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Large-scale dynamics of the brain are routinely modelled us-
ing systems of nonlinear dynamical equations that describe the
evolution of population-level activity, with distinct neural pop-
ulations often coupled according to an empirically measured
structural connection matrix. This modelling approach has
been used to generate insights into the neural underpinnings of
spontaneous brain dynamics, as recorded with techniques such
as resting state functional MRI (fMRI). In fMRI, researchers
have many degrees of freedom in the way that they can pro-
cess the data and recent evidence indicates that the choice of
pre-processing steps can have a major effect on empirical esti-
mates of functional connectivity. However, the potential influ-
ence of such variations on modelling results are seldom consid-
ered. Here we show, using three popular whole-brain dynam-
ical models, that different choices during fMRI preprocessing
can dramatically affect model fits and interpretations of find-
ings. Critically, we show that the ability of these models to ac-
curately capture patterns in fMRI dynamics is mostly driven
by the degree to which they fit global signals rather than inter-
esting sources of coordinated neural dynamics. We show that
widespread deflections can arise from simple global synchroni-
sation. We introduce a simple two-parameter model that cap-
tures these fluctuations and which performs just as well as more
complex, multi-parameter biophysical models. From our com-
bined analyses of data and simulations, we describe benchmarks
to evaluate model fit and validity. Although most models are
not resilient to denoising, we show that relaxing the approxima-
tion of homogeneous neural populations by more explicitly mod-
elling inter-regional effective connectivity can improve model
accuracy at the expense of increased model complexity. Our
results suggest that many complex biophysical models may be
fitting relatively trivial properties of the data, and underscore a
need for tighter integration between data quality assurance and
model development.
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Introduction
Since the seminal work of Biswal et al. (1), a great deal of re-
search in functional magnetic resonance imaging (fMRI) has
focused on understanding spontaneous blood-oxygenation-
level-dependent (BOLD) signal fluctuations recorded in the

absence of an explicit task––the so-called resting state (2,
3). These spontaneous signal fluctuations are synchro-
nized across distributed neural systems (4) in a way that
can robustly reveal, across individuals and species, an un-
derlying network architecture that mirrors task-based co-
activation patterns and underlying anatomical connectivity
(5–11). These resting-state networks are sufficiently unique
to enable identification of individual people, akin to a “con-
nectome fingerprint” (12, 13), and they can be used to predict
performance in independently measured behavioural tasks
(14, 15). They are heritable (16, 17), influence task-evoked
activation and behaviour (18, 19), and are altered in diverse
clinical disorders (2, 20), suggesting that they may represent
viable clinical biomarkers (21, 22).
These intriguing empirical properties of spontaneous fMRI
dynamics raise questions about their physiological origins.
Due to limitations on spatial and temporal resolution, fMRI
alone cannot reveal these origins. To this end, large-scale bio-
physical models of neural activity have been used to bridge
the gap between the limited measures provided by fMRI and
the underling mechanisms that might generate the observed
signal properties. The most popular class of dynamic neu-
ral models (DNMs) consider activity at the level of meso-
scopic neuronal populations, delineated using a particular re-
gional parcellation of the brain (23). The models simulate
the aggregate activity of each parcellated region through a
series of dynamical equations whose evolution is governed
by key biophysical constraints and a pre-specified form of
coupling between populations. Regional signal properties, or
measures of pairwise or multivariate coupling, can then be
compared between the simulated and empirical data. These
DMNs allow investigators to artificially manipulate neural
populations, test how changes in structural connectivity af-
fect function (7, 8), and make predictions about the effects of
lesions on resting-state networks (24).
For present purposes, DNMs have three critical ingredients.
The first ingredient is a biophysically relevant model of pop-
ulation dynamics, which describes the net neuronal activity
in each brain region. Numerous models and methods have
been described (see Deco et al. (23) and Breakspear (25) for
reviews) but the key property of all such models is that they
assign, to small patches of neural tissue, populations of exci-
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tatory and inhibitory neurons that govern the local dynamics.
Regardless of the model, coupling between these patches of
cortex - represented as nodes in the network – is mediated
via excitatory to excitatory projections (though they can be
excitatory to inhibitory see Deco et al. (26)). At each node,
the resultant neural dynamics are then translated to a BOLD
forward model that allows a direct simulation of resting state
fMRI (27–29).
The second ingredient of DNMs is an anatomically defined
connectivity matrix that couples the neural populations. This
matrix is typically defined using empirical estimates of struc-
tural connectivity (SC) between parcellated regions (a con-
nectome - see Fig. 1). In human neuroimaging experiments,
the connectome is normally mapped using diffusion weighted
MRI, so the underlying SC matrix is weighted and undirected
(although some models of species with available tract-tracing
data have incorporated directionality; e.g,. (30, 31) and see
Kale et al. (32) for the importance in using directed connec-
tomes).
The third key ingredient of a DNM is its set of biophysi-
cally relevant parameters, which can be classed into parame-
ters that are defined globally or at the level of each network
node. Node-level parameters translate neuronal dynamics to
the population level. For example, the membrane threshold
potential for a neuronal population is parametrised by the
mean and variance of this voltage potential across a small
patch of cortex (23, 26, 33, 34). In most cases, these are fixed
at specific values, and all brain regions are treated as having a
homogeneous structure and dynamics (8, 26, 35). Recent ev-
idence has suggested benefits to incorporating regional het-
erogeneity in some of these parameters (31, 34, 36–38) at the
cost of more free parameters and increased model complex-
ity.
Most DNMs also contain a global parameter, denoted G, that
is used to scale the SC matrix uniformly.This is because the
weights of the SC matrix are defined in arbitrary units that
are not calibrated with the population-level models. The pa-
rameter G thus defines a baseline level of coupling between
populations, and its specific value can have a large influence
on the dynamics - values that are too high result in glob-
ally synchronous activity and values that are too low cause
asynchronous fluctuations (e.g., G = 0 are truly uncoupled
nodes). It is thus customary to fit the optimal value of G
to the data, depending on the specific feature one wants to
model. Most commonly, G is tuned to maximise the similar-
ity between the observed and synthetic FC matrices, but other
properties that capture aspects of FC dynamics through time
have also been used (34, 36) (we evaluate an example below).
We note that there multiple ways of formulating whole-brain
models at the population level, from neural masses to fields
(23, 39), but here we focus on the most common network-
based approach of modelling whole-brain dynamics in which
population masses are coupled via the connectome, with a
global coupling parameter, G.
In any modelling exercise, the quality of the conclusions that
one draws from the model depend heavily on the quality of
the data being modelled; the old adage "garbage in, garbage

out" rings true. fMRI data are notoriously noisy, and resting-
state fMRI in particular has been the subject of considerable
debate over how various sources of noise should be mod-
elled and removed (40, 41). One issue that has attracted
considerable attention is the presence of so-called global sig-
nal fluctuations or anatomically widespread signal deflec-
tions (WSDs): transient yet coordinated signal changes that
affect the vast majority of voxels in an fMRI dataset (42, 43).
Such deflections have been tied to various sources of noise,
including head motion (42), heart rate variability (42), and
respiration (44). Despite several efforts to remove these ef-
fects through physiological modelling (45), improved motion
correction algorithms, and advances in fMRI acquisition (e.g.
(46)) and de-noising (42, 44, 47), they have remained a chal-
lenge for the field. Different pipelines show variable efficacy
in removing WSDs and other noise sources, and there is no
widely-accepted gold standard method (40–42, 44).

WSDs are most clearly visualised using “carpet plots” (or
gray plots), in which brain voxels are depicted as rows, time
points as columns, and signal changes as grayscale colour
variations (43, 48, 49). For example, Figure 2 shows clear
WSDs due to head motion (red shaded), whereas Figure 3
shows WSDs unrelated to head motion (blue shaded) which
may be tied to respiratory variations (42). These WSDs will
obviously increase the global coherence of voxel-level sig-
nals, often in a way that increases correlations between FC
estimates and measures of noise related to head motion (40–
43) and physiology (42, 48). Such events have important im-
plications for DNMs, given that G, which defines the global
coupling of the model, is explicitly fitted to the data. More
specifically, given a sufficiently noisy dataset, it is likely that
the process of optimising G in a given DNM will simply fit
the WSDs in the data. Such issues of data quality have sel-
dom been considered in the modelling literature, with many
DNMs fitted to data processed using a pipeline that does not
explicitly include a step (such as GSR for instance) to remove
WSDs (26, 34, 50). Thus, it is possible that considerable
structured, global noise may still be present in the data.

Previous studies have used DMNs to model large scale brain
dynamics and have reproduced FC matrices from structural
connectivity patterns across many different experimental co-
horts (8, 25, 26, 35, 36, 50–52). Reproducing FC is the base-
line measure of model accuracy, and studies have reached rel-
atively high accuracy reaching up to a correlation of r= 0.78
(34) between the empirical and the modelled FC matrix.
However, reproducing FC structure of data containing glob-
ally synchronized activity is relatively simple to reproduce
(See results) and many fMRI datasets are well known to con-
tain large WSDs (42, 43) which may be driven by spurious
sources (42, 44). This puts into question whether DNMs are
really performing well at capturing subtle whole-brain com-
munication dynamics or whether they are simply perform-
ing well at capturing relatively trivial globally synchronized
WSDs.

In light of these observations, this work investigates the ways
in which different denoising strategies (to remove WSDs)
in resting-state fMRI data influence DNM fits, and the dy-
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namic regimes that the fitted DNMs display. Specifically, we
use a standard open source data set (53) that has previously
been denoised using three different approaches (43), which
range from “lenient” to “moderate” to “aggressive” in their
approach to WSD removal. We test the validity and the fit-
ting quality of three popular models in the literature given the
same input data, but denoised in different ways.
We report several key findings. First, like fMRI data,
the model simulations themselves exhibit WSDs with vary-
ing degrees of strength and brain-wide coverage (i.e., from
groups of correlated regions, to whole brain synchronisation).
In all these models, the prominence of WSDs tracks the value
of the global coupling parameter, G. Second, model fits tend
to be higher for data with more prominent WSDs, pushing
the models into a more globally synchronous regime. Third,
with more aggressive preprocessing, model fits reduce and
the dynamic regimes of the models transition from globally
synchronous to weakly synchronous. Fourth, data that have
not been processed to remove large WSDs can be accurately
fitted with a two-parameter global signal model that relies
only on node degree in the SC matrix, coupled with global
and local white noise. This result suggests that large WSDs
can be generated through simple mechanisms and that mod-
els fitted to data with WSD will only be capturing relatively
trivial global synchronization events. Finally, we find that
heterogeneous variants of DNMs, in which node and edge pa-
rameters are allowed to vary, can improve model fits in more
aggressively denoised data, at the expense of increased model
complexity. These results highlight the need for careful eval-
uation of data quality during model-fitting, and a careful con-
sideration of how model fits are interpreted, and a tighter inte-
gration between research efforts directed towards data collec-
tion and modelling. All analysis code used here is provided
as an open source toolbox available at http://github.
com/KevinAquino/modelling_comparisons/.

