Implementations 24 

2.1. 3D mixed-scale asymmetric convolution block (MixACB)  25 

We constructed the 3D-MASNet by replacing every convolutional layer of a candidate network 26 

with the MixACB, which consists of 3D asymmetric convolutions with different kernel sizes. 27 

The multiple layers in the MixACB were trained separately and then summed to fuse the learned 28 

features during the training phase. During the inference phase, the parameters of MixACB are 29 

equivalently fused to produce identical outputs as the training phase (Fig. 2). 30 

 31 
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 1 

 2 

 3 
Figure 2. Overview of the 3D-MASNet framework. For a candidate network, we replace its traditional 4 
convolutional layers with MixACB during the training phase. Once the training process is complete, we 5 
fuse the parameters of MixACB to obtain an enhanced model containing fewer parameters. 6 
 7 

 8 

2.1.1. Mathematical formulation of basic 3D convolution 9 

Consider a feature map U V S CI     with a spatial resolution of U V S   as input and a 10 

feature map R T Q KO     with a spatial resolution of R T Q   as output of a convolutional 11 

layer with a kernel size of H W D   and K  filters. Then, each filter’s kernel is denoted as 12 
H W D CF    , and the operation of the convolutional layer with a batch normalization (BN) 13 

layer can be formulated as follows: 14 
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  (1) 1 

where   is the 3D convolution operator, :,:,:,kI  is the thk  channel of the input feature map I , 2 

( )

:,:,:,

j

kF  is the thk  channel of the thj  filter’s kernel, 
j  and 

j  are the channel-wise mean 3 

value and standard deviation value, respectively, j  and j  are the scaling factor and bias 4 

term to restore the representation ability of the network, respectively. 5 

 6 

2.1.2. Fusing 3D asymmetric convolution parameters for an equivalent conversion 7 

In this paper, 3D asymmetric convolutions contain 4 parallel convolutional branches. The input 8 

feature maps are fed into the 4 layers, and the outputs of these branches are summed to obtain the 9 

final output of 3D asymmetric convolutions (Fig. 3A). Due to the additivity of convolutional 10 

kernels, the kernels of the four branches can be fused to obtain an equivalent kernel in a 3D 11 

convolutional layer to produce the same output, which can be formulated as the following 12 

equation: 13 

  'F I F I F I F I F F F F I FI                 (2) 14 

where I  is an input feature map, F , F , F  and F  are the 4 layer’s kernels of 3D 15 

asymmetric convolutions.   is an elementwise operator that performs parameter addition on the 16 

corresponding positions, and 'F  is the equivalent fused kernel of the 4 layers’ kernels. 17 

 Once the training process of the 3D asymmetric convolution was complete, we equivalently 18 

fused the parameters of the four parallel layers to retain the same computations as the original 19 

network while improving network capacity. Here, we took a kernel size of 3 as an example. We 20 

first fused the BN parameters into the convolutional kernel term and bias term following Eq. (1). 21 

Then, we further fused the four parallel kernels by adding the asymmetric kernels onto the 22 

skeletons of the cubic kernel. Formally, we denote 
( )' jF  as the 

thj  filter at the 1 3 3  , 23 

3 1 3   and 3 3 1   layer, respectively. Hence, we obtain the following formulas: 24 

( ) ( ) ( ) ( ) ( )
ˆ

ˆ
ˆ

'
j j j jj j j j j

j j j j

F F F F F
   

   
      (3) 25 
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Then, we can write any output of thj  filter as: 2 

( )

:,:,:, :,:,:, :,:,:, :,:,:, :,:,:, :,:,:,

1

ˆ ' 'j

j j j j k k

k

j

C

O O O FO I b


       (5) 3 

where 
:,:,:, jO , 

:,:,:, jO , 
:,:,:,

ˆ
jO  and :,:,:, jO  are the outputs of the original 3 3 3  , 1 3 3  , 3 1 3   4 

and 3 3 1   branch, respectively. 5 

 6 

 7 

Figure 3. (A) Diagram of 3D asymmetric convolution (taking a kernel size of 3 as an example), which 8 
has four convolutional layers during the training phase and one convolutional layer once kernel 9 
parameters have been fused during the inference phase. (B) Diagram of MixACB, which is composed of 10 
multiple 3D asymmetric convolutions with different kernel sizes. MixACB splits input feature maps into 11 
several groups, applies asymmetric convolution on each group of feature maps, and then concatenates 12 
each group’s output as the output feature maps.  13 
 14 
 15 

