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Abstract:  

 

Background and Objective: To develop a computational algorithm that detects and identifies different 

artefact types in neonatal electroencephalography (EEG) signals.  

Methods: As part of a larger algorithm, we trained a Residual Deep Neural Network on expert human 

annotations of EEG recordings from 79 term infants recorded in a neonatal intensive care unit (112 h 

of 18-channel recording). The network was trained using 10 fold cross validation in Matlab. Artefact 

types included: device interference, EMG, movement, electrode pop, and non-cortical biological 

rhythms. Performance was assessed by prediction statistics and further validated on a separate 

independent dataset of 13 term infants (143 h of 3-channel recording). EEG pre-processing steps, and 

other post-processing steps such as averaging probability over a temporal window, were also included 

in the algorithm.  

Results: The Residual Deep Neural Network showed high accuracy (95%) when distinguishing 

periods of clean, artefact-free EEG from any kind of artefact, with a median accuracy for individual 

patient of 91% (IQR: 81%-96%). The accuracy in identifying the five different types of artefacts 

ranged from 57%-92%, with electrode pop being the hardest to detect and EMG being the easiest. 

This reflected the proportion of artefact available in the training dataset. Misclassification as clean 

was low for each artefact type, ranging from 1%-11%. The detection accuracy was lower on the 

validation set (87%). We used the algorithm to show that EEG channels located near the vertex were 

the least susceptible to artefact.  

Conclusion: Artefacts can be accurately and reliably identified in the neonatal EEG using a deep 

learning algorithm. Artefact detection algorithms can provide continuous bedside quality assessment 

and support EEG review by clinicians or analysis algorithms.  
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Highlights:  

 

 We applied a Residual Deep Neural Network as part of an artefact detection algorithm in 

neonatal electroencephalograms. 

 The algorithm shows high accuracy in identifying artefactual data in general and for specific 

artefact types.  

 EEG channels near the top of the head are less prone to artefact. 

 

 

Keywords: Artefact detection, Electroencephalogram, Residual Neural Network, brain monitoring, 

neonatal intensive care unit 
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1. Introduction 

 

Monitoring with electroencephalography (EEG) is a standard of care in many neonatal intensive care 

units (NICU) [1]. It is frequently used to detect neurological abnormalities, evaluate maturation, and 

predict neurodevelopmental outcome [2-10]. The rapid uptake of long term EEG monitoring in the 

NICU has uncovered two, as yet unresolved bottlenecks: how to record reliable, high quality EEG, 

and how to provide real-time interpretation for treating clinicians [11]. In this study, we focus on the 

problem of ensuring that a reliable, high quality EEG signal is recorded for clinical review [3, 12-14]. 

Recording reliable EEG requires real-time surveillance of EEG signal quality. This is traditionally 

achieved by visual signal inspection at the cotside. However, it requires constant attention and 

substantial expertise in EEG reading, neither of which can be expected from nursing staff whose chief 

responsibility is immediate care of the patient. The only practically feasible solution would be to 

develop an automated measure of signal quality that allows real time feedback to the nursing staff. In 

practise, such an automated tool will identify the type of artefact so that the nursing staff can 

troubleshoot the signal quality issues.   

Several methods for have been developed for the detection [15, 16] and removal [17-19] of artefacts 

in adult EEG. These methods have limited applicability to neonatal EEG due to: i) the difference in 

manifestation, variability and susceptibility of artefacts, ii) fundamental differences in predominant 

EEG patterns, and iii) a lower number of recording electrodes. To overcome these challenges, 

researchers have attempted to develop artefact detection methods specific to neonatal EEG, but these 

methods have used i) small datasets, ii) infants without pathology, and iii) not accurately classified 

the type of artefact [5, 14, 20, 21]. Recent advances in machine learning (notably, deep neural 

networks [22]) provide an opportunity to improve the detection performance towards clinical 

applicability if sufficiently large datasets of annotated neonatal EEG can be acquired.  
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Here, we present an algorithm for detecting artefacts in neonatal EEG using a deep residual neural 

network. The performance of this algorithm was evaluated on datasets representative of data typically 

obtained in a NICU setting. We also validated the algorithm on an independent dataset.  
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2. Material and Methods 

2.1 Data acquisition 

 

2.1.1 EEG Recordings  

This study consists of continuous multichannel EEG recordings from 79 term neonates with the 

average gestational age (GA) of 40 weeks (range 35-44 weeks). The recordings were performed in 

the neonatal intensive care unit in the Hospital District of Helsinki and Uusimaa, and the Helsinki 

University Central Hospital (HUCH) specialist medical care area. EEGs were recorded using the 

NicoletOne vEEG system with sampling frequency of 256 Hz. A total of 21 electrodes were placed 

according to the international 10-20 system using a referential montage. A bipolar montage with 18 

channels (Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5, T5-O1, Fp2-F4, F4-C4, C4-P4, P4-

O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fz-Cz, Cz-Pz) was used for analysis. The average length of the 

recordings for each patient was 85 min (range 52-257 min). This dataset was initially compiled to 

evaluate seizure detection by human experts and computer algorithms and is publicly available [23, 

24]. These infants represent a typical cohort that would be monitored in the NICU. 

A validation dataset (n=13) was collected from a series of infants monitored for seizures with 

subsequent detection of stroke in a clinical database of long-term monitoring (Helsinki University 

Central Hospital, Finland). Elements of this patient cohort have been described and published earlier 

[25]. EEGs were recorded using frontal and parietal electrodes (F3, F4, P3, P4)  with a NicoletOne 

vEEG system (same recording device) resampled to a frequency of 256 Hz (median recording 

duration 9 hours, IQR: 8 hours to 16 hours).  
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2.1.2 Data Annotation 

A human reviewer (NJS) initially identified obvious periods of clean artefact-free EEG and several 

types of artefacts, annotating the start and end times. An experienced clinical neurophysiologist (SV) 

then reviewed these annotations and accepted, modified, or deleted each accordingly (5% 

disagreement on identified events). A final reviewer (LW) selected the specific EEG derivations that 

presented with artefact or clean EEG, i.e. assigned the event annotation to the specific channels. 

