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Abstract 

 

Humans often act in the best interests of others. However, how we learn which actions result in 

good outcomes for other people and the neurochemical systems that support this ‘prosocial 

learning’ remain poorly understood. Using computational models of reinforcement learning, 

functional magnetic resonance imaging and dynamic causal modelling, we examined how 

different doses of intranasal oxytocin, a neuropeptide linked to social cognition, impact how 

people learn to benefit others (prosocial learning) and whether this influence could be dissociated 

from how we learn to benefit ourselves (self-oriented learning). We show that a low dose of 

oxytocin prevented decreases in prosocial performance over time, despite no impact on self-

oriented learning. Critically, oxytocin produced dose-dependent changes in the encoding of 

prediction errors (PE) in the midbrain-subgenual anterior cingulate cortex (sgACC) pathway 

specifically during prosocial learning. Our findings reveal a new role of oxytocin in prosocial 

learning by modulating computations of PEs in the midbrain-sgACC pathway.  

 

 

 

 

Keywords: Intranasal oxytocin; dose-response; reinforcement learning; prosocial behaviour; 

subgenual anterior cingulate (sgACC); mesolimbic pathways 
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Introduction 

 
Prosocial behaviours - actions intended to benefit other people - are crucial for social cohesion1. 

From small acts of kindness to major sacrifices, prosocial behaviours have intrigued many 

disciplines for centuries2. While debate persists about the intrinsic motives that guide us towards 

behaving prosocially, there is consensus that, in order to help, we must be able to learn the impact 

our actions have on others2,3.  

Reinforcement learning (RL) theory provides a neurobiologically plausible framework to 

explain how humans and other species form action-outcome associations4. Recent evidence has 

shown that humans rely on the same reinforcement learning algorithms when learning to benefit 

themselves (self-oriented learning)3 and others (prosocial learning). Yet these algorithms are 

implemented by distinct circuits in the brain and have different influences on behaviour5. Both 

self-oriented and prosocial reinforcement learning are driven by the difference between expected 

and actual outcomes, known as prediction errors (PE)3. PE are signalled through changes in the 

phasic release of dopamine in the forebrain6,7 and drive learning by updating the expected value 

of future choice options8,9. Humans learn faster when they are the recipients of the rewards 

themselves as compared to others (self-bias). The encoding of PE for prosocial and self-directed 

outcomes partially map to common anatomical substrates, such as the nucleus accumbens3. 

However, the encoding of prosocial PE specifically engages additional brain pathways anchored 

in the subgenual anterior cingulate cortex (sgACC)3, a region that is thought to play a key role in 

many aspects of social cognition10.  

In addition to identifying the neuroanatomical pathways where prosocial learning 

computations take place, understanding the neurochemical systems that support prosocial 

learning and govern the neurocomputational mechanisms through which they are implemented is 
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critical. Ultimately, this would allow us to identify putative molecular targets that could enhance 

prosocial behaviour in behavioural disorders characterised by dysfunctional social behaviour, 

such as antisocial behaviour, where we currently lack efficient therapies11. 

Oxytocin, a hypothalamic neuropeptide repeatedly implicated in social cognition and 

behaviour12, is a strong molecular candidate for targeting prosocial learning and its underlying 

neurocomputational mechanisms. First, oxytocin plays a crucial role in the encoding of social 

feedback during learning, through interactions with the dopaminergic mesolimbic pathways13. 

Second, a single dose of intranasal oxytocin has been shown to modulate the neurocomputational 

processes that take place during reinforcement learning, i.e. intranasal oxytocin increases 

representations of social value in the amygdala during economical exchanges14 and blunts the 

encoding of PE when humans have to learn that others should not be trusted15. Third, the sgACC, 

where PEs are encoded during prosocial learning specifically, receives oxytocinergic 

innervation16 and expresses mRNA of the oxytocin receptor gene abundantly17. Taken together, 

these lines of evidence converge on the hypothesis that oxytocin might act as a biological 

facilitator of prosocial learning by impacting on the neural computations that take place in the 

midbrain-sgACC pathway when we learn to benefit others.  

