The mechanism underlying the organization of Borna disease virus inclusion bodies is unique among mononegaviruses

Yuya Hiraia*, Keizo Tomonagab,c,d*, Masayuki Horieb,c,f*

aDepartment of Biology, Osaka Dental University, 8-1, Kuzuha Hanazono-cho, Hirakata, Osaka 573-1121, Japan.

bLaboratory of RNA viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyoku, Kyoto 606-8507, Japan.

cLaboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyoku, 606-8507 Kyoto, Japan.

dDepartment of Molecular Virology, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyoku, 606-8507 Kyoto, Japan.

eHakubi Center for Advanced Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyoku, Kyoto 606-8507, Japan

fLaboratory of Veterinary Microbiology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, JAPAN

*Corresponding authors:

Yuya Hirai, PhD
E-mail: hirai-y@cc.osaka-dent.ac.jp

Keizo Tomonaga, DVM, PhD
E-mail: tomonaga@infront.kyoto-u.ac.jp
Masayuki Horie, DVM, PhD

Email: mhorie@vet.osakafu-u.ac.jp

Keywords

Borna disease virus; non-segmented negative-strand RNA viruses; mononegavirus, nucleoprotein; phosphoprotein; liquid-liquid phase separation; intrinsically disordered regions; biomolecular condensates; membraneless organelles; nucleus; liquid droplets
Abstract

Inclusion bodies (IBs) are characteristic biomolecular condensates organized by mononegaviruses. Here, we characterize the IBs of Borna disease virus 1 (BoDV-1), a unique mononegavirus that forms IBs in the nucleus, in terms of liquid-liquid phase separation (LLPS). The BoDV-1 phosphoprotein (P) alone induces LLPS and the nucleoprotein (N) is incorporated into the P droplet in vitro. In contrast, co-expression of N and P is required for the formation of IB-like structure in cells. Furthermore, while BoDV-1 P binds to RNA, an excess amount of RNA dissolves the liquid droplets formed by N and P. Notably, the N-terminal intrinsically disordered region of BoDV-1 P is essential to drive LLPS and bind to RNA, suggesting that both abilities could compete with one another. These features are unique among mononegaviruses, and thus this study will contribute to a deeper understanding of LLPS-driven organization and RNA-mediated regulation of biomolecular condensates.
Introduction

The order *Mononegavirales* contains many pathogens of great importance to public health, such as measles virus, Ebola virus, rabies virus, and human respiratory syncytial virus (RSV)\(^1\). These mononegaviruses form various types of inclusion bodies (IBs) in infected cells, which are thought to be the sites of viral replication\(^2\). The IBs of mononegaviruses are membraneless organelles, also called biomolecular condensates\(^3\)–\(^6\). Growing evidence has shown that the IBs of several mononegaviruses, such as rabies virus\(^7\), vesicular stomatitis virus (VSV)\(^8\), measles virus\(^9,10\), and RSV\(^11\), are organized by liquid-liquid phase separation (LLPS).

The viral ribonucleoprotein (vRNP) complexes of mononegaviruses, which function as the fundamental units of transcription and replication, consist of viral genomic RNA, nucleoprotein (N), phosphoprotein (P), and large RNA-dependent RNA polymerase (L). Among the components of vRNP complexes, the expression of N and P is sufficient for the formation of IBs of rabies virus\(^7\), measles virus\(^9\), RSV\(^11\), human metapneumovirus\(^12\), and human parainfluenza virus 3\(^13\). Previous studies of these IBs have provided insights into the viral replication strategies, thereby contributing to the control of viral infectious diseases. Additionally, since viruses exploit the host machinery for replication, further studies would be helpful to gain a deeper understanding of the molecular condensates in cells.

Borna disease virus 1 (BoDV-1) is a prototype virus of the family *Bornaviridae* of the order *Mononegavirales*, which causes fatal encephalitis in mammals, including humans\(^14\). BoDV-1 is a unique mononegavirus as replication occurs in the nucleus of the infected cell, whereas that of most mononegaviruses occurs in the cytoplasm\(^15\). Consequently, the IBs of cytoplasmic mononegaviruses are formed in the cytoplasm,
while those of BoDV-1, termed as viral speckle of transcripts (vSPOTs), are organized in the nucleus. The vSPOTs are membraneless spherical structures containing the viral genome, antigenome, and several viral proteins. The BoDV-1 genome encodes six genes, N, P, matrix protein (M), envelope glycoprotein (G), L, and accessory protein (X), among which N, P, M, L, and X are localized in the vSPOTs.