Artefact classes identified included: Device Interference artefacts (DI; interfering electromagnetic 

radiation from nearby devices), Electromyography artefact (EMG; muscle activation), Movement 

(MO; long, sustained movement of the head), Electrode Pop (EL; transients due to poor electrode 

contact), and repetitive Biological Rhythm artefact (BIO; cardiac or respiratory origin) [6]. Examples 

are shown in Figure 1.  

Out of the 112 hours of 18-channel EEG recordings (2014 hours of single channel recordings), 44 

hours of annotated events (Supplementary Table S.1) resulted in 277 hours of single-channel EEG 

data, distributed across 6 classes.   

The annotated periods of EEG were then further divided into segments of 4 seconds in duration with 

50% (2 second) overlap (See Table 1, Unbalanced). Given the imbalance in the prevalence of each 

class of event, and a balanced dataset being more conducive to training the deep neural network, 

different levels of overlap were used for each class to achieve a more balanced dataset for training. 

Clean EEG was the most common class, and so not only had no overlap, but a random half of the 

data were also deleted. The EMG segments had 2 second (50%) overlap, and MO artefact segments 

had 3 second (75%) overlap. EL events had a 3.5 second (87.5%) overlap, and the remaining artefacts 

(BIO and DI) had a 3.75 second (93.75%) overlap.  

For the validation data, a section of recording that contained several types of artefact was extracted 

from each EEG. The section was continuously annotated (F3-P3, F4-P4, P3-P4) for artefacts and 

periods of artefact-free EEG by an experienced clinical neurophysiologist (SV). The type of artefacts 
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to be annotated were limited to the 5 classes used in the training dataset. This process of annotation 

of the validation dataset was different to that used when acquiring the training dataset. While the 

trained dataset extracted obvious, exemplar segments of artefact and clean EEG from recordings, the 

continuous annotation of the validation dataset required increased decision making relating to less 

obvious artefacts resulting in increased ambiguity. 

Table 1: Segment descriptive statistics. The Unbalanced Data has all segments with 50% overlap. 

The Balanced Data has artefact class specific overlap and half of the Clean segments removed. 

Labelled signal 

Unbalanced Balanced 

Number of 4 

sec segments 

(%) 

Patients with 

event (n) 

Avg. number 

segments,  

median (IQR)^ 

Number of 4 

sec segments 

(%) 

Clean EEG  337130 (69.8%) 79 3458 (2059.3 – 5386) 84760 (21.0%) 

Device Interference (DI) 8601 (1.8%) 16 190.5 (18 – 572) 62302 (15.4%) 

Electromyography (EMG) 80361 (16.6%) 74 708 (215 – 1469) 80361 (19.9%) 

Movement (MO) 35452 (7.3%) 52 210.5 (85.5 – 718.5) 68893 (17.1%) 

Electrode Pop (EL) 14099 (2.9%) 73 54 (26.7 – 171) 48434 (12.0%) 

Biological Rhythms (BIO) 7493 (1.6%) 14 227.5 (119– 952) 59044 (14.6%) 

^ average number in patients with event type 
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Figure 1: Exemplar segments of EEG recording for different types of artefact. A) Muscle artefact on 

predominantly on the temporal regions (EMG). B) Device Interference on T4. C) Movement artefact 

on F8, F7, T3, and P3 (muscle artefact is also present). D) Electrode pop artefact predominantly on 

T3. E) ECG artefact (example of the Biological Rhythm class) on P4-O2. The calibration scale 

markers denote 1 s horizontally and 70 µV vertically. 
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2.2 Artefact detection algorithm 
 

The artefact detection algorithm input was a 4 s EEG segment and the output was a class label: Clean 

uncontaminated EEG, DI, EMG, MO, EL, and BIO. The algorithm consisted of a pre-processing of 

raw EEG data stage, a neural network, and a post-processing stage (Figure 2).  

Our pre-processing steps took the 4 s segments of EEG data and applied a clamping function 

(Equation 1) to limit the dynamic amplitude range of the segments, yielding clamped segments 

𝐸𝐸𝐺𝑐(𝑡) given by  

𝐸𝐸𝐺𝑐(𝑡) =  {

250[ln(𝐸𝐸𝐺(𝑡)) − ln(250) + 1] 𝐸𝐸𝐺(𝑡) > 250 μV,

𝐸𝐸𝐺(𝑡) |𝐸𝐸𝐺(𝑡)| ≤ 250 μV

−250[ln(−𝐸𝐸𝐺(𝑡)) − ln(250) + 1] 𝐸𝐸𝐺(𝑡) < −250 μV.

, Eq (1) 

These EEG segments were then filtered with a Butterworth high pass filter (2-poles, cut-off frequency 

of 0.5 Hz) and a 50 Hz notch filter (2-pole, IIR filter). Each EEG segment was then processed by a 

neural network. Several network architectures were trialled (see Section 2.3).   

In our post-processing stage, the output of the softmax layer (a vector the length of the number of 

event classes representing the probability of the processed segment belonging to a particular class) 

was averaged over a time period specific to each artefact type (temporal smoothing) to take into 

account the fact that nearby segments in time are more likely to have the same label and some artefact 

types present with different durations. The artefact class with the highest smoothed probability was 

chosen as the final artefact label [26].  
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Figure 2: Flow diagram of artefact detection system. Green arrows denote the algorithm 

implementation of data pre-processing, the deep residual network, and post-processing.   
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2.3 Training, testing and evaluation of the artefact detector. 