2.1.3. Constructing MixACB by multiple 3D asymmetric convolutions with different scales 16 

To process the input feature map at different scales of detail, we propose the MixACB by mixing 17 

multiple 3D asymmetric convolutions with different kernel sizes, as illustrated in Fig. 3B. Since 18 
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directly adopting multiple 3D asymmetric convolutions can increase the models’ computational 1 

burden, we leverage the grouped convolution approach by splitting original input feature maps 2 

into groups and apply 3D asymmetric convolution independently in each input feature map’s 3 

group. Assume that we split the input feature maps into g  groups of tensors such that their total 4 

number of channels is equal to the original feature maps’ channels: 1 2 ... gC C C C    ; 5 

similarly, the output feature maps also have g  groups: 
1 2 ... gK K K K    . We denote 6 

iU V S CiI
     as the thi  group of input, iRi T Q K

O
  

  as the MixACB’s thi  group output, 7 

and ' i i i iD Ci H W
F

     as the equivalent kernel of the thi  group of the 3D asymmetric 8 

convolution whose equivalent kernel size is i i iH W D  . Thus, we have following equations: 9 

( )
:,:,:, :,:,:

1

, ' '

. . 1 , 1

ii i i j
C

i

j

q

j q s

i

O b

s t i g

F

K

I

j

 



     
 

  
 

   


  (6) 10 

The final output of MixACB is the concatenation of all groups’ outputs: 11 

 1 2

, ,...,
g

O concat O O O
     

   (7) 12 

 In this paper, we only split the input and output feature maps into 2 groups, and we define 13 

the mix ratio as the ratio between 1C  and 2C . For simplicity, the ratio between 1K  and 2K  is 14 

set to be equal to the mix ratio. For the construction of each MixACB, we set a kernel size of 3 15 

for the 1st group of convolutions and a kernel size of 5 for the 2nd group of convolutions, with the 16 

mix ratio set to 3:1. 17 

 18 

2.2. Candidate CNNs for the evaluation of the MixACB on 6-month-old infant brain image 19 

segmentation 20 

We choose five representative networks to evaluate the effectiveness of the 3D-MixACB in 21 

improving the segmentation performance, including BuiNet (Bui et al., 2019), 3D-UNet (Çiçek 22 

et al., 2016), convolution and concatenate 3D fully convolutional network (CC-3D-FCN) (Nie et 23 

al., 2018), non-local U-Net (NLU-Net) (Wang et al., 2020) and DU-Net (Wang et al., 2018b). 24 

Notably, these five networks are either variants of the U-type architecture (3D U-Net, NLU-Net 25 

and DU-Net) or the FCN-type architecture (BuiNet and CC-3D-FCN) and encompass major 26 

CNN frameworks in infant brain segmentation. After replacing their original convolution layers 27 
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with the 3D-MixACB design, we followed the training configurations set in the candidate 1 

CNN’s release codes (Table 1) and adopted the Adam optimizer (Kingma and Ba, 2015) to 2 

update these models’ parameters. Except for the CC-3D-FCN, which used the Xavier algorithm 3 

(Glorot and Bengio, 2010) to initialize network weights, all other networks adopted the He 4 

initialization method (He et al., 2015). The configuration parameters are as follows: 5 

 (1) BuiNet adopted four dense blocks consisting of four 3 3 3   convolutional layers for 6 

feature extraction. Transition blocks were applied between every two dense blocks to reduce the 7 

feature map resolutions. 3D up-sampling operations were used after each dense block for feature 8 

map recovery, and these upsampled features were concatenated together. (2) 3D-UNet has 4 9 

levels of resolution, and each level adopts one 3 3 3   convolutions, which is followed by BN 10 

and a rectified linear unit (ReLU). The 2 2 2   max pooling and the 2 2 2   transposed 11 

convolution, each with a stride of 2, are employed for resolution reduction and recovery. Feature 12 