Imaging Methods
Resting state fMRI.

Here, we used a transparent, open rsfMRI dataset pro-
cessed using open-source pipelines from fmriprep (54).

Imaging data & preprocessing. We utilized the open source
dataset from the healthy controls of the UCLA Consortium
for Neuropsychiatric Phenomics LA5c Study (53) (v00016
openneuro.org/datasets/ds000030/).
The scanning parameters for these data are described in
(54). Briefly, task-free fMRI was acquired with an echo-
planar imaging (EPI) sequence at 3 T on a Siemens Trio 3T
MRI Scanner and a 32-channel receive-only head coil. The
fMRI imaging parameters involved echo time (TE) = 30 ms,
3 mm Inplane resolution, 34 slices with 4 mm slice thickness,
FA= 90, field of view = 192 mm, matrix = 64× 64, using
an oblique and interleaved Gradient echo EPI sequences, TR
= 2 s, and a total of 152 Volumes resulting in 304 s of resting
state fMRI. A total of 270 subjects were acquired, for which
we only focused on 121 healthy controls within the sample.

A “Base” preprocessing pipeline was used on the UCLA
dataset using fmriprep v1.1.1 as described in (43).
Briefly, this involves processing the T1-weighted anatom-
ical images using bias field correction, brain extraction,
freesurfer segmentation, and volume normalisation to the
MNI 152 Nonlinear Asymmetric template version 2009c
(55). For the functional MRI data, the minimal pre-
processing steps involve: slice time correction, motion
correction, distortion correction using a template based
B0 image, and co-registration to the T1 anatomical im-
age. The code to run all of these analyses is located at
https://github.com/BMHLab/DiCER.git
and specific details of the algorithms are detailed in Aquino
et al. (43). In the following sections, we describe de-noising
strategies that follow base preprocessing.

Denoising strategies. Functional MRI data were analysed
within the MNI 152 Asymmetric 2009c space, resampled
to the native BOLD image dimensions of each individual.
We resampled any requisite anatomical masks/images to this
space (including those that were not automatically resampled
in the fmriprep workflow).
We restrict our analysis to gray-matter voxels (GM), retain-
ing only voxels with GM probability (calculated in fmriprep)
greater than 50% to minimise partial-volume effects. We
also exclude voxels with signal intensities below 70% of the
mean fMRI signal intensity to avoid contamination by voxels
with low signal caused by susceptibility and partial-volume
effects.
ICA-based Automatic Removal Of Motion Artifacts
(AROMA) was used to generate noise regressors, which
were removed from the data using the non-aggressive
variant of the method (56). Regressors were calculated on
the spatially smoothed minimally preprocessed images (as
described within fmriprep as a 6 mm FHWM kernel) and
then applied to the unsmoothed preprocessed images.
Following ICA-AROMA, we extracted mean time courses
from eroded masks (using a 3× 3× 3 erosion kernel) of
the WM and CSF. The masks were generated by follow-
ing Parkes et al. (41) and Power et al. (42), where CSF
and WM ROIs were created from tissue probability maps in
fmriprep. We eroded the WM mask five times and the
CSF mask once. Erosion is crucial to avoid partial-volume ef-
fects from gray matter, which inflates the correlation between
WM/CSF estimates and the global-mean signal (41, 57). We
extracted these signals from the AROMA-denoised data, as
performed in Pruim et al. (56).
The above steps are fairly standard and accepted de-noising
techniques, but they are insufficient for removing widespread
WSDs that are often tied to physiological and motion-related
noise (40–43). To explicitly address the problem of WSDs,
we implemented two different types of correction: Global
signal regression (GSR), and Diffuse Cluster Estimation and
Regression (DiCER), both of which have been shown to mit-
igate the influences of WSDs in different ways (43).
For GSR, we use the mean gray-matter signal as an estimate
of the global signal, since the two are highly correlated and
grey matter contributes the most to the global signal (42, 48).
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We thus refer to regression of this signal grey matter regres-
sion (GMR) for clarity. This method is by far the most com-
monly used to address WSDs in fMRI data.
Our second processing stream removed WSDs using DiCER.
As shown in (43), GMR often results in incomplete removal
of WSDs when the data are inspected under an appropriate
re-ordering of the conventional carpet plot. DiCER itera-
tively removes WSDs by extracting representative signals for
diffuse, weakly correlated clusters of voxels. The method
shows superior denoising efficacy to GMR and can improve
statistical sensitivity within datasets (43). Critically, it can
be used to remove all WSDs, resulting in a “flattened” car-
pet plot. Whether this is desirable for fMRI processing re-
mains debatable (43, 47, 58), but we use it here to evaluate
model performance in data with minimal WSDs. Up to five
noise regressors were estimated for each individual dataset
with DiCER, as described in Aquino et al. (43).
We compare data processed with GMR and DiCER to data in
which neither step has been applied, resulting in three parallel
processing streams: (i) lenient– regression with the WM and
CSF physiological signals, denoted as ‘+2P’; and (ii) mod-
erate – regression with WM, CSF and GM signals, denoted
as ‘+2P+GMR’. (iii) aggressive – regression with WM, CSF
and DiCER regressors, denoted as ‘+2P+DiCER’. The first
two models were applied after ICA-AROMA denoising in
a single step using ordinary least squares regression imple-
mented in fsl_regfilt and the last model was applied
post (i), as DiCER targets residual WSDs in the data.
The data, including the minimally preprocessed data, were
then detrended with a 2nd order polynomial and high-
pass filtered at 0.005 Hz using AFNI’s 3dTproject.
This procedure resulted in four datasets for each sub-
ject, labeled ‘pre-ICA-AROMA’,‘ICA-AROMA+2P’, ‘ICA-
AROMA+2P+GMR’, ‘ICA-AROMA+2P+DiCER’.

Node definition and functional connectivity matrices. We de-
fined brain regions using the the Desikan Killiany atlas (59),
mapped on to cortical surface models of individual partici-
pants generated using Freesurfer (60). This cortical parcel-
laion was combined with the aseg segmentation of subcor-
tical structures also provided by Freesurfer, resulting in 82
regions. The mean fMRI time series from each region was
extracted from each of the four processing streams. Correla-
tions between time series for each pair of regions were then
estimated, resulting in a set of four connectivity FC matrices
of size 82× 82 for each subject. We note that the general
points we make here will apply regardless of the specific par-
cellation chosen.

Structural connectivity matrix (SC). We mapped structural
connectivity using Human Connectome Project (HCP) data
for 973 participants. Data were acquired on a customised
Siemens 3T “Connectome Skyra” scanner at Washington
University in St Louis, Missouri, USA using a multi-shell
protocol for the DWI with the following parameters: 1.25
mm3 voxel size, TR = 5520 ms, TE = 89.5 ms, FOV of
210× 180 mm, 270 directions with b = 1000,2000,3000
s/mm2 (90 per b value), and 18 b = 0 volumes. Structural

T1-weighted data were acquired with 0.7 mm3 voxels, TR
= 2400 ms, TE= 2.14 ms, FOV of 224×224 mm (61, 62).
The HCP data were processed according to the HCP mini-
mal preprocessing pipeline, which included normalisation of
mean b= 0 images across diffusion acquisitions, and correc-
tion for EPI susceptibility and signal outliers, eddy-current-
induced distortions, slice dropouts, gradient nonlinearities
and subject motion. T1-weighted data were corrected for gra-
dient and readout distortions prior to being processed with
Freesurfer (62). Tractography was conducted using the Fi-
bre Orientation Distributions (iFOD2) algorithm, as imple-
mented in MRtrix3 (63), which utilises Fibre Orientation Dis-
tributions (FODs) estimated for each voxel using Constrained
Spherical Deconvolution (64–66). This approach can im-
prove the reconstruction of tracts in highly curved and cross-
ing fibre regions (64, 66).
Streamline seeds were preferentially selected from areas
where streamline density was under-estimated with respect
to fibre density estimates from the diffusion model (14). We
used Anatomically Constrained Tractography to further im-
prove the biological accuracy of streamlines (67). To create
a structural connectivity matrix, streamlines were assigned
to each of the closest regions in the parcellation within a
5 mm radius of the streamline endpoints (68), yielding an
undirected 82× 82 connectivity matrix per subject. The re-
sulting matrices were averaged to form a group-average SC
matrix which was normalised to have maximum connectivity
0.2.

Quality control methods. We are interested in understand-
ing how DNMs perform following the application of differ-
ent denoising (i.e. the removal of signals associated to non-
neuronal fluctuations) pipelines to fMRI data. Implicit in this
comparison is the notion that some pipelines may be more
effective than others in removing WSDs and other sources of
noise (40, 41, 43). We thus use several indices of denoising
efficacy, defined at both the individual and group level. We
note that our analyses are restricted only to subjects that pass
strict inclusion criteria, as described in Aquino et al. (43),
which includes only participants with low-to-moderate head
motion (Mean framewise displacement: FD< 0.2, only al-
lowing 20% of frames to pass FD= 0.25, and excluding sub-
jects that have 5 mm FD spikes).
At the individual level, we use carpet plots to evaluate de-
noising efficacy. We construct these plots for each partici-
pant by taking each fMRI time series and performing a z-
score time series for each subject. In these plots, WSDs
appear as large vertical bands; the plots can thus be used
to visually inspect the degree to which a given preprocess-
ing pipeline has removed these deflections. Reordering the
rows of the carpet plot can emphasise distinct structures in
the data. As defined in Aquino et al. (43), we use two types
of ordering: (1) an ordering of voxels by their correlation to
the global signal (GSO), which can be used to identify gra-
dients of such a correlation across voxels; and (2) an order-
ing based on hierarchical clustering (CO), as implemented in
https://github.com/BMHLab/DiCER, which can be
used to reveal additional, more complex WSDs (see (43) for
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Fig. 1. Anatomical parcellation and estimated structural connectivity matrix. A The Desikan killany(59) parcellation displayed on the right inflated hemisphere of the average
subject (fsaverage). Colours on the cortex represent lobar regions described below with the shadings of these major regions indicating individual regions. B The estimated
group-representative structural connectivity matrix estimated using diffusion weighted imaging (see Methods) with connection weights plotted on a logarithmic scale. The
white lines indicate the border of the broad regions across the two cortical hemispheres and the two sides of each region in subcortex.

details).

We use CO for the data, where carpet plots are shown at the
level of individual voxels, and GSO for the models, where
carpetplots are shown at the level of parcellated regions. A
large collection of over 500 subjects of these visualisations
for the UCLA and other cohorts is available at: https:
//bmhlab.github.io/DiCER_results/. We also
quantify the “flatness” of each individual’s carpet plot using
the variance explained by the first principal component (PC)
of the voxel × time rsfMRI data matrix, denoted as ‘VE1’.
High values of VE1 indicate that a large proportion of fMRI
variance can be captured by a single component (PC1), con-
sistent with the presence of dominant WSDs.