Although present in the nucleus, the vSPOTs share common properties with those of other mononegaviruses, such as membraneless structures, and their components. However, the surrounding environment is important for the formation of biomolecular condensates. As described above, BoDV-1 forms IBs in the cell nucleus, where the surrounding environment differs from that of the cytoplasm. Thus, the IBs of BoDV-1 may be formed by a different mechanism from those of other cytoplasmic mononegaviruses. Nonetheless, the propensities and minimal components of BoDV-1 IBs remain entirely elusive.

In this study, to clarify the mechanism of the formation of vSPOTs, we analyzed the properties of the BoDV-1 N and P proteins from the aspect of phase-separated condensates. We revealed that the BoDV-1 P protein alone causes LLPS in vitro, depending on the intrinsically disordered region (IDR) present at the N-terminal region. Although BoDV-1 N alone is not sufficient for the induction of LLPS, it was incorporated into the BoDV-1 P droplets. Also, co-expression of BoDV-1 N and P is sufficient to induce the formation of IB-like structures in cells. Further, P of BoDV-1, but not VSV or RSV, binds to RNA. Interestingly, the N-terminal IDR of BoDV-1 P is involved in this RNA-binding activity, which is overlapped with the region important for driving LLPS, while an excess amount of RNA dissolved the liquid droplets consisting of BoDV-1 P alone and BoDV-1 N and P. These findings are expected to help clarify the fundamental mechanism.
of the morphological regulation of the IBs of BoDV-1 and the comprehensive mechanisms underlying the formation of biomolecular condensates.

Materials and methods

DNA constructs and antibodies

Escherichia coli expression vectors were constructed as follows. Oligonucleotides of codon-optimized BoDV-1 N, P, His-tagged enhanced green fluorescent protein (EGFP), and His-tagged mCherry (strain He/80/FR) were synthesized by Thermo Fisher Scientific (Waltham, MA, USA). The synthesized oligonucleotides of BoDV-1 N and P were inserted into the XhoI and BamHI restriction sites of the plasmid pET-15b using NEBuilder HiFi DNA Assembly Master Mix (E2621; New England Bioscience, Ipswich, MA, USA), which were designated as pET-15b-BoDV-1-Nco and pET-15b-BoDV-1-Pco, respectively. The synthesized oligonucleotides of His-tagged mCherry and EGFP were cloned into pET-15b using the Neol and NdeI restriction sites, which were named pET-15b-His-mCherry and pET-15b-His-EGFP, respectively. The codon-optimized N and P sequences were amplified by PCR and then inserted into pET-15b-His-mCherry and pET-15b-His-EGFP, respectively, using the Neol site.

For mammalian expression vectors, the coding regions of the N and P genes of BoDV-1 (strain He/80/FR) with the Kozak sequence were amplified by PCR, and then cloned into the pCAGGS vector at the EcoRI and XhoI restriction sites using NEBuilder HiFi DNA Assembly Master Mix. All of the primer and plasmid sequences are available upon request.

The following antibodies were used in this study: anti-BoDV-1 N mouse monoclonal antibody (HN132), anti-BoDV-1 P rabbit polyclonal antibody (HB03), anti-high mobility
group box 1 (HMGB1) antibody (sc-74085; Santa Cruz Biotechnology, Inc., Dallas, TX, USA), goat anti-mouse immunoglobulin G (IgG) (H+L) highly cross-adsorbed secondary antibody, Alexa Fluor 488 (A-11029; Thermo Fisher Scientific), goat anti-mouse IgG (H+L) highly cross-adsorbed secondary antibody, Alexa Fluor 568 (A-11031; Thermo Fisher Scientific), goat anti-rabbit IgG (H+L) highly cross-adsorbed secondary antibody, Alexa Fluor 488 (A-11034; Thermo Fisher Scientific), and goat anti-rabbit IgG (H+L) highly cross-adsorbed secondary antibody, Alexa Fluor 568 (A-11036; Thermo Fisher Scientific).