maps of the same level of both paths were summed. (3) CC-3D-FCN used 6 groups of 3 3 3   13 

convolutional layers for feature extraction, in which the 2 2 2   max pooling with a stride of 2 14 

were adopted between two groups of layers. The 1 1 1   convolution with a stride of 1 was 15 

added between two groups with the same resolution for feature fusion. (4) DU-Net used 7 dense 16 

blocks to construct the encoder-decoder structure with 4 levels of resolution and leveraged 17 

transition down blocks and transition up blocks for down-sampling and up-sampling, 18 

respectively. Unlike the implementations in (Wang et al., 2018b), the bottleneck layer is 19 

introduced into the dense block to constrain the rapidly increasing number of feature maps, and 20 

the transition down block consisted of two 3 3 3   convolutions, each followed by BN and 21 

ReLU. In addition, we used the 1 1 1   convolution followed by a softmax activation function 22 

in the last layer. (5) NLU-Net leveraged five different kinds of residual blocks to form the 23 

U-type architecture with 3 levels of resolution. BN with the ReLU6 activation function was 24 

adopted before each 3 3 3   convolution. The global aggregation block replaced the two 25 

convolutional layers of the input residual block to form the bottom residual block for the 26 

integration of global information. 27 

 We fed the same multimodal images into these five networks and employed the same 28 

inference strategy. We extracted overlapping patches with the same size as that used during the 29 

training phase. The overlapping step size had to be smaller than or equal to the patch length size 30 

to form the whole volume. Following the common practice in (Bui et al., 2019; Nie et al., 2018; 31 
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Wang et al., 2018b; Wang et al., 2020), we set the step size to 8. Since the effect of the 1 

overlapping step size in the proposed framework remains unknown, we further evaluated it in 2 

section 3.3. Voxels inside the overlapping regions were averaged. 3 

 4 

Table 1. Training strategy of each candidate network 5 

Candidate 

Network 

Training 

Batch 

Size 

Training/Inference 

Patch Size 
Learning Rate Schedule 

BuiNet 4 64 

Train for 20,000 iterations. The initial learning rate is 

set to 2e-4 and is decreased by a factor of 0.1 every 

5000 iterations. 

3D-UNet 10 32 

Train for 80 epochs for a total of 5000 patches that 

are randomly extracted per epoch. The learning rate 

is decreased every 20 epochs and is set to 3e-4, 1e-4, 

1e-5 and 1e-6. Train for 80 epochs for a total of 5000 
patches that are randomly extracted per epoch. The 

learning rate is decreased every 20 epochs and is set 

to 3e-4, 1e-4, 1e-5 and 1e-6. 

CC-3D-FCN 10 32 The same as 3D-UNet. 

NLU-Net 5 32 
Train for 80 epochs for a total of 5000 patches that 
are randomly extracted per epoch. The learning rate 

is set to 1e-3. 

DU-Net 16 32 

The cosine annealing strategy with a maximum 

learning rate of 3e-4 and a minimum learning rate of 

1e-6 is adopted. The model is trained for 500 epochs 

and a total of 1000 patches are randomly extracted at 
each epoch. 

 6 

 7 

3. Experiments and Results 8 

3.1. iSeg-2019 dataset and image preprocessing 9 

Twenty-three isointense phase infant brain MRIs, including T1w and T2w images, were offered 10 

by the iSeg-2019 (http://iseg2019.web.unc.edu/) organizers from the pilot study of the Baby 11 

Connectome Project (BCP) (Howell et al., 2019). All the infants were term born (40±1 weeks of 12 

gestational age) with an average scan age of 6.0±0.5 months. All experimental procedures were 13 

approved by the University of North Carolina at Chapel Hill and the University of Minnesota 14 

Institutional Review Boards. Detailed imaging parameters and preprocessing steps that were 15 

implemented are listed in (Sun et al., 2021). Before cropping the MR images into patches, we 16 

normalized the T1w and T2w images by subtracting the mean value and dividing by the standard 17 
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deviation value. 1 