Here, we set out to test this hypothesis by examining the effect of three doses of intranasal 

oxytocin or placebo on self-oriented versus prosocial learning. We recruited 24 healthy men to 

participate in a double-blind, placebo-controlled, within-subjects, dose-response study where we 

administered 9, 18, 36 IU of intranasal oxytocin or placebo to each participant in four different 

days using a nebuliser (Figure 1a). We asked participants to perform a reinforcement learning 

task that can dissociate neural mechanisms for prosocial and self-benefitting learning3. In this 

task rewards would be paid either to the participant (self-oriented learning condition) or to a 

stranger (a confederate; prosocial learning condition), whom the participants was introduced to at 
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the start of the study. On each trial participants had to choose between one of two abstract 

symbols. One symbol was associated with a high probability (75%) and one was associated with 

a low probability (25%) of obtaining a reward. These contingencies were not instructed but had 

to be learned through trial and error from feedback on whether the reward was received presented 

at the end of each trial (Figure 1b).  

Using computational models of reinforcement learning and functional magnetic resonance 

imaging (fMRI), we show that prosocial and self-orientated learning processes exhibit two key 

differences. First, participants are better at learning how to get rewards for themselves than for 

others (self-bias). Second, while performance for oneself is maintained at high levels throughout 

the task, performance declines over time when rewards are for someone else. Intranasal oxytocin 

produced a dose-response effect specific to the prosocial condition. Compared to placebo, a low 

dose of oxytocin, but not the medium or high doses, prevented the decrease in prosocial 

performance over time with no effect on self-orientated learning. Moreover, intranasal oxytocin 

produced dose-dependent changes in the encoding of PE in the midbrain-sgACC pathway during 

prosocial learning. A low dose, compared to placebo, strengthened the encoding of PE in this 

pathway by increasing excitatory midbrain-to-sgACC transmission, while a high dose decreased 

excitatory midbrain-to-sgACC transmission. Overall, we reveal both behavioural and neural 

influences of oxytocin on prosocial learning that can be dissociated from oxytocin’s effects on 

self-oriented learning. Our findings could have important implications for strategies to foster 

prosocial behaviours in health and disorder.  

 

Results 

We confirmed that all participants believed our cover story at the end of their participation. Even 

though the prior contact between participants and confederates was standardized and kept to a 
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minimum, humans form quick and strong first impressions about others18 which could then 

influence how prosocial learning evolved in the task. For this reason, we assessed participants’ 

impression of the confederate right after they interacted using an impression scale19. We then 

examined whether our confederates might have elicited any form of strong preference bias. We 

did not detect any significant differences between the average ratings of the confederates and the 

middle point of the impression scale (T(23) = -0.549, p = 0.588), which suggests that the 

confederates were perceived neutrally.  

 

Only a low dose of intranasal oxytocin prevents decreases in prosocial performance over 

time but does not impact on self-oriented learning 

 

We first examined participants’ ability to complete the task in both learning conditions (self-

oriented or prosocial) and all treatment levels (placebo, low, medium, high).  Participants selected 

the option with the higher chance of receiving a reward significantly above chance (50%) during 

both self-oriented and prosocial learning in all treatment levels (smallest T(23) = 5.191, p = 

0.007) (Supplementary Figure S2).  

To examine whether we could replicate previous evidence that humans show a self-bias 

when learning to get rewards for themselves compared to others3,20, we used data from the 

placebo level (collapsing across trial blocks). We found that our participants were, on average, 

more likely to select the option with the higher probability of being rewarded when they were 

playing for themselves than when they were playing for others (χ2(1)=19.459, pboot<0.001) 

(Supplementary Figure S3). Therefore, our findings support the idea that humans show bias 

towards self-oriented learning as opposed to prosocial learning.  
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We then proceeded by investigating whether varying doses of intranasal oxytocin 

impacted on the probability of selecting the higher reward option during self-oriented and 

prosocial learning. We used a generalized logistic mixed model where we predicted trial-by-trial 

choices (0 = lowest chance of selecting the reward option; 1 = highest chance of selecting the 

reward option) using trial number (1-16 within each block), block (1-4), learning condition (self-

oriented or prosocial) and treatment level (placebo, low, medium or high) plus all possible 

interactions as fixed effects and individuals as a random effect.  