 

Two different neural network architectures were considered, a deep residual network [27] and a 

classical deep neural network [28]. A number of depth and filter size combinations were considered 

for each architecture (see Table S.3). The performance of these networks was also compared to a ‘bag 

of features’ classified by a Support Vector Machine (SVM) [5]. 

Artefact detection algorithms were evaluated using 10-fold cross-validation on the Balanced Dataset. 

As the dataset contained EEG recordings from 79 infants, the 10-fold cross-validation used nine 

groups of eight patients and one of seven patients. The patients were randomly assigned to the 10 

groups, i.e. all data from an individual patient is in one fold, though a seed was selected to ensure that 

each fold contained all event types. The number of segments used in each training fold are 

summarized in Supplementary material (Table S.2). 

Deep neural networks were trained using the “Stochastic Gradient Descent with Momentum” 

algorithm (SGDM) [29]. Data was trained for 50 epochs with a Minibatch Size of 1024 and 

momentum set to 0.9. The learning rate was initially set at 0.1 and then reduced by a factor of 0.2 

every 30 epochs. The MATLAB function trainNetwork was used to train the network in each fold.  

The optimal network was selected based on a criteria of network size, binary and 6-class accuracy 

(see section 2.4 for definitions of accuracy). The optimal network was further tested with and without 

the pre-processing stage and several different training options (minibatch size, solver type, See Table 

S.3).  

The typical event duration differs between classes, with artefacts like Electrode typically lasting 4 

seconds and Biological Rhythms lasting 40 seconds (see Supplementary Table S.1). Temporal 

averaging was trialled by taking the average of the artefact class probabilities in surrounding 

segments. A greedy algorithm was used to find the optimal temporal window size for each event class 

on the entire Balanced Dataset. For each artefact class, several window durations (0 - 30s) were 
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applied, while all other classes were not windowed. The window duration and class that maximized 

the 6 Class accuracy was then selected, and the process repeated until all artefact classes had an 

optimal window. The greedy algorithm was also applied separately to each fold in the Balanced Data.  

2.4 Algorithm performance assessment 

We visualized the performance of the artefact detection system by calculating the confusion matrix 

of the pooled data (six by six). Initial evaluation was based on the Balanced Dataset. We further 

summarized the performance by calculating the 6 Class accuracy, defined as the percentage of 

segments correctly classed as either Clean or correctly classed as one of the five artefact classes 

(Equation 2). We also evaluated the performance of the algorithm for differentiating between clean 

EEG and artefact (a binary decision combining all artefacts types). Formulae for the statistics 

considered a 4 second segment of data that was correctly identified as Clean as True Positive (TP), a 

correctly identified segment of artefact as True False (TF), a segment misclassified as Clean as False 

Positive (FP), and a segment misclassified as artefact a False Negative (FN). These binary statistics 

included accuracy (Equation 3), sensitivity (the ratio of true clean segments over all the segments 

labelled as Clean, Equation 4), area under the receiver operating characteristic curve (AUC, based on 

the probability of the Clean label in the softmax layer), and F1 (a measure combining sensitivity and 

precision (Equation 5), where precision is the ratio of segments correctly labelled as clean out of the 

all the segments annotated as clean, Equation 6) [30]. All measures were calculated on the pooled 

data (n=79).  

6 𝐶𝑙𝑎𝑠𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(∑ 𝑇𝑟𝑢𝑒𝑗 )

𝑇𝑜𝑡𝑎𝑙
, 𝑤ℎ𝑒𝑟𝑒 𝑗 = 𝐶𝑙𝑒𝑎𝑛, 𝐷𝐼, 𝐸𝑀𝐺, 𝑀𝑂, 𝐸𝐿, 𝑎𝑛𝑑 𝐵𝐼𝑂, Eq(2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/𝑇𝑜𝑡𝑎𝑙, Eq (3)  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) , Eq (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), Eq (5) 
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𝐹1 = 2 × (Sensitivity × Precision)/(Sensitivity + Precision), Eq (6) 

To provide a visualisation of the separation of the artefacts by the deep residual network, we took the 

output from a late stage of the network (fully connected layer, see Figure S.1) for 10% of the data 

(Balanced Data). This 6 dimensional output was reduced to 2 using UMAP [31] to visualise classifier 

performance. In the 2D space of the UMAP output, high performing classification manifests as 

clusters of similarly-identified points.  

To simulate a potential application of the artefact detection algorithm (trained on the Balanced 

Dataset), we applied it in conjunction with a seizure detection algorithm [32] to the complete EEG 

recordings from all 79 patients to estimate the level of contamination within our database. The level 

of contamination was compared between channels in the bipolar montage.   

The performance measures were also calculated for the validation dataset to show how the algorithm 

performed on a separate dataset. Bootstrapped confidence intervals were calculated to compare the 

6-Class and binary accuracy between training and validation dataset.   
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3. Results 

Results from the optimization of network architecture and training options (trained on the Balanced 

Dataset) were calculated from both the Balanced and Unbalanced Dataset.  We tested the algorithm 

on the Unbalanced Dataset as this best reflects the real world clinical setting where the majority of 

data is typically clean and artefact types have different occurrence frequencies. We show example 

recordings where the algorithm correctly and incorrectly identifies artefacts, and visualize the 

network outputs to show the separation and overlap of the classes to support the distribution of 

accuracy within the confusion matrix. 

We show the usefulness of the algorithm by estimating the amount of artefact present in typical EEG 

recordings and then validate the artefact detection algorithm on an independent, unseen dataset that 

was annotated under a continuous monitoring paradigm rather than the exemplar paradigm used to 

generate the training set. Finally, we show differences in EEG characteristics between the two 

annotation paradigms that help to explain the reduction in validation performance. 