Protein expression and purification

N-terminal His-tagged recombinant proteins were expressed in Rosetta™ 2(DE3) pLysS competent cells (71403; Novagen, Inc., Madison, WI, USA) by induction with 0.5 mM isopropyl β- d-1-thiogalactopyranoside at 30°C for 4 h (N, P, and P’), at 25°C for 5 h (N-mCherry, VSV P, and RSV P), or at 16°C overnight (P-EGFP). The pelleted cells were resuspended in lysis buffer (20 mM Tris-HCl, pH 7.4, 500 mM NaCl, 10 mM imidazole) containing a protease inhibitor cocktail (25955-24; Nacalai Tesque, Inc., Kyoto, Japan). After sonication, the lysates were clarified by centrifugation at 20,000 × g for 10 min at 4°C. Then, the supernatants were loaded onto a column containing TALON® Metal Affinity Resin (635501; Takara Bio, Inc., Shiga, Japan). The resins were washed with lysis buffer and the His-tagged proteins were eluted with elution buffer (20 mM Tris-HCl, pH 7.4, 500 mM NaCl, 300 mM imidazole), dialyzed with dialysis buffer (20 mM Tris-HCl, pH 7.4, 500 mM NaCl), and concentrated with Amicon® Ultra Centrifugal Filters (Merck KGaA, Darmstadt, Germany).
In vitro phase separation assay

The concentrated proteins were diluted to the indicated concentrations in phase separation buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, except for Fig. 1D). RNA and 1,6-hexanediol (H0099; Tokyo Chemical Industry, Tokyo, Japan) were added to the mixed reaction samples at final concentrations of 200 ng/µl and 6%, respectively. Fluorescently labeled liquid droplets were formed by mixing 9.5 µM P and 0.5 µM P-EGFP (P droplets), and 5 µM N, 4.5 µM P, and 0.5 µM P-EGFP (NP droplets). The mixed samples were transferred to the wells of 384-well EZVIEW® glass-bottom assay plates (5883-384; Iwaki Co., Ltd., Chiba, Japan) and observed at room temperature (RT) with a laser scanning confocal microscope (LSM 700; Carl Zeiss AG, Oberkochen, Germany) equipped with a Plan-Apochromat 63X objective lens (numerical aperture = 1.4). The size and intensity of each droplet was calculated using ImageJ software (https://imagej.nih.gov/ij/). The sizes and intensities are presented as the average of at least three separate fields.

In vitro transcription

DNA templates (a BoDV-1 minigenome containing the complementary sequence of Gaussia luciferase [Gluc] flanked by the leader and trailer sequences of the BoDV-1 genome [Fig. S3A] or the complementary sequence of Gluc) for *in vitro* transcription were amplified by PCR using primers containing the T7 promoter sequence at the 5’-end and pBDVmg-Gluc19 as a template. The *in vitro* transcription reaction was performed using T7 RNA polymerase (2540A; Takara Bio, Inc.) in accordance with the manufacturer’s protocol. To label RNA, Cy3-UTP (ENZ-42505; Enzo Life Sciences, Inc., Farmingdale, NY, USA) was added into the *in vitro* transcription reaction at a final
concentration of 0.05 mM. The transcribed RNA was treated with DNaseI, then purified using the phenol/chloroform isolation method and resuspended in RNase-free water.

Electrophoretic mobility shift assay

Proteins at the indicated concentrations were mixed with 2 µg of RNA, incubated for 30 min at RT, and then separated by 1.5% agarose gel electrophoresis. RNA signals were detected using GelGreen®, a highly sensitive, non-toxic green fluorescent nucleic acid dye (41004; Biotium, Inc., Fremont, CA, USA).