The iSeg-2019 organizers offered the ground truth labels, which were obtained by a 2 

combination of initial automatic segmentation using the infant brain extraction and analysis 3 

toolbox (iBEAT) (Dai et al., 2013) on follow-up 24-month scans of the same baby and manual 4 

editing using ITK-SNAP (Yushkevich et al., 2006) under the guidance of an experienced 5 

neuroradiologist. The MR images of 10 infants with manual labels were provided for model 6 

training and validation. The images of 13 infants without labels were provided for model testing. 7 

The testing results were submitted to the iSeg-2019 organizers for quantitative measurements. 8 

 9 

3.2. Evaluation metrics 10 

We employed the Dice coefficient (DICE), modified Hausdorff distance (MHD) and average 11 

surface distance (ASD) to evaluate the model performance on segmenting 6-month-old infant 12 

brain MR images. 13 

3.2.1. Dice coefficient 14 

Let A  and B  be the manual labels and predictive labels, respectively. The DICE can be 15 

defined as: 16 

2
( , )

A B
DICE A B

A B





 (8) 17 

where   denotes the number of elements of a point set. A higher DICE indicates a larger 18 

overlap between the manual and predictive segmentation areas. 19 

 20 

3.2.2. Modified Hausdorff distance 21 

Let C  and D  be the sets of voxels within the manual and predictive segmentation boundary, 22 

respectively. MHD can be defined as: 23 

      , max , , ,MHD C D h C D h D C   (9) 24 

where  
1

(, , )
c Cc

d ch D
N

C D


  , and  , min
Dd

d c D c d


   with   representing the 25 

Euclidean distance. We follow the calculation described in (Wang et al., 2020) by computing the 26 

average MHD based on the three different vectorization directions to obtain a 27 

direction-independent evaluation metric. A smaller MHD coefficient indicates greater similarity 28 

between manual and predictive segmentation contours. 29 
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3.2.3. Average surface distance 1 

The ASD is defined as: 2 

min min
( ,

1

1

2
)

1

i C
j D

i C

j D
i C

j D

v S i j v SS S

S

j iv v

v v S

v v v v
ASD C D

  

 

 
 
  









 


 

 
  (10) 3 

where CS  and DS  represent the surface meshes of C  and D , respectively. A smaller ASD 4 

coefficient indicates greater similarity between cortical surfaces reconstructed from manual and 5 

predictive segmentation maps. 6 

 7 

3.3. Exploring the effectiveness of the MixACB 8 

We performed several experiments to evaluate the effectiveness of the MixACB, including 1) 9 

ablation tests on five representative segmentation networks (section 2.2); 2) comparisons with 10 

state-of-the-art approaches in iSeg-2019; 3) component analysis of MixACB; and 4) validation 11 

of the impact of the overlapping step size. 12 

 13 

3.3.1. Performance improvement on five representative CNN architectures 14 

For a given network architecture without the MixACB design, we regarded it as the baseline 15 

model and further transformed it into a 3D-MASNet design. All pairs of the baseline models and 16 

their corresponding 3D-MASNet followed the training strategies described in Table 1. To 17 

balance the training and testing sample sizes, we adopt a 2-fold cross-validation (one fold with 18 

five random selected participants for training and the left for testing) for model evaluation on the 19 

iSeg-2019 training dataset. Table 2 and Table 3 and Fig. 4 show that the performance of all the 20 

models was significantly improved across almost all tissue types in terms of the DICE and MHD, 21 

which demonstrates the effectiveness of the MixACB on a wide range of CNN layouts. 22 

Specifically, DU-Net with the MixACB achieved the highest average DICE of 0.928 and the 23 

lowest average MHD value of 0.436; CC-3D-FCN with the MixACB gained the largest DICE 24 

improvement and reached a higher average DICE than that attained by BuiNet, which was a 25 

champion solution in the MICCAI iSeg-2017 grand challenge, indicating that a simple network 26 

could reach excellent performance by advanced convolution designs. Fig. 5 further provides a 27 

visual segmentation comparison between networks with and without the MixACB. The MixACB 28 

could effectively correct misclassified voxels which are indicated by red squares. 29 
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Table 2. Ablation study performed by comparing the segmentation accuracy between different 1 
models and their corresponding 3D-MASNet in terms of DICE by 2-fold cross validation. 2 

Network 
CSF GM WM Avg 

Baseline MixACB Baseline MixACB Baseline MixACB Baseline MixACB 

BuiNet 
0.938±0.

