Genome-wide analysis of focal DNA hypermethylation in IDH-mutant AML samples

Elisabeth R. Wilson¹, Nichole M. Helton¹, Sharon E. Heath¹, Robert S. Fulton³, Jacqueline E. Payton², John S. Welch¹, Matthew J. Walter¹, Peter Westervelt¹, John F. DiPersio¹, Daniel C. Link¹, Christopher A. Miller¹,³, Timothy J. Ley¹, and David H. Spencer¹,²,³

¹ Department of Medicine, Division of Oncology, Section of Stem Cell Biology, ² Department of Pathology and Immunology, ³ McDonnell Genome Institute, Washington University, St. Louis, MO, USA

Running title: Methylation phenotype of IDH-mutant AML

The authors have no conflicts of interest relating to the work described in this manuscript.

* Corresponding author
David H. Spencer, MD, PhD
Assistant Professor
Division of Oncology
Department of Medicine
Washington University School of Medicine
Campus Box 8007
660 South Euclid Avenue
St. Louis, MO. 63110
314-273-0739
dspencer@wustl.edu
Abstract

Recurrent mutations in IDH1 or IDH2 in acute myeloid leukemia (AML) are associated with increased DNA methylation, but the genome-wide patterns of this hypermethylation phenotype have not been comprehensively studied in AML samples. We analyzed whole-genome bisulfite sequencing data from 15 primary AML samples with IDH1 or IDH2 mutations, which identified ~4,000 focal regions that were uniquely hypermethylated vs. normal CD34+ cells. These regions had modest, but significant, hypermethylation in AMLs with biallelic TET2 mutations, and 5-hydroxymethylation levels that were dependent on functional TET2, indicating that hypermethylation in these regions is caused by inhibition of TET-mediated demethylation. Focal hypermethylation in IDHmut AMLs occurred in regions with low methylation in normal CD34+ cells, implying that DNA methylation and demethylation are active at these loci. AML samples containing IDH and DNMT3AR882 mutations were significantly less hypermethylated, suggesting that methylation in these regions is mediated by DNMT3A. IDHmut-specific hypermethylation was highly enriched for enhancers that form direct interactions with genes involved in normal hematopoiesis and AML, including MYC and ETV6. These results suggest that focal hypermethylation in IDH-mutant AML occurs by altering the balance between DNA methylation and demethylation, and that disruption of these pathways at enhancers may contribute to AML pathogenesis.
Introduction

DNA methylation changes in acute myeloid leukemia (AML) occur because of disruptions in the balance between processes that add or remove 5-methyl groups to cytosines\(^1,2\). In both normal and malignant hematopoietic cells, *de novo* DNA methylation is catalyzed primarily by the DNA methyltransferase DNMT3A\(^3,4\), which methylates unmethylated DNA substrates. Demethylation occurs both passively after DNA synthesis in the absence of DNMT1-mediated propagation of hemi-methylated DNA, and actively via hydroxylation of 5mC by the TET family of hydroxylases with subsequent removal of modified cytosine residues. Alterations in these opposing forces result in either increased or decreased DNA methylation in AML cells compared to normal hematopoietic cells. These changes include diffuse hypomethylation across large genomic regions, as well as focal hypermethylation in CpG islands (CGIs). We recently showed that CGI hypermethylation in AML is mediated by DNMT3A and is present in nearly all AML subtypes\(^5\). In addition to these changes, specific DNA methylation patterns correlate with recurrent AML mutations that influence DNA methylation pathways. This includes the *DNMT3A*\(^{R882}\) mutation, which impairs DNA methylation activity and results in a focal, canonical hypomethylation phenotype\(^5\).

Mutations in *IDH1* and *IDH2* are also associated with altered DNA methylation patterns\(^6,7\) that are thought to occur by disrupting active DNA demethylation. *IDH1* and *IDH2* encode metabolic enzymes not normally involved in DNA methylation, but when mutated produce 2-hydroxyglutarate (2HG)\(^8\) that inhibits the TET family of enzymes\(^9\) thereby reducing active demethylation. Analysis of DNA methylation in primary AML samples using array-based technologies and reduced-representation bisulfite sequencing (RBBS) has shown that DNA methylation is increased in specific genomic regions in samples with *IDH* mutations\(^6,10\). While the direct effects of these changes on gene regulation have been challenging to identify, the contribution of *IDH* mutations to leukemogenesis has been established in mouse models.
Expression of either IDH1^{R132H} or IDH2^{R140Q} blocks normal hematopoietic differentiation, promotes myeloproliferation^{11–13}, and can result in AML transformation in the presence of cooperating mutations^{13,14}. These studies demonstrate the contribution of mutations in IDH1 and IDH2 to AML development, which may occur by disrupting the balance between DNA methylation and demethylation.