Cell culture

Human oligodendroglioma (OL) cells persistently infected with BoDV-1 strain huP2br were cultured in high-glucose (4.5%) Dulbecco’s modified Eagle’s medium (DMEM) (11965092; Thermo Fisher Scientific) supplemented with 5% fetal bovine serum. U-2 osteosarcoma (OS) cells (92022711; European Collection of Authenticated Cell Cultures, Public Health England, London, England) were cultured in DMEM (08456; Nacalai Tesque, Inc.) supplemented with 10% fetal bovine serum. The cells were transfected using Lipofectamine 2000® Transfection Reagent (11668027; Thermo Fisher Scientific) or Polyethylenimine “Max” (24765-1; Polysciences, Inc., Warrington, PA, USA).

Immunofluorescence microscopy

The cells were cultured on coverslips, fixed with 4% paraformaldehyde for 10 min, blocked with 5% bovine serum albumin containing 0.5% Triton X-100 for 15 min, and then probed with primary antibodies for 2 h at RT. Afterward, the cells were washed twice with phosphate-buffered saline (PBS), incubated with the secondary antibodies and 4’,6’-
diamidino-2-phenylindole for 1 h at RT, then washed three times with PBS, mounted with ProLong® Diamond Antifade Reagent (Life Technologies, P36961), and observed using a laser scanning confocal microscope (LSM 700; Carl Zeiss AG) equipped with a Plan-Apochromat 63× objective lens (numerical aperture = 1.4).

Time-lapse imaging of BoDV-1-infected cells

BoDV-1-infected OL cells transfected with a plasmid expressing EGFP-tagged P were cultured in a glass-bottom dish and imaged with a C1 confocal laser scanning microscope (Nikon Corporation, Tokyo, Japan) equipped with a CFI Apo Lambda S 60× objective lens (numerical aperture = 1.4), a 37°C heating stage, and lens heater. A series of images were acquired at intervals of 10 s.

Fluorescence recovery after photobleaching (FRAP) analysis

To induce LLPS, 9 µM N, 1 µM N-mCherry, 9 µM P, and 1 µM P-EGFP were mixed. FRAP analysis was performed using a laser scanning confocal microscope (LSM 700; Carl Zeiss AG). After acquiring 10 images (97.75 ms per frame), the indicated spots were bleached using a 488-nm laser with 15 iterations. Then, 590 images were captured. The fluorescence intensity was quantified using ZEN software (Carl Zeiss AG).

Results

P triggers and is necessary for the formation of liquid droplets of BoDV-1 N and P

We first determined the viral protein(s) that forms liquid droplets *in vitro*. As described above, the N and (partial) P proteins are necessary for the formation of liquid droplets by other mononegaviruses. In addition, the IDR is one of several factors that initiate
phase separation4,22,23. Therefore, we predicted the IDRs of the BoDV-1 N and P proteins (Fig. 1A and S1). P was predicted to have a disordered amino acid sequence, especially at the N-terminal region (Fig. 1A). Notably, the BoDV-1 genome encodes two P isoforms, P and P’, which are translated from alternative start codons24. The fully disordered region was predicted to be present only in P, but not P’ (Fig. 1A).

To investigate which proteins cause phase separation, we examined whether P, P’, and/or N form liquid droplets \textit{in vitro}. At a near physiological salt concentration (150 mM NaCl), P clearly formed liquid droplets at a protein concentration of 10 \(\mu\)M (Fig. 1B), while N formed aggregate-like structures but not liquid droplets, and P’ formed neither (Fig. 1B). At a protein concentration of 5 \(\mu\)M, but not 2.5 \(\mu\)M, in 150 mM NaCl, P formed liquid droplets (Fig. 1C). However, in 500 mM NaCl, P failed to initiate a phase separation, even at a protein concentration of 20 \(\mu\)M (Fig. 1C).

In infected cells, N and P are colocalized within viral biomolecular condensates, vSPOTs16. Therefore, we next investigated the effects of P on the aggregate-like structures of N by mixing both N and P \textit{in vitro}. Here we mixed fluorescently labeled proteins (N-mCherry and P-EGFP, both were tagged at the C-terminus) to the reaction mixture to visually distinguish between the N and P proteins. The fluorescent protein-labeled N and P were incorporated into droplets formed by unlabeled N and P (Fig. 1D), respectively, indicating that both fluorescent protein-labeled N and P exhibited the same behaviors as the unlabeled proteins. When N and P were mixed, the liquid droplets were observed, which include not only P but also N (Fig. 1D). However, a mixture of N and P’ formed distorted aggregate-like structures with few liquid droplets. (Fig. 1E).