010 
0.938±0.0

11 
0.905±0.

007 
0.908*±0

.007 
0.888±0.

014 
0.892*±0

.013 
0.910±0.

007 
0.912*±0

.007 

3D-UNet 
0.940±0.

010 

0.942*±0.

008 

0.907±0.

007 

0.909*±0

.007 

0.889±0.

014 

0.892*±0

.015 

0.912±0.

007 

0.914*±0

.008 
CC-3D-

FCN 

0.923±0.

010 

0.942*±0.

008 

0.910±0.

006 

0.911±0.0

07 

0.892±0.

013 

0.894*±0

.013 

0.908±0.

006 

0.915*±0

.006 

NLU-Ne

t 

0.947±0.

009 

0.949*±0.

008 

0.918±0.

007 

0.919±0.

006 

0.903±0.

012 

0.904±0.

014 

0.922±0.

006 

0.924*±0

.006 

DU-Net 
0.951±0.

008 

0.953*±0.

008 

0.922±0.

007 

0.923*±0

.007 

0.907±0.

015 

0.907±0.

015 

0.927±0.

007 

0.928*±0

.008 

Note that the best values are highlighted in bold font. “Baseline” denotes that the corresponding model 3 
adopted the standard convolutional operation; “MixACB” denotes that the corresponding model was 4 
transformed into 3D-MASNet; “*” denotes that the difference between baseline and 3D-MASNet is 5 
statistically significant (p<0.05). 6 
 7 
 8 

Table 3. Ablation study performed by comparing the segmentation accuracy between different 9 
models and their corresponding 3D-MASNet in terms of MHD by 2-fold cross validation. 10 

Network 
CSF GM WM Avg 

Baseline MixACB Baseline MixACB Baseline MixACB Baseline MixACB 

BuiNet 

0.308±0.

024 

0.307±0.0

23 

0.659±0.

048 

0.649*±0

.045 

0.493±0.

043 

0.485*±0

.042 

0.487±0.

035 

0.480*±0

.034 

3D-UNet 

0.299±0.

022 

0.293*±0.

020 

0.658±0.

050 

0.651*±0

.046 

0.490±0.

046 

0.485*±0

.042 

0.483±0.

036 

0.476*±0

.033 

CC-3D-
FCN 

0.348±0.

022 

0.292*±0.

023 

0.649±0.

047 

0.645*±0

.048 

0.485±0.

046 

0.480*±0

.046 

0.494±0.

034 

0.473*±0

.034 

NLU-Ne
t 

0.278±0.

022 

0.270*±0.

020 

0.619±0.

043 

0.615*±0

.040 

0.461±0.

040 

0.460±0.

037 

0.453±0.

032 

0.448*±0

.030 

DU-Net 

0.261±0.

021 

0.254*±0.

022 

0.605±0.

046 

0.601*±0

.047 

0.452±0.

041 

0.452±0.

043 

0.439±0.

032 

0.436*±0

.034 

Note that the best values are highlighted in bold font. “Baseline” denotes that the corresponding model 11 
adopted the standard convolutional operation; “MixACB” denotes that the corresponding model was 12 
transformed into 3D-MASNet; “*” denotes that the difference between baseline and 3D-MASNet is 13 
statistically significant (p<0.05). 14 

15 
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 1 

Figure 4. Box plot of the segmentation performance improvement on five candidate CNN architectures in 2 
the 3D-MASNet framework. The first column shows the measurement of DICE to represent the 3 
segmentation accuracy for each tissue type. The second column shows the results of MHD. In each 4 
subgraph, we use two neighbor box plots to represent a candidate model (first plot) and its corresponding 5 
3D-MASNet (second plot). The significance of model comparison is evaluated by 2-fold cross-validation. 6 
“*” denotes that 0.01≤p<0.05, “**” denotes that 0.001≤p<0.01, and “***” denotes that p<0.001. 7 

 8 
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 1 

Figure 5. Visualization of the segmentation results on different models with (w) and without (w/o) the 2 
MixACB. The ground truth map is shown in color, and CNNs-based segmentation maps are shown in the 3 
gray scale. The regions in the red square are magnified in the middle row following an order from with 4 
MixACB to without MixACB. 5 