Although previous studies using targeted DNA methylation approaches have established general effects of IDH1 and IDH2 mutations on DNA^{6,7,10,15}, a genome-wide analysis of methylation patterns in primary AML samples has not yet been described. It is therefore unclear whether IDH1 vs. IDH2 mutations manifest unique, mutation-specific methylation phenotypes, and whether these methylation changes are distinct from DNMT3A-mediated CGI hypermethylation. In addition, although IDH mutations are thought to cause hypermethylation via inhibition of TET enzymes, the extent of overlap in methylation phenotypes between AML samples with mutations in IDH1/IDH2 and TET2 remains unclear. Here, we performed a genome-wide analysis of DNA methylation in primary AML samples with recurrent mutations in IDH1 or IDH2 using whole-genome bisulfite sequencing (WGBS). WGBS data from normal hematopoietic cells and AML samples with TET2 mutations and other mutational profiles were included to define the methylation phenotypes specific to IDH mutations, and to determine whether these patterns are present in AML samples with TET2 mutations. We integrated these data with epigenetic modifications and three-dimensional (3D) genome architecture from primary AML samples to characterize the functional genomic elements that are affected upon disruption of the balance between DNA methylation and demethylation in AML cells.

Materials and Methods

Patient samples
Primary AML samples and normal hematopoietic cells for epigenetic studies were obtained from presentation AML and normal bone marrow aspirates, following informed consent using protocol (201011766) approved by the Human Research Protection Office at Washington University as described previously\(^5\) (Table S1). All experiments with AML samples used total bone marrow cells after estimating the leukemic purity.

Whole genome bisulfite and oxidative bisulfite sequencing and data analysis

Whole-genome bisulfite sequencing data for 38 samples were described previously\(^5\). Data for 13 additional samples were generated using 50ng of DNA with the Swift Accel-NGS Methyl-Seq library preparation kit. Oxidative bisulfite sequencing libraries were prepared following treatment of 200ng of DNA with the TrueMethyl oxBS module (Cambridge Epigenetix) prior to bisulfite conversion and Swift library construction and sequencing on NovaSeq 6000 instruments (Table S1). Data were aligned to the GRCh38 human reference and processed into methylated read counts using biscuit\(^{16}\) with default parameters. Differentially methylated regions (DMRs) were identified between AML groups using read count data via DSS\(^{17}\) and subsequent filtering to retain regions with >10 CpGs and a difference in mean methylation of 0.2. Mutation-specific DMRs were identified using hierarchical clustering where group level mean methylation values at all identified AML DMRs were assessed for euclidean distances via ‘dist’ with default parameters. Clustering topology was analyzed to identify DMRs where an outlier branch represented the specified AML mutational group. Statistical analysis of differential methylation in DMRs was performed on the sum of the methylated/unmethylated counts using a Fisher’s exact test. 5hmC values were obtained by subtracting the methylation ratios from OxBS data from WGBS data at all CpGs with coverage of at least 10x.

ChIP-seq for histone modifications
ChIP-seq was performed using ChIPmentation with the following antibodies: H3K27me3 (9733S), and H3K27ac (8173S) from Cell Signaling Technology, and H3K4me1 (ab1012) from Abcam. Sequencing was performed on a NovaSeq 6000 (Illumina, San Diego, CA) to obtain ~50 million 2x150 bp reads. Data were analyzed via adapter trimming with trimgalore and alignment to GRCh38 using bwa mem. Normalized coverage for visualization and analysis used the deeptools “bamCoverage” tool, and peaks were called with MACS2. Statistical comparisons with DESeq2 used raw fragment counts at peak summits, and visualizations were prepared with Gviz. Superenhancer analysis was conducted using ROSE software with default parameters.

RNA-seq analysis

RNA-seq data from AML samples were obtained from the AML TCGA study. TPM values were obtained using kallisto and gene counts were generated using the tximport Bioconductor package in R with the tx2gene option set to accomplish gene-level summarization. Previously published RNA-seq data for normal CD34+ cells generated using the same procedures that were used for the AML samples were obtained as raw sequencing reads from the short-read archive (GSE48846) and processed as described above.

Hi-C data analysis

Hi-C data were obtained from previous studies of 3D genome interactions in primary AML samples and normal hematopoietic stem/progenitors. All libraries were generated using MboI digestion prior to proximity ligation and data were analyzed using the juicer pipeline. Loops were identified with HICCUPs and were analyzed using bedtools to identify overlap with genes and putative enhancers. Visualizations used the GenomicInteractions and Gviz R packages.

Results
Primary AML samples with IDH1 or IDH2 mutations are focally hypermethylated at regions with low methylation in normal hematopoietic cells

We performed WBGS using 15 primary bone marrow aspirate samples from AML patients with canonical IDH mutations, including seven with IDH1^{R132C/G}, seven with IDH2^{R140Q}, and one with an IDH2^{R172K} allele (referred to hereafter as IDH^{mut}). These data were analyzed with WGBS data from 36 other primary AML samples representing eight mutational categories, including five with biallelic loss-of-function mutations in TET2, and primary CD34+ cells from six healthy adult bone marrow donors. All AML samples were previously sequenced using whole genome and/or whole exome sequencing, which confirmed that the mutations affecting DNA methylation were present in the dominant leukemic clone at presentation (Figure 1A). Importantly, the IDH^{mut} AML samples lacked mutations in DNMT3A and TET2 to minimize effects of other mutations on DNA methylation patterns. WGBS produced a mean of 12x coverage (range: 4-16) for at least 28 million CpGs in the human reference sequence across all samples. IDH^{mut} AML samples had genome-wide methylation levels similar to all other samples (Figure 1B), but were more methylated at CGIs compared with normal CD34+ cells and AMLs with DNMT3A^{R882} mutations, which have diminished CGI hypermethylation (IDH^{mut} vs. CD34+ cells P<0.0001; IDH^{mut} vs. DNMT3A^{R882} P<0.0001; Figure 1C). CGI methylation levels were similar between IDH^{mut} AML samples and AMLs with wild type IDH1 and IDH2 (mean CGI methylation of IDH^{mut} cases = 0.35, mean of all other groups = 0.33; P= 0.1; Figure 1C), indicating that IDH mutations do not result in an exaggerated CGI hypermethylation phenotype.

Differential methylation analysis was performed using established methods for eight mutation-defined AML groups vs. normal CD34+ cells. This identified a mean of 4,689 (1,114-8,386) Differentially Methylated Regions (DMRs) across the eight categories (minimum methylation difference of 0.2, FDR<0.05); of these, between 6% and 97% were hypermethylated in the AML samples vs. CD34+ cells (see Figure 1D). AMLs with DNMT3A^{R882} had the most
hypomethylated DMRs (97% of 5,747 DMRs), whereas \(IDH^{mut} \) AML samples had the most hypermethylated DMRs, with 99% of the 6,960 identified regions having at least 0.2 higher mean methylation than CD34+ cells. \(TET2 \)-mutant samples were also hypermethylated, but at fewer loci, with 74% of the 2,991 identified DMRs having higher methylation. The fewest DMRs were identified in samples with \(IDH1 \) or \(IDH2 \) mutations and \(DNMT3A^{R882} \), which is consistent with previous studies suggesting that AML samples with both mutations have abrogated methylation phenotypes. Analysis of DMRs identified in \(IDH^{mut} \) samples demonstrated that 29% were associated with promoters and 43% occurred in CGIs, which was similar to the frequencies observed for commonly hypermethylated DMRs in other AML subtypes (Figure S1A). Interestingly, although \(IDH \) mutations are thought to lead to hypermethylation by inhibiting active demethylation, most \(IDH^{mut} \)-specific DMRs had low methylation in normal hematopoietic cells. For example, 72% of the \(IDH^{mut} \) DMRs had a mean methylation <0.3 in both CD34+ cells (Figure S1B) and more mature myeloid cell populations (Figure S1C), suggesting that DNA methylation pathways must be active in these regions to achieve the level of hypermethylated observed in \(IDH^{mut} \) AML samples.

\(IDH^{mut} \)-specific methylation changes are distinct from AML-associated CGI hypermethylation and are influenced by \(IDH \) mutation type

Because AML patients with \(IDH1 \) vs. \(IDH2 \) mutations have distinct clinical and molecular phenotypes, we next sought to identify methylation changes uniquely associated with \(IDH1 \) and/or \(IDH2 \) mutations and to determine whether these patterns are distinct from AML-associated CGI hypermethylation (Figure 2A). Thus, we performed hierarchical clustering of mean methylation values for either \(IDH1^{mut} \) or \(IDH2^{mut} \) and \(IDH^{wt} \) AML samples at DMRs identified above, and used the clustering topology to identify regions where the single outlier branch represented the \(IDH \) mutant AML samples (Figure 2B, see Methods). Samples with \(TET2 \) and/or \(DNMT3A^{R882} \) mutations were excluded, since they may share methylation changes
with IDH^{mut} samples, or lack CGI hypermethylation5,6, respectively. This approach identified 3,928 $IDH1^{\text{mut}}$-specific and 1,821 $IDH2^{\text{mut}}$-specific DMRs, of which 90% and 79% were hypermethylated with respect to normal CD34+ cells, respectively (see Figure 2C-E). Consistent with the analysis above, most DMRs displayed low methylation in normal cells, with 55% of $IDH1^{\text{mut}}$-specific and 71% of $IDH2^{\text{mut}}$-specific loci having a methylation level <0.3 in CD34+ cells (Figure 2C-E) and mature myeloid cells (Figure S1D). There was extensive overlap between the \(IDH \) mutation-specific DMRs (94%, 5,403 of 5,749 total DMRs), and AML samples with either mutation were hypermethylated at both DMR sets (Figure 2E). However, hierarchical clustering demonstrated considerable variability in methylation levels between the $IDH1^{\text{mut}}$ and $IDH2^{\text{mut}}$ samples (Figure 2F). This was most striking for the $IDH2^{\text{mut}}$ samples, which included three AMLs with lower methylation at the $IDH2^{\text{mut}}$-specific DMRs (Figure 2F-G). $IDH2^{\text{mut}}$ AML samples were less methylated at the combined set of $IDH1^{\text{mut}}$-specific and $IDH2^{\text{mut}}$-specific DMR loci ($IDH2^{\text{mut}}$= 0.54 vs. $IDH1^{\text{mut}}$=0.70; \(p \text{-value} \) = 0.04), although they remained hypermethylated relative to CD34+ cells (Figure 2G). This difference was not related to mutant \(IDH \) allele abundance (all samples had VAFs >30%, Table S1), and did not correlate with other recurrent mutations, including NPM1c (4 in $IDH1^{\text{mut}}$ and 3 in $IDH2^{\text{mut}}$ samples, Figure 2F).