These results suggest that P, but not P’, alone can form liquid droplets via the IDR at the N-terminal region and N forms liquid droplets with P, which is also dependent on
Viral condensates formed by BoDV-1 have liquid-like properties

BoDV-1 forms membraneless IBs containing BoDV-1 N and P in the nucleus of the infected cells. Also, we showed that BoDV-1 N and P formed liquid droplets in vitro (Fig. 1D and E). These properties are similar to those of cellular biomolecular condensates. However, the detailed characteristics of BoDV-1 IBs remain unclear. Therefore, we examined the potential liquid properties of BoDV-1 IBs. Time-lapse imaging of BoDV-1-infected cells revealed the fusion of two vSPOTs (Fig. 2A). Considering BoDV-1 P is continuously exchanged between vSPOTs, this result indicates that vSPOTs, like other biomolecular condensates, also have liquid properties.

Next, we investigated and compared the properties of the liquid droplets formed by P alone (P droplets) and by both N and P (NP droplets) by a simplified in vitro system. Fusion events were observed with the P and NP droplets (Fig. 2B and C), suggesting that both have liquid properties. However, the NP droplets required a much longer time for two droplets to form one spherical droplet as compared to the P droplets (Fig. 2B and C).

Additionally, the P droplets were completely dissolved by 1,6-hexanediol (1,6-HD), which is an aliphatic alcohol that affects the formation of liquid droplets, while the NP droplets were relatively more resistant to 1,6-HD, although the size and solubility were reduced (Fig. 2D). FRAP analysis showed that the fluorescence recovery of P-EGFP was slower within the NP droplets than the P droplets (Fig. 2E). These results suggest that N decreases the fluidity and increases the stability of droplets.

Both N and P are required for the formation of the condensates in cells
The BoDV-1 nuclear IBs (i.e., vSPOTs) contain several viral proteins (N, P, X, M, and L), viral RNA, and the host protein HMGB1. Although other mononegaviruses, such as rabies virus, measles virus, RSV, metapneumovirus, and human parainfluenza virus 3, require the expression of both N and P for the formation of viral IBs in uninfected cells, the proteins needed for the formation of vSPOTs in cells remain unknown. Hence, we expressed N alone, P alone, and both N and P in uninfected U-2 OS cells and observed them by immunofluorescence staining and confocal microscopy. When N alone was expressed, condensates were not observed in the nucleus, although aggregates were observed in the cytoplasm (Fig. 3A). The expression of P alone did not induce the formation of nuclear condensates (Fig. 3B). On the other hand, the expression of both N and P induced the formation of nuclear condensates that were morphologically similar to vSPOTs (Fig. 3C, arrowheads). The nuclear condensates induced by the expression of N and P contained HMGB1, a host factor that is known to be localized to the vSPOTs of infected cells (Fig. 3C). Note that the condensates containing both N and P were observed in the nucleus as well as the cytoplasm (Fig. 3C, arrows). The expression of N and P′ did not induce the formation of condensates (Fig. 3D), which is consistent with the in vitro result (Fig. 1E). These results suggest that N and P are sufficient for the formation of BoDV condensates in cells, as also reported for other mononegaviruses, and P, but not P′, contributes to the formation of the condensates.

RNA controls the LLPS of BoDV-1 condensates.

The N of mononegaviruses encapsidates RNA and forms nucleocapsids. P, also a component of RNPs, functions as a cofactor of L, which is a RNA-dependent RNA polymerase. From this perspective, there is a possible, although elusive, relationship...
between P and RNA. Therefore, we investigated possible interactions between P and the
BoDV-1 minigenome RNA (mgRNA), which contains the leader and trailer of BoDV-1
and Gluc sequences (Fig. S3A) \(^1\), with the use of the electrophoretic mobility shift assay.
A band shift was observed with an increasing concentration of P, suggesting interactions
with RNA (Fig. 4A). On the other hand, P’ did not interact with RNA. Note that a band
shift was also observed when using RNA lacking the 3’ leader and 5’ trailer regions (Fig.
S3B), suggesting that P interacts with RNA in a sequence-independent manner. No
apparent shift was observed with the P proteins of other mononegaviruses (i.e., VSV and
RSV) (Fig. 4A).

