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A. Mammalian Data Set 

As described in the methods section, the data set is primarily based on the orthologous protein 

groups available on OrthoDB v10 (Kriventseva et al., 2019) based on the “mammalia” taxonomic 

level. We selected protein groups that are single-copy in all species with greater than 90 taxa 

represented. An additional 156 proteins, which did not meet the initial single copy in all taxa 

requirement, were added to extend the analysis in pathways of interest (e.g. coagulation cascade, 

sphingolipid signaling, renin-angiotensin system). Of these proteins, 47 were added due to 

literature suggesting an association with COVID-19, to evaluate their ERCs to ACE2, such as 

IFNAR2 and XCR1 (Fricke-Galindo & Falfán-Valencia, 2021; Pairo-Castineira et al., 2021; Severe 

Covid-19 GWAS Group, 2020). Only proteins with relatively minor paralogy issues were added 

by this method (Supplementary File S5). The rationale for this approach is that it would be very 

difficult to determine which paralog to choose for the analysis in terminal branches with multiple 

paralogs for a particular protein. The final set contains a total of 1,953 proteins, including ACE2.  

In 23 cases (Table S1), OrthoDB orthology groups contain multiple distinct protein groups 

resulting from ancient gene duplications. In some cases, we examined the phylogeny of the 

orthology group and, where appropriate, divided and added them to our protein set. In most cases, 

the division was supported by protein annotation names within the orthology group, and the 

protein sequences were split based on reference annotations given by OrthoDB and sequence 

similarity. For example, coagulation factor IX (F9) and X (F10) were within the same orthology 

group (OrthoDB ID: 91794at40674).  

 

Table S1: The OrthoDB groups that were added to the dataset for which there were multiple 

distinct proteins reported as a single orthology group. The proteins listed on the right column were 

all the disambiguated proteins added to the 30MY dataset (so they had to have met our 

requirement of having at least 50 of the selected taxa).  



A well-resolved time-scaled mammalian phylogeny available from TimeTree (Kumar, Stecher, 

Suleski, & Hedges, 2017) was used that includes the taxa that were in our orthologous protein 

sets. This tree contained 108 mammals (Fig. S1, Table S2) in the original uncorrected data set. 

Later, in order to correct a terminal branch time (BT) to protein rate correlation found for most 

proteins due to short branches (see below), we removed taxa from oversampled clades with short 

terminal branches. We found that a 30MY threshold for terminal branches eliminated the terminal 

branch time to protein rate for 87.5% of proteins (described in Section E), resulting in 50-60 taxa 

per protein (Table S2). These data were used for the ERC analysis reported in the main text.  

 

 

Figure S1: Full original phylogeny topology with branches scaled to time (in millions of years) 

based on TimeTree (Kumar et al., 2017). Branches highlighted in grey are removed following a 

30MY branch length threshold correction. 

 



 

Figure S2: Time-scaled phylogeny only containing the 60 selected taxa following a 30MY 

threshold correction.  

 



 

Table S2: List of taxa that are in the original phylogeny (left column), the taxa that are chosen 

following a 20MY correction (center column), and the taxa which are chosen following the 30MY 

threshold correction (right column). 



The final data set is composed of 1,953 orthologous protein groups with each individual protein 

containing 50 to 60 taxa total. 

B. ERCs on The Original Phylogeny with Short Branches 

ERCs were initially calculated for the 1,953 proteins using the complete mammalian phylogeny 

(Fig. S1) using the same scheme as defined in Methods section of the main text. The top 40 ERCs 

for ACE2 using this initial method are shown in Table S3. However, these ERCs could be driven 

(in part) by a spurious correlation to branch time (Section C) An initial attempt to remove the 

correlation was conducted using partial correlations (Kim, 2015) (Section D). The top 40 ACE2 

ERCs for this treatment are also presented in Table S3, along with the final, 30MY threshold 

corrected ERCs. There are 7 proteins (TNFSF18, IFNAR2, GPR141, CLU, F5, SERPINA5, and 

SLC10A6) that are shared among all three top 40 ACE2 ERCs . Nine proteins are shared between 

the top 40 original ACE2 ERCs (TSGA13, CLU, F5, GPR141, PLA2G7, SLC10A6, IFNAR2, 

TNFSF18, and SERPINA5) and the 30MY ERCs, with 8 proteins that are shared between the top 

40 ACE2 branch time-corrected ERC and 30MY ERC sets (CLU, F5, COL4A4, GPR141, 

SLC10A6, IFNAR2, TNFSF18, and SERPINA5).  

 



Table S3: The top 40 ERCs for ACE2 based on the original ERC method (left), BT-Corrected 

partial correlation ERC method (center), and the standard 30MY-adjusted ERC method (right). 

FDR corrections are based on the full ERC dataset for each respective ERC method.  

C. Branch Time to Protein-Rate Correlation Problem 

In examining the terminal branch rate correlation data for ACE2, we found that its rate of evolution 

was correlated with the terminal branch time (BT) (illustrated in Fig. S3). We suspect that this 

correlation may be due to episodic selection over the course of its evolution (possibly driven in 

part by evolution in its partners). As a result, BT could be a confounding correlate in ERC. 

Examination of the proteins in our set indicated a significant BT correlation to evolutionary rate 

for 1,559 out of 1,953 proteins (p < 0.05; Supplementary File S6). Notably, many of the strongest 

original ERCs to ACE2 (such as IFNAR2 and APOB), have very significant correlations to BT with 

ρ values greater than 0.5 (Table S4). To directly test the effects of time on predicted ERC 

interactions, multiple linear regressions were performed on the rank-transformed rate data from 

protein relationships of interest, with time as a covariate (equations in the form: 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑅𝑎𝑡𝑒𝑅𝑎𝑛𝑘 =

𝛽2𝐴𝐶𝐸2𝑅𝑎𝑡𝑒𝑅𝑎𝑛𝑘 + 𝛽1𝐵𝑟𝑎𝑛𝑐ℎ𝑇𝑖𝑚𝑒𝑅𝑎𝑛𝑘 + 𝛽0). Many of the proteins with strong ACE2 ERCs 

resulted in models with the time variable being a significant factor (Table S5). These results 

additionally hold using similar models under an ANOVA test (Table S5). Examining scatterplots 

of protein evolutionary rates indicate that the pattern may be driven by short branches with respect 

to BT (examples in Fig. S3). As expected by this interpretation, the vast majority of proteins (all 

but 37 of 1953; Supplementary File S7) show significantly more points below the regression line 

for short branches (<30MY). The short branches occur in relatively oversampled taxonomic 

orders, as oversampling of closely related species shortens terminal branch times. Since BT is a 

significant covariate in the original ERC data, the significant ERCs could be due, in part, to a 

confounding covariance to BT. We therefore examined different approaches to remove this 

confounding variable (below). 



 

Figure S3: A set of scatterplots depicting the rates of evolution of several proteins of interest 

plotted against terminal branch time for the original data, with highly sampled clades colored. Also 

depicted is the linear regression line to emphasize the positive association and Spearman’s rank 

correlation test results (ρ and p-value). In each case, the rate data shows a significant correlation 

with BT. For each protein, there are significantly more points below the regression line for terminal 

branches <30MY, indicating lower rates for short branches. 

 



 

Table S4: Spearman’s rank correlation tests on the terminal branch rates against BT for branch 

time uncorrected data to proteins of interest (strong ERCs in the original or 30MY threshold 

ERCs). In all cases shown, the proteins have a strong correlation between their terminal branch 

rates and time prior to correction for short branches.  