We found a significant main effect of trial number in predicting trial-by-trial performance 

(χ2 (15) = 733.648, pboot < 0.001; β = 0.079) which suggested that participants, irrespective of 

learning condition, block or treatment level improved their performance over trials (none of all 

possible interactions between trial and block, learning condition or treatment were significant; 

therefore, we excluded all interactions with trial from the final analysis to obtain a more 

parsimonious model - ΔBICfull-reduced > 100) (Table 1). This analysis further confirmed that 

participants were able to complete the task successfully.  

We also found a significant three-way interaction of learning condition x block x 

treatment (χ2 (9) = 23.382, pboot = 0.005) (Table 1). Plotting the data (Figure 2) suggested that the 

three-way interaction was driven by the following: while participants learnt to get rewards both 

for themselves and others, performance in the self-oriented learning condition remained high 

across blocks and treatment levels, while performance in the prosocial learning condition 

decreased in the last block for all treatment levels except for the low dose (Figure 2). Therefore, 

intranasal oxytocin can affect processes that maintain prosocial performance at steady levels 

throughout the task, and that this effect is specific for the low dose.  
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Behaviour is best explained by a model with separate learning rates for self-oriented and 

prosocial learning 

 

Next, we used computational models of reinforcement learning to measure two key learning 

parameters. The learning rate (α) represents the speed at which people update future outcome 

expectations based on past outcomes. The temperature parameter (β) represents the exploitation - 

exploration trade-off during action selection, i.e. extent to which the subject decides to stay with 

what they expect to be the most rewarding option vs exploring other potentially rewarding 

actions. We modelled learning during the task by fitting five models based on the Rescorla-

Wagner reinforcement learning algorithm21 to data pooled across all treatment levels. The models 

varied in their combination of α and β parameters they included for each learning condition 

(Table 2).  

Model selection using both fixed and random effects approaches showed the best model 

was M3, which included different learning rate parameters for self-oriented and prosocial learning 

(αself and αprosocial, respectively), and one single temperature parameter for both conditions. This 

model had the lowest integrated BIC (11079.22) highest exceedance probability (0.99) and 

explained the greatest variance of individual behaviour, among all participants and treatment 

levels (r2 = 0.69; Table 2). M1, a null model where we fixed a single α = 0 across learning 

conditions showed the worst performance, as compared to all the other models where we fitted a 

learning rate parameter for at least one learning condition (Table 2). This finding strengthens our 

conclusion that participants successfully learnt the task. We additionally verified the following: i) 

that parameters in our winning could be estimated independently from each other (Supplementary 

Figure S4); ii) that our winning model won for each treatment level (Supplementary Figure S5 
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and Supplementary Table S1); iii) that our winning model was identifiable (Supplementary 

Figure S6); and iv) that the estimated parameters were recoverable (Supplementary Figure S7). 

Furthermore, using choices simulated from the maximum a posteriori estimates of the parameters 

previously estimated for each of our participants, we also verified that our winning model could 

predict their actual choices (r2 ranged between 0.224 and 0.841; smallest p = 0.019) 

(Supplementary Table 2). 

 

Intranasal oxytocin does not impact the rate at which people learn during self-oriented or 

prosocial learning 

 

Next, we used the parameters of our validated winning model to test for the effects of learning 

condition, treatment, and learning condition x treatment on the learning rate and temperature 

parameters. We found a significant main effect of learning condition (χ2 (1) = 5.773, pboot = 

0.016), which reflected the fact that our participants showed higher learning rates during self-

oriented as compared to prosocial learning (Supplementary Figure S8). This finding is consistent 

with the self-oriented bias found in performance. The main effect of treatment (χ2 (3) = 0.670, 

pboot = 0.877) and the learning condition x treatment interaction (χ2 (3) = 3.016, pboot = 0.403) 

were not significant. We also tested the main effect of treatment on the temperature parameter, 

which was not significant (χ2 (3) = 2.650, pboot = 0.449) (Supplementary Figure S9). 

 

Intranasal oxytocin modulates the encoding of prediction errors in the midbrain and 

sgACC during prosocial learning in a dose-dependent manner 
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In the RL framework, two quantities are computed during learning: i) expected value of the 

chosen action at the cue phase (when participants see the options they can choose from); ii) PEs 

at the feedback phase (when participants receive feedback about whether their choice was 

rewarded or not). Hence, we investigated whether intranasal oxytocin impacted on brain 

representations of expected value of chosen actions and PEs during self-oriented and prosocial 

learning. We used the output of the winning model to estimate these parameters. 