 6 

 7 

3.3.2. Comparison with state-of-the-art methods on iSeg-2019 8 

Since DU-Net, which was combined with MixACB, has achieved the highest accuracy among all 9 

candidate models, we compared it with methods developed by the 29 remaining teams that 10 

participated in the iSeg-2019 challenge. We employed a majority-voting strategy on 10 trained 11 

networks’ outputs to improve the model generalization. 12 

Table 4 reports the segmentation results achieved by our proposed method and those of other 13 

teams’ methods that ranked in the top 4 on the validation dataset of the iSeg-2019. The mean 14 

DICE, MHD value and ASD value are presented for CSF, GM, and WM, representatively. 15 

Compared with other teams, our method yielded the highest DICE and lowest ASD value for the 16 

three brain tissues in the validation test of iSeg-2019, with comparable MHD values. The 17 

superior average value of the 3 types of brain tissues also indicates that our method has the best 18 

overall performance. 19 

20 
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Table 4. Comparison of segmentation performance of the proposed method and the methods of 1 
the top-4 ranked teams on the 13 validation infant MRI images of iSeg-2019. 2 

Method 
CSF GM WM AVG 

DICE MHD ASD DICE MHD ASD DICE MHD ASD DICE MHD ASD  

Brain_Tech 0.961 8.873 0.108 0.928 5.724 0.300 0.911 7.114 0.347 0.933 7.237 0.252 

FightAutism 0.960 9.233 0.110 0.929 5.678 0.300 0.911 6.678 0.341 0.933 7.196 0.250 

OxfordIBME 0.960 8.560 0.112 0.927 5.495 0.307 0.907 6.759 0.353 0.931 6.938 0.257 

QL111111 0.959 9.484 0.114 0.926 5.601 0.307 0.908 7.028 0.353 0.931 7.371 0.258 

Proposed 0.961 9.293 0.107 0.931 5.741 0.292 0.912 7.111 0.332 0.935 7.382 0.244 

Note that the best values are highlighted in bold font. 3 
 4 

Table 5. Ablation study performed by comparing the segmentation accuracy in different mix 5 

ratios by 2-fold cross validation. 6 
Mix 

Ratio 

CSF GM WM AVG 

DICE MHD DICE MHD DICE MHD DICE MHD 

1:0 
0.952±0.

010 

0.261±0.

024 

0.922±0.

008 

0.604±0.

045 

0.906±0.

014 

0.453±0.

041 

0.927±0.

008 

0.440±0.

033 

1:1 
0.953±0.

008 

0.258±0.

023 

0.921±0.

007 

0.605±0.

045 

0.905±0.

013 

0.455±0.

040 

0.926±0.

007 

0.439±0.

033 

3:1 
(propos

ed) 

0.953±0.

008 

0.254±0.

022 

0.923±0.

007 

0.601±0.

047 

0.907±0.

015 

0.452±0.

043 

0.928±0.

008 

0.436±0.

034 

5:1 
0.953±0.

009 
0.257±0.

025 
0.922±0.

008 
0.601±0.

047 
0.907±0.

015 
0.452±0.

042 
0.926±0.

008 
0.437±0.

034 

Note that the best values are highlighted in bold font. 7 
 8 

 9 
3.3.3. Component analysis of MixACB 10 

We analyzed the effect of the mix ratio on model segmentation performance. Table 5 shows that 11 

segmentation accuracy reaches the highest value when the mix ratio is set to 3:1. Then, we 12 

further performed an ablation test to verify the effectiveness of each part of the proposed 13 

MixACB, as shown in Table 6. It is clear that the segmentation accuracy was improved with 14 

large variations when using different 3D asymmetric convolutions alone. Moreover, when these 15 

3D asymmetric convolutions were mixed in scales for a MixACB design, the model was able to 16 

achieve the best performance in both DICE and MHD metrics. 17 

 18 
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Table 6. Component analysis of MixACB by 2-fold cross validation. 1 

 
CSF GM WM AVG 

DICE MHD DICE MHD DICE MHD DICE MHD 

CONV

_3 

0.951±0.0

08 
0.261±0.0

21 

0.922±0.