 

Table S5: Linear model fit using the original data set to test for branch time and ACE2 effects, 

using the form: 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑅𝑎𝑡𝑒𝑅𝑎𝑛𝑘 = 𝛽2𝐴𝐶𝐸2𝑅𝑎𝑡𝑒𝑅𝑎𝑛𝑘 + 𝛽1𝐵𝑟𝑎𝑛𝑐ℎ𝑇𝑖𝑚𝑒𝑅𝑎𝑛𝑘 + 𝛽0 . Selected proteins 

of interest are shown from top ACE2 ERCs of the original and 30MY data sets. In all cases, except 

for TMEM63C and ITPRIPL2, the model has a strongly significant reported P-value, indicating 

that ACE2 is significantly predictive. For 8 of 14 proteins branch time is also significantly 

predictive. For ANOVA, all 14 proteins show a significant ACE2 effect, and 8 of 14 have a 

significant Branch time effect. This indicates that branch time is a confounding factor for many 

ACE2’s ERCs in the original data, which contains short terminal branches. 

D. Partial Correlation to Address BT-PR Correlation 

As time is a significant confounding effect on the protein rate, ERCs values may be distorted by 
the branch time covariate. We, therefore, investigated the use of “partial correlations” to control 
for the confounding effect of time on our correlation calculations (Kim, 2015). Partial correlation-
based ERCs were generated utilizing the “ppcor” R package (Kim, 2015) to produce Spearman’s 



rank partial correlation tests while controlling for the effects of terminal branch time. The partial 
correlations are based on fitting a linear model to the variable(s) being controlled for and then 
performing a Spearman’s rank correlation test on the residuals of the two models. These residuals 
represent the variance in the data that are unexplained by the variable(s) being controlled for. In 
particular, terminal branch time was controlled to account for the observed correlation to BT. Even 
following the partial correlation controlling for BT, ACE2 still had strong ERCs to immune system-
related proteins such as IFNAR2 (Table S3). However, partial correlations are not robust to 
assumption violations. As partial correlations are based on performing a rank correlation test on 
the residuals of linear models of rates trained against time, we examined the data to assess the 
possibility of these violations. Several problems were noted upon examining residuals of 
individually trained models. The most important of which is that rate vs BT residuals were still 
correlated with BT. Since these residuals should capture variance that is not explained by terminal 
branch time, it is unexpected for these residuals to still have a strong association to BT. However, 
1,529 of 1,953 proteins have residuals that still have a significant Spearman’s correlation to time 
(p < 0.05 Supplementary File S8, select proteins are displayed in Table S6). Key proteins such 
as ACE2 are among the set of proteins with residuals that still correlate significantly to BT (Table 
S6). The previous analysis showed that short branch rates are overrepresented below the protein 
rate to branch time regression line for the vast many proteins, which likely explains why the partial 
regression fails to remove the branch time correlation in many cases.  
 

 

Table S6: Spearman’s rank correlation tests of the residuals of linear models trained on a protein’s 
rates against time. Ten of the 15 proteins depicted (including ACE2) retain a significant 
association with time after accounting for time. Full table available in Supplementary File S8.  
 
As we noted that short branches appear to drive the rate to BT correlation (Fig. S3), we therefore 
decided to control for confounding branch time effects by removing short branches and 
recalculating ERC rates. 

E. Removing Short Branches to Remove the Confounding BT-Rate Factor 

As we observed that terminal branch time is a confounding factor in our ERC analysis (Section 

C), we examined short branches as a likely driver for the association. Therefore, we identified 

sister taxa with short branches and selectively remove one or more, to remove short branches 



and extend branches in the remaining sister taxa (Fig. S2, Table S2). The procedure was applied 

to produce clades with branch lengths with a 20MY BT threshold or a 30MY BT threshold. Note 

that we allowed around a 3 MY buffer (e.g. 30-27 MY threshold) so as to not restrict the taxonomic 

sample sizes too heavily. The specific representative taxa were picked arbitrarily, but generally 

were chosen to allow for the most number of internal nodes to be merged into a single branch 

(Table S2), with the main exception to the rule being that Homo sapiens was selected as the 

representative of its clade, due to its relevance to the COVID-19. The taxa selections at the 20MY 

time scale resulted in the removal of 32 taxa from the original phylogeny and the taxa selections 

at the 30MY time scale resulted in the removal of 48 taxa. Both adjustments to the data strongly 

reduced the number of proteins displaying a significant association between rate and BT. 

Specifically, while the original data set had 1,559 out of 1,953 proteins which displayed a 

significant correlation between BT and rate (p < 0.05), the 20MY adjustment reduced this number 

to 1,065 proteins, and the 30MY adjustment reduced the number of proteins with a significant rate 

to BT correlation to 245 (select proteins in Table S7, complete set in Supplementary File S6), or 

12.5% of proteins. Therefore, the 30MY terminal branch length threshold most effectively 

removed branch time as a confounding factor. After the 30MY correction, there is no longer a 

significant correlation between branch time and branch rate for most proteins, as illustrated in 

Table S7 and Figure S4.  

 

Table S7: Spearman’s rank correlation tests on the terminal branch rates versus branch time for 

proteins of interest for the three different time threshold treatments: No cutoff, 20MY cutoff, 30MY 

cutoff. In all cases, the correlation with rate and time decrease—to the point where unadjusted p-

values are insignificant at p < 0.05 level for all but one protein at the 30MY cutoff. 



 

Figure S4: A set of scatterplots depicting the rate of evolution of several proteins of interest plotted 

against terminal branch time with highly sampled clades colored. The left column of plots depicts 

the original rate data and the right column depicts the corresponding rate data following a 30MY 

adjustment. Also depicted is the regression line to emphasize the positive association and the 

statistics of Spearman’s rank correlation test results (ρ and p-value). In each case, the original 

data shows a significant correlation with BT while the 30MY adjusted data shows that the 

association is no longer significant. 

Results from the 30MY adjustment also reveal strong reciprocal ERCs among proteins known to 

occur in complex with each other that were not apparent in the uncorrected ERC analysis. For 

instance, the three fibrinogen subunits FGA, FGB, and FGG form a well-known fibrinogen 

complex (Mosesson, 2005), and have strong reciprocal rank ERCs in the 30MY data, but do not 

in the original treatment (Tables S8-S10). Similar empirical observations were noted among 



several other interacting proteins such as the weak relationship between IFNAR1 and IFNAR2 in 

the uncorrected data but the much stronger relationship in the 30MY data (Table S11), despite 

their being known to complex (Thomas et al., 2011). We also note weak relationships between 

several of the Collagen Type IV subunits in the uncorrected ERC data, but the relationships were 

again strengthened following the 30MY adjustment (Table S12) which are known to physically 

interact (Casino et al., 2018), and found to form strong reciprocal rank ERCs in the corrected data 

set.  

 

Table S8: The ERC results between the expected interacting proteins FGA and FGB under the 

original ERC method, the time-corrected partial correlation-based ERC, and the final 30MY-

corrected ERC. This interaction does not meet our reciprocal rank 20 criteria until we use the 

30MY-corrected ERCs.  

 

 

Table S9: The ERC results between the expected interacting proteins FGA and FGG under the 

original ERC method, the time-corrected partial correlation-based ERC, and the final 30MY-

corrected ERC. This interaction does not meet our reciprocal rank 20 criteria until we use the 

30MY-corrected ERCs, additionally, the 30MY ERC value itself is strongest after the 30MY 

correction.  

 

 

Table S10: The ERC results between the expected interacting proteins FGB and FGG under the 

original ERC method, the time-corrected partial correlation-based ERC, and the final 30MY-

corrected ERC. This interaction does not meet our reciprocal rank 20 criteria using the original 

ERC calculation. It does meet the reciprocal rank 20 criteria after time correction, but this 

reciprocal rank interaction gets even stronger after the 30MY correction. 