 

3.1 Training Results 

 

The primary results from the Balanced Dataset show the optimal implementation of the algorithm 

was achieved using a residual neural network with pre-processing and temporal smoothing (Network 

2 in Supplementary Figure S.2). 

 

The optimal network was trained with SGDM and a minibatch size of 2048 (Supplementary Figure 

S.2). The majority of permutations of network architecture and training options gave similar results 

with the binary accuracy ranging from 92% to 95%, and 6-Class accuracy from 75% to 82%. Residual 

networks consistently outperformed networks without feed forward stages. 
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The binary accuracy of the artefact detection algorithm (trained on the Balance Dataset) for 

differentiating between artefactual EEG and clean, uncontaminated EEG was 95% and 97% when 

applied to the Balanced and Unbalanced Datasets, respectively. Temporal averaging improved the 

accuracy further with the largest improvement seen in the Balanced Dataset (Table 2). The median 

binary accuracy (for Clean vs any artefact) with temporal averaging applied across the cohort of 79 

was 98% (IQR: 95% - 99%) for the Balanced Dataset and 99% (IQR: 95% - 100%) for the Unbalanced 

Dataset. The Clean EEG and EMG artefact were the most accurately detected (95% and 92%, Figure 

5), while DI and EL artefacts were detected with the lowest accuracy (75% and 57%; Figure 5). The 

algorithm accuracy reflects the low proportion of DI and EL in the training dataset. While the 

accuracy for correctly identifying the type of artefact was low for DI and EL artefact, the binary 

accuracy with the true event type for detecting any type of artefact was high (97% and 91%, Figure 

5). Hence, the artefacts are reliably detected, but their specific type may be identified at lower 

accuracy.  

The optimal window lengths (in order: Clean, DI, EMG, MO, EL, and BIO) were 8, 12, 12, 28, 12, 

and 56 seconds which correspond to durations of 3, 5, 5, 13, 5, and 27 segments respectively. These 

values were supported by the results from applying the greedy algorithm to each fold separately 

(Table S.4). These window lengths align with the median length of the annotated artefact events 

(Table S.2), with MO and BIO typically being longer in duration. Example outputs of the algorithm 

superimposed over a period of EEG recording are shown in Figures 3 and 4. 

The separation of each artefact class by the residual neural network is shown in in Figure 6. The MO 

and EMG clusters overlap (Figure 6) supporting the finding that EMG artefact is most commonly 

misclassified as MO artefact, and vice-versa (Figure 5). Similarly, the EL cluster has considerable 

overlap with the EMG, MO, and DI cluster, with these classes representing the majority of 

misclassified EL artefacts (Figure 5).  
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Table 2: Artefact detection performance statistics on Balanced Data and Unbalanced Data, with and 

without temporal smoothing. The results from the SVM [5] are also included and best compared to 

the Residual Neural Network trained on Balanced Data.  
 6 Class Clean vs Artefact 

Accuracy Accuracy Sensitivity AUC F1 

Residual Neural Network 

trained on Balanced Data  

 

82.0% 94.5% 95.02% 0.947 0.880 

Residual Neural Network 

trained on Balanced Data 

and Temporal Smoothing 

84.8% 95.5% 97.5% 0.962 0.900 

Residual Neural Network 

applied to Unbalanced Data 

 

91.9% 95.4% 95.0% 0.957 0.966 

Residual Neural Network 

applied to Unbalanced Data 

with temporal smoothing  

94.5% 97.2% 97.4% 0.971 0.980 

Bag of Features method 

(SVM) 

 

68.8% 89.2% 87.5% 0.886 0.773 
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Figure 3. Examples of accurately detected artefacts. Colours denote the algorithm classifications. A) 

Biological Rhythm correctly identified. Annotation was on P4-O2, P3-O1, T6-O2, and T5-O1, with 

the clearest annotation on T5-O1 for the entire segment. B) Device Interference correctly identified. 

The annotation was on P4-O2, C3-P3, F8-T4, F7-T3 (0-18s). C) Electrode pop correctly identified. 

Electrode pop annotated on F7-T3 and T3-T5 (13-20s). D) Movement and EMG correctly identified. 

EMG annotated on T4-T6, T6-O2, F7-T3, T3-T5 (entire segment). Movement annotated on F3-C3 

and C3-P3 (entire segment). The calibration scale bars denote 2 s horizontally and 100 µV vertically. 
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Figure 4. Examples of algorithm misclassifications. Colours denote the algorithm classifications. A) 

Electrode annotated on Fp2-F4, F4-C4, Fp2-F8, F8-T4, T4-T6, T6-O2 (12 to 16 s) was labelled by 

the algorithm as Device Interference on Fp2-F4, F4-C4, F8-T4, T4-T6. The Electrode artefact on Fp2-

F8 was correctly identified. B)  EMG annotated on T6-O2 (8 to 22 s) was labelled by the algorithm 

as Movement. Movement annotated on F7-T3 and T3-T5 (0 to 30 s) was labelled by the algorithm as 

Electrode and EMG. C) Device Interference was annotated on Fp2-F4, Fp2-F8, F8-T4 (8 to 20 s) was 

labelled as Electrode artefact on Fp2-F8, F8-T4 and correctly identified on Fp2-F4.  D) Biological 

Rhythm annotated on P4-O2, P3-O1, T3-T5, T5-O1 (entire segment) was labelled, in part, by the 

algorithm as EMG and Clean on T3-T5.  E)  Electrode annotated on F8-T4,  T4-T6 (14 to 18 s) was 

labelled as Movement. The calibration scale bars denote 2 s horizontally and 100 µV vertically.  
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4247 3138 6626 5953 27784 686 

10.6% 0.8% 2.6% 0.9% 6.9% 78.1% 
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Figure 5: Confusion matrix of event classification on the Balanced Data, summarised over all folds 

in the ten-fold cross validation. The blue cells along the main diagonal represent correct labelling, 

with the darkness of the colours representing the size of the percentage in the cell. Percentages are 

calculated as row percentages, representing the proportion of the true labels in each predicted label. 