First, we used data from the placebo session to examine whether the BOLD signal in three 

a priori defined anatomical regions-of-interest, the nucleus accumbens, the sgACC, and the 

midbrain, tracked PEs during self-oriented and prosocial learning as hypothesised. We found that 

PEs for both the self-oriented and prosocial conditions were tracked in the nucleus accumbens 

(self-oriented condition: mean parameter estimate 0.404 CI95% [0.260, 0.548]; prosocial 

condition: 0.217 CI95% [0.129, 0.305]) and the midbrain (self-oriented condition: 0.291 CI95% 

[0.239, 0.343]; prosocial condition: 0.269 CI95% [0.213, 0.325]). The BOLD signal 

representations of PEs in the nucleus accumbens were stronger in the self-oriented condition than 

in the prosocial conditions (χ2 (1) = 5.033, pboot = 0.026). There was no significant effect of 

learning condition in the midbrain (χ2 (1) = 0.337, pboot = 0.576). Critically, we found that the 

sgACC specifically encoded PEs in the prosocial but not in the self-oriented conditions (self-

oriented condition: -0.056 CI95% [-0.138, 0.026]; prosocial condition: 0.500 CI95% [0.364, 

0.636]; self-oriented versus prosocial conditions comparison: (χ2 (1) = 34.335, pboot < 0.001) 

(Supplementary Figure S10). Parameter estimates for the BOLD signal representations of PEs in 

the prosocial condition in the sgACC correlated positively with inter-individual differences in 

learning rates in the prosocial condition (r(22) = 0.664, pboot = 0.001), but not in the self-oriented 

condition (r(22) = 0.349, pboot = 0.103) (Supplementary Figure S11). Direct comparisons of these 
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two correlations yielded no significant differences (Z=-1.378, p=0.084). Parameter estimates for 

the BOLD signal representations of PEs during the self-oriented and prosocial learning 

conditions in the nucleus accumbens and the midbrain correlated positively with inter-individual 

differences in learning rates in both conditions (Nucleus accumbens: self-oriented condition – 

r(22) = 0.655, pboot = 0.001; prosocial condition  – r(22) = 0.590, pboot = 0.003; Self-oriented vs 

prosocial condition - Z=0.330, p=0.741; Midbrain: self-oriented condition – r(22) = 0.545, pboot = 

0.007; prosocial condition  – r(22) = 0.594, pboot = 0.003; Self-oriented vs prosocial condition - 

Z=-0.220, p=0.826;) (Supplementary Figure S11). We also conducted exploratory whole-brain 

analyses comparing the BOLD signal representations of PEs between the self-oriented and the 

prosocial learning conditions but no cluster survived correction for multiple comparisons (see 

Supplementary Figure S12 for brain regions where the BOLD signal tracked PEs in each 

condition separately).  

 Next, we tested whether oxytocin impacted on BOLD signal representations of PEs in our 

three ROIs. We found significant interactions between learning condition and treatment for the 

sgACC (χ2(3)=16.431, pboot=0.004) and midbrain (χ2 (3)=11.058, pboot=0.011) (see 

Supplementary Table S3 for main effects). In the sgACC, this interaction was driven by an 

inverted-U-like dose-response like pattern, where the low dose increased the BOLD signal 

representations of PEs in the prosocial condition, but the high dose decreased the BOLD signal 

representations, as compared to placebo (Figure 3; please see Supplementary Table S4 for post 

hoc tests). For the midbrain, we noted the same inverted-U-like dose-response pattern we 

describe for PEs in the prosocial condition in the sgACC (Figure 3; see Supplementary Table S4 

for post hoc tests). None of the three doses of intranasal oxytocin affected the BOLD signal 

representation of PEs in the sgACC and midbrain during the self-oriented condition (Figure 3). 
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For the nucleus accumbens, only the main effect of learning condition was significant (χ2 (1) = 

18.803, pboot < 0.001): the BOLD signal representations of PEs in this region were stronger in the 

self-oriented than the prosocial conditions across treatment levels (Figure 3; Supplementary 

Table S3). 