We also investigated the possible incorporation of mgRNA into the droplets. We
observed that mgRNA was incorporated into both the P and NP droplets (Fig. 4B and C),
consistent with the RNA-binding activity of BoDV-1 P (Fig. 4A). However, the signal
intensity of RNA was much stronger in the NP than P droplets, which probably reflects
the role of BoDV-1 N in encapsidating viral genomic RNA.

RNA regulates the formation of liquid droplets formed by RNA-binding proteins\(^{28–31}\). Therefore, we analyzed the effects of adding RNA to the P and NP droplets. The results
showed that mgRNA inhibited the formation of not only P but also NP droplets (Fig. 4B
and C, S1C). These results suggest that RNA is incorporated into the viral condensates in
cells, but an excess amount of RNA could begin to dissolve the viral condensates (see
Discussion).

Discussion

Many mononegaviruses form IBs in infected cells. These IBs are thought to be the sites
of viral transcription and replication, thus it is important to elucidate the properties and
organizations of viral IBs to gain a deeper understanding of the replication strategies of viruses. Additionally, because viral IBs are biomolecular condensates formed by exogenous materials in cells, it is helpful to understand the properties of biomolecular condensates of organisms. In this study, to reveal the organization of condensates formed by BoDV-1, we analyzed the basic properties of BoDV-1 N and P. Similar to other cytoplasmic mononegaviruses, co-expression of BoDV-1 N and P was sufficient to reconstruct the viral IB-like structures in cells (Fig. 3). On the other hand, BoDV-1 P alone drove the formation of liquid droplets in vitro, which was dependent on the IDR (Fig. 1). This feature is distinct from other mononegaviruses that needs both N and P to form liquid droplets. Further, P of BoDV-1, but not other mononegaviruses (i.e., VSV and RSV), binds to RNA and high concentrations of RNA dissolved droplets formed by BoDV-1 N and P in vitro (Fig. 4 and S3). These findings revealed that although BoDV-1 shares common strategies with other mononegaviruses for the formation of IBs, at least to a certain extent, BoDV-1 apparently adopted strategies different from those of other mononegaviruses.

The unique feature of BoDV-1 P to form liquid droplets without N may be attributed to the overlap of the region important for driving LLPS with the RNA-binding region. We revealed that the N-terminal IDR is important for the RNA-binding activity of BoDV-1 P (Fig. 4), which is overlapped with the region necessary to drive LLPS in vitro (Fig. 1). Further, an excess amount of RNA dissolved the BoDV-1 P droplets (Fig. 4). These findings suggest that the LLPS and RNA-binding activities of BoDV-1 might be competing against each other. Notably, a high concentration of RNA is reportedly present in the cell nucleus. Thus, BoDV-1 P may have a greater ability to drive LLPS than the other P proteins of mononegaviruses to induce LLPS in the nuclear environment.
The transcription and replication of BoDV-1 might be regulated by the competitive feature of BoDV-1 P. We revealed that an excess amount of RNA also dissolved the NP droplets, even though RNA was efficiently incorporated into the NP droplet, which was probably due to the ability of BoDV-1 N to encapsidate RNA (Fig. 4). Considering that BoDV-1 may control transcription and replication to establish persistent infection in the nucleus, we propose the following hypothetical mechanism underlying the regulation of viral transcription and replication: if viral transcription and replication are excessive, the excess RNA binds to the N-terminal IDR of BoDV-1 P, leading to dissolving the viral IBs to arrest them. Although the detailed relationship between the LLPS driving and RNA-binding abilities of BoDV-1 P remain unclear, this hypothesis could explain one of the mechanisms needed to establish a persistent infection in the host cell.