At the group level, we consider two measures of denoising
efficacy. The first is the Quality Control–Functional Con-
nectivity correlation (QC–FC), which is a commonly used
benchmark (40–42) and is estimated as the cross-participant
correlation between FC and mean FD at each edge in an FC
network. The QC–FC correlation quantifies the association
between inter-individual variance in FC and gross head mo-
tion, indexed by mean framewise Displacement (mFD) (57).
An efficient denoising method will result in data that is less
corrupted by head motion and thus lower QC–FC scores. As
done previously (40, 41, 43), we estimate the QC–FC for
each network edge, and summarise the findings by count-

ing the percentage of p < 0.05 (uncorrected) QC–FC corre-
lations.

Modelling Methods

We evaluate the performance of three DNMs that are used
widely and have been previously shown to reproduce empir-
ical rsfMRI FC patterns (24, 26, 30, 31, 34–37, 51, 52, 69).
These models are a subset of all available neural models but
are representative of the classes of models used to fit empir-
ical rsfMRI in the literature. The models have the following
general form:

dzi
dt

= f (z,θi,C,G) , (1)

where neural activity zi(t) is described at node i, owing to
a dynamical model f that depends on all other nodes (and
populations) z, with parameters θi and structural connectivity
matrix C scaled by global parameter G. Below we describe
the details of each model.

The balanced excitation-inhibition model. The balanced
exhibition-inhibition (BEI) model uses a mean-field ap-
proach to simulate the collective behaviour of excitatory cell
populations that are in “balance” with inhibitory populations
(26). This firing rate model is an extension of the Wong
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and Wang (70) model that additionally tunes the excitatory-
inhibitory ratio of each population such that each node in the
system has a mean firing rate of 3 Hz, as suggested by inva-
sive neurophysiological recordings (see (70) and (26)). This
balance of excitatory to inhibitory connections ensures stabil-
ity of the neural populations. The model comprises coupled
stochastic differential equations that simulate the firing rates
of excitatory (E) and inhibitory populations (I):

IEi = WEI0 +w+JNS
E
i ...

...+GJN
∑
j

CijS
E
j ...

...−JiSIi + Iexternal, (2)
IIi = WII0 +JNS

E
i −SIi , (3)

dSEi (t)
dt

= −S
E
i

τE
+ (1−SEi )γrEi +σνi(t), (4)

dSIi (t)
dt

= −S
I
i

τI
+ rIi +σνi(t), (5)

rEi = H(E,IEi ), (6)
rIi = H(I,IIi ), (7)

H(x,y) = axy− bx
1− exp[−dx(axy− bx)] , (8)

where the variable IE,Ii indicates ionic current, SE,Ii denotes
the average synaptic gating variable, and rE,Ii denotes the
population firing rate. All these dynamic variables are de-
scribed at excitatory and inhibitory populations (E,I) at node
i. The parameters WE ,WI describe the overall scaling of
the excitatory and inhibitory currents respectively, w+ de-
scribes the local excitatory recurrence, JN is the excitatory
synaptic coupling, τE,I are time constants for excitatory and
inhibitory populations, γ is a kinetic rate constant. The func-
tion H(x,y) is the neuronal input-output response function
for population x due to input current y, which is parametrised
for population x with parameters ax, and bx. The function
H(x,y) defines how the net current I induces a population
level firing rate r.
The model simulates resting state activity as the neural re-
sponse to a noisy input σνi(t), where σ scales the level
of noise. We evaluated the model numerically using MAT-
LAB with an Euler-Maryuami integration scheme with time
step 0.01 ms. We note that the balancing of the dynamics
– i.e., setting the local firing rate to 3 Hz – is achieved by
adjusting the ratio of the influence of the inhibitory pop-
ulations parametrised by the parameter Ji. The value of
Ji is estimated via a greedy search algorithm that adjusts
Ji so that each node achieves an excitatory frequency of
3 Hz as described by Deco et al. (26) where the initial
estimate for the search is the fixed point of the dynamical
system (see Appendix). The parameters, and their nomi-
nal values are in Table 1. The algorithmic implementation
can be found at http://github.com/KevinAquino/
modelling_comparisons/.
To simulate BOLD dynamics, the output of the synaptic gat-
ing SE(t) is set as the neural drive, ziBEI, for the BOLD re-

sponse (see below):

ziBEI = SEi (t). (9)

Finally, we note thatG has no direct physiological analog and
is fitted to the data so as to maximise the correlation between
simulated and empirical FC estimates and minimise the dis-
crepancy between predicted and empirical dynamic FC, as
described below.

Breakspear–Terry–Friston Model. The Breakspear Terry
Friston (BTF) model simulates neuronal dynamics through
a series of neuronal masses based on the Hodgkin-Huxley
model (or equivalently the reduced Morris-Lecar model (71))
and has been used extensively in the literature (8, 24, 33, 35,
51, 52) including the influential study of the structure to func-
tion relationship of the human connectome(8). The main dy-
namical variables are the excitatory (V ) and inhibitory (Z)
membrane potentials, and the fraction of open sodium chan-
nels (W ). At the level of node i, the dynamics are derived
by using the equivalent electrical circuits of excitatory neu-
rons, averaged over a small patch of cortex, that describe the
conductance of sodium (Na), potassium (K) and calcium ions
(Ca). The dynamical equations are

dVi
dt

= −
[
gCa + rQΣ

i

]
mCa
i (Vi−V Ca)...

...−
(
gNamNa

i +QΣ
i )(Vi−V Na)...

...− gKWi (Vi−V K)...

...− gL (Vi−V L)...

...− aieZQZi + ane I, (10)
dWi

dt
= φ

τ
(mK

i −Wi), (11)

dZi
dt

= b(ani I+aeiViQ
V
i ), (12)

QX(i) = 1
2

{
1 + tanh

[
(X(i)−XT )/δX(i)

]}
, (13)

mion
i = 1

2
{

1 + tanh
[
(V(i)−V ion)/δion]} , (14)

where the firing rate QV,Zi for excitatory and inhibitory pop-
ulations are described via a sigmoid function that models the
action potential at a population level, which is parametrised
by the mean population thresholds V T ,ZT , and the vari-
ance of these thresholds δV,Z. The parameter gNa,Ca,K is
the conductance of ion channels and r is the ratio of NMDA
to AMPA receptors. The term mion

i is the ratio of the open to
closed ion channels that is described according to a sigmoid,
parametrised by the mean Nerst potentials of the ion chan-
nels V ion with the term δion capturing the variance of these
potentials.
We note that the ratio of open to closed ion Potassium chan-
nels is a special case and treated differently. As described in
Breakspear et al. (33), this ratio varies dynamically to relax
via an exponential decay in Eq. 11, where the decay param-
eter τ is the relaxation rate and φ is the temperature scaling
factor. The parameters aee,aei,aie,ane,ani are the connec-
tion weights between inhibitory (i), excitatory (e), and exter-

6 | bioRχiv Aquino et al. | Quality control of whole brain models

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.23.445373doi: bioRxiv preprint 

http://github.com/KevinAquino/modelling_comparisons/
http://github.com/KevinAquino/modelling_comparisons/
https://doi.org/10.1101/2021.05.23.445373
http://creativecommons.org/licenses/by-nc/4.0/


nal input (n) populations. The external population is mod-
elled simply as a population that has input ionic current I .
In this model, leaky currents are included that dissipate the
excitatory membrane potential with appropriate parameters
(of conductance and Nerst potential) with superscript L. The
coupling between nodes (G> 0) is mediated through excita-
tory projections, where the net firing rate from the network
onto a single node is given by

QΣ
i = (1−G)raeeQVi +Graee

∑
j,j 6=i

QVj
Cij
Di

, (15)

where Di is the weighted degree of the node (Di =
∑
jCij),

and QΣ
i modulates the contributions of sodium and calcium

excitatory membrane potentials. These equations form a
nonlinear dynamical system that, for realistic biophysical
parameters and relatively weak coupling (low G), exhibits
chaotic dynamics with weakly synchronised activity (72). It
is this regime that is typically used to model neural dynamics
(8, 35, 51, 52). As in the BEI model, G has no direct physio-
logical analog and is chosen to maximise similarity between
simulations and data (see below for more details).
The BTF model simulates spontaneous activity as the cortical
response due to unstructured white noise aneI , where I is the
nonspecific subcortical current. As the system of equations
exhibit emergent chaotic behaviour, it is only necessary to in-
clude random initial conditions across all nodes to reproduce
ongoing dynamics as opposed to the constant drive of noise
σνi(t) in the BEI model (and the Hopf model below) where
the dynamics relax back down to the fixed point following
excitation. Specifically, at each run of the BTF model, we set
initial random (with a uniform distribution) values for V,W
and Z at t = 0 that range between: [−0.6,0.2], [0,0.6] and
[−0.03,0.13] mV respectively.
The model parameter values are listed in Table 2. The model
was numerically integrated using a 4th order Runge-Kutta
scheme within the Brain Dynamics Toolbox (73) in MAT-
LAB (details within the provided toolbox).
To derive BOLD dynamics, the absolute rate of change of
the excitatory membrane potential is used as a proxy for the
glutamate uptake that drives the neurovascular response, i.e.

ziBTF =
∣∣∣∣dVi(t)dt

∣∣∣∣ , (16)

where the drive ziBTF is used in a BOLD forward model (see
below).

The Hopf bifurcation model. The BEI and BTF models at-
tempt to simulate neuronal activity as the evolution of a set of
explicitly parametrised biophysical processes. The BEI mod-
els synaptic dynamics driven by noise whereas the BTF mod-
els ion channel dynamics. The BEI model exhibits stochas-
tic noisy dynamics without explicit oscillations and the BTF
model exhibits oscillatory chaotic dynamics. An alternative
approach is to model oscillations, noise, and their combina-
tion; i.e., noisy oscillations. This can be achieved using the
supercritical Hopf bifurcation oscillator - which is a normal

form to model the dynamic behaviour present in many bio-
physically realistic models (34, 74–78). The explicit model
described in Deco et al. (34) describes dynamics for two vari-
ables xi, yi per node i through a series of coupled stochastic
differential equations:

dxi
dt

= [a−x2
i −y2

i ]xi−ωiyi... (17)

...+G
∑
j

Cij(xi−xj) +βηi(t), (18)

dyi
dt

= [a−x2
i −y2

i ]yi−ωixi... (19)

...+G
∑
j

Cij(yi−yj) +βηi(t), (20)

where a is the bifurcation parameter that, at the node level,
tunes the system to be in one of three regimes. At the in-
dividual node level without coupling (G = 0), if a > 0 the
system is in an oscillatory regime with frequency ωi, and
if a <= 0 the system lies around a fixed point perturbed by
Gaussian noise η(t) (with standard deviation β). When cou-
pling between nodes is introduced (G > 0) through the term
G
∑
jCij(yi− yj), the dynamics of the system changes its

characteristics in accordance with the bifurcation parameter
a. When a < 0, the dynamical system exhibits noisy devia-
tions about a stable fixed point, when a ≈ 0 the system ex-
hibits noisy oscillations, and when a > 0 the system exhibits
oscillatory behaviour. The frequency ωi is estimated from
resting state data itself by calculating the peak frequency for
all nodes within the narrow frequency band from 0.04 to 0.07
Hz and averaged over all subjects.
This model requires two parameters to be fitted: the global
coupling parameter G, and the bifurcation parameter a. We
use a = −0.001, as per prior work (34) and fitted G to max-
imise similarity between simulations and data (see below for
more details for all homogeneous models). The last param-
eter β determines the strength of the noise term which is set
at 0.02. The dynamical equations are solved with MATLAB,
using an Euler Muryami integration scheme (with time step
0.01 ms with the code available at http://github.com/
KevinAquino/modelling_comparisons/ with the
parameters described in Table 3.
Since the oscillations are set to the frequency of the BOLD
response, there is no need for a BOLD forward model with
the Hopf model(34).

Imposing Heterogeneity. The presented models impose uni-
form node parameters. Such models provide moderate pre-
dictive power for static FC but can have limited efficacy in
capturing dynamic (i.e. time-varying) properties of FC (34).
To improve model fitting to both static and dynamic aspects
of FC, we can increase the degrees of freedom of a given
model by introducing heterogeneity to the node-level param-
eters ((36, 38)). This is because heterogeneity of node pa-
rameters can cause changes in local dynamics (e.g., temporal
autocorrelation, excited frequencies per node, and the ratio
between noise and oscillations), which can disrupt globally
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synchronous activity and expand the dynamic range of the
system.
To limit computational burden, we evaluate a simple form of
heterogeneity within the Hopf model by varying the value of
the bifurcation parameter a at the node level and specifying a
node specific bifurcation parameter ai, yielding:

dxi
dt

= [ai−x2
i −y2

i ]xi−ωiyi...

...+G
∑
j

Cij(xi−xj) +βηi(t), (21)

dyi
dt

= [ai−x2
i −y2

i ]yi−ωixi...

...+G
∑
j

Cij(yi−yj) +βηi(t). (22)

The model is estimated following Deco et al. (34), where for
each G we optimise ai using a greedy search algorithm to
optimise the model fit to dynamic aspects of FC (34) (see
below) over N parameters.
Another way to introduce additional degrees of freedom is by
adjusting the connection weights of the structural connectiv-
ity matrix Cij , a concept we denote as “edge heterogeneity”.
As detailed in Gilson et al. (69), the aim is to modify the ex-
isting connectivity Cij between two nodes i and j to arrive
at an effective connectivity Eij which improves the match
of the dynamics between the simulated and the recorded dy-
namics. We introduce this edge heterogeneity to the node-
homogeneous Hopf model, using the optimisation procedure
described below. We denote as Hopf-node and Hopf-edge
and as the node-heterogeneous and edge-heterogeneous Hopf
models, respectively.

BOLD forward model. The neural dynamics resulting from
both the BTF (Eq. 16) and BEI models (Eq. 1) are trans-
lated to BOLD activity via the Balloon-Windkessel model
(27, 28, 79), using (Eq. 16) and (Eq. 1) as neuronal drivers
to the system (See appendix). Although the balloon model is
not a physiologically faithful model of vascular hemodynam-
ics (80–83), it can reproduce the nonlinear BOLD dynam-
ics in task fMRI and is routinely used and fitted in dynamic
causal modelling (27). We also use this model in place of
more realisitic models of the hemodynamic response(83–85)
for adequate comparisons with previous studies of large-scale
brain modelling.
As the Hopf bifurcation model simulates general dynamics it
does not need a forward model as the dynamics of xj can be
set at the time scale and properties of BOLD fMRI fluctua-
tions.
For all models, a total of 5 minutes of spontaneous activity
was simulated and downsampled to a sampling rate of 2 s,
mirroring the time scale of typical single-band resting state
fMRI data and the specific dataset considered here.

Parameter Optimization. While all of the presented mod-
els have parameters that are based on physiological record-
ings (BTF, BEI) or direct measurements of dynamics (Hopf),
they additionally require a specification of the global scaling

hyperparameter G. This parameter has no direct analogue
with data and is chosen to optimise the match between sim-
ulated data and experiment. Below we describe the metrics
that we used to quantify model fit and the general approach
for optimising G in homogeneous models (models with uni-
form node parameters). We then describe further optimisa-
tion steps taken for the Hopf-node and Hopf-edge heteroge-
neous models. For each of the models considered, at each
possible value of G, the resting state simulation is run for
304 seconds (post initial transients in the dynamic models)
and run 108 times to match the number of subjects in the em-
pirical data (that pass quality control measures).

Assessing model performance. We evaluate model perfor-
mance with respect to static and dynamic FC properties as
has been done previously (26, 34). For static FC, we first es-
timate Pearson correlations between every pair of simulated
regional time series in the model to generate a synthetic FC
matrix. We then quantify static FC model fit as the corre-
lation, Rs, between the upper triangles of the z-transformed
synthetic (FCs) and empirical (FCe) FC matrices:

Rs = corr
[
tanh−1(FCe),tanh−1(FCs)

]
, (23)

as performed in Deco et al. (26). This metric ranges from−1
to 1, whereRs = 0 implies the model and data are completely
uncorrelated an |Rs| = 1 implies an exact correlation of the
functional connectivity structure between data and model.
To fit dynamic properties of FC, we focus on the phase-
derived functional connectivity dynamics (FCD). This mea-
sure is an improvement on previous FCD metrics (34) as it is
not based on amplitude and evaluates phase-lagged coupling
structure over time. First, the time series at each node is fil-
tered with a 2nd order band-pass Butterworth filter (between
0.04 and 0.7 Hz). The instantaneous analytic phase θj(t)
from each node j is estimated by using the Hilbert transform
and the cosine of phase difference between node i and j ,
∆c(i, j, t) is then calculated as follows:

∆c(i, j, t) = cos[θi(t)−θj(t)]. (24)

This metric is the instantaneous phase difference between
node i and j at time t, and thus captures the level of syn-
chrony between nodes at each time point.
To determine the time-varying aspects of this synchrony
across all nodes, we compute the dot product (φuv) between
the upper triangle of the matrix in Eq. 24 (i.e. across all
nodes) in one time instance τu vs another time instance τv
i.e.

φuv = 1
dc(u)dc(v)

∑
i>j

∆c(i, j,τu)∆c(i, j,τv), (25)

where:

dc(u) =
√∑
i>j

[∆c(i, j,τu)]2. (26)

We can interpret φuv as the similarity of the global synchrony
between time τu and time τv .
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The φuv metric will exhibit block structure off the main diag-
onal if the overall network dynamics, as revealed by the pair-
wise phase differences between nodes, are similar between a
given pair of time points. The distribution of φuv (i.e. across
all time lags) thus characterises general fluctuations of the
system. As the distribution of φuv in a single instance of
either a model simulation or the data depends on the specific
synchrony transitions, the distribution of φuv is analysed over
multiple realisations of the model or in data it is aggregated
across all subjects at a group level.
We quantify the similarity of fluctuations between model and
data at the level of φuv distributions using the Kolmogorov-
Smirnoff (KS) statistic - a measure of the “distance” between
two distributions. A low score on this statistic indicates more
similar fluctuations. We denote the KS statistic metric as the
functional connectivity dynamics - FCD.

Optimising homogeneous models. In the homogeneous
models specified here, we only require the tuning of the hy-
perparameter G. This parameter is tuned to maximise Rs
(fit to static FC) and minimise FCD (fit to dynamic FC). This
one-parameter optimisation has been used previously in Deco
et al. (34) and in that study Rs typically monotonically in-
creases (or plateaus) whereas FCD is minimised. The use of
two metrics allows a tight constraint: to maximise Rs and
minimise FCD.

Optimising the node-heterogeneous model. As described
above, we impose heterogeneity at the node level by vary-
ing the local bifurcation parameter ai of the Hopf model, as
described in Equations 21 and 22. To find values of ai we use
the approach in Deco et al. (34) where, for a given coupling
G, the parameter ai for node i is varied to match the observed
local power spectra – specifically to match the ratio of low
frequency power relative to high frequency power. The ra-
tionale is that high frequencies are related to noisy processes
(as the BOLD response is mostly a low-pass filter) compared
to low frequency oscillations, which are more strongly de-
termined by network activity. This optimisation is achieved
using a gradient descent algorithm, where we vary ai as

ai = ai+η(pei −psi ), (27)

where η = 0.1, and both pej and psj are the ratios of the total
power in the narrow band between 0.04 and 0.07 Hz and the
high frequency power 0.07 and 0.25 Hz for the empirical and
simulated data respectively. Note that the empirical ratio pej
has been averaged over all subjects. This optimisation drives
each node toward the oscillatory regime if pej − psj > 0 or
toward the noise regime if pej−psj < 0. The stopping criterion
is |pei − psi | < 0.1. Once the model parameters have been
optimised for a particular G, the model is then run as above
with these optimised parameters (i.e, run 108 times with each
run lasting 304s to match the data).

Optimising the edge-heterogeneous model. To introduce
heterogeneity at the level of edges (i.e. variation of connec-
tivity weights) we vary Cij in the Hopf model as follows.
First, the connectivity strengths that have non-zero values in

C are used as a mask such that only those edges will be mod-
ified, with the model of effective connectivity initialised as
Eij = Cij . Second, for each value of G, the model is esti-
mated. Third, after each model simulation the edges Eij are
adjusted such that

Eij = Eij +ηε [<∆e(i, j, t)>t −<∆s(i, j, t)>t] , (28)

where the strength of edge variation ηε = 0.01, and where
< ∆e(i, j, t) >t and < ∆s(i, j, t) >t are the time-averaged
phase cosine difference (as per 24) between node i and node
j for the experimental data, e, and simulated data, s, respec-
tively. This procedure forces pairs of nodes to match the
level of synchrony exhibited in the data and is repeated for all
edges in the mask, constituting one iteration of the optimisa-
tion. This adjustment is repeated until the root mean square
of < ∆e(i, j, t) >t − < ∆s(i, j, t) >t falls below 0.01, thus
optimising the match between model and data with respect
to inter-regional synchrony. If the edge adjustment yields an
edge to have Eij < 0, then this edge is set to 0. This greedy
optimisation converges and is a rough approximation of the
procedure in Gilson et al. (69), however here Eij is symmet-
ric.
As the parameters for Eij span all possible edges, i.e. (N ×
N −N)/2 parameters, this procedure can be prone to over-
fitting (as is the case for the node level heterogeneity but
we exclude that comparison in this study). We thus fitted
Eij on 80% of the sample and tested model performance on
the remaining 20% of the data. This cross-validation step
is repeated 108 times, i.e., the 80% random splitting, where
the subject selection is without replacement in the test–retest
split.

