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Summary

Back and forth transmission of SARS-CoV-2 between humans and animals has the potential to
create wild reservoirs of virus that can endanger both long-term control of COVID-19 in people,
and vulnerable animal populations that are particularly susceptible to lethal disease. In the near
term, SARS-CoV-2 virus variants arising in newly established animal hosts could escape
immunity conferred by current human vaccines. In the long-term, animal reservoirs of
SARS-CoV-2 increase the overall risk of disease resurgence, making global disease control
unlikely. Predicting potential animal host species is key to targeting critical surveillance as well
as lab experiments testing susceptibility of potential hosts. A major bottleneck to predicting
animal hosts is a paucity of molecular information about the structure of ACE2 across species, a
key cellular receptor required for viral cell entry that is highly conserved across thousands of
animal species. We overcome this bottleneck by combining 3D modeling of virus and host cell
protein interactions with machine learning analysis of species’ ecological and biological traits,
enabling predictions about the zoonotic capacity of SARS-CoV-2 for over 5,000 mammals — an
order of magnitude more species than previously possible. High accuracy model predictions are
strongly corroborated by available and emerging in vivo empirical studies. We also identify
numerous common mammal species whose predicted zoonotic capacity and close proximity to
humans may facilitate spillover and spillback transmission of SARS-CoV-2. Our results reveal
high priority areas of geographic overlap between global COVID-19 hotspots and potential new
mammal hosts of SARS-CoV-2. Predictive modeling integrating data across multiple biological
scales offers a conceptual advance that may expand our predictive capacity for zoonotic viruses
with similarly unknown and potentially broad host ranges.
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Introduction

The ongoing COVID-19 pandemic has surpassed 3.4 million deaths globally as of 17
May 2021 1,2. Like previous pandemics in recorded history, COVID-19 originated from the
spillover of a zoonotic pathogen, SARS-CoV-2, a betacoronavirus originating from an unknown
animal host 3–6. The broad host range of SARS-CoV-2 is due in part to its use of a highly
conserved cell surface receptor to enter host cells, the angiotensin-converting enzyme 2
receptor (ACE2) 7 found in all major vertebrate groups 8.

The ubiquity of ACE2 coupled with the high prevalence of SARS-CoV-2 in the global
human population explains multiple observed spillback infections since the emergence of
SARS-CoV-2 in 2019. In spillback infection, human hosts transmit SARS-CoV-2 virus to cause
infection in non-human animals. In addition to threatening wildlife and domestic animals,
repeated spillback infections may lead to the establishment of new animal hosts from which
SARS-CoV-2 can continue to pose a risk of secondary spillover infection to humans through
bridge hosts (e.g., 9 ) or newly established enzootic reservoirs. Indeed, this risk has already
been realized in Denmark 10 and The Netherlands, where SARS-CoV-2 spilled back from
humans to farmed mink (Neovison vison) with secondary spillover of a SARS-CoV-2 variant
from mink back to humans 11. A major concern in such secondary spillover events is the
appearance of a mutant strain 11,12 affecting host range 13 or leading to increased transmissibility
in humans 14,15 (but see 16,17). Preliminary evidence shows that the mink-derived variant exhibits
moderately reduced sensitivity to neutralizing antibodies 10, raising concerns that humans may
eventually experience more virulent infections from spillback variants, and that vaccines may
become less efficient at conferring immunity to variants 18. Conversely, human-derived variants
pose additional spillback risks to animals. For example, in contrast to previous infection trials 19,
two new human variants are now confirmed to have overcome the species barrier to infect lab
mice (Mus musculus)20.

Spillback infections from humans to animals are already occurring worldwide. In addition
to secondary spillover infections from mink farms, SARS-CoV-2 has been found for the first time
in wild and escaped mink in multiple states in the United States, with viral sequences identical to
SARS-CoV-2 in nearby farmed mink 21–23. A variety of pets, domesticated animals, zoo animals,
and wildlife have also been documented as new hosts of SARS-CoV-2 (Table 1). The global
scale of human infections and the increasing range of known hosts observed for SARS-CoV-2
suggest that SARS-CoV-2 has the capacity to establish novel enzootic infection cycles in
animals. In response, recent computational studies make predictions about the susceptibility of
animal species to SARS-CoV-2 13,24–32. These studies compare sequences of ACE2 orthologs
among species (sequence-based studies), or model the structure of the viral spike protein
bound to ACE2 orthologs (structure-based studies), yielding a wide range of predictions with
varying degrees of agreement with laboratory animal experiments (Figure 1).
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Table 1. Species with confirmed suitability for SARS-CoV-2 infection from natural infections or in vivo
experiments. Asterisks reference species with infection status from preprints (not yet peer-reviewed).
Some species (e.g, dogs) with natural infection studies also have in vivo experimental studies.

Species Susceptibility Study type Location References

Cow
(Bos taurus) Yes

In vivo
experiment Lab 33

Dog
(Canis lupus familiaris) Yes Natural infection Multiple countries 34–38

African green monkey
(Chlorocebus aethiops) Yes

In vivo
experiment Lab 39

Big brown bat
(Eptesicus fuscus) No

In vivo
experiment Lab 40

Cat
(Felis catus) Yes Natural infection Multiple countries 34,36,37,41

Gorilla
(Gorilla gorilla) Yes Natural infection USA, Zoo 42

Crab-eating macaque
(Macaca fascicularis) Yes

In vivo
experiment Lab 43

Rhesus macaque (Macaca
mulatta) Yes

In vivo
experiment Lab 44

Golden hamster
(Mesocricetus auratus) Yes

In vivo
experiment Lab 45

House mouse
(Mus musculus) No

In vivo
experiment Lab 19 (but see 20)