Since we did not define any strong a priori hypothesis about specific brain regions 

encoding the expected value of the chosen action (at the cue phase), we conducted exploratory 

whole-brain analyses. We found that the expected value of both self-oriented and prosocial 

chosen actions was tracked positively by the BOLD signal in a network of areas encompassing 

the basal ganglia, frontal and occipital cortices and the cerebellum (Supplementary Figure S13). 

Direct comparisons between the self-oriented and prosocial conditions did not yield significant 

differences (no cluster survived correction). Intranasal oxytocin did not impact on the BOLD 

representations of expected values of the chosen actions neither during self-oriented or prosocial 

learning (no cluster depicting treatment or learning condition x treatment effects survived 

correction). 

 

Intranasal oxytocin modulates the encoding of prediction errors in the functional coupling 

between the midbrain and sgACC during prosocial learning in a dose-dependent manner 

 

Prediction errors are typically encoded in dopaminergic midbrain neurons6. The sgACC also 

receives dense dopaminergic innervation from the midbrain22,23. Hence, it is plausible that the 

strength of the functional coupling between the midbrain and sgACC might track PEs in the 

prosocial condition. To test this hypothesis, we used our placebo data to conduct 

psychophysiological interaction (PPI) analyses with the midbrain as the seed region. We found 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.26.445739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445739


 13

that the BOLD signal tracking PEs in the midbrain was positively coupled with the BOLD signal 

in the sgACC in the prosocial learning, but not the self-oriented learning conditions (self-oriented 

learning: 0.069 CI95% [-0.053, 0.191]; prosocial learning: 0.501 CI95% [0.369, 0.633]; self-

oriented versus prosocial learning comparison: (χ2 (1) = 27.132, pboot < 0.001); Supplementary 

Figure S14). The magnitude of the coupling between the BOLD signal tracking PEs in the 

midbrain and the sgACC was positively correlated with inter-individual differences in learning 

rates in the prosocial condition (r(22) = 0.859, pboot < 0.001), but not in the self-oriented 

condition (r(22) = 0.308, pboot < 0.153; self-oriented versus prosocial learning comparison: 

Z=3.071, p=0.001; Supplementary Figure S15). We also found that the BOLD signal tracking 

PEs in the midbrain was coupled with the BOLD signal tracking PEs in the nucleus accumbens 

during both self-oriented and prosocial learning (self-oriented learning: 0.534 CI95% [0.474, 

0.594]; prosocial learning: 0.304 CI95% [0.218, 0.390]). However, in this encoding was stronger 

for self-oriented as compared prosocial learning (χ2 (1) = 16.955, pboot < 0.001). The strength to 

which PEs during self-oriented and prosocial learning were encoded in the functional coupling 

between these two regions correlated positively with learning rates in both the self-oriented (r(22) 

= 0.721, pboot < 0.0001) and the prosocial learning conditions (r(22) = 0.682, pboot < 0.001) 

(Supplementary Figure S15).  

 We then tested whether these effects were influenced by oxytocin administration 

(Supplementary Table S5). In the prosocial learning condition, a low dose compared to placebo 

strengthened the PE-tracking functional coupling between the midbrain and sgACC while the 

high dose had the opposite effect, weakening the PE-tracking functional coupling between these 

two regions (in the same way that was observed when analysing each region separately). In 

contrast, intranasal oxytocin did not impact on the PE-tracking functional coupling between the 
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midbrain and sgACC in the self-oriented learning condition (learning condition x treatment 

interaction χ2(3)=15.727, pboot < 0.001, Figure 4; please see Supplementary Table S6 for post hoc 

tests.  

For the functional coupling between the midbrain and the nucleus accumbens, only the 

main effect of learning condition was significant (χ2(1)=109.904, pboot<0.001). This main effect 

reflected that the encoding of PEs in the functional coupling between the midbrain and the 

nucleus accumbens was stronger during self-oriented as compared to prosocial learning 

(T(22)=12.555, p < 0.001). 