Results
The results are structured as follow. First, we investigate the
spatiotemporal characteristics of fMRI data and properties of
data denoising pipelines that can influence model fits. Sec-
ond, we characterise the spatiotemporal characteristics of the
homogeneous DNMs and compare the gross features of the
models with the data. Third, we quantitatively evaluate ho-
mogeneous model fits to the data in the static and dynamic
regimes, where the data have been preprocessed using dif-
ferent denoising algorithms. Finally, we evaluate the per-
formance of heterogeneous models in capturing aspects of
the data that are not accurately reproduced by homogeneous
models.

Spatiotemporal properties of rsfMRI data. To enable us
to better understand model performance we present the data
that is the target of model simulations. Specifically, we show
here how different preprocessing procedures can affect the
spatiotemporal structure of fMRI data and that will thus lead
to different models. Figure 2C, shows carpetplots for a “high-
motion” subject from the UCLA cohort (sub-10274) follow-
ing basic preprocessing (pre-ICA-AROMA), along with cor-
responding global signal and motion traces (Figs. 2A and B,
respectively). This individual shows pronounced WSDs that
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are at times tied to motion events as captured by the mean
framewise displacement (FD) (red rectangles). Additional
WSDs that are not linked to motion (blue rectangles) can be
linked to physiological events such as respiration (44, 49)
or heart-rate variability (86). A robust de-noising method
– ICA-AROMA with regression of white and CSF signals
(+2P) — can reduce motion-related contamination but of-
ten leaves significant residual WSDs (44, 87), as shown in
Fig. 2D. The effect of these WSDs on network architecture
is shown in the FC matrix in Fig. 2G, where globally posi-
tive correlations are evident. Application of GMR, as seen
in Fig 2E, can help mitigate the effects of WSDs, but centres
the distribution of FC values on zero (88, 89) and thus intro-
duces negative correlations throughout, some of which may
be spurious (89, 90) (see Fig. 2H and Fig. 3H). Moreover,
GMR will only be effective in removing WSDs if the signal
deflections are in phase (especially if they are π radians out
of phase). In some individuals, WSDs can have a biphasic
(in this dataset they are out of phase by π rad.) appearance,
with some voxels showing increased signal and others show-
ing decreased signal. In these cases, GMR will be ineffective
(43), as shown in Fig. 3 in blue where at times the WSDs
are expressed in two clear phases - i.e., the top half has the
opposite sign of the bottom half, and GMR does not have a
significant impact on WSD structure at these periods (com-
pare the residual WSD structure in Fig. 3D vs Fig. 3E in the
blue vertical stripes).

DiCER was developed to identify and remove these more
complex WSDs that are not adequately removed by GMR
(43). On application of DiCER to the ICA-AROMA+2P out-
put from all participants, the carpet plots in Figures 2F and
3F show the effective removal of WSDs, whilst revealing FC
matrices in Figs. 2 I and 3 I that have structure without zero-
centring the FC matrix by construction.

Figure 4 further shows the differences between preprocessing
strategies with respect to group-level quality metrics. First,
we can see that the correlation structure of the sample mean
FC matrices differ substantially as a function of denoising
strategy. Following ICA-AROMA+2P, the data is globally
positively correlated (Fig. 4A). ICA-AROMA+GSR reveals
more structure, with an approximately equal proportion of
positive and negative correlations (Fig. 4B). Finally, ICA-
AROMA+DiCER also shows reduced global correlations,
with similar positive FC structure to GMR but reduced mag-
nitude of negative FC estimates (Fig. 4C).

As shown in Figures 2 and 3, the three de-noising pipelines
differ in the extent to which they remove WSDs from
the data; i.e., they extent to which they “flatten” the car-
petplot. One metric that can capture the flatness of the
carpetplot is the proportion of variance explained by the
first principal component of the data matrix, VE1 (see
methods). Plotting VE1 for each individual, we see a
clear difference as a function of data denoising (Fig. 4D),
with VE1 being substantially higher for ICA-AROMA+2P,
followed by ICA-AROMA+2P+GSR and lowest follow-
ing ICA-AROMA+2P+DiCER. Average QC–FC estimates
also tend to be lower following ICA-AROMA+2P+DiCER

(Fig. 4E).
For present purposes, it is sufficient to note that the ap-
plication of these four pipelines yields a gradient defining
the degree to which the empirical data are dominated by
WSDs, with base preprocessing being the worst, followed
by ICA-AROMA+2P, then ICA-AROMA+2P+GMR, and fi-
nally ICA-AROMA+DiCER.

WSDs in dynamic neural models. As previously de-
scribed in the methods, a key feature of all dynamical mod-
els presented here is the global coupling parameter G, which
changes the dynamics of DNMs from uncoupled dynami-
cal nodes (G = 0) through to globally synchronised activity
(G > 4 in the models considered here). Given that WSDs
influence the level of global correlation in the data, and that
different preprocessing pipelines show varying efficacy in the
removal of these WSDs (e.g., compare panels G and I in
Figs. 2 and 3), we can thus conclude that any WSDs in the
data will have a major influence on (1) the precise value of
G that is chosen during model fitting; and (2) the resulting
estimate of model fit. More specifically, we can expect that
data with prominent WSDs will be optimally fit by models
with high G and that model fits will be higher under such cir-
cumstances. To understand this behaviour in more detail, we
now examine the spatiotemporal structure of synthetic sig-
nals generated under the BEI, BTF, and Hopf models in the
same way experimental data in the previous section. Typical
measures such as model fits are described later in the results.
Figure 5 A shows carpet plots for the BEI model at differ-
ent values of the global coupling parameter G. Note that we
have not explicitly fitted the model to fMRI data; we just sim-
ulate BEI dynamics on an empirical SC (of size 82×82) for
different levels of G. Visually, it is evident that the num-
ber and magnitude of WSDs increase as G increases, and
this is reflected in the global structure in the FC matrices in
Fig. 5 B. As shown in Fig. 5 C VE1, an index of global syn-
chrony in the data and a proxy of the prominence of WSDs,
increases as G increases. Figure 5 C also shows that if we
aim to match VE1 of the model with empirical data (in this
case, the mean VE1 across the sample of subjects), we need
to choose different values of G for data processed with dif-
ferent pipelines. More specifically, and in line with our hy-
pothesis, higher values of G are required to match the VE1
of empirical data processed with pipelines that leave greater
residual WSDs. For instance, when the data are processed
with ICA-AROMA+2P, the BEI model matches empirical
VE1 atG= 3 whereas when the data are processed with ICA-
AROMA+2P+DICER VE1 is matched at G = 1.5. This be-
haviour is also evident in the BTF model (Fig. 5 D–F) and
the Hopf bifurcation model (Fig. 5 G–I). Note that the transi-
tion from uncoupled noisy nodes to a synchronous pattern in-
creases gradually in the BEI model (Fig. 5 C) and in the Hopf
bifurcation model (Fig. 5 I) and is more abrupt in the BTF
model (Fig. 5 F), where the model shows globally coherent
activity past G ≈ 3.5. We note two pathological behaviours
of high G: firstly, in the BEI model at G = 3.6 (Fig. 5 A)
a transient ie evident near the start of the time series which
arises when the simulation diverges [SEi (t),SIi (t)> 1], caus-
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Fig. 2. Motion-induced WSDs in subject sub-10290 of the UCLA cohort. (A) The average grey matter signal used for GMR. (B) Framewise displacement (FD) estimate through
time. The next four panels are carpet plots for the (C) pre-ICA-AROMA base preprocessing; (D) ICA-AROMA with white matter and CSF regression (+2P) pipeline; (E) Grey
matter regression (GMR) following ICA-AROMA+2P pipeline; and (F) Diffuse cluster estimation and regression (DiCER) following ICA-AROMA+2P pipeline. In panels (A)–(F)
the red transparent rectangles indicate periods of motion induced WSDs, whereas the blue rectangle indicates WSDs generated without strong motion events. These carpet
plots are ordered with respect to cluster ordering (CO) visualisation. Panels G, H, and I show the corresponding FC matrices for ICA-AROMA+2P, ICA-AROMA+2P+GMR,
and ICA-AROMA+2P+DiCER, respectively

ing the membrane potential to reset [SEi (t),SIi (t) = 1] be-
fore the simulation continues on. Secondly, in the BTF for
G > 3.6, the model can switch from weakly synchronized
to fully synchronized as the model can take a long time to
reach a synchronized limit cycle. Together, these two be-
haviours can cause some simulations in the BTF and BEI to
not be fully synchronized which causes the variance of V E1
is higher and less predictable at high G.
These results indicate that data with prominent WSDs require
models to be biased toward the synchronised regime, whereas
data with fewer WSDs push the model to the asynchronous
regime (i.e. lower G). We stress that we have used exactly
the same raw dataset for comparison. The only difference
concerns how those data have been denoised.

A noisy degree model of resting-state fMRI. The extent
to which all WSDs in resting-state fMRI data represent phys-
iological noise or actual neuronal dynamics in empirical data
remains a topic of debate (43, 44, 48)). One interpretation of
the results presented in Fig. 5 is that WSDs can arise as an
intrinsic property of dynamics unfolding on a connectome,
given a sufficient level of global coupling, since the models
themselves contain no structured non-neuronal signals and
WSDs are evident across all models, regardless of the under-
lying dynamics.