Our data suggest that BoDV-1 N plays an important role in the formation of viral IBs in cells. Although our data suggest that BoDV-1 P has greater ability to drive LLPS, co-expression of BoDV-1 N was needed to induce the formation of viral IB-like structures in cells (Fig. 3). Importantly, we could compare the properties of the P and NP droplets in vitro because BoDV-1 P alone can form liquid droplets, which makes it possible to speculate the effect of BoDV-1 N on viral condensates. Notably, the NP droplets had lower fluidity and were more resistant to treatment with 1,6-HD than the P droplets (Fig. 2). Our previous studies revealed that BoDV-1 IBs had insoluble properties and that BoDV-1 N has an immobile property. Thus, besides the function as a nucleocapsid protein (i.e., encapsidation of viral genomic RNA), BoDV-1 N might also convey the properties of insolubility and/or viscosity to viral IBs, which might lead to stable transcription and replication.

In this study, we did not test the effects of viral proteins other than BoDV-1 N and P.
As described above, other viral proteins, including X, M, L, are colocalized in the vSPOTs. Although our data indicated that both N and P are sufficient for the formation of condensates as phase-separated structures, other viral components may affect the formation, structure, localization, and function of viral condensates as reported for other mononegaviruses. Indeed, some of the condensates formed by BoDV-1 N and P were observed in the cytoplasm (Fig. 3), although cytoplasmic viral IBs were barely observed in BoDV-1-infected cells. Hence, further analyses are necessary to elucidate the organization and function of viral IBs.

LLPS is adopted not only in mononegaviruses but also in many other RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In SARS-CoV-2, the nucleocapsid protein forms condensates by LLPS in an RNA-dependent manner. Remarkably, a higher amount of RNA was reported to dissolve the condensates formed by the nucleocapsid protein and RNA, which is consistent with the results of the present study (Fig. 4), as well as other cellular proteins. This suggests that regulation of the phase-separated condensates by RNA is a common mechanism not only among both positive-strand and negative-strand RNA viruses but also among cells. Further analyses focusing on LLPS are warranted to elucidate the various phenomena in the life cycle of RNA viruses, leading to the development of antiviral reagents targeting phase-separated condensates.

Taken together, the results of this study will help to elucidate the mechanisms underlying the formation of phase-separated condensates, which should be useful to further develop antivirals and understand the cellular biology.

Acknowledgments
We are grateful to Takehiro Kanda and Chiaki Tanaka (Kyoto University) for technical support. We would like to thank Enago (www.enago.jp) for the English language review.

Funding
This work was supported in part by JSPS KAKENHI grant numbers JP19K16133 (YH), JP18K19443 (MH), and JP21H01199 (MH); JP19K22530 (KT) and JP20H05682 (KT); MEXT KAKENHI grant number JP 19H04833 (MH), JP16H06429 (KT), JP16K21723 (KT), JP16H06430 (KT); Hakubi Project at Kyoto University (MH), JSPS Core-to-Core Program (KT); and the Joint Usage/Research Center Program on inFront, Kyoto University.

Author contributions
YH and MH conceived and designed the study. YH and MH performed experiments. YH and MH analyzed the data, and all authors discussed the data interpretation. YH wrote the initial draft of the manuscript, and all authors revised the manuscript.

Competing interests
The authors declare no competing interests.

References

prediction of protein disorder as a function of redox state and protein binding.

Figure legends

Fig. 1 IDR-dependent formation of liquid droplets by BoDV-1 N and P.

A. A schematic diagram of the amino acid regions of p24 and p16. The IDRs were predicted by IUPred2A. B. Differential interference contrast (DIC) images of the liquid droplet formation of BoDV-1 P (p24), P (p16), and N. C. DIC images of the liquid droplet formation of the indicated protein concentration of BoDV-1 P (p24) in 150 mM and 500 mM NaCl. D. DIC and fluorescence images of the liquid droplet formation of the indicated protein combination. E. DIC images of the liquid droplet formation of the indicated protein combination. The arrowheads indicate the distorted aggregate-like structures and the arrow indicate the droplets that were scarcely observed.

Fig. 2 The liquid-like properties the BoDV-1 condensates.