 

Intranasal oxytocin affects the encoding of PEs in the midbrain-sgACC pathway during 

prosocial learning by modulating excitatory midbrain-to-sgACC forward transmission and 

midbrain self-regulation in a dose-dependent manner  

 

Our PPI analyses suggested that intranasal oxytocin modulates the encoding of PE in the 

midbrain-sgACC pathway during prosocial learning by impacting on the functional coupling 

strength between these two regions. However, PPI does not provide any information about the 

direction of this effect24. Therefore we conducted dynamic causal modelling (DCM)25 to address 

two questions. First, does intranasal oxytocin modulate the transmission of PE information from 

the midbrain to the sgACC, vice-versa, or both? Second, does the high dose of intranasal 

oxytocin decrease the functional coupling between the midbrain and the sgACC by impacting on 

the intrinsic activity of the midbrain or sgACC, as a result of auto-regulatory mechanisms?  For 

this analysis we used the BOLD signal time series from the midbrain and sgACC regions during 

the prosocial learning blocks.  
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 We started by defining a fully connected one-state DCM. This full model included 

forward and backward connections between the midbrain and the sgACC, as well as intrinsic 

auto-regulatory connections in each node. We used our parametric prosocial PE regressor as 

input to both nodes. At the first level, we inverted this model for all participants in the four 

treatment conditions. Commonalities and treatment effects at the group-level were examined 

within the Parametrical Empirical Bayes (PEB) framework26, exploring across all possible 

reduced PEB models where each parameter or combinations of parameters were switched off one 

at a time using Bayesian model reduction. To summarize the parameters across all models, we 

computed the Bayesian model average, which corresponds to the average of the parameters from 

the top 256 different models, weighted by the model’s posterior probability.  

 Across all participants and treatment levels, all of our four connections had strong 

evidence in favour of being different from 0 (posterior probability (Pp) > 0.95). Our winning 

second-level model included effects for both the high and low, but not medium dose (Pp = 0.89) 

(Figure 5). We found strong evidence for decreased intrinsic connectivity in the midbrain after 

the high dose, as compared to placebo (expected value -0.034, Pp = 0.901). Furthermore, we also 

found strong evidence for increased excitatory transmission from the midbrain to the sgACC after 

the low dose, as compared to placebo (expected value 0.152, Pp = 0.932). Our findings suggest 

that intranasal oxytocin targets mainly the excitatory connection from the midbrain to the sgACC, 

whose strength increased after the low dose, compared to placebo, and the intrinsic connectivity 

of the midbrain, where the high dose produced decreases, as compared to placebo. 

Finally, we investigated whether the strength of the DCM model connections that were 

modulated by intranasal oxytocin were predictive of inter-individual differences in prosocial 

learning. We hypothesised that the excitatory forward connection from the midbrain to the 

sgACC, where we found dose-dependent modulation by intranasal oxytocin, might be 
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particularly important in explaining inter-individual differences in prosocial learning. We tested 

this hypothesis by using the PEB modelling procedure described above, but this time testing for 

correlations between each of our connectivity parameters and learning rates in the self-oriented 

and prosocial conditions, using the data from the placebo session. We found strong evidence of a 

positive correlation between the strength of the excitatory forward midbrain-sgACC connection 

and learning rates in the prosocial condition, but not in the self-oriented condition (expected 

value 0.120, Pp = 0.995; Supplementary Figure S16). We did not find evidence for positive or 

negative correlations between the strength of any of the other three connections in our model and 

learning rates, either in the prosocial or the self-oriented learning conditions. 

 

Discussion 

We reveal a new role for oxytocin in prosocial learning and its neural mechanisms. First, we 

demonstrate that a low dose, but not medium or high doses, compared to placebo, can reverse a 

decrease in performance over time that is specifically observed during prosocial learning 

(compared to self-oriented learning) during placebo. Second, we demonstrate a dose-dependent 

modulation in the encoding of PEs in the sgACC, the midbrain, and in the functional coupling 

between these two regions during prosocial learning, where a low dose strengthens the encoding 

but a high dose weakens it, compared to placebo. Finally, we demonstrate that the effects of 

intranasal oxytocin on the encoding of PEs during prosocial learning are likely to emerge from 

the dose-dependent modulation of both the direct excitatory connections from the midbrain to the 

sgACC and intrinsic connectivity in the midbrain.  