While this interpretation supports the validity and utility of
whole-brain modelling, our findings raise the question of
whether the models are only fitting globally coherent signals
fluctuations. In other words, can a naive model of pure global
synchronization fit the data just as well? Since data with large
WSDs are routinely utilized in modelling, are models biased
toward fitting globally synchronous activity?
To explore this issue further and better understand the de-
pendence between WSDs in the data and model fits, we pro-
pose a simplified model. We start with the observation that,
within the synchronized regime, DNMs show major, glob-
ally coherent WSDs, as shown by the large vertical stripes in
Figs 5 A,D,H with G= 3.6 ,G= 2.4 ,1.8≤G≥ 4.5 respec-
tively. To construct a model of this behaviour, we first note
that in all three DNMs considered here, the local dynamics
at node i are modulated by the influences summed (or aver-
aged) over neighbouring nodes j weighted by Cij i.e., by a
general factor:

G
∑
j

Cijfj(t), (29)

where fj(t) is a generic function that describes some output
node j expresses to node i. In most models fj(t) depends on
the dynamics of the excitatory population at node j projected
to node i. Thus, if all nodes share a common signal σ(t),
the dynamics at node i will be modulated by this common
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Fig. 3. Non-motion-induced WSDs in subject sub-10274 in the UCLA cohort. (A) The average grey matter signal used for GMR. (B) Framewise displacement (FD) estimate
through time. The next four panels are carpet plots for the (C) pre-ICA-AROMA base preprocessing; (D) ICA-AROMA with white matter and CSF regression (+2P) pipeline;
(E) Grey matter regression (GMR) following ICA-AROMA+2P pipeline; and (F) Diffuse cluster estimation and regression (DiCER) following ICA-AROMA+2P pipeline. In
panels (A)–(F) the blue rectangle indicates WSDs generated without strong motion events. These carpet plots are ordered with respect to cluster ordering (CO) visualisation.
Panels G, H, and I show the corresponding FC matrices for ICA-AROMA+2P, ICA-AROMA+2P+GMR, and ICA-AROMA+2P+DiCER, respectively.

factor, a local noise term, and a regulatory term (expressing
the natural decay of the signal). We can thus present a simple
model that includes a common signal and a simple Gaussian
noise process at each node, Ni(0,1) (owing to noisy inputs
in all the three models). The model is expressed as:

zi(t) = αNi(0,1) +G
∑
j

Cijσ(t), (30)

= αNi(0,1) +GDiσ(t), (31)

where Di is the weighted node degree, and α determines the
strength of the local noise term, which we set at α = 1/2
when considering z-scored common signals σ(t) (note that
Eq. 31 should technically be derived with a rate of change of
zi and a self-regulation term, but we leave it in this form for
simplicity).
This baseline model is derived through consideration of neu-
ral dynamics but we can substitute zi(t) with the BOLD sig-
nal Bi(t) by setting the common σ(t) to have properties of
typical BOLD global signals, which can be achieved by as-
suming a linear relationship between neural and BOLD sig-
nals. For each instance of the model, σ(t) is a random white
signal for which we take a moving average of 10 seconds (5
volumes) to match the temporal autoocorrelation of the em-
pirical data.
A single instance of this noisy degree model using σ(t) as
the global signal from subject sub-10274 is shown in Fig 6.

In the synchronized regime, the model generates carpet plots
and FC matrices that are qualitatively similar to the BEI, BTF
and Hopf models, and also the empirical data following ICA-
AROMA+2P (cf. Fig. 2). Thus, a simple model that includes
a global signal modulated by node degree shows dynamics
that mimic typical DNMs in the synchronized regime, and the
FC derived from this noisy degree model is virtually identical
to the FC structure obtained with the BEI model (r = 0.99)
at G= 3.6.
For all DNMs in the weakly synchronized regime (i.e., lower
values of G), fewer WSDs are evident in the carpet plots,
which is consistent with the empirical properties of data de-
noised with either GSR or DiCER.

The influence of GMR on model dynamics. Since the
DNMs we consider here explicitly simulate globally coher-
ent neuronal fluctuations, a key question is how GMR affects
model dynamics. Here, we test the effect of GMR by simu-
lating the model then applying GMR on the dynamics of the
model simulation. We do this by removing, via linear regres-
sion, the average time series taken across all nodes from each
individual node. We show the effects of GMR on BEI, BTF,
and Hopf model dynamics in Figure 7 (we exclude the noisy
degree model because by construction only Gaussian noise
will remain post GMR). For G < 2, coherent structures are
removed, lowering VE1 and the majority of structure in the
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Fig. 4. Group-level quality control metrics applied to the resting-state fMRI data. Panels A, B, and C show the sample mean FC matrices of the subjects processed under
ICA-AROMA+2P,ICA-AROMA+2P+GSR, and ICA-AROMA+2P+DiCER respectively. Note that the colourscale changes as the range of FC values reduces for the last two
pipelines. Panel D shows the distribution VE1 across individuals, and E shows the distribution of QC-FC estimates across all subjects with the three denoising pipelines. In
both D and E, the distributions are represented as raincloud plots where the top curves are kernel density estimates and the bottom shows the scatter with box plots overlaid
(91).

FC matrices. This dramatic removal of most WSDs persists
for all G in the Hopf bifurcation model as the oscillations are
roughly in phase and of similar frequency. This means that
the Hopf model considered in Fig. 7 G,H is dominated by
globally coherent signals at all coupling strengths of G.
In the BTF model, we see the emergence of a “global” signal
that appears in all nodes with a different delay - which is con-
sistent with a travelling wave (52) - that will not be captured
by the global mean used in GMR. Hence, for certain values
of G, the BTF model post-GMR contains fewer WSDs than
the BEI model (due to anticorrelated regions). The corre-
sponding FC matrices also show some structure; forthe BTF
model at G = 3.3, we see strong positive within-hemisphere
FC and strongly anticorrelated inter-hemisphere FC. For the
BEI model, positive and negative correlations are distributed
more uniformly across edges. Neither of these resemble the
network structure of empirical data post-GMR (Fig 4B).
VE1 for both the BEI (Fig. 7C) and Hopf models (Fig. 7I)
is lower than the empirical VE1 for all values of G, in-
dicating that this property of the data is not captured well
by these models after the models have been subjected to
GMR. The BTF model (Fig. 7F) shows a small parameter
regime in which VE1 matches the empirical data (G ≈ 1.8
and G≈ 2.4).
To summarise, we have shown that WSDs are present in

model simulations as well as empirical rsfMRI data. The
models do not contain structured non-neural signal (usually
called noise in the rsfMRI context), suggests that WSDs are a
real and an emergent property of neuronal dynamics unfold-
ing on a connectome. However, globally synchronous WSDs
can also be generated by relatively simple mechanisms, as
captured in in the noisy degree model. This result suggests
that the performance of dynamical models in fitting empirical
data is primarily driven by fitting of first-order and relatively
trivial globally synchronous dynamics rather than more com-
plex, second-order properties that remain post-GMR.

WSDs affect model fits to rsfMRI data. Having inspected
the way in which WSDs affect resting-state fMRI data and
models, we now turn to a more quantitative characterization
of how they influence model fits to empirical data. We first
focus on fitting the static FC architecture of the empirical
resting-state fMRI data. In Figure 8A we show the results
of fitting FC similarity, Rs, in the BEI, BTF, Hopf and noisy
degree models to the empirical data processed using three
different denoising procedures. We find that model fits are
higher following less aggressive preprocessing; i.e., for all
except the BTF model, Rs is highest for ICA-AROMA+2P,
followed by ICA-AROMA+2P+GMR, and lowest for ICA-
AROMA+2P+DICER. The Rs values for data processed
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Fig. 5. Widespread signal deflections in biophysical models of resting-state fMRI. In the three models presented here we show spatiotemporal carpet plots and FC matrices
as a function of the global coupling parameter G in (A,B), (D,E) and (G,H) for one instance of the BEI, BTF, and Hopf bifurcation models, respectively. Quantitative metrics of
variance explained by the first PC (VE1) are shown in (C), (F), and (I) for BEI, BTF, and Hopf bifurcation models, respectively. As described in the methods, the models were
run 108 times and for 304s, mirroring the data. The curves for the model represent the mean metric values, with the error bars representing standard deviation at each G.
The horizontal lines on the metrics (C,F,I) represent the mean VE1 of the empirical fMRI data under the three different denoising pipelines.

with ICA-AROMA+2P are generally within the state-of-the-
art for rsfMRI modelling – exceeding 0.5. They fall below
0.4 when either GMR or DICER have been applied to the data
and are lowest when GMR has been applied to both model
and data. In the latter case, the maximal performance of all
three DNMs drops: it reduces from 0.55 to 0.35 for the BEI
model (30% drop), from 0.6 to 0.35 for the Hopf model (40%
drop), and 0.56 to 0.1 in the Noisy degree model (82% drop).
In these models, WSDs dominate the dynamics and their re-

moval leaves residual dynamics that do not align with the
empirical rsfMRI data. In other words, these models have a
limited capacity to capture subtle dynamics that exist beyond
widespread synchronization events.

When fitting the data processed without correcting for global
signals (i.e., ICA-AROMA+2P), the BEI model shows max-
imum Rs at G > 3 corresponding to regimes dominated by
WSDs. In contrast, the Hopf and noisy degree models ap-
proach maximum Rs at G < 1. Maximal Rs are generally
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Fig. 6. WSDs in the noisy degree model. (A) carpet plots and (B) functional connectivity matrices as a function of the global coupling parameterG. (C) Variance explained by
the first PC (VE1), with solid line indicating the mean VE1 across 108 runs simulated at 304s with the error bars representing the standard deviation of these runs. Horizontal
lines represent the mean VE1 under the three different denoising pipelines.

observed for G < 1.5 across all models when fitted to data
processed using either GMR or DICER. Thus, as predicted,
our analysis indicates that (1) model fits are mostly elevated
in data with prominent WSDs compared to data with rela-
tively fewer WSDs; and (2) the optimal working points of the
models are obtained at higher values of G when fitting data
with prominent WSDs. This analysis confirms that WSDs in-
flate model fit statistics. Critically, the noisy degree model,
when fitted to data characterised by prominent WSDs (i.e.,
data that has not been subjected to GMR or DiCER), shows
a comparable fit to the BEI and Hopf models, and a better
fit than the BTF model. The noisy degree model only con-
tains two parameters (G,α) as opposed to 32 in BTF and 21
in the BEI and 2 +N = 2 + 82 = 84 in Hopf (considering
the frequencies are specified for each node). This result sug-
gests that the FC matrix of the ICA-AROMA+2P-processed
data can be explained simply by local noise modulated by re-
gional variations in node degree and a common, global noise
term.
Figure 5 also indicates that the dynamics in the BTF are
weakly synchronised on average forG< 3.25 and thus, upon
GMR, the fit of the empirical FC structure is slightly im-
proved (Fig. 8, Rs ≈ 0.4). We note that while Fig. 5 shows
a synchronised time series for G > 3.5, not all simulations
reached this behaviour due largely to the chaotic behaviour
of the BTF model, and it is possible that over longer time
periods the system would synchronise.
One argument against the use of GMR in DNMs is that glob-
ally coherent signals are part of the dynamics, thus we then
provide a comparison with data that has been de-noised with
DiCER using models without GMR (Fig. 8A in blue). We see
that in this case Rs is generally lower than the previous com-
parisons for the BEI, Hopf and the noisy degree model across
all coupling strengths. The only exception again is the BTF
where ICA-AROMA+2P+DiCER performs the best. Here

again, since the BTF for G < 3.25 exhibits weakly coupled
dynamics it is the regime most similar to the data processed
under the ICA-AROMA+2P+DiCER stream (see examples
in Fig. 2 and Fig. 3).

Figure 8B shows model fits to FCD. Unlike the Rs fits, there
exists a minimum for FCD for nearly all models, with similar
performance across models and datasets. The two exceptions
to this trend are when GMR is applied to the Noisy degree
model, where performance is expected by construction, and
the Hopf model, as most of the dynamics in this model are in
phase and thus substantially removed with GMR.

Critically, the noisy degree model exhibits similar FCD per-
formance to the other three other models. This result is sur-
prising, as it suggests that even the apparently complex spa-
tiotemporal structure of time-resolved FC can be accounted
for by local noise modulated by node degree and a common
signal.