A. Time-lapse imaging of the fusion events of vSPOTs. P-EGFP was expressed in BoDV-1-infected OL cells and observed by confocal microscopy. B and C. Time-lapse DIC imaging of the fusion events of droplets formed by BoDV-1 P alone (B) or N and P (C). D. Dissolution of P and NP droplets by the addition of 6% 1,6-HD. The area and intensity of fluorescence per unit area were calculated. Statistical significance was calculated with the two-tailed unpaired t-test. E. Representative images in the FRAP experiment of P and NP droplets (left) and the recovery curves of the fluorescence intensity of P-EGFP after photobleaching (right). The intensities are presented as relative values for which the mean intensities before photobleaching were set to a value of 1.

Fig. 3 Condensates formed by BoDV-1 N and P in cells.
BoDV-1 N alone (A), P (p24) alone (B), N and P (p24) (C), and N and P (p16) (D) were expressed in U-2 OS cells, which were subjected to immunofluorescence staining followed by confocal microscopy. The magnified images of the areas indicated by the rectangles are inserted (C, top).

Fig. 4 The regulation of the BoDV-1 liquid droplets by RNA.

A. The indicated concentration of BoDV-1 P (p24), P (p16), VSV P, or RSV P was mixed with the BoDV-1 minigenome RNA and subjected to the electrophoretic mobility shift assay. B and C. Fluorescence signals of P (B) and NP (C) droplets were observed by confocal microscopy in the presence or absence of 200 ng/µl of Cy3-labeled BoDV-1 minigenome RNA. The area and intensity of fluorescence per unit area were calculated. Statistical significance was calculated with the two-tailed unpaired t-test.
Fig. 1

A

Graph showing Disorder Score against Residue number.

B

Images of protein samples at different concentrations: 10 µM protein, 150 mM NaCl.

C

Images of protein samples at different NaCl concentrations: 2.5 µM, 5 µM, 10 µM, 20 µM, 150 mM NaCl, 500 mM NaCl.

D

Images of different protein combinations: 9 µM N, 1 µM N-mCherry, 9 µM P, 1 µM P-EGFP, 4.5 µM N, 0.5 µM N-mCherry, 4.5 µM P, 0.5 µM P-EGFP.

E

Images of protein samples with specific concentrations: 5 µM N, 5 µM P, 5 µM N, 5 µM P'.

DIC EGFP mCherry merge

Bar: 5 µm

Fig. 1

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.24.445377; this version posted May 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Fig. 2

A

P-EGFP, infected cells

0 s	10 s	20 s	30 s
![Image of infected cells at different times](image1)

40 s	50 s	60 s	70 s
![Image of infected cells at different times](image2)

Bar: 5 µm

B

P droplets

0 s	1 s	2 s	3 s	4 s
![Image of P droplets at different times](image3)

5 s	6 s	7 s	8 s	9 s
![Image of P droplets at different times](image4)

Bar: 5 µm

C

NP droplets

0 s	10 s	20 s	30 s	40 s	50 s
![Image of NP droplets at different times](image5)

60 s	70 s	80 s	90 s	100 s	110 s
![Image of NP droplets at different times](image6)

Bar: 5 µm

D

Ctrl	1,6-HD
![Image of Ctrl and 1,6-HD](image7)

![Box plots showing area and intensity](image8)

E

pre-bleach	0 s	10 s	20 s	40 s

P | ![Image of P droplets at different times](image9)

NP | ![Image of NP droplets at different times](image10)

Bar: 5 µm

![Graph showing relative intensity over time](image11)
Fig. 3

A Transfection

N

N + DAPI

Bar: 5 µm

B

P

P + DAPI

Bar: 5 µm

C

P

merge + DAPI

N

HMGB1

P

merge + DAPI

Bar: 5 µm

D

P'

merge + DAPI

N + P'

Bar: 5 µm
Fig. 4

A

Protein concentrations (µM): 0, 2, 4, 8. Panels: P, P', VSV P, RSV P.

B

Images of P-EGFP and Cy3 (RNA) with and without mRNA. Bar: 5 µm.

C

Images of P-EGFP and Cy3 (RNA) with and without mRNA. Bar: 5 µm.

Bar graphs showing P area, P intensity, NP area, and NP intensity comparisons between no RNA and mRNA conditions. p < 0.0001.