Ferret
(Mustela putorius furo) Yes

In vivo
experiment Lab 38

American mink
(Neovison vison) Yes Natural infection Multiple countries 36,37,46

Raccoon dog
(Nyctereutes procyonoides) Yes

In vivo
experiment Lab 47

European rabbit
(Oryctolagus cuniculus) Yes

In vivo
experiment Lab 48

Lion
(Panthera leo) Yes Natural infection Multiple countries, Zoos 37,49

Tiger
(Panthera tigris) Yes Natural infection USA and Sweden, Zoos 36,37,49,50
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Deer mouse
(Peromyscus maniculatus)* Yes

In vivo
experiment Lab 51,52

Cougar
(Puma concolor) Yes Natural infection South Africa, Zoo 37

Egyptian fruit bat
(Rousettus aegyptiacus) Yes

In vivo
experiment Lab 53

Pig
(Sus scrofa) No

In vivo
experiment Lab 38,53

Northern treeshrew
(Tupaia belangeri) Yes

In vivo
experiment Lab 54

Snow leopard
(Uncia uncia) Yes Natural infection USA, Zoo 55

Bank vole
(Clethrionomys glareolus) Yes

In vivo
experiment Lab 56

Asian small-clawed otter
(Aonyx cinereus) Yes Natural infection USA, Zoo 37,57

White-tailed deer
(Odocoileus virginianus) Yes

In vivo
experiment Lab 58

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.02.18.431844doi: bioRxiv preprint 

https://paperpile.com/c/gMb8GP/wVCDf+Tu3lZ
https://paperpile.com/c/gMb8GP/y5YTR
https://paperpile.com/c/gMb8GP/JDAf3
https://paperpile.com/c/gMb8GP/YpzK+JDAf3
https://paperpile.com/c/gMb8GP/UuDT3
https://paperpile.com/c/gMb8GP/xjdJX
https://paperpile.com/c/gMb8GP/uGUD
https://paperpile.com/c/gMb8GP/y5YTR+5bVQ
https://paperpile.com/c/gMb8GP/iKZpB
https://doi.org/10.1101/2021.02.18.431844
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

Figure 1. A heatmap summarizing predicted susceptibility to SARS-CoV-2 for species with confirmed
infection from in vivo experimental studies or from documented natural infections. Studies that make
predictions about species susceptibility are shown on the x-axis, organized by method of prediction (those
relying on ACE2 sequences, estimating binding strength using three dimensional structures, or laboratory
experiments). Predictions about zoonotic capacity from this study are listed in the second to last column,
with high and low categories determined by zoonotic capacity observed in Felis catus. Confirmed
infections for species along the y-axis are summarized in 59 and are depicted as a series of filled or
unfilled circles. Bolded species have been experimentally confirmed to transmit SARS-CoV-2 to naive
conspecifics. Species predictions range from warmer colors (yellow: low susceptibility or zoonotic
capacity for SARS-CoV-2) to cooler colors (purple: high susceptibility or zoonotic capacity). See
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Supplementary Methods (https://doi.org/10.25390/caryinstitute.c.5293339) for detailed methods
about study categorization.

Sequence-based studies

Studies predicting host susceptibility based on amino acid sequence similarity between
human (hACE2) and non-human ACE2 assume that a high degree of similarity correlates with
stronger viral binding, especially at amino acid residues where hACE2 interacts with the
SARS-CoV-2 spike glycoprotein. For some species, such as rhesus macaques 60, these
qualitative predictions are borne out by in vivo studies (Figure 1), but predictions from these
methods do not consistently match real-world outcomes. For example, sequence similarity
predicted weak viral binding for minks and ferrets, which have all been confirmed as highly
susceptible, with minks capable of onward transmission 11,32,38 (Figure 1). These mismatches to
experimental or real-world outcomes may arise in part because protein three-dimensional
structure, the main determinant of protein function, is robust to changes in amino acid sequence
61,62. As such, details about the interaction between host ACE2 and the viral spike protein are
not well captured by sequence-based studies.

Structure-based studies

Modeling the three-dimensional structure of protein-protein complexes addresses some
of the limitations of sequence-based approaches, and has proven useful to predict how different
ACE2 orthologs bind to the SARS-CoV-2 viral spike protein receptor-binding domain (RBD) 13,24.
These studies can also be useful for identifying particular ACE2 amino acid residues essential
for a productive interaction with the viral RBD, thus improving predictive models of susceptibility
through structure-based inference 13. These studies leveraged known structures of the hACE2
receptor bound to the SARS-CoV-2 RBD and used powerful simulation methods to predict how
variation across different ACE2 orthologs affects binding with the viral RBD. While these
approaches successfully predicted strong binding for species that have been infected (e.g.
domestic cat, tiger, dog, and ferret) and weak binding for species in which experimental
infections failed (e.g. chicken, duck38, mouse19), the results are also not consistently supported
by experiments. For instance, while guinea pig ACE2 scored favorably among susceptible
species in one of the studies 13, this ortholog was shown experimentally not to bind to the
SARS-CoV-2 RBD 63.

Although structural modeling has produced the most accurate results to date, all
currently available approaches for predicting the host range of SARS-CoV-2 are fundamentally
constrained by the availability and quality of ACE2 sequences. ACE2 is ubiquitous across
chordates, likely because of its role in several highly conserved physiological pathways 64.
Because it is so highly conserved, the majority of mammal species (>6,000 species) are likely to
have ACE2 receptors, but there are many fewer sequences available from which to make
predictions using existing modeling methods (~300 species). The functional importance of the
ACE2 receptor suggests that it has evolved in association with other intrinsic organismal traits
that are more easily observed and for which data are available for far more species. These
suites of correlated organismal traits may provide a robust statistical proxy that can be
leveraged to predict suitable hosts for SARS-CoV-2. Previous trait-based analyses applied

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.02.18.431844doi: bioRxiv preprint 

https://doi.org/10.25390/caryinstitute.c.5293339
https://paperpile.com/c/gMb8GP/EIDN4
https://paperpile.com/c/gMb8GP/YpzK+BaO7V+WWIg8
https://paperpile.com/c/gMb8GP/Q9ELU+9bUBF
https://paperpile.com/c/gMb8GP/I4OPU+knFfv
https://paperpile.com/c/gMb8GP/knFfv
https://paperpile.com/c/gMb8GP/YpzK
https://paperpile.com/c/gMb8GP/NL7k
https://paperpile.com/c/gMb8GP/knFfv
https://paperpile.com/c/gMb8GP/GhHsa
https://paperpile.com/c/gMb8GP/Cq17v
https://doi.org/10.1101/2021.02.18.431844
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

statistical (machine) learning techniques to accurately distinguish the zoonotic capacity of
various organisms 65–67, and predict likely hosts for particular groups of related viruses 68,69,
predictions which have subsequently been validated through independent laboratory and field
investigations (e.g., 70,71).

Here, we combine molecular structural modeling of viral binding with machine learning of
species-level traits to generate predictions about species’ zoonotic capacity for SARS-CoV-2
virus across 5,400 mammal species, expanding our predictive capacity by an order of
magnitude (Figure 2). Crucially, this integrated approach enables predictions for species whose
ACE2 sequences are not available by leveraging information available from viral binding
dynamics and biological traits of potential hosts. In our workflow (Figure 2), we first carry out
structural modeling to quantify the binding strength of SARS-CoV-2 RBD for vertebrate species
using published ACE2 amino acid sequences 72. We then collate species traits and apply
machine learning to predict the zoonotic capacity for 5,400 mammal species, determined by a
conservative threshold of susceptibility and onward transmission capacity of SARS-CoV-2
reported by in vivo studies and applied to our structural modeling results. Because COVID-19 is,
at this time, primarily a disease affecting humans, spillback infection of SARS-CoV-2 from
humans to animals is the most likely mode by which new host species will become established.
Among mammal species with the highest predicted zoonotic capacity for SARS-CoV-2, we
identify a subset of species for which the threat of spillback infection appears greatest due to
geographic overlaps and opportunities for contact with humans in areas of high SARS-CoV-2
prevalence globally. Our predictions contribute to a critical interdisciplinary and iterative process
between computational modeling, field surveillance, and laboratory experiments that is
necessary for improving zoonotic risk quantification, and to better inform next steps toward the
prevention of enzootic SARS-CoV-2 transmission and spread (Figure 2).

Figure 2. A flowchart showing the progression of our workflow combining evidence from limited lab and
field studies with additional data types to predict zoonotic capacity across mammals through multi-scale
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statistical modeling (gray boxes, steps 1-5). For all vertebrates with published ACE2 sequences, we
modelled the interface of species' ACE2 bound to the viral receptor binding domain using HADDOCK. We
then combined the HADDOCK scores, which approximate binding strength, with species’ trait data and
trained machine learning models for both mammals and vertebrates (yellow boxes). Mammal species
predicted to have high zoonotic capacity were then compared to results of in vivo experiments and in
silico studies that applied various computational approaches. Based on predictions from our model, we
identified a subset of species with particularly high risk of spillback and secondary spillover potential to
prioritize additional lab validation and field surveillance (dashed line).

Methods

Protein sequence and alignment

We assembled a dataset of ACE2 NCBI GenBank accessions that are known human
ACE2 orthologs or have high similarity to known orthologs as determined using BLASTx 73.
Using the R package rentrez and the accession numbers, we downloaded ACE2 protein
sequences 74. We supplemented these sequences by manually downloading four additional
sequences from the MEROPS database 75.

Structural Modeling of ACE2 orthologs bound to SARS-CoV-2 spike

The modeling of all 326 ACE2 orthologs bound to SARS-CoV-2 spike receptor binding
domain was carried out as described previously 13, with a few differences. Sequences of ACE2
orthologs were aligned using MAFFT 76 and trimmed to the region resolved in the template
crystal structure of hACE2 bound to the SARS-CoV-2 spike (PDB ID: 6m0j, 77. Ambiguous
positions in each sequence, artifacts of the sequencing method, were replaced by Glycine to
minimize assumptions about the nature of the amino acid side-chain but still allow for modeling.
For each ortholog, we generated 10 homology models using MODELLER 9.24 78,79, with
restricted optimization (fastest schedule) and refinement (very_fast schedule) settings, and
selected a representative model based on the normalized DOPE score. These representative
models were then manually inspected and 27 were removed from further analysis due to large
insertions/deletions or to the presence of too many ambiguous amino acids at the interface with
spike. Each validated model was submitted for refinement to the HADDOCK web server 80,
which ran 50 independent short molecular dynamics simulations in explicit solvent to optimize
the interface between the two proteins . For each one of the animal species in our study, we
assigned an average and standard deviation of the scores of the 10 best refined models, ranked
by their HADDOCK score -- a combination of van der Waals, electrostatics, and desolvation
energies. A lower (more negative) HADDOCK score predicts stronger binding between the two
proteins. We hereafter refer to predicted binding strength, or simply binding strength, to indicate
HADDOCK score. The HADDOCK server is freely available, and we provide code to reproduce
analyses or to aid in the application of this modeling approach to other similar problems
(https://zenodo.org/record/4517509).
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Trait data collection and cleaning

We gathered ecological and life history trait data from AnAge 81, Amniote Life History
Database 82, and EltonTraits 83, among other databases (Supplementary Table 1; for details on
data processing, see Supplementary Methods with all supplementary data, figures, methods,
and tables available at https://doi.org/10.25390/caryinstitute.c.5293339). Using these data, we
also engineered additional traits that have shown importance in predicting host-pathogen
associations in other contexts. For example, as a measure of habitat breadth 84, we computed
for each species the percentage of ecoregions it occupies. To assess the influence of sampling
bias across species, we used the wosr R package 85 to count the number of studies returned in
a search in Web of Science for each species’ Latin binomial and included this as a proxy for
sampling bias in our model.