Given that FCD arrives at a global minimum for each model,
minimising this metric can be used to choose the optimal
value G. The corresponding optimised FC matrices are
shown in Figure 9. The FC matrices summarise three key
findings: (1) that for each model, the level of global correla-
tion in the simulated FC matrices decreases in line with the
degree to which pre-processing has removed WSDs from the
fitted data (note that the scales change in the rows of Fig. 9);
(2) The global coupling parameter G changes for each de-
noising pipeline and thus changes the level of coherence; and
(3) GMR in any of the models changes FC dramatically, caus-
ing inter-hemispheric anti-correlations in the BTF and Hopf
models, and large groups of anti-correlated networks in the
BEI model. Together, these results indicate that both static
and dynamic aspects of model-derived FC are sensitive to the
degree to which WSDs are present in the fitted data.
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Fig. 7. Model properties post GMR. Spatiotemporal carpet plots and FC matrices as a function of the global coupling parameter G in (A,B), (D,E) and (G,H) for one instance
of the BEI, BTF, and Hopf models, respectively, after application of GMR. Variance explained by the first PC (VE1) is shown in (C), (F), and (I) for the BEI, BTF, and Hopf
models post-GMR, respectively. The models were run 108 times and for 304s, mirroring the data. The curves for the model represent the mean metric values, with the error
bars describing standard deviation at each G. The horizontal lines on the metrics (C,F,I) represent the mean VE1 under the three different denoising pipelines.

Heterogeneous network models. The results presented
thus far indicate that the DNMs considered here show weak
performance (with respect to Rs for denoised data) with re-
gards to fitting the static or dynamic FC properties of thor-
oughly denoised rsfMRI data (i.e., data processed with GMR
or DiCER). Although the models perform well in data that
have not undergone extensive removal of WSDs (i.e., data
processed with ICA-AROMA+2P), the noisy degree model
performs similarly well, suggesting that the multi-parameter,
non-linear, and biophysically-informed DNMs dynamical

models themselves are mostly capturing very basic global
synchronization properties of fMRI dynamics. Here, we
explore whether adding additional degrees of freedom to a
DNM can improve model performance (34, 36, 37). We in-
corporate heterogeneity either at the node level by adjusting
local population dynamics, or at the edge level by modifying
node-to-node connection weights, as described in the Meth-
ods. We focus on heterogeneity in the Hopf model for com-
putational efficiency.
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Fig. 8. Data preprocessing influences fits of homogeneous models. (A) Similarity between model and empirical static FC, as quantified by Rs. The simulated FC matrix
is the mean over 108 runs of 302 seconds of simulated data. (B) Similarity of the spatiotemporal dynamics captured by the FCD statistic across all models. In both
panels the comparisons are between the Model vs the ICA-AROMA+2P, GMR of the Model vs ICA-AROMA+2P+GMR, the Model vs ICA-AROMA+GMR, and the Model vs
ICA-AROMA+DiCER in red, purple, dashed-purple and blue lines as indicated in the legend.

Node heterogeneity. In the first instance, we use the Hopf
model and fit bifurcation parameters ai to match the local
power spectrum of the model to the data (see Methods for
model optimization). The results of the optimization are
shown in Figure 10 and indicate that, as with the homo-
geneous model, the node-heterogeneous Hopf model shows
Rs = 0.68 for ICA-AROMA+2P data (achieved at a lower
value of G than the homogeneous model; Fig. 10 A), but
much poorer fits to the data processed with GMR (Fig. 10 B)
or DiCER (Fig. 10 C). In contrast, FCD is fitted slightly bet-
ter in the data processed with GMR and DICER. Regardless
of how the data were processed, we find that the fitted bi-
furcation ai parameters have a relatively similar distribution
across nodes at the optimalG (by choosing the minimal FCD
Fig. 10 D). Only some some nodes change from noisy to os-
cillatory (or vice versa) in the insula, frontal, cingulate cortex.
Such variations can lead to dramatically different conclusions
about regional contributions to spontaneous BOLD dynam-
ics. Taken together, these results indicate that the introduc-
tion of node heterogeneity to the Hopf model yields no appre-
ciable benefit (Rs = 0.68,0.4,0.28 vs Rs = 0.61,0.38,0.32
in the homogeneous variant of the Hopf model when fitted

to the ICA-AROMA+2P,ICA-AROMA+2P+GMR, and ICA-
AROMA+2P+DiCER pipelines respectively), particularly in
aggressively denoised data. This lack of improvement in per-
formance arises despite the additional complexity of 88 new
free parameters optimized within-sample.

Edge heterogeneity. Finally, we introduce heterogeneity to
the Hopf model at the edge level by modifying the connec-
tions between nodes in order to estimate the effective connec-
tivity Eij which is a method that has been used in DCM (92)
and in other contexts rsfMRI (69). This optimization results
in using Eij (which is a modified Cij) in place of the struc-
tural connectivity to simulate the homogeneous Hopf bifur-
cation model (i.e. with ai uniform across all nodes). As de-
scribed in the methods, this procedure modifies existing con-
nections in Cij to force the dynamic coupling between two
regions in the simulations to match the existing data. As also
indicated in the methods, since a large number of parameters
are being optimized – i.e. all the edges, which in out case is
3828 parameters – this procedure is prone to over-fitting. One
solution to mitigate over-fitting is to estimate model parame-
ters in a training set and evaluate model fits in an independent
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Fig. 9. Model-derived FC matrices obtained after fitting data denoised at different levels. The FC matrices were generated by using the global coupling parameter, G, that
minimised FCD across the three different denoising pipelines - ICA-AROMA+2P, ICA-AROMA+2P+GMR and ICA-AROMA+2P+DiCER. In the top and bottom rows the FC
matrices were generated using Pearson correlations between pairs of regional time series without GMR and the middle row are the FC matrices post GMR. Here each FC
matrix was a mean across 108 runs of data simulated 302 seconds, and the data was inspected so that no transients were included. Finally, the panels on the right replicate
the FC matrices shown in Fig 4 as a point of comparison, i.e. the average over 108 subjects. The histograms at the bottom reflect the G estimated from model optimisation
for ICA-AROMA+2P, and ICA-AROMA+2P+DiCER. Note ICA-AROMA+2P+GMR was omitted as both the Hopf and the Noisy degree model have no clear FCD minima.

test set. Here, we estimateEij by optimizing the fits to FCD
on 80% (n= 86) of the data and test it on the remaining 20%
(n= 22) of individuals. Once estimated, the model is run 22
times for 302 seconds to match the testing data. This cross
validation is repeated 108 times where the data is split into
test and retest randomly without replacement. We focus on
fitting data that has undergone GSR or DiCER, since these
are the datasets that are not adequately modelled by the ho-
mogeneous or node-heterogeneous models.

The results of our cross-validated optimization procedure
are shown in Figure 11. For data processed with ICA-
AROMA+2P+GMR (Fig. 11A), Rs doubles from 0.4 in the
homogeneous case to 0.8 in the edge-heterogeneous case.
However, FCD shows a relatively poor fit, with the best value
reaching only 0.3, which is one of the worst performing
amongst nearly all model variants. This is again likely due
to the fact that within the Hopf model, the coupled oscilla-
tions are in phase even though the optimized Eij increases
the weights of most of the connections (Fig. 11C). We note
that although Rs is high, the overall level of FC across pairs

of nodes tends to be lower in the model compared to data
(Fig. 11B choosing the max Rs for G) with data.

For data processed using ICA-AROMA+2P+DiCER, opti-
mizing Eij doubles Rs from ≈ 0.35 (in the homogeneous
case) to ≈ 0.75. We also find that FCD is fitted reasonably
well across a broad range of G. Visually comparing the FC
matrix at the chosen minimum of G = 2.5 we observe that
the structure (Fig. 11E) of the estimated model is similar to
the data, and spans a similar range of FC values. On compar-
isons to the carpet plots and VE1 in Figure 12 we also find
that the model visually replicates the fluctuations present in
the data.

These results suggest that introducing heterogeneity at the
edge level offers a promising approach to fitting data with
WSDs removed, and that this can be done within a cross-
validated framework that minimizes the potential for over-
fitting.
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Fig. 10. Performance of the node-heterogeneous Hopf model. A,B,C show model fits with Rs or FCD for the Hopf model optimized to match the local power spectrum
of ICA-AROMA+2P, ICA-AROMA+2P+GMR or ICA-AROMA+2P+DiCER respectively. The dashed lines indicate FCD and the solid lines indicate Rs. Fit statistics were
generated by fitting the data and over 108 runs of simulations of 302 seconds to match the data that is being fit. D indicates the local bifurcation parameters ai found after
optimization to the three pipelines which are coloured according to the legend on the right. The local bifurcation parameters are grouped according to major regions specified
indicated by the colours below and named in the legend on the right.

Discussion

Whole-brain modeling of rsfMRI data with DNMs has been
used to understand the basic principles of spontaneous neural
dynamics (23, 25). However, ongoing debate over the degree
to which such data are contaminated by noise, and in particu-
lar the origins of prominent WSDs, raises questions about the
specific data features that are accurately captured by DNMs
(42, 88). Here, we investigated the relationship between data
quality and model performance and found that the level of
WSDs within a dataset influences the fits and dynamic regime
of the models (Fig. 8; Fig. 5). For data with sufficiently large
WSDs, a simple two parameter linear model performs just
as well as complex, non-linear and multi-parameter DNMs
(Fig. ,6,8. Finally, we present evidence that model hetero-
geneity, particularly at the level of edges, can improve model
fits regardless of how the data were processed, at the expense
of increased model complexity (Fig. 11).

How WSDs bias models. Quality control of rsfMRI data
has become more sophisticated in recent years, involving ex-
tensive reporting of various metrics and visualisations attain-

able at the level of individual subjects (44, 54, 87) our group
summaries (41, 43). These measures have been used exten-
sively to inform the development of preprocessing pipelines
for experimental analyses of rsfMRI data (40, 41), but are
seldom considered in the modelling literature.