Intranasal oxytocin modulated both performance during learning to benefit others and the 

neural mechanisms that support prosocial learning but produced no effects on self-oriented 

learning. Only the low dose of intranasal oxytocin prevented a decrease in learning performance 
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over time that was exhibited in the prosocial (but not the self-oriented) learning conditions under 

placebo and the two other higher doses. While the exact cognitive mechanisms driving this effect 

remain elusive, ultimately this effect could result from an amplification of the salience of other-

targeted versus self-oriented benefit in response to the administration of a low dose of intranasal 

oxytocin. This interpretation is supported by previous evidence suggesting that: i)  a single dose 

of intranasal oxytocin increased the willingness to exert effort to get rewards for others in 

individuals with social anxiety disorder27; ii) the effects of intranasal oxytocin on behaviour are 

likely driven by facilitatory effects on salience processing of social cues28.  

The lack of an effect on intranasal oxytocin on performance in the self-oriented learning 

condition contrasts with the findings of a recent behavioural study reporting an overall decrease 

in self-oriented learning after a single dose of 24 IU of intranasal oxytocin administered with a 

nasal spray in male and female Chinese students29. However, despite the similarity in task design, 

our studies differ in important methodological aspects, which makes any direct comparison of 

findings challenging. In addition to differences in the method used for oxytocin administration, 

there were also marked differences between participant characteristics in the two studies in terms 

of gender composition and cultural background (our study used only male participants of 

predominantly white Caucasian ethnicity). Previous evidence has demonstrated that the effects of 

intranasal oxytocin differ between genders30 and cultural backgrounds31. To better understand the 

role that method of administration and participants characteristics may play on the effect of 

intranasal oxytocin on self-oriented learning behaviour, it is important that future studies 

systematically investigate these factors. 

In addition to uncovering a novel and selective role of oxytocin in prosocial learning, our 

study provides new insights into differences between learning to benefit the self and learning to 

benefit others. We showed that performance declined over time in the prosocial learning 
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condition, compared to the self-oriented learning condition. Additionally, we corroborated 

previous evidence that the same reinforcement learning algorithms provide a foundation both for 

how humans learn to benefit the self and others3. Critically, our findings confirmed that the extent 

to which these learning mechanisms are invoked is different in self-oriented and prosocial 

learning, with participants having a higher learning rate for self-oriented reward outcomes 

compared to reward outcomes benefitting other people3.  

 

We provide a detailed map of the brain mechanisms through which intranasal oxytocin 

modulates prosocial learning by identifying a new and selective role of intranasal oxytocin in the 

modulation of the encoding of PEs during prosocial learning. Intranasal oxytocin exerted a dose-

dependent modulation of the encoding of PEs in the sgACC, the midbrain, and in the functional 

coupling between these two regions. The selectivity of the effects of intranasal oxytocin in the 

prosocial condition is congruent with some theories advocating that oxytocin might 

predominantly affect brain processes related to social functions28 (though this idea has been 

challenged by evidence that intranasal oxytocin also modulates brain functioning during non-

social processes32,33). In the context of our task, the selectivity of the effects of intranasal 

oxytocin in the prosocial condition is intriguing given that both self-oriented and prosocial 

learning share algorithmic features (both comply with the basic principles of reinforcement 

learning algorithms and rely on PEs)5. Our findings dovetail with a previous study3 

demonstrating that the way the brain implements reinforcement learning is associated with 

considerable differences between conditions. For instance, while PEs represent differences 

between expected and actual outcomes in both self-oriented and prosocial learning, the encoding 

of PEs during prosocial learning specifically engages the sgACC. Hence, it is plausible that 

oxytocin might selectively modulate the machinery responsible for the implementation of PE 
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computations during prosocial learning, even if PEs represent the same statistical quantity in both 

conditions. This idea is further supported by a previous study in rodents showing that the release 

of oxytocin in the ventral tegmental area increases the excitability of a small subpopulation of 

neurons engaged during social preference, but not preference for non-social novel objects13.  