 



 

Table S11: The ERC results between the expected interacting proteins IFNAR1 and IFNAR2 

under the original ERC method, the time-corrected partial correlation-based ERC, and the final 

30MY-corrected ERC. Notably, the interaction does not meet our reciprocal rank 20 criteria until 

our 30MY correction. We also note that the 30MY ERC is stronger than all other attempts. 

 

 

Table S12: The ERC ranks of protein pairs of interacting Collagen Type IV subunits according to 

Casino et al. (2018) under different ERC corrections. Ρ and p-values are omitted for clarity but in 

all, instances, the ρ values were increased under the 30MY correction when compared to either 

the time-corrected or original ERCs.  

F. Testing Whether Branch Rate Increases with Evolutionary Time 

There is a positive association between terminal branch time and the rate of evolution for many 

proteins (Section C). The question, therefore, arises as to whether there is actually an increase 

in evolutionary rate over time for these proteins. To test this question, we conducted an 

“experiment” to extend branches along independent clades, in order to test whether increasing 

branch time increases protein evolutionary rate. This was accomplished by extending branch 

lengths along taxonomic branches in different clades by trimming adjacent taxa and comparing 

the protein rates as branches are extended. (Fig. S5). Based on the TimeTree phylogeny(Kumar 

et al., 2017), we selected individual clades containing short branches that would have their time 

scales extended following a 20MY and 30MY adjustment (Fig. S5, Table S2).  

 

 

Figure S5: Cartoon illustrating the branches being compared when testing whether branch rates 

change upon an increase in time scale. In this instance, the taxon “Mus musculus” is selected 



from the Rattus and Mus clades. The original short branch (orange), 20MY branch (cyan), and 

30MY branch (purple) are each used to calculate rates, and these are the paired data that is 

compared to test for changes in rates. 

Since we suspected that rates scale as time increases, we specifically tested whether there is a 

significant difference in rate for each of these branches before and after 20MY and 30MY 

adjustments, as described in Section E (14 selected taxa for comparing original vs 20MY, 12 

selected taxa for comparing 20MY vs 30MY, 16 selected taxa for comparing original vs 30MY). 

Tests on each branch’s rate against the respective adjusted rate were performed using two-tailed 

Wilcoxon Matched Signed Rank Tests (results for all proteins are reported in Supplementary File 

S9), to test whether these rates significantly differed. We note that many proteins show significant 

changes in rate under each adjustment, but this pattern is most prominent in the shift from short 

branch rates to 30MY rates (longer branches). Examples are shown in Table S13 and Figure S6, 

and the complete data are present in Supplementary File S9. Notably, out of our set of 1,953 

proteins using a significance cutoff of p < 0.05, 261 proteins show significant rate changes (238 

of which have a median increase in rate) in the Short-to-20MY treatment, 456 show significant 

rate changes (442 of which have a median increase in rate) in the 20MY-to-30MY treatment, and 

551 show significant rate changes (545 of which have a median increase in rate) in the Short-to-

30MY treatment (Fig. S7).  

 

Table S13: Unadjusted P-values for two-tailed paired Wilcoxon signed-rank tests comparing the 

rate of evolution of selected branches after various adjustments for selected proteins of interest. 

Most proteins show significant differences in rate, and all but PLA2R1 has a significant difference 

in rates from the original rate data and 30MY rate data. 



 

Figure S6: Boxplots of the differences in the rate of evolution of selected branches after various 

adjustments for selected proteins of interest. A dashed blue line indicates a difference of zero. 

Sample size and two-tailed paired Wilcoxon signed-rank test p-values are indicated underneath 

each respective box indicating if there was a significant change in rates. 



 

Figure S7: The distributions of p-values of the two-tailed Wilcoxon matched signed-rank tests 

comparing whether there is a significant difference in the rates of difference in selected branches 

when time scales were increased. Additionally, the vertical red line indicates a p < 0.05 threshold 

for significance, such that all bins to the right of it represent insignificant tests. 



We hypothesize that these shifts in rate may be due to increased evolutionary time scales being 

able to capture episodic evolutionary events that would otherwise be missed in the short branches 

of the original phylogeny. As longer time scales are considered, there could be a larger chance 

that these episodic events would be captured, explaining the pattern.  

G. Testing for Taxonomic Order Effects 

We use three methods to test for taxonomic order effects on the calculated 30MY ERCs, (1) 

multiple linear regression, (2) analysis of covariance (ANCOVA), and (3) non-parametric 

independent contrasts. For the regression and ANCOVA approaches, 30MY rate data is grouped 

by mammalian taxonomic orders accessed via ETE3 ((Huerta-Cepas, Serra, & Bork, 2016)) and 

treated as an independent variable. The independent contrasts test uses the mammalian topology 

previously created with TimeTree (Kumar et al., 2017) to generate independent contrasts within 

the phylogeny. Statistical tests for each method are performed using base R (version 3.6.1).  

Linear regression models using mammalian order as a variable were tested in the following 

general equation format: 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑅𝑎𝑡𝑒𝑅𝑎𝑛𝑘 = 𝛽3𝐴𝐶𝐸2𝑅𝑎𝑡𝑒𝑅𝑎𝑛𝑘 + 𝛽2𝐵𝑟𝑎𝑛𝑐ℎ𝑇𝑖𝑚𝑒𝑅𝑎𝑛𝑘 + 𝛽1𝑂𝑟𝑑𝑒𝑟 +

𝛽0 on the 30MY adjusted terminal branch time data. Since taxonomic order is a categorical 

variable, R implicitly converts the variable to become a one-hot encoded “contrast” matrix. One 

can then examine the reported model metrics to see if any of the encoded taxonomic order 

variables have a statistically significant contribution to the resultant model. We focus our analysis 

on the top 5 proteins showing high 30MY ERCs with ACE2 (GEN1, XCR1, CLU, TMEM63C, and 

IFNAR2). All the examined models have a strong fit (Table S14). In most cases, none of the 

orders provide a significant contribution to the model (Supplementary File S10). There are a few 

notable exceptions. The model for GEN1 displays a near-significant contribution of Rodentia, but 

removing Rodentia still results in a significant ERC to ACE2 (ρ = 0.60, unadjusted p = 4.5E-11) 

so the ERC is not an artifact of the effect of Rodentia. Additionally, the model for CLU displays a 

significant contribution of Dasyuromorphia (Supplementary File S10), however, there is only one 

taxon within the order in the data and there is still a strong ERC when this taxon is removed (ρ = 

0.67, unadjusted p = 3.2E-08). So, we do not consider this an important contributor to the ACE2-

CLU relationship, and it is more likely to be due to model overfitting. We also note that IFNAR2’s 

model shows a significant contribution of the Carnivora, Cingulata, Perissodactyla, Pholidota, and 

Primates. (Supplementary File S9). But the ERC between ACE2 and IFNAR2 is still strong after 

removing these orders from the 30MY rate data (ρ = 0.56, unadjusted p = 3.7E-04). Importantly, 

all the models calculated show a significant contribution of ACE2, even in the presence of these 

order effects (p-values range from 2.04E-02 to 4.1E-04; Supplementary File S9). Furthermore, 

the linear models for each of these proteins of interest show an insignificant contribution of branch 

time using the 30MY-based rate data, further validating the removal of the rate-time correlation 

(Supplementary File S10). 