Our analysis focused specifically on how WSDs affect model
performance. The degree to which WSDs in empirical
rsfMRI represent neuronal or non-neuronal processes is an
important, unresolved question. Growing evidence indicates
that many WSDs are tied to head motion and respiratory vari-
ations (42, 44). There is also evidence that at least some
WSDs may be neuronal in origin (48, 58), and such WSDs
would be compatible with widespread neuromodulatory in-
puts (93). DNMs contain no noise. Thus, the emergence of
WSDs in these models, for sufficiently high G, suggests that
WSDs can indeed arise as an intrinsic property of the dy-
namics unfolding on the underlying SC matrix. However, the
emergence of globally synchronised dynamics in the model
depends on the level ofG, and this level is chosen to fit empir-
ical data. Our results indicate that the optimal level of G for
a given model depends strongly on how the data are prepro-
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Fig. 11. Performance of the edge-heterogeneous Hopf model. A,D Optimization plots showing Rs with solid lines and FCD with dashed lines for simulations optimized
to fit data processed with ICA-AROMA+2P+GMR and ICA-AROMA+2P+DiCER, respectively. Each grey solid and dashed line represents the calculation of Rs and FCD,
respectively, from a single estimate derived from the cross validation procedure. The coloured lines represent the mean optimization plots over the 108 iterations of the cross
validation procedured described in the methods. Panels B and E show optimal FC matrices with the corresponding empirical training sets for using the ICA-AROMA+2P+GMR
and ICA-AROMA+2P+DiCER pipelines respectively

Fig. 12. WSDs in the resulting Hopf+ANEC model optimised for the ICA-AROMA+2P+DiCER pipeline. (A) carpet plots and (B) functional connectivity matrices as a function
of the global coupling parameterG. (C) Variance explained by the first PC (VE1), with solid line indicating the mean VE1 across one iteration of the test-retest cross validation
fold, i.e., 22 runs simulated at 304s with the error bars representing the standard deviation of these runs. Horizontal lines represent the mean VE1 under the three different
denoising pipelines. In panel C, the re-test sample was on one iteration trained from 80% of the data.
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cessed. Fitting models to empirical properties such asRs and
FCD estimated from data with prominent WSDs (e.g., with-
out prior application of GMR or DiCER) pushes the models
to a highly synchronised, high-G regime, in which promi-
nent WSDs emerge in the model time series. For data with
WSDs removed (i.e., following GMR and DiCER), the mod-
els are pushed to a weakly synchronised, low-G regime. Ap-
plying GMR to both the model and data results in a poor fit,
as the residual synthetic and empirical FC properties differ
markedly. These results suggest that while DNMs, partic-
ularly the Hopf and BEI models accurately fit “first order”
properties of globally coherent signals, they do a poor job
of capturing “second order”, more complex aspects of spa-
tiotemporal structure in the data. Since, the noisy degree
model fits these first order properties just as well as the com-
plex, multi-parameter DNMs, such properties are essentially
trivial from a modelling perspective. Our findings thus draw
attention to the need for caution when interpreting model fits
to empirical rsfMRI data. Critically, these results are not just
a consequence of GMR altering the distribution of FC val-
ues (89, 94) since we obtain similar findings with DiCER-
processed data.
Some of these issues likely stem from the uniformity of node
parameters, as the nodes in the absence of coupling will have
the same natural frequency. As such, high values of G will
force all to align in phase, resulting in globally coherent ac-
tivity. One way to circumvent this behaviour while retaining
uniform node parameters is to introduce time delays to dis-
rupt in-phase coherence. Another approach is to use nonlin-
ear chaotic oscillations such as those in the BTF. Notably, this
model performed better in data subjected to more aggressive
denoising (Fig 8).
A third way to combat the dominating effect of WSDs in
model fitting is to introduce heterogeneity at the level of
either nodes or edges to force node dynamics with dif-
ferent natural frequencies (36) and/or to modify connec-
tions to reduce the prevalence of globally coherent fluctu-
ations. We presented preliminary evidence to suggest that
edge-heterogeneity may represent a promising avenue for-
ward, as our edge-heterogeneous Hopf model dramatically
improved both Rs and FCD when compared to the homo-
geneous model fitted to data processed with the aggressive
ICA-AROMA+2P+DiCER pipeline (Fig. 11). The relatively
poor performance of our node-heterogeneous Hopf model
(Fig. 10) may be due our reliance on a specific type of optimi-
sation, or because the heterogeneity of the bifurcation param-
eter is not sufficient to break the global synchrony present in
the Hopf model (c.f. Fig 5 with Fig 7). Studying the effect of
alternative, physiologically-grounded methods for introduc-
ing heterogeneity ((36, 38)), will be an important extension
of this work.

The noisy degree model. In this study we showed, by
analysing carpet plots and model equations, that a simple
model of global signal modulation is enough to produce the
properties of Rs and FCD when comparing data processed
with the ICA-AROMA+2P pipeline. This is a surprising re-
sult, and calls into question the utility of highly complex,

multiparameter biophysical models. We propose that a fruit-
ful way forward in model development and evaluation will in-
volve first testing the performance of any new model against
simple benchmarks such as the noisy degree model or other
simple linear approximations (7).
One important implication of the strong performance of
the noisy degree model in data processed with the ICA-
AROMA+2P pipeline is that signal dynamics in such data
(i.e., data in which no explicit correction for WSDs has been
performed) are predominantly explained by a shared com-
mon signal, local noise, and node degree of the SC matrix.
The model simply captures the fact that a given region’s ac-
tivity will be more strongly driven by the common signal if it
is highly connected to other areas.

Limitations. Our analyses focused on a single, typical qual-
ity fMRI dataset and we only considered a single brain par-
cellation. Empirical properties of the data (95, 96) and model
performance (35) can depend on parcel resolution, but our
primary results should generalise (61) as they describe in-
trinsic properties of the DNMs themselves and the rsfMRI
data features we consider (e.g., complex WSD structure) are
observed in diverse datasets and across different parcellation
resolutions (e.g., (43)).
We evaluated relative model performance qualitatively. A
more formal treatment would include measures of model fit
that account for model complexity, such as those used in dy-
namic causal modelling (97). However, these are not rou-
tinely applied in the large-scale DNM literature.
Finally, we simulated model dynamics on an SC matrix gen-
erated from a cohort of individuals that differed to the fMRI
dataset. While this is common practice in the DNM liter-
ature, model fitting can be done at the single subject level
given concurrent SC and FC measures ((7)). Future work
may also consider the effects of diffusion MRI preprocessing
variations (98) on model results.

Conclusions
We show that the results of modelling studies depend strongly
on the way in which the experimental data have been pre-
processed. We hope that our findings will encourage greater
communication between theorists and experimenters, to en-
sure that any proposed models are capturing important prop-
erties of the data, rather than low-order (neuronal or non-
neuronal) structure. A better understanding of large-scale
brain dynamics will be contingent on a tight integration be-
tween theory and experiment.

Appendix
Parameters for the models. This section contains the nu-
merical parameters for the dynamic models.

Numerical approximation for Ji. In the BEI model, a key
step is determining the approximation for the inhibitory pa-
rameter Ji that ensures that the firing rate at each node i has
excitatory firing rate of 3 Hz. As described in Deco et al. (26),
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Parameter Symbol Value
Overall current scaling Excitatory currents WE 1
Overall current scaling Inhibitory currents WI 0.7
Local excitation recurrence w+ 1.4
Excitatory synaptic coupling - (on NMDA synpatic re-
ceptors)

JN 0.15 nA

Local feedback inhibitory weight Ji (fitted)
External input current Iexternal 0
Effective time constant of NMDA receptors τE 100 ms
Effective time constant of GABA receptors τI 10 ms
Kinetic rate parameter γ 0.641/1000
Gaussian noise amplitude σ 0.01 nA
Overall effective input I0 0.382 nA
Excitatory firing rate sigmoid parameters ae 310

be 125 Hz
de 0.16 s

Inhibitory firing rate sigmoid parameters ai 615
bi 177 Hz
di 0.087 s

Table 1. Parameters used for the Balanced excitation exhibition ratio model taken from (26).

Parameter Symbol Value
Ionic gains (L is the leaky current) gCa,gK ,gNa,gL 1.1,2,6.7,0.5
Mean Nerst potentials V Ca,V K ,V Na,V L 1,−0.75,0.53,−0.5
Variance of Nerst potentials δCa, δK , δNa 0.15,0.30,0.15
Mean excitatory population voltage threshold V T 0
Mean inhibitory population voltage threshold ZT 0
Variance of excitatory population voltage threshold δV 0.65
Variance of inhibitory population voltage threshold δZ 0.65
Ratio of NMDA to AMPA receptors r 0.25
Temperature scaling factor φ 0.7
Decay time constant of Potassium channel dynamics τ 1
Decay time constant of Inhibitory populations b 0.1
Nonspecific subcortical input current I 0.3
Connection weights between neural populations and subcortical
inputs

aee,aei,aie,ane,ani 0.36,2,2,1,0.4

Table 2. Parameters for the BTF model, using the values from Honey et al. (35).

Parameter Symbol Value
Standard deviation for Gaussian noise β 0.02
Inherent frequency at each node i ωi Estimated directly from data
Global bifurcation parameter a -0.01 (homogenous case)

Table 3. Parameters for the Hopf model, using the values from Deco et al. (34).

the value of Ji is numerically solved via a Greedy search al-
gorithm, where the model is estimated for 10 seconds, then at
each node the value of Ji is adjusted by a factor ∆J , which is
dependent on the mean firing rate at node i. If the firing rate
is above 3 Hz, Ji = Ji + ∆, if below 3 Hz, Ji = Ji−∆J ,
where ∆J is additionally reduced until the node is within the
firing rate from 2.63−−3.55 Hz. To improve convergence
times, an analytic form is first used as an initial starting point
by finding the fixed point of the dynamical system i.e. the
condition that rEi = 3, dSiE,I/dt= 0 and setting νi(t) = 0.

This yields the analytical approximation for Ji as:

Ji = 1
rI0τI

(0.026 − bE
aE

+WEI0 +w+JNS
E
0 ... (32)

...+GJNS
E
0 Di+ Iext), (33)

where

SE0 = γrE0 τE
rE0 τE + 1

, (34)

and rI0 = H(I,II0 ) , where II0 is calculated by solving the
following transcendental equation:

II0 =WII0 +JNS
E
0 −H(I,II0 )τI . (35)
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We note that the balanced inhibitory criterion is related to
node degree Di by the following relationship:

Ji−1∝Di. (36)

BOLD forward model - The Balloon model. Here we
include the hemodynamic equations for the balloon model
(28, 79) used as a forward BOLD model in this study. For
a neuronal input at node i, zi(t), the following dynamical
equations detail the resulting fractional changes in blood flow
fi(t), blood volume vi(t) and deoxygenated hemoglobin
content qi(t):

d2fi
dt2

+κ
dfi
dt

+γ(fi(t)−1) = zi(t), (37)

dvi
dt

= 1
τ

[
fi(t)−vi(t)1/α

]
, (38)

dqi
dt

= 1
τ

{
E[fi(t)]fi(t)−

qi(t)
vi(t)

}
, (39)

E[fi(t)] = 1
E0

[
1− (1−E0)1/fi(t)

]
, (40)

(41)

where E is the oxygen extraction fraction, E0 is the rest-
ing oxygenation fraction τ is the mean hemodynamic tran-
sit time, α is the Grubb exponent, γ is the flow elimination
constant, and κ is the flow decay rate. The hemodynamic
changes in vi and qi drive the BOLD response yi(t) which is
modelled by the semi-empirical relationship (99):

yi(t) = V0{k1[1− qi(t)] +k2[1− qi(t)/vi(t)]...
+k3[1−vi(t)]}. (42)

where the parameters k1,k2,k3 depend on the field strength,
and acquisition. The parameter values are detailed in the ta-
ble below:
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