Following the results of initial structural modeling (described above), we observed that
per-residue energy decomposition analysis of HADDOCK scores for 29 species indicated that
all species with strong predicted binding had in common a salt bridge between SARS-CoV-2
K417 and a negatively charged amino acid at position 30 in the ACE2 sequence 13. Given the
apparent effect of amino acid 30 on overall binding strength, we constructed an additional
feature to denote whether amino acid 30 is negatively charged (and therefore more likely to
support strong binding) and included this feature as an additional trait in our models.

Modeling

Quantifying a threshold for zoonotic capacity using HADDOCK. While ACE2 binding is
necessary for viral entry into host cells, it is not sufficient for SARS-CoV-2 transmission. Multiple
in vivo experiments suggest that not all species that are capable of binding SARS-CoV-2 are
capable of transmitting active infection to other individuals (e.g., cattle, Bos taurus 33; bank
voles, Myodes glareolus (Ulrich et al. 2021)). Viral replication, and infectious viral shedding that
enables onward transmission, are both required for a species to become a suitable bridge or
reservoir species for SARS-CoV-2. In order to constrain our predictions to species with the
greatest potential to perpetuate onward transmission, we trained our models on a conservative
threshold of binding strength (HADDOCK score = -129). This value is between the scores for
two species: the domestic cat (Felis catus), which is currently the species with weakest
predicted binding with confirmed conspecific transmission 86, and the pig (Sus scrofa), which
shows the strongest estimated binding for which experimental inoculation failed to cause
detectable infection 38. Binding strength was binarized according to this threshold, above which
it is more likely that both infection and onward transmission will occur following the results of
multiple empirical studies (Table 1).  We note that there are species confirmed to be susceptible
whose predicted binding strength is weaker than cats, but conspecific transmission has not
been confirmed in these species. While it is likely that intraspecific transmission will be reported
for additional species as the pandemic continues, the binding strength selected for this analysis
represents an appropriately conservative threshold based on currently available evidence. For
additional modeling details, see Supplementary Methods.
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Trait-based modeling to predict zoonotic capacity

We applied generalized boosted regression 87 to host trait data to predict species’
binding strength to SARS-CoV-2. We applied this approach initially to all of the vertebrate
species for which we estimated HADDOCK scores, but these models did not perform well. This
was likely due to extensive dissimilarities among traits describing different classes of organisms.
For instance, traits that are commonly measured for reptiles are different from those of interest
for birds or amphibians. Moreover, currently available ACE2 sequences are dominated by
ray-finned fishes and mammals.

Given that only mammals have so far been confirmed as both susceptible and capable
of onward transmission of SARS-CoV-2, we created a separate set of models to make zoonotic
capacity predictions for mammals only. For this mammal-only dataset, we gathered additional
species-level traits from PanTHERIA 88 and added a series of binary fields for taxonomic order
(based on 89; Supplementary Table 2). We then applied boosted regression (BRT; gbm package
90 in R version 4.0.0 90,91) to impute missing trait data for mammal species (e.g., 67; see
Supplementary Methods  for details on imputation methods and results).

Many of the mammals for which we found the strongest evidence of zoonotic capacity
are domesticated to some degree (pets, farmed or traded animals, lab models) 11,38,53. Relative
to their ancestors or wild conspecifics, domesticated animals often have distinctive traits 92 that
are likely to influence the number of zoonoses found in these species 93. To account for trait
variation due to domestication in certain species, we modeled mammals in two ways. First, we
incorporated a variable indicating whether the source populations from which trait data were
collected are wild or non-wild (e.g., farmed, pets, laboratory animals; non-wild status confirmed
by the Mammal Diversity Database 94). Trait data collected from both wild and non-wild
individuals were considered to represent non-wild species for the purposes of this model. In a
second approach, we used only the wild species for model training and evaluation. For both
approaches, pre-imputation trait values were used for all non-wild mammals during model
training, evaluation, and prediction.

Boosted regression (BRT) is an ensemble machine learning approach that accommodates
non-random patterns of missing data, nonlinear relationships, and interacting effects among
predictors. In a BRT model, a sequence of regression models are fit by recursive binary splits,
with each additional regression modeling those instances that were poorly accounted for by the
previous regression iterations in the tree 87. We applied grid search to select optimal
hyperparameters, and repeated model fitting 50 times using bootstrapped training sets of 80%
of labeled data. We measured performance by the area under the receiver operating
characteristic curve (AUC) for predictions made on the test dataset (remaining 20%), corrected
by comparing with null models created by target shuffling, which employed similar bootstrapping
(50 times). Detailed methods can be found in Supplementary Methods. We discuss herein the
results of model predictions about zoonotic capacity made by applying this final model to all
mammal species. We also report the mean and variation in predicted probabilities across all 50
bootstrapped models in Supplementary File 1.
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To visualize geographic patterns, we mapped the geographic ranges of mammal species
predicted within the 90th percentile of zoonotic capacity for SARS-CoV-2 using International
Union for the Conservation of Nature (IUCN) polygons of species distributions 95. We subset to
the species found in human-associated habitats (e.g., urban areas, crop lands, heavily
degraded forests; based on IUCN 2020), and also masked their ranges to areas of high human
case counts (using SARS-CoV-2 case data from the COVID-19 Data Repository at Johns
Hopkins University 1).

Additional methods and results of other uninformative model variations are also
described in Supplementary Methods and Supplementary Table 3 (e.g., a model in which
binding strength is modeled as a continuous rather than a threshold measure, a model
predicting the charge at amino acid 30, a model for all vertebrate species)
(https://doi.org/10.25390/caryinstitute.c.5293339). We provide code and data files for carrying
out boosted regression tree models
(https://github.com/HanLabDiseaseEcology/zoonotic_capacity). Details about how the species
susceptibility predictions from past studies were standardized into categories (low, medium,
high; Figure 1) are also available in Supplementary Methods.

Results

ACE2 host protein sequences and alignment

The ACE2 protein sequence alignment of the orthologs from 326 species spans eight
classes and 87 orders (https://zenodo.org/record/4517509). The majority of sequences
belonged to the classes Actinopterygii (22.1%), Aves (23.3%), and Mammalia (46.6%).
Sequence length ranged from 344 amino acids to 872 with a median length of 805.

Structural modeling of viral binding strength

We predicted binding strength for 299 vertebrates, including 142 mammals. These
binding strength scores represented six classes and 80 orders and ranged between -167.816
and -105.615. Across these six vertebrate classes, the strongest predicted binding between
ACE2 and SARS-CoV-2 (corresponding to the lowest mean HADDOCK scores) were in
ray-finned fishes (Actinopterygii; mean = -137.945) and mammals (Mammalia; mean =
-129.193) (Figure 3A). Four of these six classes included at least one species predicted to have
stronger binding than Felis catus (Figure 3B). Among well-represented mammalian orders
(those containing at least 10 species with binding strength predictions), Primates and Carnivora
showed predicted mean binding strengths that were stronger than domestic cats (Figure 3C).
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Figure 3. Plots showing results from modeling species’ ACE2 interaction with SARS-CoV-2 RBD using
HADDOCK to predict binding strength (measured as arbitrary units). HADDOCK scores that predict
stronger binding are more negative. The mean and standard deviation of the HADDOCK score for
vertebrate species (A) for which ACE2 orthologs are available. Binding strengths vary across vertebrate
classes (B) and across the five most speciose mammalian orders (C). The “Other” category contains
species across multiple orders for which ACE2 sequences were available, each with fewer than 10
representative species in the order. The shaded regions of all panels represent predicted binding that is
as strong or stronger than (more negative values than) the domestic cat (Felis catus), which represents
our conservative zoonotic capacity threshold based on currently available empirical evidence.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.02.18.431844doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431844
http://creativecommons.org/licenses/by-nc-nd/4.0/


14

Species predictions of zoonotic capacity from trait-based machine learning models

The best performing model was trained on a mammal-only dataset with trait imputation
and showed corrected test AUC of 0.72 (for results of all other model variations, see
Supplementary Table 3). We used this model to generate predictions of zoonotic capacity
among mammal species. Citation count, as a proxy for study effort, had ~1% relative
importance, suggesting that sampling bias across species had little influence on the model.

This zoonotic capacity model identified 540 species within the 90th percentile probability (0.826
or higher, compared to a total of 2,401 mammal species with prediction scores above 0.5; see
Supplementary File 1 for predictions on all 5,400 mammal species,
https://doi.org/10.25390/caryinstitute.c.5293339) .

The top 10% of species with the highest predicted probabilities includes representatives
from 13 orders. Most primates were predicted to have high zoonotic capacity and collectively
showed stronger viral binding compared to other mammal groups (Figure 4). Additional orders
with numerous species predicted to have high zoonotic capacity (at least 75% of species above
0.5) include Hyracoidea (hyraxes), Perissodactyla (odd-toed ungulates), Scandentia
(treeshrews), Pilosa (sloths and anteaters), Pholidota (pangolins), and non-cetacean
Artiodactyla (even-toed ungulates) (Figure 4).
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Figure 4. Ridgeline plots showing the distribution of predicted zoonotic capacity across mammals.
Predicted probabilities for zoonotic capacity across the x-axis range from 0 (likely not susceptible) to 1
(zoonotic capacity predicted to be the same or greater than Felis catus), with the vertical line representing
0.5. The y-axis depicts all mammalian orders represented by our predictions. Density curves represent
the distribution of the predictions, with those parts of the curve over 0.5 colored pink and lines
representing distribution quartiles. The predicted values for each order are shown as points below the
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density curves. Points that were used to train the model are colored: orange represents species with
weaker predicted binding, blue represents species with stronger predicted binding. Selected family-level
distributions are shown in the Supplemental Figures 5-6
(https://doi.org/10.25390/caryinstitute.c.5293339).

Comparison of species predictions

Comparing species predictions across multiple computational approaches

Our model combined species traits and viral binding strength to predict zoonotic capacity
(susceptibility and onward transmission), which was defined as a threshold value based on
experimental studies confirming intraspecific transmission among animals, and is therefore
more conservative than thresholds adopted by other studies (e.g., based on binding strength,
30). In addition, our modeling approach (machine learning) and prediction targets (zoonotic
capacity) differed compared to existing computational approaches, which applied
sequence-based or structure-based analyses constrained by the small number of published
ACE2 sequences. Despite these differences, comparing species predictions generated by
multiple approaches can be useful for gauging consensus, and for comparing how predictions
change from one method to another. Across approaches, there was general agreement in the
predictions for primates and for a select group of artiodactyls and carnivores (Figure 5). Our
model results also agree with low susceptibility predictions made by several previous studies
using sequence-based approaches (e.g., in certain bats and rodents). In general, we note that
structure-based models predicted a smaller proportion of species to have low susceptibility
compared to sequence-based studies.
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Figure 5. An alluvial plot comparing predictions of species susceptibility from multiple methods. Existing
studies (listed in Supplementary Methods) are categorized as either sequence-based or structure-based.
Predictions from our zoonotic capacity model result from combining structure-based modeling of viral
binding with organismal traits using machine learning to distinguish species with zoonotic capacity above
(1) or below (0) a conservative threshold value set by domestic cats (Felis catus). Colors represent
unique mammalian orders, and the width of colored bands represent the relative number of species with
that combination of predictions across methods. See Supplementary Methods
(https://doi.org/10.25390/caryinstitute.c.5293339) for details on how species across multiple studies were
assigned to categories (high, medium, low).

Comparing model predictions to in vivo outcomes

While there were comparatively many fewer in vivo studies exploring susceptibility and
transmission in animals, our model predictions matched the results of most of these studies
(Figure 1). For instance, experiments on deer mice (Peromyscus maniculatus; 51,52) and raccoon
dogs (Nyctereutes procyonoides; 47) confirmed SARS-CoV-2 infection and transmission to naive
conspecifics. Our model also estimated a high probability of zoonotic capacity of American mink
for SARS-CoV-2 (Neovison vison, probability=0.83, 90th percentile), in which farmed individuals
present severe infection from human spillback, and demonstrate the capacity to transmit to
conspecifics as well as to humans 11,46. Our model also correctly predicted relatively low
zoonotic capacity for big brown bats (Eptesicus fuscus; 40).
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Some model predictions differed from the results of experimental studies. For instance,
our model estimated a moderately high probability of zoonotic capacity for pigs (Sus scrofa,
probability = 0.72, ~80th percentile). While some computational and cell-based studies have
predicted strong viral binding in this species (Liu et al. 2021; Luan et al. 2020), in vivo studies
report no detectable infection or onward transmission of SARS-CoV-2 38,53. Similarly for cattle
(Bos taurus), our model also estimated a moderately high probability for zoonotic capacity (0.72,
~80th percentile), but in a live animal experiment, cattle were confirmed to be susceptible to
infection, although no transmission was observed to virus-naive conspecifics 33.
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Figure 6: Maps showing the global distribution of species with predicted capacity to transmit
SARS-CoV-2. (A) depicts global species richness of the top 10 percent of model-predicted zoonotic
capacity. Geographic ranges of this subset of species were filtered to those associated with
human-dominated or human-altered habitats (B), and further filtered to show the subset of species that
overlaps with areas of high human SARS-CoV-2 positive case counts (over 100,000 cumulative cases as
of 17 May 2021) (C). For a full list of model-predicted zoonotic capacity of species by country, see
Supplementary File 2 (https://doi.org/10.25390/caryinstitute.c.5293339).

Discussion

We combined structure-based inference about viral binding with species-level trait data
to make predictions about the capacity of animal species to become zoonotic hosts of
SARS-CoV-2 (zoonotic capacity). Our definition of zoonotic capacity includes critical elements
necessary for an animal host to serve as a zoonotic host, either as a new enzootic reservoir or
as a bridge host capable of seeding secondary transmission to humans following an initial
spillback event. First, species susceptibility to SARS-CoV-2 is a necessary condition, which we
assumed to depend on the strength of binding between SARS-CoV-2 RBD and host ACE2.
Second, zoonotic capacity includes the capacity for onward transmission, which we model as a
threshold quantity based on available empirical evidence that confirms SARS-CoV-2
transmission to naive conspecific hosts. To extend predictive capacity beyond the small number
of species for which ACE2 sequences are currently available, we leveraged data on intrinsic
biological traits of 5,400 mammal species. This combined modeling approach predicted zoonotic
capacity with 72% accuracy, and identified numerous mammal species whose predicted
zoonotic capacity meets or exceeds the viral susceptibility and transmissibility observed in
experimental infections with SARS-CoV-2. In addition to wide agreement with in vivo study
results produced to date (Table 1), these model predictions corroborate the predictions of
previous studies generated using the limited number of available ACE2 sequences (Figure 1).
Below we discuss predictions of zoonotic capacity for a number of ecologically and
epidemiologically relevant categories of mammalian hosts.

Captive, farmed, or domesticated species. Given that the type and frequency of contact with
humans fundamentally underlies transmission risk, it is notable that our model predicted high
zoonotic capacity for multiple captive species that have also been confirmed as susceptible to
SARS-CoV-2 via experiments or natural infections. These include numerous carnivore species,
such as large cats from multiple zoos and pet dogs and cats. Our model also predicted high
SARS-CoV-2 zoonotic capacity for many farmed, domesticated, and live traded species. The
water buffalo (Bubalus bubalis), widely bred for dairy production and farming, had the highest
probability of zoonotic capacity among livestock (0.91). The 90th percentile of model predictions
also included American mink (Neovison vison), red fox (Vulpes vulpes), sika deer (Cervus
nippon), white-lipped peccary (Tayassu pecari), nilgai (Boselaphus tragocamelus), and raccoon
dogs (Nyctereutes procyonoides), all of which are farmed, with the latter two considered
invasive species in some areas 96,97. In addition to the risks of secondary spillover to humans
and the potential for large economic losses from culling infected animals 98, the escape of
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farmed individuals into wild populations has implications for the spread and enzootic
establishment of SARS-CoV-2 21. These findings also have implications for vaccination
strategies, for instance, prioritizing people in regular contact with potential bridge species (e.g.,
veterinarians, abattoir-workers, farmers, etc).