 Of particular note is that oxytocin exerted effects on prosocial learning in a manner that 

was dose-dependent34. We found divergent effects for the low and high doses, where a low dose 

strengthened the encoding of PE (compared to placebo), while a high dose decreased the 

encoding of PE (compared to placebo). These dose dependent effects of oxytocin are consistent 

with the effects of intranasal oxytocin on resting regional perfusion in the amygdala in the same 

cohort of participants35. How could different doses of intranasal oxytocin exert opposing effects 

on the encoding of PEs during prosocial learning in the brain? Oxytocinergic neurons in the 

hypothalamus project to the midbrain36,37 and facilitate the release of dopamine in the basal 

ganglia during the encoding of social reward (interacting with a conspecific vs a toy)13. Hence, 

the increase in encoding of PEs during prosocial learning both in the midbrain and sgACC we 

observed after the low dose could reflect the fact that oxytocin hijacks a population of 

dopaminergic neurons in the midbrain that project to the sgACC, enhancing the phasic release of 

dopamine to facilitate the encoding of PEs during prosocial learning37. This hypothesis was 

supported by our DCM analysis, where we found that a low dose of intranasal oxytocin increased 

the excitatory forward connection from the midbrain to the sgACC - the only connection of our 

DCM model which explained inter-individual differences in prosocial learning under placebo. At 

the same time, a high dose of oxytocin might enhance dopamine release to an extent that could 

result in sustained increases in synaptic dopamine, which in turn might inhibit the release of 

phasic dopamine through auto-regulatory feedback mechanisms38. By inhibiting the release of 

phasic dopamine, then a high dose of intranasal oxytocin would weaken the encoding of PEs in 
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the prosocial learning condition. In line with this hypothesis our DCM analysis showed reduced 

intrinsic connectivity in the midbrain after the high dose, as compared to placebo. We note that a 

similar dose-response model on phasic dopamine release and PE encoding has been shown for 

amphetamine during self-oriented learning; amphetamine, like oxytocin, also enhances synaptic 

dopamine39.   

Our findings also expand our understanding of the neuroanatomical pathways underlying 

the encoding of PEs during self-oriented and prosocial learning in important ways. First, our 

results confirm previous evidence suggesting that the sgACC specifically encodes PEs during 

prosocial learning, while PEs during both self-oriented and prosocial learning are encoded in the 

nucleus accumbens3. However, we expand these findings in two specific ways. We show that PEs 

during both self-oriented and prosocial learning are similarly encoded in the midbrain. 

Furthermore, we show that PEs are also encoded in the functional coupling between the midbrain 

and the sgACC and the nucleus accumbens, in a manner that depends on the recipient of the 

reward. Prediction errors during prosocial (but not self-oriented) learning are encoded 

specifically in the functional coupling between the midbrain and sgACC, while PEs during both 

self-oriented and prosocial learning are encoded in the functional coupling between the midbrain 

and the nucleus accumbens. Interestingly, we found that the functional coupling between the 

midbrain and the nucleus accumbens during self-oriented learning is stronger compared to the 

encoding of PEs during prosocial learning. Hence, the encoding of PEs in the nucleus accumbens 

exhibited the same self-bias that we observed when we examined performance based on 

behavioural data and might provide a parsimonious mechanism through which this self-bias 

emerges.  

Even though the BOLD signal is not sensitive to a specific neurotransmitter system, these 

new findings are consistent with the idea that PEs are encoded in phasic patterns of activity in the 
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dopaminergic neurons of the midbrain, which in turn lead to transient increases in dopamine 

release in the forebrain, driving synaptic plasticity during learning. The encoding of PEs through 

phasic dopaminergic activity in the midbrain has mostly been described during self-oriented 

learning6. However, a recent study in rodents showed that dopaminergic neurons in the ventral 

tegmental area also signal social PEs and drive social reinforcement learning using a similar 

mechanism40. We note that the sgACC also receives dense dopaminergic innervation and 

expresses receptors for dopamine23. Therefore, it plausible that the encoding of prosocial PEs in 

the midbrain-sgACC pathway might reflect transient patterns of phasic dopamine release from 

the midbrain into the sgACC and nucleus accumbens, and modulating synaptic plasticity in these 

regions might produce changes in the BOLD signal. Further studies could test this hypothesis by 

directly probing phasic dopamine release. 

Our study has some limitations that should be acknowledged. First, given the known 

sexual dimorphism in the oxytocin system, our findings should not be readily extrapolated to 

women41-43. