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ABSTRACT

A salient difference between artificial and biological neural networks is the com-
plexity and diversity of individual units in the latter (Tasic et al.| 2018)). This
remarkable diversity is present in the cellular and synaptic dynamics. In this study
we focus on the role in learning of one such dynamical mechanism missing from
most artificial neural network models, short-term synaptic plasticity (STSP). Bi-
ological synapses have dynamics over at least two time scales: a long time scale,
which maps well to synaptic changes in artificial neural networks during learning,
and the short time scale of STSP, which is typically ignored. Recent studies have
shown the utility of such short-term dynamics in a variety of tasks (Masse et al.,
2019; Perez-Nieves et al., |2021), and networks trained with such synapses have
been shown to better match recorded neuronal activity and animal behavior (Hu
et al.l 2020). Here, we allow the timescale of STSP in individual neurons to be
learned, simultaneously with standard learning of overall synaptic weights. We
study learning performance on two predictive tasks, a simple dynamical system
and a more complex MNIST pixel sequence. When the number of computational
units is similar to the task dimensionality, RNNs with STSP outperform standard
RNN and LSTM models. A potential explanation for this improvement is the en-
coding of activity history in the short-term synaptic dynamics, a biological form
of long short-term memory. Beyond a role for synaptic dynamics themselves,
we find a reason and a role for their diversity: learned synaptic time constants
become heterogeneous across training and contribute to improved prediction per-
formance in feedforward architectures. These results demonstrate how biologi-
cally motivated neural dynamics improve performance on the fundamental task of
predicting future inputs with limited computational resources, and how learning
such predictions drives neural dynamics towards the diversity found in biological
brains.

1 INTRODUCTION

The last decades have witnessed astonishing development in neural network research, both in arti-
ficial intelligence (AI) applications to problems across the sciences and in creating model systems
for understanding computation in the brain. The essential concepts underlying these advances have
their origin in neuroscience: distributed computing using neurons, learning by changing synaptic
connections, and hierarchical organization of networks (Fukushima, |1980; Hubel & Wiesel, |1959).
Likewise, incorporation of these biological features into Al models, together with analyses of emerg-
ing large-scale neural datasets, has allowed these models to inform the underlying biology. However,
recent experimental discoveries in neurobiology have outpaced application within computing net-
work models. One of the most salient observations is the heterogeneity of neuronal features showing
a remarkably diverse anatomy (Gouwens et al. [2019), gene expression (Tasic et al., 2016)), intrin-
sic dynamics (Teeter et al., 2018)), in vivo responses (de Vries et al.l [2020), and, our focus here,
remarkably diverse synaptic properties (Seeman et al., 2018).

In ANNSs, updating the connection weights during training represents a mechanism akin to long-
term plasticity (Goodfellow et al., 2016). However, neurons also exhibit strong, and strongly di-
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verse, short term dynamics — and these are missing from almost all ANN models. These short-term
synaptic plasticity mechanisms (STSP) can be broadly categorized as Short-Term Depression and
Short-Term Facilitation. Recent work has shown how STSP can provide networks with short term
memory (Masse et al.l 2019) and the ability to easily solve detection of change tasks (Hu et al.,
2020). In addition, recent work in ANNSs has incorporated maintenance of temporary state infor-
mation by implementing “fast weights” in a standard RNN layer architecture (Ba et al.,|2016). The
authors accomplish this by constructing a “fast” weight matrix in parallel with the standard weight
matrix. The fast weight matrix depends on the correlation of current and past hidden states, and its
output contributes additively to the evolution of the network hidden state at each time step. Our ap-
proach differs in several interesting ways. Chief among them is that the (fast) synaptic dynamics we
study represent a multiplicative adaptation at the level of all synapses emerging from an active neu-
ron, rather than a synapse-specific facilitation of synaptic strength for pairs of co-active synapses, as
in|Ba et al.| (2016). A second difference is the method of training the parameters for the short term
plasticity, which in our model is based on the same optimization as the synaptic weights.

Here, we build on these results in three major ways. First, we allow the timescale of STSP in each
individual neuron to be learned, simultaneously with standard learning of overall synaptic weights,
via unified gradient-based tools to minimize task training loss in Pytorch (extending from Hu et al.
(2020)). Second, we draw explicit comparison to standard RNN and LSTM models with related, but
distinct, mechanisms. And third, we study the role of STSP in prediction, a fundamental temporal
computation. Prediction tasks are inspired by predictive coding, which has a long tradition in signal
processing (Elias| [1955)) and has been studied for more than two decades in computational neuro-
science (Rao & Ballard, [1999;|Huang & Raol [2011)) as well as more recent work on prediction in the
machine learning and ANN literature (e.g. with recurrent convolutional LTSMs (Lotter et al., [2016)
and video prediction). While predictive coding training functions have been shown to reproduce
several features observed in neuronal data (Rao & Ballard,|1999), there are also differences (Zhuang
et al., 2021). Here, we explore the role of STSP in a very simplified dynamical system prediction
task as well as a more complex sequential MNIST prediction task.

Very recent work has reached similar scientific conclusions to ours, namely that heterogeneous in-
trinsic dynamics help temporal integration (Perez-Nieves et al.,|2021) but there are key differences
which make these studies complementary. First, we focus on STSP dynamics, as opposed to cellular
and synaptic integration time constants. Second, we focus on temporal prediction rather than clas-
sification. Finally, we work with rate-based networks, which enables us to make comparison with
standard RNN and LSTM machine learning tools.

2 RESULTS

2.1 TASK DESCRIPTION

We investigated the role of STSP in learning by training a set of neural network models with vary-
ing usages of STSP dynamics to predict future sequences in two different task environments: time
series prediction of N-dimensional sinusoidal (Figure [IB) and N-dimensional decaying exponen-
tial (Appendix [3) dynamics, and prediction of pixel intensity in sequentially read MNIST images

(Figure[3A).

2.2 MODEL DESCRIPTION

We implement a model for short-term depression (Dayan & Abbott, 2001}, similar to [Hu et al.
(2020), in firing-rate network models. The rate of change of synaptic resources for neuron
with short-term depression synapses is given by Equation [I| where z;(t) represents the synap-
tic resources, U is a constant, r;(t) represents the presynaptic activity at time ¢, and 7, is the
time constant of the synapses formed by neuron ¢. The firing rate of a given postsynaptic neu-
ron j is represented by Equation [2l Here, W;; represents the overall synaptic strengths subject to
long-term plasticity as in standard ANN learning, and subject to additional modulation on faster
timescales via the STSP rule (Hu et al.l 2020). The non-linearity, ®, is a ReLU activation function.
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All models have 3-layer architectures with a hidden layer of varying size to facilitate parameter
matching across models (Figure [T]A). Parameter matching was done by fixing the hidden layer di-
mension at 16 for the RNN and matching the other models to the corresponding trainable parameter
count by modulating the hidden layer dimensions (Section[A.2). Short-term synaptic dynamics were
included in feedforward models (STSP, STSPtau, STSPdiv) connecting the input layer to hidden
layer, as well as in RNNs (RNSTSP, RNSTSPtau) with the STSP synapses within the hidden layer
(Figure[TJA). These models with short-term plasticity are differentiated in both the initialization of
the short-term dynamic time constants and the dynamics of these time constants across training. In
the STSP and RNSTSP models, the time constants for each hidden node are homogeneous (1, = 3)
and static. The STSPtau and RNSTSPtau models likewise have all time constants initialized homo-
geneously (7, = 1), but the time constants are learned model parameters trained via the gradient
of the task loss, thus permitting the values to be optimized across training. The time constants for
the STSPdiv model, by comparison, are static parameters but are initialized at heterogeneous values
based on the final learned time constants for the STSPtau model

2.3 STSP IMPROVES LEARNING OF TEMPORAL DYNAMICS

Figure 1: A The network models. White parameters are static and homogeneous. Green parameters
denote time constants that are learned. Multicolored parameters are static but heterogeneous. STP
denotes short-term plasticity synapses and LTP indicates long-term plasticity connections, as in
standard ANN learning. B Models were trained to perform a time series prediction task on an N-
dimensional dynamic. The number of steps ahead to predict is S and the input sequence length
is L. Time series train/validation/test split strategy randomly assigns sections of length L to each
set. C Training and validation loss for parameter matched models predicting an 8 dimensional
sinusoid. D Training and validation loss for parameter matched models predicting an 16 dimensional
sinusoid. E Dynamics of STSP time constants for the RNSTSPtau (Top) and STSPtau (Bottom)
models predicting a 16 dimension input. Individual lines are time constant values for each STSP
node across training.