 



Table S14: The adjusted R2 and overall model significance values for each of the linear models 

representing ACE2’s top 5 ERCs to test for the effects of taxonomic order. In all cases, the model 

is significant at p < 0.05 and has strong fits reported by the R2 values, confirming the relationships 

identified with the 30MY ERCs between ACE2 and these proteins. 

As an alternate method to test for the effects of taxonomic order, we used ANCOVA. ANCOVA is 

a parametric test that allows for the inclusion of categorical data. Since ANCOVA has a similar 

model structure as linear modeling, the same model structure described above is once again 

utilized for statistical testing. ACE2’s top 5 ERC partners in the 30MY set have no significant effect 

of taxonomic order except for GEN1 (p = 1.6E-03; Table S15) and IFNAR2 (p = 2.5E-04; Table 

S15). However, ACE2 has a much more significant contribution to each of these models than 

does Order (p = 7.9E-10 for GEN1 and p = 7.8E-09 for IFNAR2; Table S15). Removing the orders 

identified above in the regression analysis eliminates the significant order effect detected by 

ANCOVA for GEN1 (p = 2.2E-01) and reduces the effect for IFNAR2 (p = 8.6E-03). But as 

discussed above, the ERCs for ACE2 to GEN1 and to IFNAR2 are still strong and significant after 

removing the taxa identified in the regression analysis. We also note again, that under 30MY 

adjustment, terminal branch time is not a significant covariate in all cases examined (Table S15). 

 

Table S15: Table showing the p-values for the covariates of ANCOVA tests run on linear models 

considering the rates of proteins of interest against ACE2 with taxonomic order and terminal 

branch time. 

A Spearman non-parametric independent contrasts test (Garland, Harvey, & Ives, 1992) was also 

used to check for taxonomic effects in the 30MY adjusted rate data. The independent contrasts 

test is used to examine if there is a significant relationship between ACE2 rates and its top 5 ERC 

partners even after accounting for taxonomic effects between related species. The test is 

performed using the R packages “ape” (Paradis & Schliep, 2019) and “picante” (Kembel et al., 

2010). In all cases, ACE2 continues to have a significant relationship to each protein (p < 0.05), 

indicating that ACE2’s 30MY ERC relationships are not driven by taxonomic bias (Table S16). 

 

Table S16: Table showing the correlation coefficients and p-values for the Spearman non-

parametric independent contrasts tests on ACE2 against the top 5 ACE2 ERC proteins controlling 

for phylogenetic effects with the use of independent contrasts. In all cases, the proteins retain a 

strongly significant correlation with ACE2. 



H. Additional Information on ACE2 Interactor Proteins 

Here we provide additional summary information on ACE2 ERC proteins of interest, based on our 

review of data sources Gene Cards (Stelzer et al., 2016), KEGG (Kanehisa & Goto, 2000), UniProt 

(Bateman et al., 2021), NCBI Entrez (Maglott, Ostell, Pruitt, & Tatusova, 2005), Human Protein 

Atlas (Thul et al., 2017), and surveys of literature detected through Google Scholar searches. 

Additional information on the ERC associations of these proteins is also presented below.  

GEN1 (Flap endonuclease GEN homolog 1): GEN1 is ACE2’s top-ranked ERC (ρ = 0.67, FDR = 

4.2E-05). It is a DNA nuclease whose primary functions are the resolution of DNA Holliday 

junctions (Chan & West, 2015), and DNA damage checkpoint signaling (Palmer & Kaldis, 2020). 

It also has a role in centromere stability in both meiosis and mitosis (Gao et al., 2012). Consistent 

with its roles in meiosis and mitosis, the second-highest ERC interactor for GEN1 is CC2D1B, a 

protein involved in resealing of the nuclear envelope following mitosis and assembly and 

disassembly of the mitotic spindle (Vietri & Stenmark, 2018). 

Surprisingly, the top ERC interactor of GEN1 is Interferon λ receptor 1 (IFNLR1), and they are 

each other’s top-ranked ERC connections (Supplementary File S3). This implies a tight 

association of GEN1 with the interferon pathways involved in immune response and antiviral 

defense (Prokunina-Olsson et al., 2020), although there is little evidence for this in the literature. 

Interferon pathways are important in antiviral defense, but also can contribute to cytokine storms 

and COVID-19 pathologies (McKechnie & Blish, 2020). Along with SLC10A6 and TESPA1, GEN1, 

IFNLR1, and CC2D1B form a strong reciprocal rank network (Section D, Figure 3). GEN1’s top 

2% ERCs are enriched for multiple terms related to viral infection, such as HPV infection (FDR = 

2.0E-03), Measles (FDR = 4.0E-03), Hepatitis C (FDR = 4.6E-03), Necroptosis (FDR = 4.6E-03), 

Influenza A (FDR = 4.7E-03), and Kaposi sarcoma-associated herpesvirus infection (FDR = 5.5E-

03). Cytokine-cytokine receptor interaction is another significantly enriched term (FDR = 1.6E-

04). In contrast, based on our standard top 2% ERC list for enrichment, there are no significant 

terms strictly related to DNA replication, despite that being the primary identified function of GEN1 

in the scientific literature. We speculate that GEN1’s functions in DNA and centrosomes during 

mitosis could be related to DNA checkpoint signaling affecting apoptosis or necrotic cell death, 

perhaps explaining the enrichment for proteins involved in viral responses. Identification of binding 

domains between GEN1 and some of its top ERC partners could be informative for possible 

functional studies. 

XCR1 (X-C Motif Chemokine Receptor 1): XCR1 is the 2nd top-ranked ERC for ACE2 (ρ = 0.67, 

FDR = 6.18E-05). XCR1 is the receptor for the chemokine XCL1. The receptor-cytokine interplay 

is involved in the immune response to infection and inflammation, development of regulatory T 

cells in the thymus, and establishing self-tolerance (Lei & Takahama, 2012). Therefore, 

disruptions of XCR1 due to protein interactions with ACE2 could play a role in COVID-19 

complications. As well as being the top rank ACE2 ERC, these two proteins have reciprocal rank 

correlations at the 2% level (ACE2 is rank 37 for XCR1). Strikingly, the Severe Covid-19 GWAS 

Group (2020) detected a small genomic region containing six genes that significantly associates 

with severe COVID-19, one of which is XCR1. Our finding that ACE2’s 2nd highest ERC interactor 

is also XCR1 is striking for two reasons. First, it lends independent support for a relationship 

between COVID-19 and XCR1. Second, it implicates that a direct interaction between ACE2 and 

XCR1 could be involved in COVID-19 pathologies. To our knowledge, there are no other reports 

of interactions between these two proteins. Its Top 2% ERCs show an extremely strong 



enrichment for cytokine-cytokine receptor interactions (FDR = 8.0E-06) and JAK-STAT related 

terms (FDR = 9.7E-03), and for coagulation and complement and cascades (FDR = 1.0E-02). 

CLU (Clusterin, aka Apolipoprotein J): CLU is the 3rd highest ACE2 ERC (ρ = 0.63, FDR = 1.5E-

04), and these two proteins show strong reciprocal ranks (3, 8), likely supporting biological 

interactions. Relevant to this point is that both ACE2 and CLU have soluble forms that circulate 

in the blood (Itakura, Chiba, Murata, & Matsuura, 2020). CLU prevents aggregation of misfolded 

proteins in blood by binding to them, and also clears misfolded extracellular proteins by binding 

to heparan sulfate receptors on cells, leading to endocytosis and degradation of CLU and 

associated proteins in lysosomes (Itakura et al., 2020). This recently discovered mechanism has 

been referred to as a “cleaning squad” for extracellular misfolded proteins (Sánchez-Martín & 

Komatsu, 2020). CLU also protects cells from complement-induced apoptosis and lysis (Jenne & 

Tschopp, 1989). As well as being abundant in blood plasma, CLU is also found on mature sperm 

and abundant in seminal plasma (Uhlén et al., 2015). 

CLU shows the strongest possible reciprocal ranking with GPR141 (1,1 - ρ = 0.68, FDR = 9.1E-

06). GPR141 is associated with megakaryocytes (see below). Consistent with their strong 

evolutionary correlation, CLU is produced in megakaryocytes which subsequently mature into 

platelets (Tschopp et al., 1993). CLU is released by activated platelets in surrounding fluids at 

sites of vascular injury (Witte et al., 1993), which is consistent with their function in reducing 

protein aggregations. A surprising finding is the significant association of Clusterin with several 

coagulation pathway-related proteins (ranks shown in parentheses), including: F5 (3), F13B (9), 

FGG (18), and FGA (27). In addition, it has a strong reciprocal interaction with mitochondrial malic 

enzyme 2 (ME2, ρ = 0.62, FDR = 3.9E-05, reciprocal ranks 12,2). Analysis of CLU’s top 2% 

strongest ERCs shows significant enrichment for 186 terms. CLU’s top 4 most significantly 

enriched terms all relate to the coagulation cascades and clot formation. Additional significant 

terms are relevant to immunity, such as “Immune system” (FDR = 4.8E-03), “Signaling by 

Interleukins” (FDR = 4.1E-03), and “Plasma Cell”, an activated immune cell type (FDR = 3.4E-

05). 

Of direct relevance to COVID-19, Singh et al (2021) found in an expression study of coronavirus 

infected cells that SARS-CoV-2, SARS-CoV, and MERS-CoV, show shared expression 

alterations for two genes, one of which is CLU. Therefore, the ERC results for CLU are consistent 

with aspects of their known function, and their interactions with coronavirus infections. 

GPR141 (G Protein-Coupled Receptor 141): Although GPR141 falls just outside the top 1% ACE2 

ERC set (rank 24 – 1.2%), its relevance to Clusterin and our protein network analysis below 

warrants its inclusion here. There is limited information on GPR141 in the literature. Nevertheless, 

GPR141 forms a very strong reciprocal rank with CLU (1,1), each being the top interactor with 

the other, and CLU-GPR141-ACE2 forms a reciprocal rank 24 triad. According to the Human 

Protein Atlas (Uhlén et al., 2015), it is highly expressed in the brain, bone marrow, lymphatic 

tissue, and blood. Cell types showing enriched expression of GPR141 include granulocytes, 

Kupffer cells, and macrophages, as well as alveolar cell types 1 & 2. A recent study found that 

GPR141 expression is a molecular signature for megakaryocytes (Lu et al., 2018), the progenitor 

cells for platelets and red blood cells. Noteworthy in this regard is that autopsy results of COVID-

19 victims with neurological manifestations find an unusual presence of megakaryocytes in brain 

capillaries (Nauen, Hooper, Stewart, & Solomon, 2021). Additionally, elevated levels of IFN-

activated megakaryocytes are observed in the blood of patients with severe COVID-19 



(Bernardes et al., 2020). These findings suggest possible roles for GPR141 in COVID-19 

pathologies. 

Although there is limited information on GPR141, its protein interactions revealed by ERCs could 

be informative. The GPR141’s top 2 percent ERCs show significant enrichment for 111 terms 

(Supplementary File S3). Most of its top enriched terms relate to the coagulation cascade (FDR 

= 2.9E-10), with many of the contributing proteins being similar to Clusterin’s protein set. 

Additionally, there is significant enrichment for terms related to regulation of vasodilator nitric 

oxide (FDR = 3.0E-03), ceramide/sphingolipid signaling (FDR = 6.8E-03) and cytokine responses 

(FDR = 6.8E-03). 

Recent studies implicate GPR141 in Alzheimer’s Disease (AD) (Hodges, Piers, Collier, Cousins, 

& Pocock, 2021; Novikova et al., 2021; Srinivasan et al., 2020). The finding may be noteworthy 

given the very strong ERC association of GPR141 with CLU and their top reciprocal ranks (1,1). 

Multiple lines of evidence implicate CLU in AD, including a role in amyloid Aβ processing, CLU 

polymorphism association with late-onset AD (Balcar et al., 2021), and correlations of CLU levels 

in serum and cerebrospinal fluid with AD (Shepherd, Affleck, Bahar, Carew-Jones, & Halliday, 

2020). Since the function of GPR141 is poorly understood, the ERC results suggest that the two 

proteins interact closely, possibly through physical binding, and their functional relationships 

should be further explored. 

TMEM63C (Transmembrane Protein 63C): TMEM63C is the 4th ranking ACE2 ERC (FDR = 1.3E-

04), and the two have strong reciprocal ranks (and ACE2 show a strong reciprocal rank ERCs 

(3,10), suggestive of direct reciprocal interactions. Along with other family members, TMEM63C 

forms a membrane channel and functions in osmolarity perception and regulation (X. Zhao, Yan, 

Liu, Zhang, & Ni, 2016). It plays an important role in kidney function and kidney disease (Schulz 

et al., 2019), with angiotensin II inducing its expression in glomerular podocyte cells (Eisenreich, 

Orphal, Böhme, & Kreutz, 2020). Reduced expression of TMEM63C can result in podocyte 

apoptosis (Eisenreich et al., 2020). The connection between TMEM63C and angiotensin II is a 

further indication of a functional interaction, given that ACE2 metabolizes angiotensin II to 

angiotensin (1-7) as part of the RAS pathway. The RAS pathway is implicated in aspects of 

COVID-19 (Kai & Kai, 2020). 

TMEM63C’s top 2% ERC list has significant enrichment for three terms related to the coagulation 

cascade (FDR = 6.8E-04). Tissue enrichment reveals “adult liver” as the most enriched term (FDR 

= 8.0E-03). Importantly, there are significant terms related to peptidase activity and the Renin-

angiotensin system (driven by the proteins ACE2 and ANPEP). ANPEP is particularly interesting 

as it has been previously identified as a receptor for several coronaviruses such as HCV-229E 

(Yeager et al., 1992). ANPEP is known to be a metallopeptidase (as is ACE2) and has been 

implicated in the regulation of angiogenesis (Rangel et al., 2007). Additionally, ANPEP is known 

to have Angiotensin III as a substrate (Danziger, 2008), tying it back to the RAS pathway, with 

ACE2 and TMEM63C. Therefore, the ACE2-TMEM63C reciprocal rank ERCs may indicate direct 

biological interactions between the proteins, possibly involving physical binding. 

IFNAR2 (Interferon alpha/beta receptor 2): IFNAR2 is the 5th ranking ACE2 ERC, with highly 

significant correlation (ρ = 0.62, FDR = 6.1E-04). IFNAR2 combines with IFNAR1 to form the IFN-

alpha/beta receptor, which acts through JAK/STAT signaling to modulate immune responses. 

IFNAR1/IFNAR2 is the receptor for both alpha and beta interferons and is involved in immune 

responses to viral infection, most notably to influenza and defense against bacterial infections 

(Shepardson et al., 2018). IFNAR2 was not originally in our protein set, but we added it based on 



a paper that implicated this protein in severe COVID-19 based on GWAS and gene expression 

changes (D. Liu et al., 2021; Pairo-Castineira et al., 2021). Another study implicates mutations in 

IFNAR2 with severe COVID-19 (Q. Zhang et al., 2020). When added to our ERC protein set, it 

was found to be a high ERC to ACE2 (rank 5 in the ACE2 set), providing independent support for 

its role in COVID-19, possibly through direct ACE2-IFNAR2 interactions. 

