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ABSTRACT 
 
Prior work has shown that there is substantial interindividual variation in the spatial distribution 

of functional networks across the cerebral cortex, or functional topography. However, it remains 

unknown whether there are sex differences in the topography of individualized networks in 

youth. Here we leveraged an advanced machine learning method (sparsity-regularized non-

negative matrix factorization) to define individualized functional networks in 693 youth (ages 8-

23 years) who underwent functional magnetic resonance imaging as part of the Philadelphia 

Neurodevelopmental Cohort. Multivariate pattern analysis using support vector machines 

classified participant sex based on functional topography with 83% accuracy (p<0.0001). Brain 

regions most effective in classifying participant sex belonged to association networks, including 

the ventral attention and default mode networks. Mass-univariate analyses using generalized 

additive models with penalized splines provided convergent results. Comparative analysis using 

transcriptomic data from the Allen Human Brain Atlas revealed that sex differences in 

multivariate patterns of functional topography correlated with the expression of genes on the X-

chromosome. These results identify normative developmental sex differences in the functional 

topography of association networks and highlight the role of sex as a biological variable in 

shaping brain development in youth. 
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SIGNIFICANCE STATEMENT 

We identify normative developmental sex differences in the functional topography of 

personalized association networks including the ventral attention network and default mode 

network. Furthermore, chromosomal enrichment analyses revealed that sex differences in 

multivariate patterns of functional topography were spatially coupled to the expression of X-

linked genes as well as astrocytic and excitatory neuronal cell-type signatures. These results 

highlight the role of sex as a biological variable in shaping functional brain development in 

youth. 
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INTRODUCTION  

Significant sex differences have been documented in cognitive domains including 

visuospatial processing, social cognition, emotional memory, and executive function (1-3). Prior 

studies have sought to understand these behavioral differences in the context of sex differences 

in brain structure, organization, and function that have been noted during childhood and 

adolescence (1, 4, 5). Understanding normative sex differences in brain structure and function 

not only allows us to learn more about the neurobiology of developmental sex differences in 

cognition and behavior, but is also a necessary first step in constructing a framework to study 

sex differences in psychopathology, where such differences are even more prominent and 

emerge during development. 

Previous neuroimaging studies have examined sex differences in network connectivity 

as a contributor to sex differences in cognition and psychiatric disorders (6-8). For example, 

males exhibit greater between-module connectivity and lower within-module connectivity than 

females (9, 10). These patterns of connectivity have been linked to better performance on 

spatial and motor tasks, cognitive domains where males outperform females (9). Furthermore, 

depression and anxiety are more prevalent in females (11), and brain connectivity patterns 

associated with mood disorder symptoms are greater in females (12). In contrast, ADHD (13) 

and conduct disorder (14) are more prevalent in male youth, and may be related to abnormal 

functional connectivity within and emerging from executive regions (15). Although these studies 

and others suggest that sex differences in network connectivity may underlie various behavioral 

phenotypes, findings have been heterogeneous, raising concerns about reproducibility and 

potential for clinical translation.  

One potential reason for such heterogeneity in findings among prior studies is the use of 

standardized network atlases. Standardized atlases assume a stable 1:1 correspondence 

between structural and functional anatomy across individuals. Such methods assume that by 

aligning brain structural anatomy across subjects, functional network anatomy across subjects is 
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also brought into alignment. However, evidence from multiple independent groups has shown 

that there is significant inter-individual variation in the spatial distribution of functional networks 

across the anatomic cortex, or functional topography (16-20). These studies demonstrate that 

mapping between structure and function varies substantially between individuals, and that inter-

individual variation of personalized functional networks is maximal in association networks such 

as the ventral attention, frontoparietal, and default mode networks (20). Assuming a 1:1 

correspondence between structural and functional anatomy can alias individual differences in 

topography into measurement of inter-regional functional connectivity. In light of these 

difficulties, it remains unknown if sex differences in functional topography exist. Furthermore, it 

is unknown whether such differences might emerge in youth – a period marked by extensive 

remodeling of functional networks (20).   

Accordingly, here we capitalized upon a large sample of youths imaged as part of the 

Philadelphia Neurodevelopmental Cohort (21) to evaluate developmental sex differences in 

functional topography.  We used machine learning to define individualized functional networks, 

hypothesizing that sex differences would be greatest in association networks. Because sex 

differences in neuroanatomy have previously been linked to sex chromosome gene expression 

(22, 23), we also evaluated the relationship between sex differences in topography and gene 

expression. We predicted that cortical patterns of prominent sex differences in functional 

network topography would be spatially similar to the expression of sex-chromosome genes.   

 

RESULTS 

As previously described (18), we used sparsity-regularized non-negative matrix 

factorization (NMF) (24) to derive individualized functional networks in 693 youth (57% female) 

ages 8-23 years imaged with fMRI as part of the Philadelphia Neurodevelopmental Cohort. In 

this procedure for defining individualized networks, we first create a consensus atlas for the 

group of 693 subjects and then use this consensus atlas to define individualized networks for 
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each participant under a sparsity constraint (Figure 1a). Using a consensus atlas ensures 

spatial correspondence across individuals. Seventeen functional networks were identified for 

each participant (Figure 1b), which correspond with commonly used atlases and prior work (17, 

20, 25, 26). Networks were named as in Cui et al. (20), and include default mode networks (1, 8, 

and 12), frontoparietal networks (3, 15, and 17), ventral attention networks (7 and 9), dorsal 

attention networks (5 and 14), visual networks (6 and 10), somatomotor networks (2, 4, 11 and 

13), and an auditory network (16). In contrast to hard partitioning methods that assign each 

vertex to a single network, NMF is a soft partitioning method that yields a probabilistic 

parcellation such that there are 17 loadings for each vertex that quantify the extent to which it 

belongs to each network. This probabilistic parcellation can be converted into discrete network 

definitions for display by labeling each vertex according to its highest loading (Figure 1c). Visual 

examination of individual participants’ functional networks revealed distinct differences in 

topographic features (Figure 2). This inter-individual variation in topography was particularly 

apparent in association networks such as the ventral attention and default mode networks. In 

contrast, motor and sensory networks appeared to be much more consistent across individuals.  

 

Machine learning accurately identifies sex using functional topography 

Based on our observation that the spatial distribution of association networks varies 

across individuals, we hypothesized that sex contributed to this inter-individual variation in 

topography. To test this hypothesis, we first sought to understand the way in which high 

dimensional patterns of functional topography reflect sex. Multivariate pattern analysis allows for 

such integration of high dimensional data and can also identify complex patterns of topography 

that discriminate between males and females. We therefore used a linear support vector 

machine (SVM; 27) with nested 2-fold cross validation (2F-CV) to construct multivariate models 

that classified participants as male or female. Given our large sample size, using 2-folds 

minimizes variance and over-fitting while leaving a sufficiently large sample to test model 
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performance. We accounted for age and in-scanner head motion in these models by regressing 

these covariates from each feature in the training datasets using SurfStat (28) and then applied 

these model parameters to account for covariates in the testing dataset without data leakage. 

These models were able to classify participants as male or female with 82.9% accuracy 

(p<0.0001; Figure 3a). Sensitivity and specificity of the model were 0.76 and 0.88, respectively; 

area under the ROC curve (AUC) was 0.86. To understand which networks contributed the most 

to the prediction, we summed the positive and negative weights separately across all vertices in 

each network. This revealed that variation in the functional topography of association networks 

including the ventral attention network and default mode network contributed the most to the 

model and were therefore relatively more important in predicting participant sex (Figure 3B-C). 

To determine the importance of a given vertex to the predictive model, we summed the absolute 

weight across all 17 networks to summarize the prediction weight of each vertex. This summary 

measure highlighted that regions in association cortex including the temporo-parietal junction, 

superior parietal lobule, and orbitofrontal cortex were most important in predicting participant 

sex (Figure 3D). 

 

Mass-univariate analyses yield convergent results 

The goal of our multivariate pattern analysis was to classify participant sex using the 

information contained in all regions jointly. Although multivariate models are ideal for 

classification problems, their descriptive utility is sometimes limited. The interpretability of 

features within a multivariate model may be hindered by the inability to determine how the 

features interact within the model framework due to the high-dimensional nature of the 

parameter space. In contrast, a traditional mass-univariate analysis describes the relationship 

between a given factor and brain measures of interest on a regional basis, providing descriptive 

information complementary to multivariate results. Therefore, we also examined the impact of 

sex on network topography using a traditional mass-univariate analysis. We used generalized 
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additive models (GAMs) with penalized splines (29) to account for linear and nonlinear 

developmental effects. We fit a GAM at each vertex to evaluate the impact of sex on network 

loadings. Age and in-scanner head motion were included as covariates, and age was modeled 

using a penalized spline. Multiple comparisons were accounted for by controlling the false 

discovery rate (FDR; Q<0.05). 

To determine the overall effect of sex at a given vertex, we summed the absolute value 

of the Z statistic for the effect of sex across all 17 networks. This summary measure highlighted 

that the impact of sex on topography was greatest in association cortex regions including the 

temporo-parietal junction, superior parietal lobule, and orbitofrontal cortex (Figure 4A). Notably, 

this result identifying regions where the impact of sex on topography was greatest was 

convergent with our multivariate pattern analysis, which identified the same regions of 

association cortex as most heavily weighted in classifying participant sex. We evaluated the 

significance of the correspondence between this univariate summary measure and the map of 

summed absolute prediction weights from our machine learning model (Figure 3D) using a 

conservative spin-based spatial randomization test that accounts for spatial autocorrelation (30-

33). This analysis revealed that maps of the impact of sex were similar using multivariate and 

univariate approaches (r=0.86, pspin<0.0001; Figure 4B). As in our multivariate analysis, the 

impact of sex using a univariate approach was greatest in association networks including the 

ventral attention network and default mode network (Figure 4C-D). For example, both the SVM 

and GAMs identified the precuneus as a region with large sex differences in topography; 

loadings in this region were greater in females for the default mode network, but greater in 

males for the frontoparietal network (Figure 4E). Analyses evaluating the presence of an age-

by-sex interaction indicated no significant interactions.   

Gene enrichment analyses link sex differences in topography to X chromosome genes 
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The above findings indicate that there are robust differences in functional topography 

between males and females. We next sought to understand the biological basis of these sex 

differences in topography. Although little is currently known about what factors drive inter-

individual variation in topography, sex differences in neuroanatomy have previously been 

attributed to differences in sex chromosome gene expression (22, 23). Therefore, we conducted 

a chromosomal enrichment analysis to determine if sex differences in topography were spatially 

coupled to gene expression. We compared the fMRI map of summed absolute prediction 

weights from our machine learning model to gene expression data from the Allen Human Brain 

Atlas (across N = 12,986 genes using a 1000-parcel atlas; Methods). We quantified the degree 

of spatial correspondence using the median rank of a given gene set across the Pearson r 

correlations between each gene’s expression and the fMRI map. As predicted, we observed a 

significant enrichment of X-chromosome genes (p=0.02; Figure 5) - meaning that regions more 

important in predicting participant sex showed higher correlation with expression of genes on 

the X-chromosome. This enrichment remained significant in a series of sensitivity analyses that 

varied the parcellation resolution (p=0.001); that both varied parcellation resolution and used an 

independent processing pipeline with alternate methods for annotation, filtering, and sample 

assignment (34-36) (p=0.02); and limited the transcriptomic data to male donors only (p=0.02); 

see Methods for details. 

The above results indicate that sex differences in multivariate patterns of functional 

topography are correlated with expression of X-linked genes. However, regional differences in 

cortical gene expression may reflect regional differences in cellular composition of the cortex 

(37). Therefore, we conducted cell-type specific enrichment analyses to understand the 

convergent and divergent patterns of discrete underlying gene sets. Using cell-type specific 

gene sets as assigned in prior work (23), we found that regions more important in classifying 

participant sex were enriched in expression of astrocytic (p<0.0001) and excitatory neuronal 

genes (p<0.0001). To obtain a more nuanced understanding of cytoarchitecture, we then 
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assigned cell-types using the finer-grained neuronal sub-class assignments determined by Lake 

et al. (38). Convergent with the coarser cell type results, regions more important in classifying 

participant sex were enriched in astrocyte-related genes (p<0.006; Supplementary Figure 1) 

as well as several excitatory neuron sub-classes, including Ex5b (p<0.0001), Ex1 (p<0.0001), 

Ex3e (p<0.0001), Ex6b (p=0.02), and Ex2 (p=0.03). Notably, these gene sets included 

numerous X-linked genes (Supplementary Table 1). Finally, we conducted a rank-based gene 

ontology (GO) enrichment analysis using GOrilla (39, 40) to examine functional enrichment. 

This analysis identified several GO terms relevant to brain anatomy including “neuron part,” 

“synapse,” and “glutamatergic synapse” (Supplementary Figure 2). 

 

DISCUSSION 

In this study, we leveraged machine learning and a large sample of youths to study sex 

differences in functional network topography. We first demonstrated that sex differences in 

topography are greatest in association networks, including the ventral attention and default 

mode networks. Using complex multivariate patterns of functional topography, we were able to 

predict an unseen participant’s sex with a high degree of accuracy. Chromosomal enrichment 

analyses revealed that sex differences in multivariate patterns of functional topography were 

spatially coupled to expression of X-linked genes as well as astrocyte and excitatory neuron 

cell-type expression signatures. These results identify normative sex differences in the 

functional topography of association networks and highlight the role of sex as a biological 

variable in shaping functional brain development in youth. 

Sex differences in functional topography are greatest in association networks 

 The most robust finding in the present study is that there are significant sex differences 

in functional topography, and that these differences are greatest in association networks. This 

finding is in line with prior studies of functional topography that show that inter-individual 
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variation in topography is greatest in association networks (16-20). Importantly, our findings 

suggest that some significant portion of inter-individual variation in topography is driven by sex. 

Sex differences in topography were greatest in the default mode network, ventral attention 

network, and frontoparietal network. Variation in the topography of these networks has been 

linked to emotional, social, and executive functions (17, 20), all of which are behaviors with 

documented sex differences (1-3).  

To our knowledge, this is the first study to examine sex differences in functional 

topography. However, our findings are generally convergent with studies examining sex 

differences in functional connectivity, where standardized network atlases may have aliased 

differences in topography into measurements of connectivity. The sex differences we found in 

association cortex topography are in line with several prior studies that have found sex 

differences in association cortex connectivity (8, 41-45). Specifically, prior studies have 

documented sex differences in default mode network connectivity (41, 42, 46) and have 

postulated that sex hormones like estrogen and progesterone might impact default mode 

connectivity (43, 44, 46, 47). Similarly, our findings of sex differences in the topography of 

frontoparietal and ventral attention networks align with prior studies that have reported sex 

differences in functional connectivity of these networks (41, 45) (48). Our multivariate pattern 

analysis showed that features from the default mode, frontoparietal, and ventral attention 

networks were most important in classifying participant sex. These results generally cohere with 

findings from a large study using data from the Human Connectome Project that found that 

functional connectivity features within the default mode network and frontoparietal network were 

most important in identifying participant sex (41). Further, abnormal patterns of connectivity 

involving these association networks have also been associated with mood, fear, and 

externalizing symptoms (12), dimensions of psychopathology with well documented sex 

differences. Specifically, abnormalities of default mode, frontoparietal, and ventral attention 

network connectivity associated with fear symptoms are greater in females (12). Together, 
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these findings suggest that sex differences in topography may contribute to sex differences in 

cognition and psychopathology, though further work is needed to establish such a relationship.  

 
Sex differences in topography are associated with X-linked gene expression 

 The mechanisms by which sex differences in topography arise are likely multifold. 

Despite the growing interest in inter-individual differences in functional topography, little is 

currently known about what genetic or environmental factors drive these differences. In prior 

work, we showed that inter-individual variability in topography aligns with fundamental 

properties of brain organization including myelin content and cerebral blood flow (20). Here, we 

built on these findings by linking sex differences in topography to gene expression data. As 

expected, we found that regions more important in predicting participant sex correlated with 

expression of genes on the X chromosome. The correspondence between sex differences in 

topography and the spatial expression pattern of X-linked genes suggests that the observed sex 

differences in topography are likely in part driven by gene expression. Although to our 

knowledge no prior studies have examined the genetic basis of sex differences in functional 

topography, this finding is globally consistent with prior work that has linked sex differences in 

brain structure to sex chromosome gene expression (22, 23).  

Highly ranked X-linked genes included those related to neuron development (PPEF1 

(49), PCDH19 (50)), neuronal cytoskeletal transport (DYNLT3 (51)), chloride ion channels 

(CLCN5, GABRA3), metabolism (GYG2 , PDK3 (52)), and disease states with neuropsychiatric 

and cognitive symptoms (DMD (53); DYNLT3 (51), PCDH19 (50)). Of note, one gene ranking in 

the top 10 X-linked genes was PCDH19, a gene that encodes a protocadherin protein that 

supports neuronal organization and migration (50). PCDH19 was also identified as a gene 

whose spatial expression pattern correlates with sex differences in grey matter volume (22). 

Mutations in PCDH19 have been associated with intellectual disability, behavioral problems, 
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and autism spectrum disorder (50). Although speculative, it is plausible that these X-linked 

genes could influence functional topography through their actions on brain development. 

Another mechanism by which sex differences in topography may arise may be via 

organizational effects of hormones on cytoarchitecture. Our finding that sex differences in 

topography were spatially coupled to excitatory neuron cell-type gene expression was robust 

using two separate cell-type categorizations. This result coheres with the extensive rodent and 

non-human primate literature examining the impact of estradiol on glutamatergic dendritic spine 

architecture (54) and sex differences in excitatory neurotransmission (55). For example, 

estrogen is essential to the maintenance of prefrontal cortex dendritic spine density in 

ovariectomized female rodents and non-human primates (54, 56-58). Estrogen also increases 

the number of spine synapses in the prefrontal cortex of gonadectomized male rats (59). 

Similarly, compared to male rodents, female rodents show larger AMPA receptor synaptic 

responses (60), greater sensitivity to NMDA receptor manipulations (55, 61, 62), and increased 

expression of NMDA and metabotropic glutamate receptors (55, 63).  

We also found that sex differences in topography correlated with astrocytic subtype gene 

expression. Sex differences in astrocyte structure and astrocytic glutamate release are critical 

determinants of sex-specific synaptic patterning in sexually dimorphic brain regions, which has 

been implicated in the male-biased risk for autism spectrum disorder (64).  Similarly, androgen 

receptors play a role in establishing sex differences in astrocyte number and complexity seen in 

rodents (65). In the context of this literature, we speculate that hormone effects on 

cytoarchitecture may contribute to sex differences in functional topography. 

 

Limitations 

Certain limitations of the present study should be noted. First, we concatenated three 

fMRI runs, two of which were task time series where task effects were regressed from the data. 

Residuals from task-regressed time series, while similar, are not identical to true resting state 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445671doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445671
http://creativecommons.org/licenses/by-nc-nd/4.0/


data and non-linear effects associated with performing the task may therefore not have been 

removed (66). However, several independent studies have shown that functional networks are 

primarily defined by individual-specific rather than task-specific factors (67) and that networks 

present during task performance and at rest are similar (66). Including task-regressed data 

enabled us to generate individualized networks using 27 min of high-quality data. Time series of 

this length are necessary to reliably detect individual differences in functional networks (68) and 

sufficient to create parcellations highly similar to those generated using 380 min of data (69). 

Second, subcortical and cerebellar networks were not evaluated in this study, as individualized 

parcellation of these networks requires specialized analysis techniques that are distinct from 

those applied to the cortex (70, 71), rendering comparative or conjunctive analyses with NMF 

difficult to perform and interpret. Future work should evaluate sex differences in topography in 

subcortical and cerebellar networks, which are critical for behaviors with known sex differences 

including emotional regulation and executive function.  

Third, correspondence between sex differences in topography and gene expression 

were assessed at the group rather than individual level, though evaluating this relationship on a 

within-subject basis in a large, developmental sample is precluded by the necessity of 

postmortem samples for gene expression profiling. Fourth, using the Allen Human Brain Atlas 

introduces several inherent limitations including the use of microarray to quantify gene 

expression, asymmetric sampling, small sample size, donor age, and most notably, donor sex. 

The Allen includes postmortem samples from five male donors and one female donor. However, 

our findings regarding the correspondence between sex differences in topography and X-linked 

gene expression were robust to sensitivity analyses leaving out the female donor, and prior 

studies have similarly leveraged the AHBA to examine sex differences in independent 

neuroimaging samples (22, 23). Nevertheless, replication of these findings in a sex-balanced 

sample will be important when such spatially comprehensive maps of cortical gene expression 

are available.  
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Fifth, sex was assessed using a binary self-report question, and we therefore did not 

have a sufficient sample to examine functional topography of intersex youths. Furthermore, it 

should be noted that existing data and theory suggest that binary sex classification may not be 

useful and that brains are complex mosaics of male and female characteristics (72). 

 

Conclusions 

In summary, we identified normative developmental sex differences in the functional 

topography of personalized association networks. These results suggest that inter-individual 

variation in functional topography is in part driven by sex. Further, our findings suggest that sex 

differences in topography are likely in part linked to gene expression. Future work should 

examine if the sex differences in the topography of personalized networks explain normative 

variation in socioemotional or cognitive functions. The relationship between topography and sex 

differences in psychopathology is also a clear area for future research, as this may identify sex-

specific biomarkers of risk for psychiatric disorders. 

 

 

MATERIALS AND METHODS 

Methods regarding sample construction, image acquisition and processing, and 

individualized network parcellation were as previously described (20) and are summarized 

briefly below.  

 

Participants  

In this report, we considered the entire cross-sectional sample of 1,601 subjects imaged 

as part of the Philadelphia Neurodevelopmental Cohort (21). From this sample, 340 subjects 

were excluded due to clinical factors, including medical disorders that could affect brain 

function, current use of psychoactive medications, prior inpatient psychiatric treatment, or an 
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incidentally encountered structural brain abnormality. An additional 568 subjects were excluded 

because of low quality or missing structural, resting-state, n-back, or emotion identification 

imaging data; a functional run was excluded if mean relative root mean square (RMS) 

framewise displacement was higher than 0.2mm, or it had more than 20 frames with motion 

exceeding 0.25 mm (73, 74). The final sample included in the analyses comprised 693 

participants of which 301 were male and 392 were female. This sample of participants and their 

individualized networks are the same as those included in our prior report on individual variation 

in functional network topography (20). All subjects or their parent/guardian provided informed 

consent, and minors provided assent. All study procedures were approved by the Institutional 

Review Boards of both the University of Pennsylvania and the Children’s Hospital of 

Philadelphia.  

 

Image acquisition  

As previously described (21), all MRI scans were acquired using the same 3T Siemens 

Tim Trio whole-body scanner and 32-channel head coil at the Hospital of the University of 

Pennsylvania. 

 

Structural MRI: 

Prior to functional MRI acquisitions, a 5-min magnetization-prepared, rapid acquisition 

gradient-echo T1-weighted (MPRAGE) image (TR =1810ms; TE=3.51ms; TI=1100ms, 

FOV=180 x 240mm2, matrix=192 x 256, effective voxel resolution=0.9 x 0.9 x 1mm3) was 

acquired.  

 

Functional MRI:  

We used one resting-state and two task-based (i.e., n-back and emotion recognition) 

fMRI scans as part of this study. All fMRI scans were acquired with the same single-shot, 
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interleaved multi-slice, gradient-echo, echo planar imaging (GE-EPI) sequence sensitive to 

BOLD contrast with the following parameters: TR = 3000 ms; TE = 32 ms; flip angle = 90°; FOV 

= 192 x 192 mm2; matrix = 64 x 64; 46 slices; slice thickness/gap = 3/0 mm, effective voxel 

resolution = 3.0 x 3.0 x 3.0 mm3. Resting-state scans had 124 volumes, while the n-back and 

emotion recognition scans had 231 and 210 volumes, respectively. Further details regarding the 

n-back (75) and emotion recognition (76) tasks have been described in prior publications. 

 

Field map:  

In addition, a B0 field map was derived for application of distortion correction 

procedures, using a double-echo, gradient-recalled echo (GRE) sequence: TR = 1000ms; TE1 

= 2.69 ms; TE2 = 5.27 ms; 44 slices; slice thickness/gap = 4/0 mm; FOV = 240 mm; effective 

voxel resolution = 3.8 x 3.8 x 4 mm. 

  

Image processing  

The structural images were processed using FreeSurfer (version 5.3) to allow for the 

projection of functional time series to the cortical surface (77). Functional images were 

processed using a top-performing preprocessing pipeline implemented using the eXtensible 

Connectivity Pipeline (XCP) Engine (73), which includes tools from FSL (78, 79) and AFNI (80). 

This pipeline included 1) correction for distortions induced by magnetic field inhomogeneity 

using FSL’s FUGUE utility, 2) removal of the initial volumes of each acquisition (i.e., 4 volumes 

for resting-state fMRI and 6 volumes for emotion recognition task fMRI), 3) realignment of all 

volumes to a selected reference volume using FSL’s MCFLIRT, 4) interpolation of intensity 

outliers in each voxel’s time series using AFNI’s 3dDespike utility, 5) demeaning and removal of 

any linear or quadratic trends, and 6) co-registration of functional data to the high-resolution 

structural image using boundary-based registration. Images were de-noised using a 36-

parameter confound regression model that has been shown to minimize associations with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445671doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445671
http://creativecommons.org/licenses/by-nc-nd/4.0/


motion artifact while retaining signals of interest in distinct sub-networks. This model included 

the six framewise estimates of motion, the mean signal extracted from eroded white matter and 

cerebrospinal fluid compartments, the mean signal extracted from the entire brain, the 

derivatives of each of these nine parameters, and quadratic terms of each of the nine 

parameters and their derivatives. Both the BOLD-weighted time series and the artifactual model 

time series were temporally filtered using a first-order Butterworth filter with a passband 

between 0.01 and 0.08 Hz to avoid mismatch in the temporal domain (81). Furthermore, to 

derive ‘‘pseudo-resting state’’ time series that were comparable across runs, the task activation 

model was regressed from n-back or emotion recognition fMRI data (66). The task activation 

model and nuisance matrix were regressed out using AFNI’s 3dTproject.  

For each modality, the fMRI time series of each individual were projected to each 

subject’s FreeSurfer surface reconstruction and smoothed on the surface with a 6-mm full-width 

half-maximum (FWHM) kernel. The smoothed data was projected to the fsaverage5 template, 

which has 10,242 vertices on each hemisphere (18,715 vertices in total after removing the 

medial wall). Finally, we concatenated the three fMRI acquisitions, yielding time series of 27 

minutes, 45 seconds (555 time points) in total.  

As in prior work, we removed vertices with low signal-to-noise ratio (SNR) (31, 82, 83). 

To calculate a whole-brain SNR map, we extracted the first frame of acquisition (post-steady 

state magnetization) of each of the three runs for all participants. Next, we normalized each 

image to a mode of 1,000 and then averaged all of these images; this average image was 

further normalized to a mode of 1,000. A mean BOLD signal of 800 or less represents a 

substantial attenuation of signal (83), applying this threshold resulted in the exclusion of low 

SNR locations, which were primarily located in orbitofrontal cortex and ventral temporal cortex. 

Within this mask, 17,734 vertices were included in subsequent analyses.  

 

Regularized non-negative matrix factorization  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445671doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445671
http://creativecommons.org/licenses/by-nc-nd/4.0/


As previously described in detail (18), we used non-negative matrix factorization (NMF) 

(24) to derive individualized functional networks. NMF factors the data by positively weighting 

cortical elements that covary to yield a highly specific and reproducible parts-based 

representation (24, 32). Our approach was enhanced by a group sparsity consensus 

regularization term that preserves inter-individual correspondence, as well as a data locality 

regularization term that makes the decomposition robust to imaging noise, improves spatial 

smoothness, and enhances functional coherence of subject-specific functional networks (see Li 

et al., 2017 (18) for method details; see also: 

https://github.com/hmlicas/Collaborative_Brain_Decomposition). Because NMF requires inputs 

to be nonnegative values, we re-scaled the data by shifting time series of each vertex linearly to 

ensure all values were positive (18). To avoid features in greater numeric ranges dominating 

those in smaller numeric range, we further normalized the time series by its maximum value so 

that all the time points have values in the range of [0, 1].  

 Given a group of n subjects, each having fMRI data 𝑋! ∈ 𝑅×, 𝑖 = 1,… , 𝑛, consisting of S 

vertices and T time points, we aimed to find K non-negative functional networks 𝑉! = (𝑉#,%! ) ∈

𝑅&×' and their corresponding time series 𝑈! = (𝑈(,%! ) ∈ 𝑅)×' for each subject, such that 

𝑋! ≈ 𝑈!/𝑉!0* + 𝐸! , 𝑠. 𝑡. 𝑈! , 𝑉! ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑛, 

where (𝑉!)′ is the transpose of (𝑉!), and 𝐸! is independently and identically distributed (i.i.d) 

residual noise following Gaussian distribution with a probability density function of 𝑔(𝑥) =

+
√-./

𝑒0
!"

"#". Both 𝑈! and 𝑉! were constrained to be non-negative so that each functional network 

does not contain any anti-correlated functional units (24). A group consensus regularization term 

was applied to ensure inter-individual correspondence, which was implemented as a scale-

invariant group sparsity term on each column of 𝑉! and formulated as 

𝑅1 = ∑ ?𝑉∙,%
+,..,4?

-,+
@'

%5+ = ∑ ∑ (∑ (8$,&
' )"(

')* )*/",
$)*

(∑ ∑ (8$,&
' )"(

')*
,
$)* )*/"

'
%5+ . 
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The data locality regularization term was applied to encourage spatial smoothness and 

coherence of the functional networks using graph regularization techniques (84). The data 

locality regularization term was formulated as  

𝑅:! = 𝑇𝑟((𝑉!)′𝐿:! 𝑉!), 

where 𝐿:! = 𝐷:! −𝑊:
!  is a Laplacian matrix for subject i, 𝑊:

!  is a pairwise affinity matrix to 

measure spatial closeness or functional similarity between different vertices, and 𝐷:!  is its 

corresponding degree matrix. The affinity between each pair of spatially connected vertices (i.e., 

vertices a and b) was calculated as G1 + 𝑐𝑜𝑟𝑟/𝑋.,;! , 𝑋.,<! 0J /2, where 𝑐𝑜𝑟𝑟(𝑋.,;! , 𝑋.,<! ) is the Pearson 

correlation coefficient between time series 𝑋.,;!  and 𝑋.,<! , and others were set to zero so that 𝑊:
!  

has a sparse structure. We identified subject specific functional networks by optimizing a joint 

model with integrated data fitting and regularization terms formulated by 

𝑚𝑖𝑛	(𝑈! , 𝑉!) 	∑4!5+ ‖𝑋! − 𝑈!/𝑉!0′‖=
- + 𝜆: ∑4!5+ 𝑅:! + 𝜆1𝑅1, 

𝑠. 𝑡. 𝑈! , 𝑉! ≥ 0, ?𝑉.,%! ?> = 1, ∀1 ≤ 𝑘 ≤ 𝐾, ∀1 ≤ 𝑖 ≤ 𝑛 

where 𝜆: = 𝛽 × )
'×4-

 and 𝜆1 = 𝛼 ∙ 4∙)
'

 are used to balance the data fitting, data locality, and 

group consensus regularization terms, 𝑛: is the number of neighboring vertices, 𝛼 and 𝛽 are 

free parameters. Here, we used the same parameter settings as those used in prior validation 

studies (18).  

 

Defining individualized networks 

Our approach for defining individualized networks included three steps (Figure 1). The 

first two steps yielded a consensus group atlas. In the third step, this group atlas was used to 

define individualized networks for each participant. The whole-brain was decomposed into 17 

networks for correspondence with commonly used atlases and prior work (17, 20, 25, 26). 
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Step 1: Group network initialization  

Although individuals exhibit distinct network topography, they are also broadly consistent 

(19, 67). Therefore, we first generated a group atlas and used this group atlas as an initialization 

for individualized network definition. By doing so, we ensured spatial correspondence across all 

subjects. This strategy has been applied in prior work for individualized network definition (17, 

20, 25). To avoid the group atlas being driven by outliers and to reduce the computational 

memory cost, a bootstrap strategy was utilized to perform the group-level decomposition 

multiple times on a subset of randomly selected subjects. Subsequently, the resulting 

decomposition results were fused to obtain one robust initialization that is highly reproducible. 

As in prior work (18), we randomly selected 100 subjects and temporally concatenated their 

time series, resulting in a time series matrix with 55,500 rows (time-points) and 17,734 columns 

(vertices). The choice of sub-sample size did not impact results (sub-samples of 100, 200, and 

300 were previously evaluated (20)). We applied the above-mentioned regularized non-negative 

matrix factorization method with a random non-negative initialization to decompose this matrix 

(24). A group-level network loading matrix V was acquired, which had 17 rows and 17,734 

columns. Each row of this matrix represents a functional network, while each column represents 

the loadings of a given cortical vertex. This procedure was repeated 50 times, each time with a 

different subset of subjects (18); this yielded 50 different group atlases.  

 

Step 2: Group network consensus  

Next, we used spectral clustering to combine the 50 group network atlases into one 

robust and highly reproducible group network atlas (18). Specifically, we concatenated the 50 

group parcellations together across networks and acquired a matrix with 850 rows (i.e., 

functional networks, abbreviated as FN) and 17,734 columns (i.e., vertices). Inter-network 

similarity was calculated as 
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𝑆!? = 𝑒𝑥𝑝 W−
@'.
"

/"X	, 

where 𝑑!? = 1 − 𝑐𝑜𝑟𝑟/𝐹𝑁! , 𝐹𝑁?0, 𝑐𝑜𝑟𝑟/𝐹𝑁! , 𝐹𝑁?0 is Pearson correlation coefficient between 𝐹𝑁!   

and 𝐹𝑁?, and 𝜎 is the median of 𝑑!? across all possible pairs of FNs. Then, we applied normalized-

cuts (84) based spectral clustering method to group the 850 FNs into 17 clusters. For each cluster, 

the FN with the highest overall similarity with all other FNs within the same cluster was selected 

as the most representative. The final group network atlas was composed of the representatives 

of these 17 clusters.  

 

Step 3: Individualized networks.  

In this final step, we derived each individual’s specific network atlas using regularized 

NMF based on the acquired group networks (17 x 17,734 loading matrix) as initialization and 

each individual’s specific fMRI times series (555 x 17,734 matrix). See Li et al., 2017 (18) for 

optimization details. This procedure yielded a loading matrix V (17 x 17,734 matrix) for each 

participant, where each row is a functional network, each column is a vertex, and the value 

quantifies the extent each vertex belongs to each network. This probabilistic (soft) definition can 

be converted into discrete (hard) network definitions for display by labeling each vertex 

according to its highest loading.  

 

Multivariate Pattern Analysis 

We used a linear support vector machine (LSVM) as implemented in LIBSVM (85) to 

construct multivariate models that classified participants as male or female. A free parameter C 

determines the balance between the training errors and the generalizability of the LSVM 

classification model. We evaluated the classification using a nested 2-fold cross validation (2F-

CV), with the inner 2F-CV determining the optimal parameter C for the SVM classifier and the 

outer 2F-CV estimating the generalizability of the model. Given the large sample size in this 
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study, using 2-folds minimizes variance and over-fitting while leaving a sufficiently large sample 

to test model performance.  

In the outer 2F-CV, the data was randomly divided into 2 subsets. We initially used 

subset 1 as the training set, with subset 2 used as the testing set. We accounted for age and in-

scanner head motion by regressing these effects from each feature in the training datasets 

using SurfStat (28) and then applied the acquired coefficients to regress the effects in testing 

dataset. Each feature was linearly scaled between zero and one across the training dataset; 

these scaling parameters were then applied to scale the testing dataset (86, 87). 

Within each outer 2F-CV loop, we applied inner 2F-CV loops to determine the optimal C. 

To do this, the training set of the outer 2F-CV loop was again randomly divided into 2 subsets; 

one subset was selected to train the model with a given C in the range  [2-5, 2-4, ..., 29, 210] (i.e., 

16 values in total) (88), and the remaining subset was used to test the model. This procedure 

was repeated 2 times such that each subset was used once as the testing subset, resulting in 

two inner cross validations in total. The accuracies were calculated for each C value and then 

averaged across the two inner cross validations. The C with the highest inner prediction 

accuracy was chosen as the optimal C (86, 89). Then, we trained a model using the optimal C 

and all participants in the training set (subset 1), and then used that model to predict the sex of 

all participants in the testing set (subset 2).  

We repeated the above procedure using subset 2 as the training set and subset 1 as the 

testing set. Because the split between training and testing sets was chosen randomly, the 

nested 2-fold cross validation was performed 100 times to reduce the impact of group 

assignment. The results of these 100 nested cross validations were then averaged. This 

procedure yielded an overall classification accuracy score for classifying males or females on 

the basis of their functional topography. Each SVM also produced a vector of feature weights for 

each functional network that described how heavily weighted a given topographic feature was 

within the multivariate model.  
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Significance of prediction performance  

Permutation testing was used to evaluate if the prediction performance was significantly 

better than expected by chance (90). The predictive framework was repeated 1,000 times. In 

each run, we permuted sex across the training subset without replacement. Significance was 

determined by ranking the actual prediction accuracy (the average across 100 runs) versus the 

permuted distribution; the p-value was the proportion of permutations that showed a higher 

value than the actual accuracy value for the real data.  

 

Interpreting model feature weights 

The nested 2F-CV was repeated 100 times, yielding 200 weight maps. Averaging these 

200 weight maps, the features with a nonzero mean weight can be understood as contributing 

features in the prediction model (86, 90), with the absolute value of the weight quantifying the 

contribution of the features to the model (90). To understand which networks contributed the 

most to the prediction, we summed the positive and negative weights separately across all 

vertices in each network. As each vertex had 17 loading values (one for each network), we 

summed the absolute weight across all 17 networks to summarize the prediction weight of each 

vertex. This sum represents the importance of a given vertex to the predictive model.  