The results presented here use sinusoidal input stimuli of dimensions 8 and 16 that have frequencies
along each dimension which are evenly spaced across a range of frequencies from 0.001 to 0.333
Hz. Our results indicate that a significant performance advantage is conferred to the RNNs with
STSP. This benefit is evidenced by lower minimum loss values for the RNSTSP and RNSTSPtau
models across the training and validation sets (Figure[I[C, D). A Kruskal-Wallis test shows significant
(P < .001) differences in the final 200 epochs of the validation loss between the standard RNN and
LSTM models and the RNSTSP, and RNSTSPtau models. A post hoc Mann-Whitney test shows
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significant differences in the validation loss across the final 200 epochs, for both dimension 8 and 16
sinusoidal inputs, between the following model pairs: RNSTSPtau and RNN (P < .001), RNSTSP
and RNN (P < .001), RNSTSPtau and LSTM (P < .001), and RNSTSP and LSTM (P < .001).

Furthermore, training the time constants in the RNSTSPtau and STSPtau models results in observ-
able diversification (Figure ). In addition, possessing a diversified, or diversifiable, set of STSP
dynamics differentiates model performance in feedforward model architecture. This differentiation
is evidenced by the STSPtau and STSPdiv models significantly outperforming the STSP model (Fig-
ure m, D). A Kruskal-Wallis test shows significant (P < .001) differences in the final 200 epochs
of the validation loss between the STSP, STSPtau, and STSPdiv models. A post hoc Mann-Whitney
test shows significant differences between the model pairs of STSPtau and STSP (P < .001), and
STSPdiv and STSP (P < .001) for dimension 8 and 16 sinusoidal inputs.

Figure 2: Training and validation loss for models, each with 256 hidden layer nodes, predicting (A)
4, (B) 8, and (C) 16 dimensional sinusoids. Unlike Figure models here are matched for the number
of units, resulting in more parameters for LSTM (Table[5). The frequencies along each dimension
were again selected to be evenly spaced across a range of frequencies from 0.001 to 0.333 Hz.

Lastly, when expanding the dimension of the hidden layers of each model to 256 nodes, after 1000
training epochs, the LSTM model achieves the lowest validation loss of all the models for the 4 and
8 dimensional sinusoidal prediction tasks, but does not significantly outperform the RNSTSP and
RNSTSPtau models for the 16 dimension sinusoidal prediction (Figure [2). Overfitting is observed
for all models with 256 hidden nodes as evidenced by validation loss increasing across training
(Figure [2). The RNSTSP and RNSTSPtau models achieve overall minimum validation loss values
comparable to the LSTM model. The RNSTSP and RNSTSPtau models achieve this minimum vali-
dation loss earlier than the LSTM model in the case of predicting the 4 dimensional sinusoid. When
the number of units is much larger than task dimensionality, the RNSTSP and RNSTSPtau models
appear especially prone to overfitting. Therefore adopting an early stop criteria during training is
necessary to allow these models to continue to perform well in large network implementations.

2.4 STSP IMPROVES LEARNING OF MNIST PIXEL SEQUENCES

We also compared the performance of our models on a sequential MNIST prediction task. The
models were trained on a subset of the full|LeCun & Cortes|(2010) MNIST dataset containing only
the digits 2 and 8 to create a simple but not trivial task. The images were preprocessed such that the
pixel row sequences were stacked along 4 input dimensions. The models were trained to predict 4
steps ahead along the pixel sequence.
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Figure 3: A An example transformation of an MNIST image into an MNIST pixel sequence. Four
row sections of the original image are horizontally stacked to generate a 4 dimensional sequence. B
Training and C validation loss for predicting 4 steps ahead along the MNIST sequence.

Our results again indicate that a significant performance advantage is conferred to the RNNs with
STSP (Figure[3B, C). A Kruskal-Wallis test shows significant (P < .01) differences in the final 200
epochs of the validation loss between the standard LSTM model and the RNSTSP, and RNSTSPtau
models. A post hoc Mann-Whitney test shows significant differences in the final 200 epoch vali-
dation loss between the RNSTSPtau and LSTM (P < .001), RNSTSP and LSTM (P = .008), and
RNSTSPtau and RNN (P = .053) model pairs. No statistically significant performance differences
are observed due to heterogeneity of STSP dynamics.

3 DISCUSSION

Our results in the first tasks studied, that of predicting a simple dynamical system, demonstrate
a performance advantage for RNSTSP (RNNs with short-term synaptic dynamics) over standard
RNNs and LSTMs. This holds across a set of predicted dimensions (Figure[I|C, D) and dynamics
(Section Figure [5) when the number of computational units is of the same order of magnitude
as the task dimensionality. These results are confirmed in the second, more complex task, that of
predicting sequential MNIST pixels (Figure [3). When the number of computational units signif-
icantly exceeds the task dimensionality, the RNSTSP models learn rapidly (Figure [2) but quickly
start to overfit. A potential explanation for RNSTSP performance is the availability of the activity
history in the short-term synaptic efficacy. We can view the short-term plasticity as a biological way
to implement long short-term memory.

Our second finding is that heterogeneity in the time constants of STSP dynamics, though emergent
in both recurrent and feedforward models with learned time constants (Figure[IE), significantly im-
proves learning only in the feedforward setting (Figure[T|C, D). Recurrent architectures may already
allow nodes to manufacture different time scales of activity through the arbitrarily long or short
activity trajectories within the recurrent layer. This property could make “ready-made” synaptic
timescales, via STSP, a less significant resource for predicting time varying signals. In the feedfor-
ward setting, while diversity in these time constants was important, we did not find evidence that
they needed to be learned on a neuron-specific basis in tandem with connection weights. Specif-
ically, we found identical performance for the STSPtau model, in which this tandem learning did
occur, and the STSPdiv variant, in which the heterogeneous time constants were pre-assigned and
held fixed during learning (Figure [T|C, D and Figure 3IC). This indicates that effective learning of
these time constants in nature could be in response to developmental or learning pressures on larger
time scales than individual stimulus and task learning. A related idea is that once time constants
have been learned to solve a given task, they will likely be of service in solving other tasks with
relevant information over similar time scales. This said, the situations in which heterogeneity of
synaptic dynamics impacts learning remain to be thoroughly explored. We believe that our findings
open doors to future work along these lines, which should analyze temporal tasks which are gradu-
ally more complex and more ethologically relevant. To complement this, future efforts should also
be made to demonstrate the theoretical underpinnings of how synapses acting as diverse dynamical
components can facilitate the representation — and, more importantly, prediction — of time varying
mputs.
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A APPENDIX

A.1 MODEL IMPLEMENTATION

For both tasks the models were trained using the ADAM optimizer with the default settings (learning
rate of 0.001 and beta values of 0.9, 0.999). Models were trained for 1000 epochs with 20 cross-
validation folds using mean squared error loss. Our Pytorch model implementations will be made
available to the community through Github.

Of note, for presentation purposes the validation loss plots in Figure [T[C, D are smoothed using a
moving average with a window size of 3 epochs. The loss trajectories are not qualitatively different
without smoothing (Figure [I0). Additionally, due to exploding gradients, only 18 CV folds were
used for the RNN model predicting the dimension 16 sinusoid in Figure[I|C, and[TD due to exploding
gradients. Similarly, in Figure 3B, and [3IC, only 15, 19, and 19 CV folds were used for the RNN,
RNSTSP, and RNSTSPtau models respectively.

A.2 MODEL TRAINABLE PARAMETERS

Tables [T}3] detail the hidden layer dimensions and trainable parameter counts for the implemented
models. Table 4] details the trainable parameter counts for simulations described in Supplementary
Figure[6] for which the number of hidden units was conserved across model type. Table [5]details the
trainable parameter counts for simulations described in Figure 2] for which the number of hidden
units was set at 256.

Table 1: The parameter matched hidden layer sizes and corresponding trainable parameter counts
for an input layer dimension of 4. Relevant for models presented in Suplementary Figure

Model Hidden Layer Size Trainable Parameters
RNN 16 420
LSTM 7 396
STSP 32 301
RNSTSP 16 420
RNSTSPtau 16 436
STSPtau 32 305
STSPdiv 32 301

Table 2: The parameter matched hidden layer sizes and corresponding trainable parameter counts
for an input layer dimension of 8. Relevant for models presented in Figure|T]

Model Hidden Layer Size Trainable Parameters

RNN 16 552
LSTM 7 540
STSP 32 552
RNSTSP 16 552
RNSTSPtau 16 568
STSPtau 32 569
STSPdiv 32 552
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Table 3: The parameter matched hidden layer sizes and corresponding trainable parameter counts
for an input layer dimension of 16. Relevant for models presented in Figure [I]

Model Hidden Layer Size Trainable Parameters

RNN 16 816
LSTM 7 828
STSP 24 808
RNSTSP 16 816
RNSTSPtau 16 832
STSPtau 24 824
STSPdiv 24 824

Table 4: Trainable parameter counts for models with matched hidden layers dimensions of 16 nodes.

Model Input Dimension Trainable Parameters
RNN 4 420
LSTM 4 1476
STSP 4 148
RNSTSP 4 420
RNSTSPtau 4 436
STSPtau 4 152
STSPdiv 4 148
RNN 8 552
LSTM 8 1800
STSP 8 280
RNSTSP 8 552
RNSTSPtau 8 568
STSPtau 8 288
STSPdiv 8 280
RNN 16 816
LSTM 16 2448
STSP 16 544
RNSTSP 16 816
RNSTSPtau 16 832
STSPtau 16 560
STSPdiv 16 544
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Table 5: Trainable parameter counts for models with 256 node hidden layers. Relevant for models
presented in Figure 2]

Model Input Dimension Trainable Parameters
RNN 4 68100
LSTM 4 269316
STSP 4 2308
RNSTSP 4 68100
RNSTSPtau 4 68356
STSPtau 4 2312
STSPdiv 4 2308
RNN 8 70152
LSTM 8 274440
STSP 8 4360
RNSTSP 8 70152
RNSTSPtau 8 70408
STSPtau 8 4368
STSPdiv 8 4360
RNN 16 74256
LSTM 16 284688
STSP 16 8464
RNSTSP 16 74256
RNSTSPtau 16 74512
STSPtau 16 8480
STSPdiv 16 8464
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A.3 SUPPLEMENTAL FIGURES

Figure 4: Supplement to Figure [I] demonstrating model performance in a 4 dimensional sinusoid
prediction task. A The number of hidden units is varied to parameter match the models. Training
(Top) and validation (Bottom) loss across training epoch. B Heterogeneity of synaptic dynamic time
constants for the RNSTSPtau (Top) and STSPtau (Bottom) parameter matched models.

11


https://doi.org/10.1101/2021.05.18.444107
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.18.444107; this version posted May 26, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

. available under aCC-BY-NC 4.0 International license.
Published as a workshop paper at “Brain2AI” (ICLR 2021)

Figure 5: Training (Top) and validation (Bottom) loss across training epoch for models predicting
a4 A, 8B, and 16 C dimensional decaying exponential. The number of hidden units is varied to
parameter match the models.

Figure 6: Training (Top) and validation (Bottom) loss across training epoch for models predicting
a4 A, 8B, and 16 C dimensional sinusoid when the number of hidden units is fixed at 16 nodes.
Under these conditions the LSTM model has significantly more trainable parameters than the other
models (Table[d).
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Figure 7: Training (Top) and validation (Bottom) loss across training epoch for models predicting a
4 A, 8 B, and 16 C dimensional sinusoid. The sinusoidal dynamic learned in this case differs from
that of Figure[T]and Figure[d]in that the frequencies of oscillation are instead randomly selected from
a uniform distribution from 0.001 to 0.333 Hz. The number of hidden units is varied to parameter
match the models.

Figure 8: Charts demonstrating the heterogeneity of synaptic dynamic time constants for the RNST-
SPtau and STSPtau parameter matched models trained on 8 and 16 dimension sinusoid (Top) and
decaying exponential (Bottom) inputs. The number of STSP nodes differs between the STSPtau and
the RNSTSPtau models because the nodes with STSP are in the input layer for the STSPtau model
versus the hidden layer in the RNSTSPtau model. A STSPtau time constant evolution across training
for dimension 8 sinusoid and decaying exponential inputs. B RNSTSPtau time constant evolution
across training for dimension 8 sinusoid and decaying exponential inputs. C STSPtau time constant
evolution across training for dimension 16 sinusoid and decaying exponential inputs. D RNSTSPtau
time constant evolution across training for dimension 16 sinusoid and decaying exponential inputs.
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Figure 9: Evolution of synaptic dynamic time constants across training for the A STSPtau and B
RNSTSPtau parameter matched models trained on the sequential MNIST task.

Figure 10: Validation loss plots for the dimension 8 and 16 sinusoidal prediction tasks that are
identical to those presented in Figure[I|C, D but without moving average smoothing.
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