Live traded or hunted wildlife species. The majority of the legal live mammal trade consists of
primates and carnivores 99, and model predictions included several species from these groups.
Our model predicted high zoonotic capacity in 20 (out of 21) species in the primate genus
Macaca which comprise the majority of all live-traded primates. Several live-traded carnivores
and pangolins were also assigned high zoonotic capacity, including the Asiatic black bear
(Ursus thibetanus), grey wolf (Canis lupus), and jaguar (Panthera onca), the Philippine pangolin
(Manis culionensis) and Sunda pangolin (M. javanica). Pangolins are notable because one of
the betacoronaviruses with the highest sequence similarity to SARS-CoV-2 was isolated from
Sunda pangolins 100,101.

Commonly hunted species in the top 10% of predictions include duiker (Cephalophus
zebra, West Africa), warty pig (Sus celebes, Southeast Asia), and two species of deer
(Odocoileus hemionus and O. virginianus) that are widespread across the Americas. The
white-tailed deer (O. virginianus) was recently confirmed capable of transmitting SARS-CoV-2 to
conspecifics via indirect contact (aerosolized virus particles) 58.

Bats. Similarly, bats are of special interest because of the high diversity of betacoronaviruses
found in Rhinolophus spp. and other bat species 102–105. Our model identified 35 bat species
within the 90th percentile of zoonotic capacity for SARS-CoV-2. Within the genus Rhinolophus,
our model identified the large rufous horseshoe bat (Rhinolophus rufus), a known natural host
for bat betacoronaviruses 102 and a congener to three other horseshoe bats harboring
betacoronaviruses with high nucleotide sequence similarity to SARS-CoV-2 (~92-96%) 6,106,107.
For these three species, our model assigned a range of probabilities for SARS-CoV-2 zoonotic
capacity (Rhinolophus affinis (0.58), R. malayanus (0.70), and R. shameli (0.71)) and also
predicted relatively high probabilities for two congeners, Rhinolophus acuminatus (0.84) and R.
macrotis (0.70). These predictions are in agreement with recent experiments demonstrating
efficient viral binding of SARS-CoV-2 RBD for R. macrotis 108 and confirmation of
SARS-CoV-2-neutralizing antibodies in field-caught R. acuminatus harboring a closely related
betacoronavirus 109.

Within the genus Pteropus (flying foxes), our model identified 17 species with high
probabilities of zoonotic capacity for SARS-CoV-2. Some of these species are confirmed
reservoirs of other zoonotic viruses in Southeast Asia (e.g., henipaviruses in P. lylei, P.
vampyrus, P. conspicillatus, and P. alecto). While contact patterns between bats and humans
may be somewhat less direct compared with captive or farmed species, annual outbreaks
attributed to viral spillover transmission from bats illustrate a persistent epizootic risk to humans
110–112 and confirm that gaps in systematic surveillance of zoonotic viruses, including
betacoronaviruses, remain an urgent priority (e.g., 113).
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Rodents. Our model identified 76 rodent species with high zoonotic capacity for SARS-CoV-2,
some of which thrive in human-altered settings. Among these, our model predicted high
probabilities for the deer mouse (Peromyscus maniculatus) and the white-footed mouse (P.
leucopus). These are among the most well-studied mammals in North America, in part due to
their status as zoonotic reservoirs for multiple zoonotic pathogens and parasites 114–116.
Experimental infection, viral shedding, and sustained intraspecific transmission of SARS-CoV-2
were recently confirmed for P. maniculatus 51,52.

Our model predicted low zoonotic capacity for Mus musculus (0.11), corresponding with
in vivo experiments suggesting this species is not susceptible to infection by the initial human
variant of SARS-CoV-219, although notably, more recent experiments have confirmed the
susceptibility of M. musculus to two newer human-derived variants20. Also in the top 10% were
two rodent species considered to be human commensals whose geographic ranges are
expanding due to human activities: Rattus argentiventer (0.84) and R. tiomanicus (0.79)
(Supplementary File 1) 117–119. Additional common rodent species with relatively high probabilities
of zoonotic capacity include domesticated guinea pigs (Cavia porcellus), gerbils (Gerbillus
gerbillus, Meriones tristrami), and several common mouse species (Apodemus peninsulae, A.
flavicollis, and A. sylvaticus), all of which are known reservoirs for other zoonotic diseases. It is
notable that many of these rodent species are regularly preyed upon by carnivore species, such
as the red fox (Vulpes vulpes) or domestic cats (Felis catus) who themselves were predicted to
have high zoonotic capacity for SARS-CoV-2.

Species with large geographic ranges. With sufficient opportunity for infectious contact, the risk
of zoonotic spillback transmission increases with SARS-CoV-2 prevalence in human
populations. Among species with high model-predicted zoonotic capacity, there were several
relatively common species with very large geographic ranges or synanthropic tendencies that
overlap with global hotspots of COVID-19 in people (Figure 6, Supplementary File 2). Notable
species that are widely distributed across much of the northern hemisphere include the red fox
(Vulpes vulpes, ~50 countries), the European polecat (Mustela putorius), the raccoon dog
(Nyctereutes procyonoides), stoat (Mustela erminea) and wolf (Canis lupus). White-tailed deer
(Odocoileus virginianus) are among the most geographically widespread species across Latin
American countries with high SARS-CoV-2 prevalence. Globally, South and Southeast Asia had
the highest diversity of mammal species with high predicted zoonotic capacity for SARS-CoV-2
(~90 species). Notable examples in the 90th percentile probability in this region include both
rodents and bats. For example, Finlayson’s squirrel (Callosciurus finlaysonii) is native to
Mainland Southeast Asia, but introductions via the pet trade in Europe have led to invasive
populations in multiple countries 120. Hunting has been documented for numerous bat species
with geographic ranges across Southeast Asia (e.g., Cheiromeles torquatus, Cynopterus
brachyotis, Rousettus amplexicaudatus, Macroglossus minimus) 121,122, and there were multiple
additional bat species in the 90th percentile from Asia and Africa where bats are subject to
hunting pressure and from which other betacoronaviruses have been identified 105,123. There
were also several wide-ranging species whose contact with humans are limited to specialized
settings. For instance, biologists and wildlife managers handle live individuals for research
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purposes, including grizzly bear (Ursus arctos), polar bear (Ursus maritimus), and wolf (Canis
lupus), all of which are in the 89th percentile or above for predicted zoonotic capacity.