There are both soluble and membrane-bound forms of IFNAR2. The soluble form (slIFNAR2) 

“exerts immunomodulatory, antiproliferative and antiviral activities” (Hurtado-Guerrero et al., 

2020). The presence of soluble forms for both IFNAR2 and ACE2 suggests possible avenues for 

physical interaction, in addition to between their membrane-bound forms. IFNAR2 and IFNAR1 

combine to form the IFN-alpha/beta receptor, and as expected, these two proteins are significantly 

and highly correlated (ρ = 0.79, FDR = 1.9E-09, reciprocal ranks 19,2). CD40, which ranks 

IFNAR2 as its top ERC, is a crucial immunity protein in the tumor necrosis factor-R (TNF-R) family, 

with roles in B lymphocytes, macrophages, and cytotoxic T lymphocytes (Grewal & Flavell, 1998; 

Van Kooten & Banchereau, 2000). IFNAR2 has eleven proteins showing RR20, which is 

discussed further in the analysis of reciprocal rank networks (Section D). Enrichment analysis for 

IFNAR2’s top 2% ERCs has an expected strong enrichment for terms related to canonical 

IFNAR2-related pathways such as “Cytokine-cytokine receptor interaction” (FDR = 1.4E-04), 

“PI3K-Akt Signaling pathway” (FDR = 1.8E-03), and “JAK-STAT signaling pathway” (FDR = 4.0E-

03). Some additional enriched terms of note include several terms related to: tumor necrosis factor 

signaling, coagulation and complement cascade, ECM receptor interaction/collagen function, and 

plasma membrane (Supplementary File S3). 

KIF3B (Kinesin Family Member 3B): KIF3B is the 6th highest ACE2 ERC. This protein is involved 

in chromosomal segregation during meiosis and mitosis and also participates in intracellular 

trafficking (Stelzer et al., 2016). Along with GEN1, it is another high-ranking ACE2 ERC involved 

in chromosomal processes. Among its phenotypes are ciliary assembly (Cogné et al., 2020), 

endocytosis (Reed et al., 2010), and regulation of dendrite structure in neurons (Joseph, Grinman, 

Swarnkar, & Puthanveettil, 2020). KIF3B’s top ERC is Secretogranin II (SCG2), which is a 

neuroendocrine protein that regulates the formation of secretory granules (Stelzer et al., 2016). 

Genetic variants of its 2nd ranking ERC, Inositol hexakisphosphate kinase 3 (IP6K3) are 

associated with Alzheimer’s disease (Crocco et al., 2016) and its 4th ranking protein, Neuronal 

Pentraxin Receptor (NPTXR), with which it has strong reciprocal ranks (4,6), is a biomarker for 

Alzheimer’s disease (Lim, Sando, Grøntvedt, Bråthen, & Diamandis, 2020). The nature of KIF3Bs 

interactions with ACE2 is not immediately obvious, except for a possible functional connection 

between ACE2 at amyloid protein catalysis (Evans et al., 2020; Kehoe, 2018). KIF3B top 2% 

ERCs show significant enrichment only for the “Complement and coagulation cascades” term 

from KEGG (FDR = 1.9E-02). 

ITPRIPL2 (Inositol 1,4,5-Trisphosphate Receptor Interacting Protein-Like 2): ITPRIPL2 is the 7th 

highest among ACE2’s ERC set. Information about this protein is limited in the literature. It is 

reported in the Human Protein Atlas to be localized to centrosomes. Examination of its ERC set 

could provide some information relevant to studies of this protein and possible interactions with 

ACE2. Among its highest ranking ERCs are two proteins associated with DNA repair and mitotic 

processes. FANCG (1) is involved with double-strand break repair (Yamamoto et al., 2003). 

CC2D1B plays a role in the reformation of the mitotic nuclear envelope (Vietri & Stenmark, 2018), 

has a high reciprocal rank association with ITPRIPL2 (2,6). In turn, CCD1B has high reciprocal 

ranks with GEN1 (2,1), which is involved in holiday junction resolution and genomic stability (see 

description above). These findings are consistent with the centrosome localization of ITPRIPL2 



and suggest that these proteins may physically interact in a manner that results in correlated 

protein evolution. Three other proteins showing reciprocal rank associations (RR10) are CC2D1B 

(2, 6), ENAM (4,5), and STAT6 (10,9). Why ACE2 shows a high ERC with ITPRIPL2 is unclear. 

An ITPRIPL2 top 2% ERC enrichment analysis indicates cytokine receptor activity (FDR = 1.6E-

02) and tumor necrosis factor signaling terms (FDR = 2.4E-02). Additionally, there is significant 

enrichment for “DNA metabolic process” (FDR = 4.9E-02). 

FAM227A (Family with Sequence Similarity 227 Member A): FAM227A is the 8th ranking ACE2 

ERC. There is little information about this protein in the current literature, so its evolutionary 

protein correlations could be informative. The Human Protein Atlas indicates that gene expression 

is enhanced in the pituitary gland and testes, in ciliated cells, early and late spermatids, and cone 

& rod photoreceptors. (Uhlén et al., 2015). The top five ERC proteins for FAM227A are F5 

(involved in blood coagulation), SPZ1 (enriched in spermatids), C16orf96 (enriched in 

spermatids), FSCB (enriched in spermatids ), and FERIL5 (enriched in spermatids) (Uhlén et al., 

2015). This ERC pattern strongly suggests functional interactions among these proteins in 

spermatogenesis. Moreover, ACE2 is expressed in spermatogonia (Z. Wang & Xu, 2020) and is 

implicated in male fertility issues associated with COVID-19 (X. Liu et al., 2020; Verma, Saksena, 

& Sadri-Ardekani, 2020). Therefore, we suggest that this effect could be mediated by FAM227A, 

a possibility that is worth further exploration. The top 2% of FAM227A ERCs are enriched for 40 

terms and reveal a strong association with inflammatory signaling/immunity (Supplementary File 

S3). In particular, the most significant enrichment is the KEGG term “Cytokine-cytokine receptor 

interaction” (FDR = 1.3E-04). Most of the proteins driving enrichment for such terms are toll-like 

receptors, interferon/interleukin receptors, and cytokine receptors. 

TLR8 (Toll-like Receptor 8): TLR8 is the 9th ranking ACE2 ERC. Toll-like receptors are a class of 

proteins that can detect and initiate an innate immune response to foreign invaders (Takeda, 

Kaisho, & Akira, 2003) by recognizing conserved features of pathogens (Kawai & Akira, 2010). 

Importantly, toll-like receptor responses are usually associated with large inflammatory responses 

of the immune system (Kawai & Akira, 2010; Takeda et al., 2003). TLR8 has strong ERCs to 

several other toll-like receptors such as TLR9 (ranks 11, 13) and a unidirectional connection to 

TLR7 (rank 26, ρ = 0.71, FDR = 9.6E-08). Consistent with these observations, enrichment of the 

top 2% ERC list of TLR8 shows highly significant terms associated with TLR8 such as TRAF6 

mediated IRF7 activation in TLR7/8 or 9 signaling (FDR = 8.3E-07) and the toll-like receptor 

signaling pathway (FDR = 2.1E-06). Additionally, the other significantly enriched terms are 

overwhelmingly related to other immunity-related pathways (Supplementary File S3). 

COL4A4 (Collagen Type IV Alpha 4): COL4A4 is the 10th ranking ACE2 ERC. Collagen Type 4 is 

a complex of six proteins that are part of the extracellular matrix called the basement membrane, 

which resides between epithelial cells (Stelzer et al., 2016), such as those of glomerulus and 

capillaries. Type 4 collagen is a major constituent of glomerular basement membranes. Mutations 

in COL4A4 and other COL4A genes are associated with inherited kidney disease such as Alport 

syndrome (Buzza et al., 2001) and familial hematuria (Longo et al., 2002). Top 2% ERC list 

enrichment analysis shows significant enrichment for immunity signaling related terms such as 

Cytokine-cytokine receptor interaction (FDR = 1.7E-04), PI3k-Akt signaling pathway (FDR = 3.0E-

03; of which type IV collagen subunits are canonically annotated as a part of), and JAK-STAT 

signaling pathway (FDR p = 7.0E-03). 

FAM3D (FAM3 Metabolism Regulating Signaling Molecule D): FAM3D is the 11th ranking ACE2 

ERC. As seen in figure ACE2-RRN Net, FAM3D is one of four proteins with strong reciprocal rank 



correlations to ACE2. It is a chemoattractant for neutrophils and monocytes in peripheral blood, 

is implicated in inflammatory responses in the gastrointestinal tract (Peng et al., 2016). Studies 

indicate that it has a role in nutritional regulation in the gastrointestinal tract (de Wit et al., 2012), 

and this may provide a functional connection, given the role of ACE2 in the processing of peptides 

in the gut (Kuba, Imai, Ohto-Nakanishi, & Penninger, 2010). Strikingly, ACE2 and FAM3D show 

strong ERC reciprocal ranks and form a RR network with CLU and GPR141. It also shows strong 

RR with Solute Carrier Family 16 Member 11 (SLC16A11). Several coagulation cascade proteins 

are present in its top1% interaction set, including F13B (its highest-ranked ERC), SERPINA5, and 

FGB, suggesting possible links to coagulation pathologies of COVID-19. The top 2%ERC list 

enrichment analysis results in the top 5 terms related to coagulation and clotting (FDR = 3.5E-

09). Additionally, there is strong enrichment for various immune response-related terms such as 

“cytokine receptor activity” (FDR = 2.2E-03) and enrichment for plasma cell presence (FDR = 

5.0E-03). 

F5 (Coagulation Factor 5, also abbreviated FV): F5 is the 12th ranking ACE2 ERC. F5 is a key 

regulator of hemostasis and a central cofactor involved in blood coagulation (Ivanciu et al., 2017). 

Our ERC analysis predicts strong interactions between ACE2 and F5 (rank 12 for ACE2, ρ = 0.57, 

FDR = 7.2E-04), possibly mediated through the Clusterin (see below). F5 can act as a cofactor 

for coagulation or anticoagulation (Cramer & Gale, 2012). Approximately 20% of circulating F5 

resides in platelets with the remainder in plasma (Gould, Silveira, & Tracy, 2004), and whereas 

plasma F5 has an important role in thrombin formation in microcirculation, platelet F5 has a larger 

role in severe injury (Ivanciu et al., 2017). The former role could be relevant to micro thrombosis 

observed in COVID-19. In fact, F5 has been found to associate with COVID-19 symptom severity 

(elevation in F5 activity) and this may be due to the high abundance of megakaryocytes in the 

lungs and hearts in COVID-19 infected patients (Stefely et al., 2020). This is further supported by 

a gene set overlap study showing F5 being annotated to all five examined comorbidities linked to 

COVID-19 severity (Dolan et al., 2020). 

Our ERC analysis of F5 suggests that it may have many other functions beyond the coagulation 

pathway. F5 is a very “connected” protein with strikingly strong ERC correlations. Twenty-one 

proteins have spearman rank correlations > 0.80. In addition, seven proteins rank F5 first among 

their ERCs and 43 rank F5 in their top 5 ERCs. The strongest enrichments of the top 2% ERCs 

are immune response-related terms such as “response to cytokine” (FDR = 1.1E-03) and 

“inflammatory response” (FDR = 1.2E-03). Notably, there is only one significant coagulation-

related term in this list, “Complement and Coagulation Cascades” (FDR = 6.9E-03) 

AR (Androgen Receptor): AR is the 13th ranked ACE2 ERC (ρ = 0.52, FDR = 8.8E-04) and is 

barely cut off from the RR20 criteria to ACE2 (the rank of ACE2 is 22nd in the AR ERC list). AR 

is encoded on the X chromosomes and is a hormonal receptor that plays a major role in male 

development, particularly in male reproductive systems and somatic differentiation (Matsumoto, 

Shiina, Kawano, Sato, & Kato, 2008). It. AR’s top-ranking ERC is spermatogenesis associated 25 

protein (SPATA25) with (1,2) reciprocal ranks, and its top 2% ERCs only show significant 

enrichment for cytokine receptor activity (FDR = 1.1E-03). In addition to its roles in sexual 

differentiation and behavior (Cunningham, Lumia, & McGinnis, 2012), AR enhances prostate 

cancer cell growth (Gelmann, 2002). It may play a role in microbial infection resistance as a 

knockout in mice can reduce the development and proliferation of neutrophils (Chuang et al., 

2009). Androgen signaling may play a role in SARs-CoV-2 infectivity, as indicated by knockdowns 

of AR in prostate cells result in downregulation of ACE2 and infection cofactors TMPRSS2 and 

FURIN (Samuel et al., 2020). Additionally, AR has been annotated as being associated with 4 of 



the 5 COVID comorbidities that are associated with COVID severity in Dolan et al (2020). Male 

fertility problems may be associated with COVID-19 infection and the ACE2 receptor is abundant 

in male genetical track and spermatagonia (Huang et al., 2021; Seymen, 2021). ACE2-AR protein 

interactions, as predicted by ERC, may play a role in these pathologies. 

TSGA13 (Testis specific gene 13 protein): TSGA13 is the 14th ranking ERC for ACE2 (ρ = 0.57, 

FDR = 8.8E-04). The function of this protein is not well understood, so it is characterized by its 

expression in the testes (H. Zhao et al., 2015). Despite its high expression in the testes, TSGA13 

is expressed in other tissues (H. Zhao et al., 2015) and it may not play a role in fertility as mice 

with TSGA13 knocked out were still fertile (Miyata et al., 2016). However, this protein is highly 

conserved (H. Zhao et al., 2015) so may still play an important role in organisms. TSGA13 

variation has been associated with total colonic aganglionosis in patients with Hirschsprung 

disease (Jung et al., 2019) and reduced expression of TSGA13 has been associated with 

carcinoma (H. Zhao et al., 2015). We, therefore, propose that ERC analysis can provide insight 

into the potential function of TSGA13 as it has many extraordinarily high ERCs (78 proteins show 

ρ values of 0.7 or higher). The top ERC is C16orf96 (ρ = 0.83, FDR = 4.5E-12) which is not well 

understood, but its 2nd highest ERC is C3orf30 (ρ = 0.82, FDR = 2E-10), also known as “testis 

expressed 55” (TEX55) which may play a role in fertility, especially considering its strong 

expression in adult testes (Jamin, Petit, Demini, & Primig, 2021). The ERC results coupled with 

known expression profiles suggest that TSGA13 and C3orf30 may interact with each other, 

although there is no external evidence to suggest this currently. Furthermore, TSGA13’s potential 

interaction with ACE2 may be mediated through their common ERC partners such as F5 (ρ = 

0.80, FDR = 3.1E-11), TLR8 (ρ = 0.78, FDR = 5.7E-10), and IFNAR2 (ρ = 0.75, FDR = 6.1E-09). 

The top 2% ERCs show enrichment for many immunity/interferon-related terms (FDR = 7.0E-05), 

complement and coagulation cascade (FDR = 1.4E-04), and no terms related to male fertility or 

male reproductive tissues. 

PLA2G7 (Platelet-activating factor acetylhydrolase): PLA2G7 is the 15th ranking ERC for ACE2 

(ρ = 0.57, FDR = 8.4E-04). PLA2G7 is a member of the arachidonic acid pathway and is potentially 

associated with prostate cancer (Vainio et al., 2011). PLA2G7’s strong ERC to ACE2 is 

particularly interesting due to its likely association with cardiovascular and heart disease (Sutton 

et al., 2008; Q. Wang et al., 2010), each of which are associated with COVID-19 (Alsaied et al., 

2020; Bansal, 2020). Additionally, PLA2G7’s role in the arachidonic acid pathway is relevant to 

COVID-19 pathologies as a deficiency in arachidonic acid may lead to greater COVID-19 

susceptibility and the arachidonic acid pathway is a candidate therapeutic target (Hoxha, 2020; 

Ripon, Bhowmik, Amin, & Hossain, 2021). The connection to ACE2 specifically may also make 

biological sense as MAS (the receptor for the Angiotensin(1-7) that ACE2 can produce) can cause 

the release of arachidonic acid (Bader, 2013). Analysis of PLA2G7’s top 2% ERC list shows 

significant enrichment for various terms related to immunity such as “cytokine receptor activity” 

(FDR = 1.9E-05) and several viral infection pathways such as Influenza A infection (FDR = 6.5E-

03). Interestingly, there was also significant enrichment for terms related to DNA repair (FDR = 

4.3E-02). 

MMS19 (MMS19 nucleotide excision repair homolog): MMS19 is the 16th ranking ERC for ACE2 

(ρ = 0.56, FDR = 8.9E-04). Like ACE2’s strongest ERC partner, GEN1, MMS19 is involved in 

DNA repair (Stehling et al., 2012). It is also specifically associated with the “cytosolic Fe-S protein 

assembly (CIA)”, which forms a complex with MMS19 to assist in DNA metabolism, replication, 

and repair (Gari et al., 2012). Similar to GEN1, MMS19’s mode of interaction with ACE2 is still 



unclear. But the top ERCs of MMS19 show several proteins directly related to DNA maintenance 

such as POLL (DNA polymerase lambda; ρ = 0.76, FDR = 7.2E-10) and GEN1 (ρ = 0.74, FDR = 

6.2E-09). But significant enrichment on the top 2% ERC list is just shown for “death receptor 

activity” (FDR = 3.1E-02) and “tumor necrosis factor-activated receptor activity” (FDR = 3.1E-02). 

Angiomotin (AMOT): AMOT is the 17th ranking ERC for ACE2 (ρ = 0.56, FDR = 8.8E-04). Its 

potential relevance to COVID-19 pathologies is clear as AMOT is associated with angiogenesis 

and endothelial cell movement (Aase et al., 2007; Bratt et al., 2005). These associations may 

explain its ERC to ACE2 as well. For instance, ACE2 can promote endothelial cell migration (Jin 

et al., 2015). Additionally, COVID-19 infection has been associated with angiogenesis in the lungs 

(Ackermann et al 2020). AMOT shares several of ACE2’s top ERCs. For instance, GEN1 and 

TSGA13 are both among AMOT’s top 20 ERCs. The top 2% ERCs of AMOT show significant 

enrichment for complement and coagulation cascades (FDR = 4.3E-04), inflammatory response 

(FDR = 1.0E-03), and spermatogenesis (FDR = 2.7E-02). 

L1CAM (L1 cell adhesion molecule): L1CAM is a RR20 protein to ACE2 (ρ = 0.56, FDR = 8.8E-

04, ranks 18, 14). It is a part of the immunoglobulin superfamily and is best characterized for its 

role in the nervous system, specifically relating to the development of the brain (Schäfer & 

Altevogt, 2010). Interestingly, L1CAM is embedded in the extracellular membrane but can be 

cleaved near the membrane to allow for the circulation of the truncated protein (Schäfer & 

Altevogt, 2010). The metallopeptidase ADAM17 is one of the enzymes that cleaves L1CAM near 

the membrane (Schäfer & Altevogt, 2010), and is also known to mediate the release of the 

ectodomain of ACE2 from the extracellular membrane as well (Lambert et al., 2005). Thus, both 

proteins circulate in plasma where they may interact, although the functional basis of this 

postulated interaction is unclear. L1CAM has three other RR20 proteins: BMX non-receptor 

tyrosine kinase (BMX; ranks 1,3), cyclin-dependent kinase inhibitor 2C (CDKN2C ranks 

2,20), and glycerophosphodiester phosphodiesterase domain containing 3 (GDPD3, 5,19). The 

top 2% enrichment for L1CAM has several significant terms for complement and coagulation 

cascades (FDR = 5.4E-04), positive regulation of cellular protein localization (FDR = 5.2E-03), 

endopeptidase activity (FDR = 5.9E-03), Alzheimer’s Disease (FDR = 1.1E-02), and arachnoid 

cyst (FDR = 3.6E-04). It is possible, although highly speculative, that ACE2-L1CAM protein 

interactions could play a role in neurological pathologies associated with COVID-19. 

PDYN (Prodynorphin aka Leumorphin): PDYN is the 19th ranking ERC for ACE2 (ρ = 0.56, FDR 

= 8.8E-04). PDYN is an endogenous opioid receptor (Stelzer et al., 2016), which also inhibits 

vasopressin secretion (Yamada et al., 1988), suggesting a connection to ACE2 in blood pressure 

homeostasis. Unsurprisingly, PDYN is implicated in neurotransmission and mental disorders 

(such as schizophrenia, Alzheimer’s, epilepsy, and cerebellar ataxia) (Clarke et al., 2012; 

Henriksson et al., 2014; Jezierska et al., 2013). PDYN has several proteins involved in immune 

function among its top ERCs such as Interferon lambda receptor 1 (IFNLR1; ρ = 0.77, FDR = 

6.4E-10) and Toll-like receptor 7 (TLR7; ρ = 0.75, FDR = 2.4E-09). The top 2% ERC list of PDYN 

shows significant enrichment for terms related to immune system function (FDR = 6.0E-03), the 

complement and coagulation cascades (FDR = 6.0E-03), but no significant terms related to brain 

function other than “NCAM1 interactions” (FDR= 4.9E-02). 

IQ motif containing D (IQCD): IQCD is the 20th ranking ERC for ACE2 (ρ = 0.56, FDR = 8.9E-04). 

IQCD in mammals is not well studied. But it has been characterized as being involved in the 

“acrosome” (P. Zhang, Jiang, Luo, Zhu, & Fan, 2019). The acrosome is an organelle that is part 

of the sperm and is involved in the “acrosome reaction”, which allows sperm to fuse with an egg 



upon fertilization (Abou-Haila & Tulsiani, 2000). It is required for spermatogenesis in mice (Harris, 

Schimenti, Munroe, & Schimenti, 2014) IQCD is therefore another protein with strong ERC to 

ACE2 implicated in male sex organs. There is also some evidence that suggests IQCD is 

associated with male fertility (P. Zhang et al., 2019). Additionally, ACE2 presence may be 

negatively associated with the acrosome reaction in sperm-precursor cells (Z. Wang & Xu, 2020), 

but the direct mechanism for this is unclear. The top 2% ERC list for IQCD shows enrichment for 

tumor-necrosis factor-related terms (FDR = 9.3E-04) and “SW-620 cell” (4.9E-02) which is a 

human colon carcinoma cell line. 
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