007 
0.605±0.0

46 

0.907±0.0

15 
0.452±0.0

41 

0.927±0.0

07 
0.439±0.0

32 

AC_3 0.952±0.0

10 

0.261±0.0

24 

0.922±0.0

08 

0.604±0.0

45 

0.906±0.0

14 

0.453±0.0

41 

0.927±0.0

08 

0.440±0.0

33 
CONV

_5 

0.947±0.0

12 

0.276±0.0

23 

0.918±0.0

08 

0.619±0.0

47 

0.903±0.0

16 

0.463±0.0

43 

0.922±0.0

08 

0.453±0.0

34 

AC_5 
0.952±0.0

08 

0.261±0.0

22 

0.920±0.0

08 

0.610±0.0

46 

0.904±0.0

16 

0.460±0.0

43 

0.925±0.0

08 

0.443±0.0

33 
MixAC

B 

0.953±0.0

08 

0.254±0.0

22 

0.923±0.0

07 

0.601±0.0

47 

0.907±0.0

15 

0.452±0.0

43 

0.928±0.0

08 

0.436±0.0

34 

Note that the best values are highlighted in bold font. “CONV_3” denotes that the 3D convolution with a 2 
kernel size of 3; “AC_3” denotes that the 3D asymmetric convolution with a kernel size of 3; “CONV_5” 3 
denotes that the 3D convolution with a kernel size of 5; “AC_5” denotes that the 3D asymmetric 4 
convolution with a kernel size of 5. 5 
 6 
 7 

3.3.4. Impact of overlapping step sizes 8 

We further performed experiments to evaluate the effectiveness of the MixACB on overlapping 9 

step sizes, which controls the trade-off between accuracy and inference time. Based on 2-fold 10 

cross-validation, which has been done previously, we tested the overlapping impact when the 11 

step size is set to 4, 8, 16, and 32 on the DU-Net in the proposed 3D-MASNet framework. Fig. 12 

6A and Fig. 6B present the changes in the segmentation performance in terms of DICE and 13 

MHD, respectively, with respect to different overlapping step sizes. Fig. 6C presents the changes 14 

in the average number of inference patches with respect to different overlapping step sizes. 15 

Obviously, a step size of 8 is a reasonable choice for achieving fast and accurate results. 16 

 17 

 18 
Figure 6. Changes in segmentation performance in terms of DICE (A) and MHD (B) with respect to 19 
different overlapping step sizes on 10 subjects during inference, where 2-fold cross-validation is used. (C) 20 
Changes of the average number of the 10 subjects’ patches with respect to different overlapping step sizes 21 
during inference. 22 
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4. Discussion 1 

Instead of designing a new network architecture to segment the brain images of 6-month-old 2 

infants, we proposed a 3D-MASNet framework by replacing the standard convolutional layer 3 

with MixACB on an existing mature network and reduced model parameters by equivalently 4 

performing fusion during the inference phase. The experimental results revealed that the 5 

MixACB significantly improved the performance of several CNNs by a considerable margin, in 6 

which DU-Net with MixACB showed the best average segmentation accuracy. The proposed 7 

framework obtained the highest average DICE of 0.935 and lowest ASD of 0.244, which ranked 8 

first among all 30 teams on the validation dataset of the iSeg-2019 Grand Challenge. In addition, 9 

the CC-3D-FCN model showed the largest improvement, which indicates that a simple model 10 

could achieve a relatively better performance by implementing our convolution design. 11 

 12 

4.1. Effectiveness of the MixACB on improving segmentation accuracy 13 

The wide improvement in the segmentation accuracy of different models by the MixACB may be 14 

derived from several aspects. First, the mixed-scale design of MixACB enable the network to 15 

collected multiscale details of local features with different receptive fields, facilitating the 16 

integration of coarse to fine information inside the input patches. Brain segmentation networks 17 

such as DeepMedic (Kamnitsas et al., 2017) and SegNet (de Brebisson and Montana, 2015) also 18 

introduced the multiscale information into their model by feeding resliced images or labels at 19 

multiresolution into the input convolutional layers. Such approach may be a suboptimal option 20 

for infant brain segmentation since the baby brain size is quite small and the morphology details 21 

are already blurred before down-sampling. Second, the isointense intensity distribution and 22 

heterogeneous tissue contrasts hamper effective feature extraction in baby brain images. We 23 

employed the asymmetric convolution inside the MixACB to emphasize features in orthogonal 24 

directions that has been shown especially important for the representation capacity of network. 25 