The numbers below the percentages are the number of segments that were annotated by an expert as 

the row event type, and labelled as the column type by the algorithm.   
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Figure 6: Visualization of the algorithms separation of artefact classes using 10% of the dataset and 

UMAP dimension reduction. Late stage (fully connected layer) used as an input into the UMAP 

algorithm. Points shaded grey represent segments correctly identified, and black represents incorrect 

identification. Coloured contours are used to show the density of annotated artefact classes in the 2 

dimensional space.  

 

Applying the artefact detection algorithm to the entire EEG recordings resulted in an overall artefact 

burden of 30% over all of the channels (sum of five artefact types, Table 3). A seizure detection 

algorithm was initially used as an additional layer of automated annotation to exclude seizure events 

[32]. Figure 7 shows the amount of data labelled as Clean by the artefact detection algorithm for each 

channel in the Double Banana bipolar montage, with Table S.5 showing the distribution of events for 

each channel. The channels at the top of the head (F4-C4, C4-P4, F3-C3, C3-P3, Fz-Cz, Cz-Pz) had 

a greater proportion of clean data (>75%) than other channels.  
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Table 3: Proportion of each event type as classified by the artefact detection algorithm in complete 

EEG recordings, after processing by seizure detection. 

Labelled signal Overall 

Proportion 

Proportion per patient 

Median (IQR) 

Range 

Min - Max 

Clean EEG  64.6% 65.7% (52.1% - 82.6%) 13.0% - 97.6% 

Device Interference 1.4% 0.1% (0% - 0.4%) 0% - 18.6% 

EMG 15.8% 12.6% (4.9% - 22.6%) 0% - 72.9% 

Movement 8.8% 4.2% (0.2% - 11.2%) 0% - 65.9% 

Electrode 2.0% 1.3% (0.6% - 2.2%) 0% - 16.7% 

Biological Rhythm  1.9% 0.1% (0% - 1.4%) 0% - 24.7% 

Seizure 5.4% 2.7% (0.5% - 5.6%) 0% - 43.8% 

 

 

 
Figure 7: Proportion of clean data in each bipolar channel from the international 10-20 system in the 

Double Banana montage. Estimated from applying the artefact detection algorithm to the entire 

training dataset. 
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3.2 Validation Results 

 

The accuracy of our artefact detection algorithm (trained on all of the Balanced Dataset) when applied 

to the validation dataset is shown in Figure 8. A 6 Class accuracy of 73% was achieved, with a binary 

accuracy of 87%, sensitivity of 86%, AUC of 0.872 and F1 of 0.899. The accuracy was significantly 

lower than estimated with 10-fold cross-validation on the developmental set (the 95% bootstrapped 

confidence intervals for differences in both 6 Class accuracy and binary accuracy did not contain 

zero, with [2.09, 27 .05] for 6 Class and [2.72 16.22] for binary). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Confusion matrix of event classification on the validation data. The blue cells along the 

main diagonal represent correct labelling, with the darkness of the colours representing the size of the 

percentage in the cell. Percentages are calculated as row percentages, representing the proportion of 

the true labels in each predicted label. The numbers below the percentages are the number of segments 

that were annotated by an expert as the row event type, and labelled as the column type by the 

algorithm. 
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A potential explanation for the reduction in algorithm performance was the differences in process of 

annotation between the training and validation datasets. For example, the median average duration 

for each event type annotated was longer in the validation dataset, with median duration of 38 s for 

EMG, 28 s for MO compared to 15 s and 12 s in the training dataset (Table S.1).  

The annotated segments from the training data also had different EEG characteristics compared to 

the annotated segments in the validation dataset (Figure 9). For a number of the artefact classes in the 

validation data, the mean frequency is closer to that of the clean segments in the training dataset. In 

the majority of the classes, including Clean, the mean amplitude is increased in the validation data.   

 
Figure 9: A comparison of A) the Mean Frequency of the EEG, and B) the Mean Amplitude of the 

EEG in the annotated segments between training and validation datasets. One tenth of the training 

data compared to all of the validation annotations. Distributions of Clean segments from the training 

dataset is only one tenth of dataset. Training (T) and Validation (V) datasets for the Clean segments, 

and artefact segments Device Interference (DI), Electromyography (EMG), Movement (MO), 

Electrode (EL), and Biological Rhythm (BIO). A) Clean, DI, MO and EL segments are similar in 

Mean Frequency in both training and validation, with substantial differences seen in EMG and BIO 

segments. B) The distribution of Mean Amplitude differs largely for BIO, as well as other differences 

in centre for DI,  
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4. Discussion 

 

We have developed an algorithm for detecting several types of common artefacts in the neonatal EEG. 

This algorithm uses a deep residual net trained on EEG data annotated by a human expert. The main 

innovation of this paper lies in the development of a unique system of artefact detection that not only 

detects the presence of artefact in neonatal EEG but also classifies the type of artefact. This algorithm 

can be used i) to aid bedside nursing staff in monitoring EEG quality in real time, in order to take 

corrective actions (e.g. detection of EL artefact can suggest poor contact of specific electrodes), and 

ii) to support EEG review by clinician’s and complement future diagnostic tools, such as seizure 

detectors, lesion detectors, or EEG background classifiers [28, 32-35]. 