 

Univariate associations of network topography with sex 

The goal of a multivariate pattern analysis is to predict an outcome using the information 

contained in all regions jointly. In contrast, the goal of a traditional mass-univariate analysis is to 

describe the relationship between a given factor and brain measures of interest on a regional 

basis. Although multivariate models are ideal for classification problems, their descriptive utility 

is limited. While it is possible to identify the most heavily weighted features within a model, it is 

not possible to directly visualize their action within the model framework due to the high-
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dimensional nature of the parameter space. As such, we used both multivariate (predictive) and 

mass-univariate (descriptive) approaches, which are complementary and provide converging 

evidence.  

 We evaluated mass-univariate associations between sex and network topography using 

generalized additive models (GAMs) with penalized splines (29) to account for linear and 

nonlinear developmental effects. GAMs estimate nonlinearities using restricted maximum 

likelihood (REML), penalizing nonlinearity in order to avoid over-fitting the data. We fit a GAM at 

each vertex to evaluate the impact of sex on network loadings. Age and in-scanner head motion 

were included as covariates, and age was modeled using a penalized spline. As we considered 

three functional runs, in-scanner motion was summarized as the grand mean of the mean 

relative RMS displacement of each functional run. Multiple comparisons were accounted for by 

controlling the false discovery rate (FDR; Q<0.05). 

 

Spatial randomization testing (spin test) 

To evaluate the significance of the correspondence between our multivariate and 

univariate results, we compared a map of summed absolute prediction weights from our 

machine learning model (Figure 4D) to a map of summed effect sizes from the GAMs (Figure 

5A). We compared these maps using the spin test (30-33) (https://github.com/spin-test/spin-

test). The spin test is a spatial randomization method based on angular permutations of 

spherical projections at the cortical surface. The spin test generates a null distribution of 

randomly rotated brain maps that preserve spatial features and the spatial covariance structure 

of the original map. This procedure is therefore far more conservative than randomly shuffling 

locations, which destroys the spatial covariance structure of the data and produces an 

unrealistically weak null distribution. The spin-based p-value was calculated as the proportion of 

times that the observed correlation was higher than the null distribution of correlation values 

from rotated parcellations.  
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Gene enrichment analysis 

To examine the transcriptomic correlates of sex differences in functional topography, we 

compared the map of summed absolute prediction weights from our machine learning model to 

gene expression data from the Allen Human Brain Atlas (91). Publicly available microarray gene 

expression data processed in line with recent benchmarking recommendations and parcellated 

to the Schaefer1000 atlas were downloaded from 

https://figshare.com/articles/dataset/AHBAdata/6852911.  Details regarding gene processing 

including gene information re-annotation, data filtering, probe selection, sample assignment, 

data normalization, and gene filtering are described in Arnatkevic̆iuté et al. (92).  Of the 

available parcellations of processed Allen data, the Schaefer1000 parcellation was selected for 

primary comparison with topography given the granularity of topographic features. As only two 

of the six donor brains were sampled from both hemispheres, analyses were restricted to the 

left hemisphere to minimize variability of samples available across regions (92).  

 

Chromosomal enrichment analysis 

We used ranked gene lists to test if the spatial expression pattern of a given gene set 

was nonrandomly related to the spatial pattern of sex differences in functional topography. As in 

prior studies (22, 23, 36), we quantified the degree of spatial correspondence using the median 

gene set rank.  Genes were assigned to chromosomes as annotated in Richiardi et al. (93). We 

calculated the median ranks for 24 non-overlapping gene sets: each autosome (chromosomes 1 

through 22), chromosome X, and chromosome Y. For each chromosomal gene set, we 

compared the observed median rank to a null distribution of median ranks calculated from 1,000 

same-sized scrambled lists generated by randomly reordering the original ranked list. The p-

value from this non-parametric permutation test was the proportion of permutations with a more 

extreme value than the median rank of the real data.  
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To test the robustness of our chromosomal enrichments, we conducted a series of 

sensitivity analyses including varying the processing strategy and parcellation resolution, as well 

as leaving the female donor out. Specifically, we replicated our results using publicly available 

gene expression data processed by Arnatkevic̆iuté et al. (92) and parcellated to the 

Schaefer300 atlas. For consistency with prior work, we also parcellated Allen data to the 

Scaefer400 atlas using an independent processing pipeline (34-36) and computed gene 

expression matrices with and without the female donor. 

 

Cell-type specific expression analyses and gene ontology 

Because regional differences in cortical gene expression may reflect regional differences 

in cellular composition of the cortex (37), we conducted cell-type specific enrichment analyses 

to understand the convergent and divergent patterns of discrete underlying gene sets. As in 

chromosomal enrichments, we used ranked gene lists to test if the spatial expression pattern of 

a cell-type specific gene set was nonrandomly related to the spatial pattern of sex differences in 

functional topography. Non-parametric permutation testing assessed the significance of median 

ranks of cell-type specific gene sets. Gene sets for each cell-type were first assigned according 

to categorizations determined by Seidlitz et al. (23). To obtain a more nuanced understanding of 

cytoarchitecture, we then used the finer-grained neuronal sub-class assignments determined by 

Lake et al. (38). In both cases, only brain expressed genes (23) were considered, defined by 

expression levels in the Human Protein Atlas (94, 95).  

Finally, we also conducted a rank-based gene ontology (GO) enrichment analysis using 

GOrilla (39, 40) to examine functional enrichment. 

 

Visualization 
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Connectome Workbench (version: 1.3.2) provided by the human connectome project 

(https://www.humanconnectome.org/software/connectome-workbench; (96)) was used to 

visualize the brain surface.  

 

Data & code availability 

The PNC data is publicly available in the Database of Genotypes and Phenotypes: accession 

number: phs000607.v3.p2; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000607.v3.p2. All analysis code is available here: 

https://sheilashanmugan.github.io/funcParcelSexDiff1/. 
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Figure 1. Defining personalized functional networks with non-negative matrix 
factorization. A) We used spatially regularized non-negative matrix factorization (NMF) to 
derive individualized functional networks. Three fMRI runs were concatenated for each subject, 
resulting in a 27.4 minute time series with 555 time points for each subject. In step 1, time series 
from 100 randomly selected subjects were concatenated into a matrix with 55,500 time points 
(rows) and 17,734 vertices (columns). NMF was used to decompose this data into a time series 
matrix and loading matrix. The loading matrix had 17 rows and 17,734 columns, which encoded 
the membership of each vertex for each network. This procedure was repeated 50 times, with 
each run including a different subset of 100 subjects. In step 2, a normalized-cut based spectral 
clustering method was applied to cluster the 50 loading matrices into one consensus loading 
matrix, which served as the group atlas and ensured correspondence across individuals. In step 
3, NMF was used to calculate individualized networks for each participant, with the group atlas 
used as a prior. B) Seventeen functional networks were identified for each participant. Networks 
identified included default mode networks (1, 8, and 12), frontoparietal networks (3, 15, and 17), 
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ventral attention networks (7 and 9), dorsal attention networks (5 and 14), visual networks (6 
and 10), somatomotor networks (2, 4, 11 and 13), and an auditory network (16). NMF yields a 
probabilistic (soft) parcellation such that there are 17 loadings for each vertex that quantify the 
extent to which it belongs to each network. For each loading map, brighter colors indicate 
greater loadings. C) The probabilistic parcellation can be converted into discrete (hard) network 
definitions for display by labeling each vertex according to its highest loading.  
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Figure 2. Functional network topography varies between individuals and by sex.  
Probabilistic loading map and discrete network parcellations of three networks are displayed for 
the group and four randomly selected participants. Visual examination of individual participants’ 
functional networks reveal distinct differences in topographic features. This inter-individual 
variation in topography is particularly apparent in association networks such as the ventral 
attention and default mode networks. In contrast, motor and sensory networks appear to be 
more consistent across individuals. 
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Figure 3. Multivariate pattern analysis using support vector machine predicts subject sex 
based on functional topography. A) Support vector machine (SVM) with nested 2-fold cross 
validation (2F-CV) was used to construct multivariate models that classified participants as male 
or female. The ROC curve of the resulting model is depicted. Area under the ROC curve was 
0.86. Average sensitivity and specificity of the model were 0.76 and 0.88, respectively. Models 
classified participants as male or female with 82.9% accuracy. Inset histogram shows 
distribution of permuted accuracies. Average accuracy is represented by the dashed red line. B) 
To understand which networks contributed the most to the prediction, the positive and negative 
weights were summed separately across all vertices in each network. The most important 
topographic features in this model were found in association cortex and were maximal in the 
ventral attention network and default mode network. C) The top 25% of vertices in terms of 
feature importance in the SVM model are displayed for the ventral attention network and default 
mode network. D) At each location on the cortex, the absolute contribution weight of each 
network was summed, revealing that association cortex contributed the most to the multivariate 
model predicting participant sex.  
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Figure 4. Mass-univariate analyses provide convergent results, identifying significant sex 
differences in association networks. A generalized additive model (GAM) was fit at each 
vertex to evaluate the impact of sex on network loadings. Age (modeled using a penalized 
spline) and motion were included as covariates. Multiple comparisons were accounted by 
controlling the false discovery rate (Q<0.05).  A) To determine the overall effect of sex at a 
given vertex, we summed the absolute sex effect across all 17 networks. This summary 
measure is depicted and highlights that the impact of sex on topography was greatest in 
association cortex regions including the temporo-parietal junction, superior parietal lobule, and 
orbitofrontal cortex. B) Hexplot shows agreement between univariate summary measure (GAM 
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loadings in Figure 4A) and multivariate summary measure (SVM weights in Figure 3D) (r=0.86). 
C) To identify networks with the greatest sex differences, the number of vertices in each 
network with a significant sex effect was summed separately for males and females. This 
analysis revealed that sex differences were greatest in association networks. D) Significant 
vertices are displayed for the ventral attention network and default mode network, the networks 
where sex differences were maximal. E) Both SVM and GAMs identified the precuneus as a 
region with large sex differences in topography; loadings in this region were greater for females 
in the default mode network, but greater in the frontoparietal network for males. 
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Figure 5. Regions exhibiting sex differences in the multivariate pattern of functional 
topography are enriched in expression of X-linked genes. To examine the genetic 
correlates of sex differences in functional topography, we compared the map of summed 
absolute prediction weights from our machine learning model to gene expression data from the 
Allen Human Brain Atlas parcellated to the Schaefer 1000 atlas. Point range plot shows the 
median (point) and standard error (range) rank of each chromosomal gene set. Dashed lines 
indicate non-significant enrichments. Cortex where sex differences in functional topography 
were more prominent were significantly correlated with the spatial pattern of expression of 
genes on the X chromosome.   
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Supplementary Tables 

 

Supplementary Table 1. Cell type sub-classes with expression patterns that correlate 
with sex differences in topography contain several X-linked genes. Regions exhibiting sex 
differences in the multivariate pattern of functional topography are enriched in astrocyte-related 
genes, as well as several excitatory neuron sub-classes, including Ex5b, Ex1, Ex3e, Ex6b, and 
Ex2. The X-linked genes contained in each of these sub-classes is listed in the table.   
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Supplementary Figures 

 

Supplementary Figure 1. Regions exhibiting sex differences in the multivariate pattern of 
functional topography are enriched in expression of excitatory neuronal and astrocytic 
related genes. We conducted cell-type specific enrichment analyses to understand the 
convergent and divergent patterns of discrete underlying gene sets. We compared the map of 
summed absolute prediction weights from our machine learning model to gene expression data 
from the Allen Human Brain Atlas parcellated to the Schaefer 1000 atlas. We assigned cell-
types using the neuronal sub-class assignments determined by Lake et al. Point range plot 
shows the median (point) and standard error (range) rank of each cell type gene set. Dashed 
lines indicate non-significant enrichments. Regions more important in classifying participant sex 
were enriched in astrocyte-related genes and several excitatory neuron related gene sets 
including Ex5b, Ex1, Ex3e, Ex6b, and Ex2. Ast= astrocyte, Ast_cer= cerebellar-specific 
astrocytes, End= endothelial cells, Ex= excitatory neuron, Gran= cerebellar granule cells, In= 
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inhibitory neuron, Mic= microglia, Oli= oligodendrocytes, OPC= oligodendrocyte progenitor 
cells, OPC_cer= cerebellar-specific oligodendrocyte progenitor cells, Per= pericytes, Purk= 
cerebellar Purkinje cells.  
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Supplementary Figure 2. Regions exhibiting sex differences in the multivariate pattern of 
functional topography are enriched in expression of neuron related genes. We explored 
whether areas with prominent sex differences in topography show enriched annotation for 
specific biological processes, cellular components, and molecular functions. We conducted a 
rank-based gene ontology (GO) enrichment analysis using GOrilla to examine functional 
enrichment. Full output of cellular component GO terms is depicted. This analysis identified 
several GO terms relevant to brain anatomy including “neuron part,” “synapse,” and 
“glutamatergic synapse.”  
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