To determine whether IDH^{mut}-specific hypermethylation is similar to the canonical CGI hypermethylation seen in other AML samples, we analyzed the CpG content and genomic features of the IDH^{mut}-specific DMRs. Interestingly, the CpG density and overlap with genomic annotations was markedly different for both $IDH1^{\text{mut}}$-specific and $IDH2^{\text{mut}}$-specific DMRs compared to regions with AML-associated CGI hypermethylation. For example, the combined set of IDH^{mut}-specific DMRs displayed significantly lower CpG density (mean CpG density of 0.89 vs. 1.26; \(P<0.0001 \)) and less overlap with annotated CGIs (23% vs. 54%) compared to 4,573 commonly hypermethylated regions identified in at least 2 other AML mutation categories (Figure 2H-I). Promoter regions were also underrepresented among the IDH^{mut}-specific DMRs.
(21% vs 31%; see Figure 2H), consistent with depletion of promoter-associated CGIs among
IDHmut-specific DMRs, further suggesting that IDH-associated hypermethylation is distinct from
AML-associated CGI hypermethylation.

Hypermethylation in TET2mut AMLs overlaps with IDHmut-specific hypermethylation, but does not phenocopy the extent of methylation changes

We next determined whether AML samples with biallelic loss-of-function mutations in TET2
shared similar genome-wide patterns of hypermethylation with IDHmut AMLs. Initial comparison
of the TET2mut AMLs vs. normal CD34+ cells yielded fewer DMRs and a lower proportion of
hypermethylated regions compared to IDHmut samples (2,512 vs. 6,523 DMRs, and 78% vs 99%
hypermethylated regions, respectively), consistent with previous reports that inactivation of
TET2 has a less profound effect on DNA methylation6,10. Identification of TET2mut-specific DMRs
using the clustering approach described above (with IDHmut and DNMT3AR882 AMLs excluded
from the analysis) produced only 51 TET2mut-specific DMRs, confirming that these AMLs lack a
strong hypermethylation phenotype (Figure 3A). Although many DMRs were hypermethylated
relative to CD34+ cells (31 of 51), the fraction was significantly less than in either IDH1mut or
IDH2mut AMLs (60% vs 91% and 73%, respectively). TET2mut-specific DMRs were also not
enriched for either CGIs or promoters, compared to the set of commonly hypermethylated
DMRs (17% of TET2 DMRs vs. 54% generic DMRs; 11% of TET2 DMRs vs. 31% generic
DMRs; see Figure S2A-B), suggesting these regions are unlikely to reflect CGI
hypermethylation.

To investigate the interaction between IDH mutations and TET2-mediated demethylation, we
compared TET2mut-specific and IDHmut-specific DMRs, and performed oxidative bisulfite
sequencing40 to measure 5-hydroxymethylation (5hmC) in samples with and without biallelic
inactivating TET2 mutations. This analysis showed that 82% (42 of 51) of the TET2mut-specific
DMRs overlapped an \(IDH^{\text{mut}} \)-specific hypermethylated region (Figure 3B). Methylation in

\(TET2^{\text{mut}} \) AMLs at the 4008 \(IDH^{\text{mut}} \)-specific DMRs was also significantly increased compared to CD34+ cells (mean methylation of 0.38 vs. 0.31; 61% of DMRs with increased methylation via Fisher’s exact test with \(q<0.05 \); Figure 3C-D). We next analyzed levels of 5hmC at \(IDH^{\text{mut}} \) DMRs using paired oxidative and standard whole-genome bisulfite sequencing (oxWGBS and WGBS) of primary AML samples with (\(N=3 \)) and without (\(N=1 \)) \(TET2 \) mutations (Figure S2C).

Subtraction of oxWGBS from WGBS data for CpGs with >10x coverage demonstrated low levels of 5hmC across the genomes of these samples (mean: 0.51-0.71% in \(TET2^{\text{mut}} \); Figure S2D), and identifiable peaks at selected loci (Figure S2E). \(IDH^{\text{mut}} \) DMRs had higher levels of 5hmC than in either constitutively methylated heterochromatin or regions with CGI hypermethylation, and 5hmC levels were lower in all three of these regions in \(TET2^{\text{mut}} \) AML samples (Figure 3E, Figure S2F), indicating that 5hmC in these regions is dependent on TET2 activity.