 The detection algorithm differentiated between artefact and artefact-free EEG with an accuracy of 

95% and identified the type of artefact with an accuracy of 85% on a developmental subset of 79 

EEG recordings. Applying the artefact detection algorithm to the entire EEG dataset showed that the 

commonly used electrode positions used in long-term, limited channel monitoring (frontal, central, 

and parietal locations) were the least susceptible to artefacts. The detection accuracy of the algorithm 

on an independent validation set was 87% (temporal averaging was not applied in this case), 

suggesting practical utility.  

The accuracy of the neural net stage of the algorithm to detect artefact in general was high (95% 

accuracy, Table 2 and Figure 5), although the performance of the neural net in terms of identifying 

specific artefacts varied with the type of artefact to be detected (from 57% to 92%, Figure 5). Artefacts 

that were the most difficult to detect were those that were i) rarer in the dataset such as DI and BIO 

(Table S.1), ii) more variable with several distinct phenomena represented with a class such as BIO 

and EL, iii) contained periods of uncontaminated EEG activity such as EL and BIO, or iv) contained 

a mixture of artefact types such as EMG and MO (Figure 4B). These deficits may be overcome by 

improving the classifier design and implementation, improving the time resolution of the annotation 
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and redefining the artefact classes, e.g. either combining movement and EMG or adding a separate 

EMG + movement class. 

The accuracy of the artefact detection algorithm was significantly reduced in the validation data 

compared to results obtained using cross-validation on the developmental set. Inspection of the 

quantitative summary measures between correct and incorrect detections (Figure 9) suggests that 

portions of the validation data within several artefact classes have different EEG characteristics to 

those present in the training/development dataset. While both datasets were obtained from the same 

hospital and using the same EEG machine, there are several technical and practical differences 

between datasets: EEG acquisition, annotation, and lastly the generalizability of the training data. We 

have shown that the 4-channel montage used in the validation dataset is particularly robust to the 

presence of artefact, which i) reduces the probability of artefact (Figure 7) and ii) potentially dilutes 

the manifestation of artefact on the EEG. The annotation of artefact is also not trivial and susceptible 

to different interpretations (subjective). The reliance on human annotations is the main challenge and 

limitation for developing computational artefact detectors/classifiers. There are no objective criteria 

for the minimal presence (i.e., detection threshold) of artefacts, and it is also well known that several 

artefacts are often seen at the same time (e.g. MO and EMG). More annotated recordings using a 

consistent process of annotations from multiple centers would improve the performance and 

generalisability of the algorithm.  

There is a dearth of methods available for artefact detection in the neonatal EEG. Neonatal EEG is 

different from the EEG of children and adults, it has significant power in lower frequencies unique 

patterns relating to normal and abnormal function and can provide useful information to clinicians 

when recorded with limited channel montages [6, 36]. These differences mean that artefact detection 

methods based on the analysis of adult EEG (a more mature field), at best, need to be re-trained on 

neonatal training data and, at worst, cannot be effectively implemented. Nevertheless, there have been 

attempts at detecting artefact in neonatal EEG. Schetinin and Schult [20] use a ‘bag of features’ 
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classified by a hybrid decision tree/polynomial neural network to detect artefacts during sleep in the 

neonatal EEG with a binary accuracy of 73.5±2.8%. In this paper, we achieve comparable accuracy 

(median binary accuracy 92%, IQR: 86-95%) using a similar process (bag of features classified by a 

support vector machine) based on our earlier work [5]. We show that the use of neural networks 

significantly improves the accuracy beyond these methods (median binary accuracy 98%, IQR: 95-

99%) to a level that is comparable to the state of the art in children and adults [37]. 

We have developed a neonatal EEG artefact detection algorithm based on a residual neural network. 

The algorithm achieves good accuracy for both identifying the presence and type of artefact 

contaminating an EEG recording. Future work includes: i) the investigation of different neural 

network architectures, data augmentations, training options and data processing, ii) developing 

potential improvements to the process of annotating EEG artefacts, iii) performing studies of inter-

rater agreement to set appropriate performance benchmarks, and iv) the acquisition of larger, multi-

center datasets to allow algorithms to experience a large diversity of artefacts and compensate for 

potential sources of heterogeneity. 
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Supplementary Material 

 

Table S.1: Identified events annotated in the 79 EEG recordings 

Labelled signal #Events (%) Average Duration (s), 

median (range) 

Total Duration of events 

(min) 

Clean EEG  359 (11.0) 127 (4 – 1682) 1250.2 

Device Interference 232 (7.1) 12 (2 – 450) 75.8 

EMG 1167 (35.7) 15 (2 – 3135) 881.4 

Movement 540 (16.5) 12 (1 – 315) 181.2 

Electrode 894 (27.4) 4 (1 – 520) 144.1 

Biological Rhythm 78 (2.4) 40 (8 – 2384) 134.4 

Total  3270  2667.1 (44.5 h) 

 

 

 

Table S.2: Number of segments in each fold of the cross-validation 

Fold 

Number of segments in training (Balanced Data) 

Total Clean 
Device 

Interference 
EMG Movement Electrode 

Biological 

Rhythm 

1 33613 7743 599 13090 1117 903 10161 

2 32584 9179 208 5528 13179 3605 885 

3 60476 10988 15991 5409 146350 747 12706 

4 29350 9363 6947 7782 3531 502 1225 

5 37907 5817 2122 14509 6617 8047 795 

6 40864 8656 99 8526 11133 10147 2303 

7 39638 10852 4528 8225 8646 4680 2527 

8 47496 8977 1746 6029 1051 14825 14868 

9 24915 6490 4730 5170 5424 2261 840 

10 56951 6695 25332 6093 3560 2537 12734 
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Table S.3: Neural Network architectures and training options considered  

 

Network architectures 

Network Description Typical filter size Total layers 

1 Resnet: shallow depth, normal filter width 7 32 

2 Resnet: shallow depth, wide filter width 15 32 

3 Resnet: shallow depth, really wide filter width 31 32 

4 Resnet: shallow depth, really really wide filter width 63 32 

5 Resnet: normal depth, narrow filter width 7 64 

6 Resnet: normal depth, normal filter width 15 64 

7 Resnet: normal depth, wide filter width 31 64 

8 Resnet: deep depth, really narrow filter width 3 112 

9 Resnet: deep depth, narrow filter width 7 112 

10 Normal: normal depth, narrow filter width 7 24 

11 Normal: normal depth, normal filter width 15 24 

12 Normal: normal depth, wide filter width 31 24 

13 Normal: deep depth, narrow filter width 7 33 

14 Normal: deep depth, normal filter width 15 33 

15 Normal: deep depth, wide filter width 31 33 

 16 Support Vector Machine (SVM) based on [5]   

Training Options 

 Description  Solver Minibatch Size 

1 No preprocessing SGDM 1024 

2 Smaller minibatch size SGDM 512 

4 Adaptive moment estimation (Adam) Adam 2048 

5 Adam longer minibatch size Adam 4096 

 

 

 

Table S.4: Optimal number of segments in smoothing window 

Class  Ten folds – Segments (no. folds) Overall - Segments 

Clean  3 (10) 3 

Device Interference 5 (9), 9 (1) 5 

EMG 5 (7), 3 (3) 5 

Movement 13 (6), 15(4) 13 

Electrode 5 (9), 7 (1) 5 

Biological Rhythm 27 (5), 29(5) 27 
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Table S.5: Distribution of label given by artefact detection algorithm or seizure detection algorithm 

when applied to whole recordings (n=79). Bolded percentages in the Clean column are above 70%, 

and in the artefact columns are above 20%.  

Channel Event type labelled by artefact detection algorithm, or seizure detection algorithm (%) 

  
Clean 

Device 

Interference 
EMG Movement Electrode 

Biological 

Rhythm 
Seizure 

Fp2-F4 57.0 1.0 28.9 6.2 2.6 0.6 3.7 

F4-C4 78.6 1.4 6.3 7.4 0.9 0.3 5.1 

C4-P4 84.2 0.9 0.6 7.5 0.7 1.0 5.2 

P4-O2 68.3 1.5 4.2 11.7 1.5 7.2 5.6 

Fp1-F3 58.2 0.5 29.4 5.8 2.2 0.1 3.8 

F3-C3 76.6 1.5 7.9 7.7 1.5 0.1 4.8 

C3-P3 84.5 1.8 0.1 6.9 0.7 0.0 6.0 

P3-O1 69.4 1.3 4.4 13.3 1.0 4.1 6.6 

Fp2-F8 49.6 1.7 31.6 7.0 3.3 0.6 6.2 

F8-T4 53.5 1.6 25.4 9.9 3.2 1.1 5.4 

T4-T6 48.7 1.5 26.8 11.1 3.3 3.4 5.1 

T6-O2 59.8 1.8 16.5 11.4 2.7 2.7 5.1 

Fp1-F7 50.0 1.8 32.8 6.9 2.6 0.5 5.3 

F7-T3 51.2 1.8 28.6 9.5 2.8 1.1 5.0 

T3-T5 50.6 1.3 25.8 12.3 2.6 2.5 4.8 

T5-O1 56.1 1.0 15.3 11.8 2.1 7.8 5.9 

Fz-Cz 82.4 2.5 0.0 5.3 0.9 1.7 7.3 

Cz-Pz 84.5 1.0 0.0 7.2 0.6 0.0 6.7 
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Figure S.1: The Deep Residual CNN used in the artefact detection system. Curved lines are shortcuts. 

Dashed shortcuts increase dimensions with padding.   
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Figure S.2: Performance of the trialled neural network architectures, and training options of the best 

performing network. A) Each networks except the SVM was trained twice, each time with different 

starting seed. B) The far-left network (*) is Network 2 from A. Scenario labels; SGDM is stochastic 

gradient descent method, Adam is the Adam method, and mbs is minibatch size.     

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445349doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445349
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 

1. Backman, S., et al., Swedish consensus reached on recording, interpretation and reporting 

of neonatal continuous simplified electroencephalography that is supported by amplitude-

integrated trend analysis. Acta Paediatr, 2018. 107(10): p. 1702-1709. 

2. Watanabe, K., F. Hayakawa, and A. Okumura, Neonatal EEG: a powerful tool in the 

assessment of brain damage in preterm infants. Brain and Development, 1999. 21(6): p. 

361-372. 

3. Hagmann, C.F., N.J. Robertson, and D. Azzopardi, Artifacts on Electroencephalograms May 

Influence the Amplitude-Integrated EEG Classification: A Qualitative Analysis in Neonatal 

Encephalopathy. Pediatrics, 2006. 118(6): p. 2552-2554. 

4. Boylan, G.B., N.J. Stevenson, and S. Vanhatalo, Monitoring neonatal seizures. Semin Fetal 

Neonatal Med, 2013. 18(4): p. 202-8. 

5. Stevenson, N.J., et al. Artefact detection in neonatal EEG. in 2014 36th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society. 2014. 

IEEE. 

6. Hrachovy, R.A. and E.M. Mizrahi, Atlas of neonatal electroencephalography. 2015: 

Springer Publishing Company. 

7. Koolen, N., et al., Automated classification of neonatal sleep states using EEG. Clinical 

Neurophysiology, 2017. 128(6): p. 1100-1108. 

8. Stevenson, N.J., et al., Functional maturation in preterm infants measured by serial 

recording of cortical activity. Scientific Reports, 2017. 7(1): p. 12969. 