Other high priority mammal species. Species with more equivocal predictions about zoonotic
capacity that are in frequent contact with humans warrant further investigation. For instance,
while species such as horses (Equus caballus), goats (Capra hircus), and guinea pigs (Cavia
porcellus) are not in the top 10% of predicted zoonotic capacity, due to the nature of their
contact with humans they may experience greater risks of spillback infection, or pose a greater
risk to humans for secondary spillover infection compared to many wild species. Conversely,
while certain endangered or nearly extinct species are predicted to have relatively high zoonotic
capacity, they may have fewer opportunities for human contact. For species of conservation
concern, spillback transmission of SARS-CoV-2 from humans presents an important source of
risk28,124, particularly for populations that are under active management, including ex situ
management such as captive breeding. These species include the scimitar-horned oryx (Oryx
dammah), addax (Addax nasomaculatus), some Antarctic fauna and mountain gorillas (Gorilla
beringei) in which SARS-CoV-2 spillback infection may occur through close-proximity
eco-tourism activities 125,126. Indeed, spillback transmission of SARS-CoV-2 has already been
confirmed in a closely related species, the Western lowland gorilla (Gorilla gorilla) in captivity 127,
leading to the vaccination of bonobos and orangutans with an experimental COVID-19 vaccine
128. These species may benefit from focused risk mitigation efforts, such as those enacted
recently to protect endangered black-footed ferrets (Mustela nigripes) from potential
SARS-CoV-2 spillback 129.

All fifteen species of Tupaia treeshrews were predicted by our model to have medium to
high probability (ranging from 0.62 to 0.87). One species, T. belangeri, has been explored as a
potential lab model for several human infectious diseases including SARS-CoV-2 130 but relative
to other treeshrews, our model assigned only medium probability for SARS-CoV-2 zoonotic
capacity in this species (0.67). This result matches lab studies reporting asymptomatic infection
and low viral shedding in T. belangeri 54. In contrast, the common treeshrew (T. glis) was in the
94th percentile of zoonotic capacity (0.87 probability). These two species are sympatric in parts
of their range, exist in close proximity to humans, and also overlap geographically with
COVID-19 hotspots in Southeast Asia, suggesting the possibility of spillover transmission
among congeners if spillback transmission occurs from humans to these species.

Strengthening predictive capacity for zoonoses. While there was wide agreement between our
model predictions and empirical studies, examining biases and mismatches between
experimental results and model-generated predictions will focus research attention on
characterizing what factors underlie the disconnects between predicted and observed zoonotic
capacity. For instance, in pigs (Sus scrofa) this study along with multiple other computational
and experimental studies predicted susceptibility to SARS-CoV-2 (Figure 1), but this prediction
has not been supported by results from whole animal inoculations, which so far have showed
unproductive infection 38,53. As an example of how methods influence predictions, our model
incorporating both molecular structure and species traits generally estimated weaker binding
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strengths for cetaceans, and high probabilities for catarrhine primates compared to other studies
that employed different structural modeling methods 27,28,30.

Disconnects between real-world observations and in silico predictions of zoonotic
capacity may arise because host susceptibility and transmission capacity are necessary but not
sufficient for zoonotic risk to be realized in natural settings. These processes depend strongly on
the cellular environments in which cell entry and viral replication take place (e.g., the presence
of suitable receptors and key proteases, 7), and on host immunogenicity 131. These processes
are therefore embedded in a broader ecological context impacting intra-host infection dynamics
(latency, recrudescence, tolerance), and environmental drivers of host susceptibility and viral
persistence that collectively determine where and when spillover may occur 131–134. Insofar as
data limitations preclude perfect computational predictions of zoonotic capacity (e.g., limited
ACE2 sequences or species trait data, structural information over or under-predicting
susceptibility in species), laboratory experiments are also limited in assessing true zoonotic
capacity. For SARS-CoV-2 and other host-pathogen systems, animals that are readily infected
in the lab appear to be less susceptible in non-lab settings (ferrets in the lab vs. mixed results in
ferrets as pets 37,53,135; rabbits in the lab vs. rabbits as pets 48,136). Moreover, wildlife hosts
confirmed to shed multiple zoonotic viruses in natural settings (e.g., bats, 137) can be much less
tractable for laboratory investigations (for instance, requiring high biosecurity containment and
very limited sample sizes in unnatural settings). While laboratory experiments are critical for
understanding mechanisms of pathogenesis and disease, without field surveillance and
population-level studies they offer imperfect reflections of zoonotic capacity in the natural world.
These examples illustrate that there is no single methodology sufficient to understand and
predict zoonotic transmission, for SARS-CoV-2 or any zoonotic pathogen. They also
demonstrate the need for improved coordination among theoretical and statistical models, lab
work, and field work to improve zoonotic predictive capacity 138. Integration of multiple
methodologies and disciplines, as done here, and more efficient iteration between
computational predictions, laboratory experiments, and targeted animal surveillance will better
link transmission mechanisms to the broader conditions underpinning zoonotic disease
emergence in nature.
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