DNA hypermethylation in \(IDH^{\text{mut}} \) AML cells requires DNMT3A

To assess whether \textit{de novo} DNA methylation by DNMT3A contributes to \(IDH^{\text{mut}} \)-associated hypermethylation, we analyzed methylation levels at \(IDH^{\text{mut}} \)-specific DMRs in seven AML samples with co-occurring \(IDH1 \) (\(N=5 \)) or \(IDH2 \) (\(N=2 \)) and \(DNMT3A^{R882} \) mutations, which have a dominant negative phenotype and a more severe hypomethylation than other \(DNMT3A \) mutations\(^4\). Interestingly, although \(DNMT3A^{R882}/IDH^{\text{mut}} \) AMLs were still hypermethylated at \(IDH^{\text{mut}} \)-specific DMRs, the degree of hypermethylation was diminished, with 51% of these regions having significantly lower DNA methylation levels than samples with \(IDH \) mutations alone (Figures 4A-C, S3A). Similar findings were observed in 7 additional \(DNMT3A^{R882}/IDH^{\text{mut}} \) AML samples using methylation array data from the TCGA AML study\(^15\) (Figure S3B). To further characterize the extent of this interaction at regions known to be methylated by DNMT3A, we analyzed DNA methylation levels in \(DNMT3A^{R882}/IDH^{\text{mut}} \) AML samples at hypomethylated DMRs...
in AMLs with the $DNMT3A^{R882}$ allele. Surprisingly, these regions remained nearly fully methylated in the $DNMT3A^{R882}/IDH^{mut}$ double mutant samples, with 93% of the regions having significantly higher methylation than AMLs with $DNMT3A^{R882}$ alone (Figures 4D-F, Figure S3C). Similar findings were observed in the array-based methylation data from the TCGA AML study (Figure S3D), further implying that DNMT3A-mediated methylation and TET-mediated demethylation occur at the same places in the genome.

IDH^{mut}-specific hypermethylated DMRs are enriched for enhancers

We next asked whether these IDH^{mut}-specific DMRs were associated with certain chromatin states. Annotation of these DMRs with chromatin states in CD34+ cells demonstrated that 44% occurred the enhancer chromatin state, which was a 2-fold enrichment over regions commonly hypermethylated (Figure 5A). Similar analysis performed on DMRs identified in other AML subtypes showed a different distribution of chromatin states (Figure S4A-C). We further defined this association using ChIP-seq peaks for enhancer-associated H3K27ac and H3K4me1 modifications from 16 primary AML samples, including 14 IDH^{wt} and 2 IDH^{mut}. Analysis defined 44,762 and 6,917 consensus peaks for H3K27ac and H3K4me1, respectively, which along with H3K27me3 ChIP-seq data from 9 AML patients were used to identify active, poised, and weak enhancer loci. Analysis of the IDH^{mut} DMRs showed that 47% overlapped an active enhancer, compared to 3% and 1% that overlapped poised and weak regions, respectively (Figures 5B-D). In comparison, commonly hypermethylated regions showed less overlap with active enhancers (13% of DMRs) and greater intersection with repressive H3K27me3 marks (Figure 5D). We analyzed IDH^{mut}-specific DMRs for transcription factor (TF) binding motifs, which identified binding sites for hematopoietic-associated TFs, including $SPI1$, $RUNX1$, and MYC (Figure 5E), further supporting the occurrence of IDH^{mut}-specific hypermethylation at regions with potential regulatory activity. However, quantitative analysis of H3K27ac signal over these regions in samples with and without IDH mutations did not identify appreciable differences in wild type vs.
mutant samples (p-value=0.24, Figure 5F), suggesting that hypermethylation does not modify H3K27ac levels within these regions.

IDHmut-specific DMRs occur in enhancers that form direct interactions with highly expressed genes in AML cells

We next asked whether enhancers with IDHmut DMRs could be involved in controlling the expression of genes relevant for AML pathogenesis. To directly link these enhancers to their target genes, we analyzed three-dimensional (3D) genome interactions generated using in situ HiC from both normal CD34+ cells31 and 3 primary AML samples30 (all wild-type for DNMT3A, IDH1, IDH2, and TET2). This analysis demonstrated that 25% (1047/4008) of all IDHmut-specific DMRs and 32% (322/1021) of the DMRs in putative enhancers overlapped the 'loop anchor' of a genome interaction (Figure 6A, Figure S5A). IDHmut DMRs in these loop anchors were highly enriched in 'superenhancers', with between 37 and 39% of superenhancers defined in 3 primary IDHmut AML samples containing at least one IDHmut-specific DMR (Figure 6B-C, Figure S5B-C).

We next analyzed gene expression in 750 genes with promoters that formed 3D interactions with IDHmut-specific DMRs using RNA-seq data from 179 AML samples from the TCGA AML study. This showed that the genes linked to IDHmut-specific DMRs were highly expressed, with 68% of these genes ranked in the top 25th percentile of gene expression (Figure 6D, Figure S5D). Further analysis of 3D genome interactions containing IDHmut-specific DMRs identified known and novel enhancers of genes important in hematopoiesis and AML, including an enhancer of MYC42-44 (Figure 6E), and previously unreported putative enhancers that form interactions with ETV6 (Figure 6F), DOT1L, and SRSF3 (Figure S5E-F). Although we did not observe significant changes in expression of these genes between IDHmut and IDHwt AMLs, their high expression in AML samples and CD34+ cells was consistent with the enrichment of IDHmut-specific DMRs in enhancers of active genes (Figure 6D-F).
Recurrent gain-of-function $\textit{IDH1}$ and $\textit{IDH2}$ mutations are known to increase DNA methylation, though the extent and functional consequences of these changes have not been clearly defined. We used whole-genome bisulfite sequencing of primary AML samples to demonstrate that the effects of \textit{IDH} mutations on methylation do not manifest as diffuse changes across the genome, but instead occur in thousands of focal regions that are uniquely hypermethylated compared to both normal CD34+ cells and other AML samples. These regions had lower CpG density and fewer CGIs than loci that are commonly hypermethylated in AML, suggesting that mechanisms of $\textit{IDH}^{\text{mut}}$-associated methylation changes are distinct from 'traditional' CGI hypermethylation associated with AML. The $\textit{IDH2}$-mutant AML samples in our dataset had less pronounced hypermethylation than those with $\textit{IDH1}$ mutations, but both were hypermethylated at a highly overlapping set of loci. AMLs with biallelic inactivating mutations in $\textit{TET2}$ had a far less dramatic methylation phenotype, though many $\textit{IDH}^{\text{mut}}$-specific DMRs were significantly hypermethylated in $\textit{TET2}^{\text{mut}}$ AML samples. Further, oxidative bisulfite sequencing demonstrated increased levels of 5hmC in these regions, which was absent in the $\textit{TET2}^{\text{mut}}$ AML samples, providing additional evidence in primary AML samples that both \textit{IDH} and $\textit{TET2}$ mutations cause increased DNA methylation by impairing the TET-mediated DNA demethylation pathway. Regions with $\textit{IDH}^{\text{mut}}$-specific hypermethylation were enriched for active enhancers, many of which formed direct interactions with genes that are highly expressed in AML cells, including regulatory sequences that interact with the promoters of \textit{MYC} and $\textit{ETV6}$. Although the increased methylation at these loci was not associated with repressed chromatin or lower gene expression in $\textit{IDH}^{\text{mut}}$ AML samples, this finding demonstrates that $\textit{IDH}^{\text{mut}}$-associated hypermethylation affects the regulatory sequences of genes that may contribute to AML pathogenesis.

This study adds new context to the dynamics of de novo DNA methylation and active demethylation pathways in normal hematopoietic cells and in AML. The fact that $\textit{IDH}^{\text{mut}}$
associated hypermethylation occurs at regions with low levels of DNA methylation in normal CD34+ cells means that de novo DNA methylation and TET-mediated demethylation can both be active in these regions, despite their low steady-state methylation levels. This is supported by the observation that AML samples with co-occurring IDH and DNMT3A^{R882} mutations show significantly attenuated hypermethylation, and that there are appreciable levels of 5hmC in IDH^{mut}-specific DMRs, which is produced from 5mC as a substrate. Remodeling of DNA methylation by these processes in specific regions has been reported previously in studies of embryonic stem cells, which have shown that methylation and active demethylation are in equilibrium at many loci^{1,2}, and may be maintained by the occupancy of methylation and demethylation complexes⁴⁵. Our analysis suggests this equilibrium exists in normal CD34+ cells and is disrupted in the presence of mutant IDH alleles, leaving de novo DNA methylation unopposed. The focal nature of IDH^{mut}-associated hypermethylation implies that activity (or occupancy) of DNMT3A and TET enzymes may be ‘concentrated’ in specific genomic regions. The genomic or epigenetic features directing this activity remain unclear⁴⁶, but the enrichment of IDH^{mut} DMRs in active enhancers suggests that components of active chromatin may recruit methylation and demethylation machinery. The convergence of these processes at enhancers could provide clues as to why mutations with opposite effects on DNA methylation both contribute to AML development via dysregulation of common target genes.

Our analysis of 3D genome interactions involving IDH^{mut}-specific DMRs found that these sequences directly interact with genes that are highly expressed in hematopoiesis and AML (e.g., MYC and ETV6). Contrary to the canonical relationship between DNA methylation and activity, hypermethylation in the IDH^{mut} AML samples does not appear to repress either the enhancer elements or expression of their target genes. Other regulatory factors may therefore be dominant to DNA methylation at these loci, and result in persistently high gene expression. It could also be that regions of active chromatin, such as enhancers (and superenhancers), have
high rates of methylation turnover and are therefore susceptible to perturbations in methylation and demethylation\(^1,2\). Focal hypermethylation may occur in DNA elements bound by factors that contribute to ‘fine-tuning’ of these enhancers in specific cellular or developmental contexts, but that do not drive activity in AML cells. Additional studies will be necessary to understand whether hypermethylation of these enhancer elements is a consequence of decreased occupancy of these modulating factors\(^3\), or whether it directly prevents proper regulation in ways that contribute to AML development.
Acknowledgements

This work was supported by the National Cancer Institute (K08CA190815) and The Cancer Research Foundation Young Investigator Award to D.H.S. Support for procurement, annotation, and sequencing of human samples was provided by the Genomics of AML Program Project (P01CA101937, to Dr. Ley) and the Specialized Program of Research Excellence in AML (P50CA171963, to Dr. Link) from the NCI. Sequencing was performed by the McDonnell Genome Institute at Washington University in St. Louis.
References

37. Tefferi, A. et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 24, 1302–1309 (2010).

Figure 1. Genome-wide DNA methylation patterns in seven AML mutation groups and normal CD34+ cells. A) Summary of mutation status in 51 primary AML patients with WGBS data. B) Average methylation levels across ~28 million CpGs in CD34+ cells (N=6) and AML subtypes (IDH1mut or IDH2mut, n=15; TET2mut, n=5; DNMT3A^R882, n=6; DNMT3A^R882/IDHmut, n=7; normal karyotype with NPM1c and wild-type IDH1, IDH2, TET2, and DNMT3A, n=4; Normal karyotype with wild-type NPM1, IDH1, IDH2, TET2, and DNMT3A, n=4; CBFB-MYH11, n=3; KMT2A-ELL, n=3; RUNX1-RUNX1T1, n=3). C) Mean CpG island methylation levels in CD34+ cells and AML subtypes. D) Number of differentially methylated regions (DMRs) identified for each AML subtype compared with normal CD34+ cells. Blue and red bars represent hypomethylated and hypermethylated DMRs with respect to normal CD34+ cells, respectively. Mean number of CpGs per DMR (top panel) and DMR length (bottom panel) are shown for each AML subtype. E) Mean CpG density across DMRs identified in each AML subtype.
Figure 2. Characterization of IDHmut-specific DMRs. A) Distribution of shared hypermethylated DMRs across AML subtypes. B) Example of the hierarchical clustering approach used to identify IDHmut-specific DMRs. Aggregate DMR methylation for individual AML subtypes are shown in bottom panel with IDH samples indicated in red and CD34+ cells indicated in blue. C) Mean DMR methylation across IDHmut-specific DMRs in IDHmut samples versus mean methylation of all other AMLs. D) Aggregate methylation levels across all IDH1/2mut-specific DMRs in IDHmut and IDHwt AML subtypes. E) Locus heatmap showing mean methylation values by group for all IDHmut-specific DMRs, where each column is centered over the DMR with the window extending 5kb up- or down-stream the DMR center. F) Mean DMR methylation across all IDH1/2mut-specific DMRs (rows) in 15 individual IDHmut cases (columns). G) Aggregate DMR methylation across 3,928 IDH1mut specific DMRs and 1,821 IDH2mut specific DMRs respectively. H) Fraction of functional genomic elements overlapping generically hypermethylated DMRs, IDH1mut specific DMRs, and IDH2mut specific DMRs. I) Distribution of CpG densities across generically hypermethylated regions in primary AML and IDH1mut- and IDH2mut-specific DMRs.
Figure 3. TET2mut AMLs have modest hypermethylation that overlaps IDHmut-specific DMRs. A) Mean DMR methylation across 2512 in TET2mut DMRs called vs. CD34+ cells (black points) and 52 in TET2mut-specific DMRs (red points) in TET2 mutant samples versus mean methylation in all other AMLs. B) Intersection of in TET2mut-specific and IDHmut-specific DMRs. C) Aggregate methylation over IDHmut-specific DMRs in IDHmut and in TET2mut AML and CD34+ cells. D) Locus heatmap of mean methylation values for all IDHmut-specific DMRs (rows), where each column is centered over the DMR with the window extending 5kb up- and down-stream the DMR center point. E) Mean 5hmC (WGBS minus oxWGBS) levels in in TET2mut and in TET2wt AML samples at 4650 ChromHMM heterochromatic regions, 4586 generically hypermethylated regions, and 4008 IDHmut-specific hypermethylated DMRs.
Figure 4. DNMT3A^{R882}/IDH^{mut} double mutant AMLs display an attenuated focal hypermethylation phenotype. A) Locus heatmap of mean methylation at IDH^{mut} DMRs (rows) in IDH1 or IDH2 mutant, DNMT3A^{R882}/IDH^{mut} double mutant, and DNMT3A^{R882} AMLs, and CD34+ cells. B) Distribution of IDH^{mut}-specific DMR methylation levels by AML subtype. C) Example IDH^{mut}-specific DMR locus within the ETV6 gene demonstrating an intermediate methylation phenotype of double mutant samples with respect to IDH^{mut} and DNMT3A^{R882} mutant AMLs. D) Methylation locus heatmap of average subtype methylation across DNMT3A^{R882} DMRs called vs. CD34+ cells in IDH^{mut}, DNMT3A^{R882}/IDH^{mut} double mutant, and DNMT3A^{R882} AMLs, and CD34+ cells. E) Distribution of DNMT3A^{R882} DMR methylation levels by AML subtype. F) Example DNMT3A^{R882} DMR locus within the MLLT1 gene, demonstrating the hypomethylation phenotype of DNMT3A^{R882} mutant samples with respect to IDH^{mut} and DNMT3A^{R882}/IDH^{mut} double mutant AML samples.
Figure 5. *IDH*^{mut}-specific DMRs are enriched for putative enhancers. A) Distribution of ChromHMM chromatin states from CD34+ cells represented in *IDH*^{mut}-specific DMRs.

Enrichment of chromatin states within *IDH*^{mut}-specific DMRs is shown with respect to the frequency of states overlapping regions of common CpG island hypermethylation. B) Enhancer-based annotation of common hypermethylated regions, *IDH*¹^{mut}, and *IDH*²^{mut} DMRs, where DMRs intersecting an H3K27ac peak alone or in combination with H3K4me1 constitute active enhancers, an H3K27ac peak in combination with H3K27me3 constitutes poised enhancers, and H3K4me1 alone constitutes a weak enhancer profile. C) Examples of intragenic and genic enhancer regions exhibiting *IDH*¹^{mut}, *IDH*²^{mut}, or *IDH1/2*^{mut} hypermethylation compared with CD34+ cells and other AML subtypes. D) Heatmap of enhancer histone modifications and heterochromatin modifications over *IDH*^{mut}-specific DMRs (left) and generic hypermethylation (right) in CD34+ cells (N=4 H3K27ac, N=7 H3K3me1, and N=7 H3K27me3), *IDH*^{mut} AML (n=3), and *IDH*^{wt} AML samples (N=9 H3K27ac, N=10 H3K3me1, and N=24 H3K27me3). E) Differential active enhancer signal (H3K27ac) for all AML-associated putative enhancers (black points) compared to putative enhancers intersecting an *IDH1/2*^{mut}-specific DMR (red points). F) HOMER motif enrichment analysis of *IDH1/2*^{mut}-specific DMRs with respect to a background set of generically hypermethylated regions. G) Enrichment analysis of TF binding events for 445 TFs within *IDH1/2*^{mut}-specific DMRs.
Figure 6. *IDH*_{mut}-specific DMRs are enriched in superenhancers and interact with highly expressed genes in AML. A) Schematic of DMR and enhancer-associated DMRs (eDMR) and their interaction with target genes based on intersection HiC-defined genome loops. B) Rank ordered enhancer regions based on H3K27ac signal in a representative *IDH*_{mut} AML sample, annotated by presence of overlapping *IDH*_{mut}-specific DMRs (absence of DMRs indicated by green points, greater than one DMR indicated by orange points) and computationally-defined 'superenhancer' (above red line). Enhancers of specific hematopoietic genes are designated. C) Distribution of number of *IDH*_{mut}-specific DMRs overlapping a set of AML consensus superenhancers (SEs) from H3K27ac data from 4 primary samples (N=779). D) Distribution of normalized gene expression values for all expressed genes (orange histogram) and a set of 750 eDMR target genes (blue histogram) in *IDH*_{mut} AML samples. E) Example *IDH*_{mut}-eDMR locus displaying interactions with the *MYC* promoter. A zoomed in view of the locus demonstrates focal enhancer hypermethylation in *IDH1*_{mut} (purple) and *IDH2*_{mut} (green) samples compared with CD34+ cells (blue). Normalized *MYC* expression is shown for 17 CD34+ cord blood cell samples, 6 and 14 *IDH1*_{mut} and *IDH2*_{mut} samples, and 91 *IDH*_{wt} samples. F) Example *IDH*_{mut}-DMR locus in a candidate enhancer that displays robust interactions with the *ETV6* promoter. A zoomed in locus view demonstrates focal enhancer hypermethylation in *IDH1*_{mut} (purple) and *IDH2*_{mut} (green) samples compared with CD34+ cells (blue). Normalized *ETV6* expression is shown for CD34+ cells, *IDH1*_{mut} and *IDH2*_{mut} samples, and *IDH*_{wt} samples (see E for sample sizes).
Figure 1.

A. Mutational profile of 51 primary AML samples

B. Genome-wide mean CpG methylation

C. Genome-wide mean CpG Island methylation

D. DMR Summary: AML subtype vs. CD34+ HSPCs

E. CpG density within AML specific DSS DMRs
Figure 2.
Figure 3.

A. TET2mut DMR methylation

B. Overlap of IDHm and TET2m specific DMRs

C. Aggregate methylation over IDHm specific DMRs

D. CDM_HSFCs, TET2, IDH

E. Estimated 5hmC levels (BS-OxBS)
Figure 5.

A. Percent IDH outlier DMRs associated with ChromHMM chromatin states

B. Enhancer annotation of hypermethylated DMRs

C. Chromosome 3

D. IDHm DMR histone modifications

E. Motif

F. Differential H3K27ac signal over putative enhancer peaks