9. Stevenson, N.J., et al., Automated cot-side tracking of functional brain age in preterm 

infants. Annals of Clinical and Translational Neurology, 2020. 7(6): p. 891-902. 

10. Stevenson, N.J., et al., Reliability and accuracy of EEG interpretation for estimating age in 

preterm infants. Annals of Clinical and Translational Neurology, 2020. 7(9): p. 1564-1573. 

11. Boylan, G., et al., An international survey of EEG use in the neonatal intensive care unit. 

Acta Paediatr, 2010. 99(8): p. 1150-5. 

12. Suk, D., et al., Amplitude-Integrated Electroencephalography in the NICU: Frequent 

Artifacts in Premature Infants May Limit Its Utility as a Monitoring Device. Pediatrics, 

2009. 123(2): p. e328. 

13. Griesmaier, E., et al., Need for quality control for aEEG monitoring of the preterm infant: a 

2-year experience. Acta Paediatr, 2011. 100(8): p. 1079-83. 

14. De Vos, M., et al., Automated artifact removal as preprocessing refines neonatal seizure 

detection. Clinical Neurophysiology, 2011. 122(12): p. 2345-2354. 

15. Inuso, G., et al. Brain Activity Investigation by EEG Processing: Wavelet Analysis, Kurtosis 

and Renyi's Entropy for Artifact Detection. in 2007 International Conference on Information 

Acquisition. 2007. 

16. Górecka, J. Detection of ocular artifacts in EEG data using the Hurst exponent. in 2015 

20th International Conference on Methods and Models in Automation and Robotics 

(MMAR). 2015. 

17. Barlow, J.S., Automatic elimination of electrode-pop artifacts in EEG's. IEEE transactions 

on bio-medical engineering, 1986. 33(5): p. 517-521. 

18. Nolan, H., R. Whelan, and R.B. Reilly, FASTER: Fully Automated Statistical Thresholding 

for EEG artifact Rejection. J Neurosci Methods, 2010. 192(1): p. 152-62. 

19. Gasser, T., J.C. Schuller, and U.S. Gasser, Correction of muscle artefacts in the EEG power 

spectrum. Clinical Neurophysiology, 2005. 116(9): p. 2044-2050. 

20. Schetinin, V. and J. Schult, The combined technique for detection of artifacts in clinical 

electroencephalograms of sleeping newborns. IEEE Trans Inf Technol Biomed, 2004. 8(1): 

p. 28-35. 

21. Kauppila, M., S. Vanhatalo, and N.J. Stevenson. Artifact detection in neonatal EEG using 

Gaussian mixture models. in EMBEC & NBC 2017. 2018. Singapore: Springer Singapore. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445349doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445349
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 

 

22. San-Segundo, R., et al., Classification of epileptic EEG recordings using signal transforms 

and convolutional neural networks. Computers in Biology and Medicine, 2019. 109: p. 148-

158. 

23. Tapani, K.T., S. Vanhatalo, and N.J. Stevenson, Time-Varying EEG Correlations Improve 

Automated Neonatal Seizure Detection. Int J Neural Syst, 2019. 29(4): p. 1850030. 

24. Stevenson, N.J., et al., A dataset of neonatal EEG recordings with seizure annotations. 

Scientific Data, 2019. 6(1): p. 190039. 

25. Nevalainen, P., et al., Bedside neurophysiological tests can identify neonates with stroke 

leading to cerebral palsy. Clin Neurophysiol, 2019. 130(5): p. 759-766. 

26. Temko, A., et al., Inclusion of temporal priors for automated neonatal EEG classification. 

Journal of Neural Engineering, 2012. 9(4): p. 046002. 

27. He, K., et al. Deep Residual Learning for Image Recognition. in 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR). 2016. 

28. O'Shea, A., et al., Neonatal seizure detection from raw multi-channel EEG using a fully 

convolutional architecture. Neural Netw, 2020. 123: p. 12-25. 

29. Murphy, K.P., A Probabilistic Perspective. Text book, 2012. 

30. Sasaki, Y., The truth of the F-measure. Teach Tutor Mater, 2007. 

31. McInnes, L., et al., UMAP: Uniform Manifold Approximation and Projection. Journal of 

Open Source Software, 2018. 3: p. 861. 

32. Stevenson, N., K. Tapani, and S. Vanhatalo, Hybrid neonatal EEG seizure detection 

algorithms achieve the benchmark of visual interpretation of the human expert(). Conf Proc 

IEEE Eng Med Biol Soc, 2019. 2019: p. 5991-5994. 

33. Stevenson, N., et al., An Automated System for Grading EEG Abnormality in Term Neonates 

with Hypoxic-Ischaemic Encephalopathy. Annals of biomedical engineering, 2013. 41: p. 

775-85. 

34. Iyer, K.K., et al., Early Detection of Preterm Intraventricular Hemorrhage From Clinical 

Electroencephalography. Read Online: Critical Care Medicine | Society of Critical Care 

Medicine, 2015. 43(10): p. 2219-2227. 

35. Dereymaeker, A., et al., Automated EEG background analysis to identify neonates with 

hypoxic-ischemic encephalopathy treated with hypothermia at risk for adverse outcome: A 

pilot study. Pediatr Neonatol, 2019. 60(1): p. 50-58. 

36. Hellström-Westas, L., L.S. De Vries, and I. Rosén, Atlas of amplitude-integrated EEGs in 

the newborn. Second edition. ed. Amplitude-integrated EEGs in the newborn. 2008, 

London: Informa Healthcare. 

37. Malafeev, A., et al., Automatic artefact detection in single-channel sleep EEG recordings. 

Journal of Sleep Research, 2019. 28(2): p. e12679. 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445349doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445349
http://creativecommons.org/licenses/by-nc-nd/4.0/