Meanwhile, the asymmetric design are also shown strong robustness to image rotational 26 

distortion (Ding et al., 2019), which may help the neuronal network cope with the large 27 

individual variations in local morphology of infant brain, even though these images have been 28 

linearly aligned to standard space. Third, the mixed-scale design and asymmetric kernel enable 29 

the 3D-MASNet to learn the combination of different receptive fields adaptively in multiple 30 

pathways, further improving the representational power of the network. Notably, besides 31 
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providing better performance than the previous networks, 3D-MASNet is also more efficient 1 

than the baseline models, requiring fewer model parameters once its parameters were fused. For 2 

example, the baseline DU-Net’s number of parameters is 2,492,795, while the corresponding 3 

3D-MASNet’s number of parameters is reduced to 2,341,141 during the inference phase. 4 

 5 

4.2. Well-designed convolution operations 6 

Recent years, some researchers have begun to shift their interests from macro network layout to 7 

micro neuron units by studying specific convolution operators rather than touching the overall 8 

network. Previous works have proposed several advanced convolution operators by combining 9 

well-designed filters, such as pyramidal convolution (PyConv), dynamic group convolution 10 

(DGC) and asymmetric convolution block (ACB). PyConv employs multiple kernels in a 11 

pyramidal way to capture different levels of image details (Duta et al., 2020); DGC equips a 12 

feature selector for each group convolution conditioned on the input images to adaptively select 13 

input features (Su et al., 2020); ACB introduces asymmetry into 2D convolution to power up the 14 

representational power of the skeleton part of kernel (Ding et al., 2019). These operators 15 

implanted into existing mature networks have achieved better performance on image 16 

classification or semantic segmentation tasks than original networks. Due to the 17 

“easy-to-plug-in” property, this type of designs could be conveniently adopted in various 18 

advanced CNNs and avoided high cost in network re-designing. However, these studies mainly 19 

concentrate on natural image tasks, few were applied on infant brain segmentation tasks. Here, 20 

we design a novel convolution block by combining three basic characteristics including 3D 21 

spatial convolution, group convolution containing mixed-scale of kernel sizes and asymmetry 22 

convolution. Due to blurred image appearance, large individual variation of brain morphology, 23 

and limited labeled sample sizes, we emphasize that effective and robust feature extraction, 24 

especially in a plug-and-play form, is essential for the infant brain segmentation task. 25 

Nevertheless, exhausting the combination of various convolution designs is beyond the scope of 26 

the article. 27 

 28 

4.3. Limitations and future directions 29 

The current study has several limitations. First, the patching approach may cause spatial 30 

consistency loss near boundaries. Although we adopted a small overlapping step size to relieve 31 
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this issue, it is necessary to consider further integrating guidance from global information. 1 

Second, the small sample sizes of infant-specific datasets limit the generalizability of our method 2 

for babies across geographic locations, MRI scanners and acquisition protocols. Further 3 

validation on large samples is needed. Third, image indexes, such as the fractional anisotropy 4 

derived from diffusion MRI, contain rich white matter information (Liu et al., 2007), which 5 

could be beneficial for insufficient tissue contrast (Nie et al., 2018; Zhang et al., 2015). 6 

Importantly, determining how to leverage mixed-scale asymmetric convolution to enhance 7 

specific model features needs to be further explored. Fourth, we only explored the effectiveness 8 

of MixACB when input feature maps are split into 2 groups. Further combination configurations 9 

of convolutional kernel sizes and mix ratios are warranted. 10 

 11 

5. Conclusion 12 

In this paper, we proposed a 3D-MASNet framework for brain MR image segmentation of 13 

6-month-old infants, which ranked first in the iSeg-2019 Grand Challenge. We demonstrated that 14 

the designed MixACB could easily migrate to various network architectures and enable 15 

performance improvement without extra inference-time computations. This work shows great 16 

adaptation potential for further improvement in future studies on brain segmentation. 17 

18 
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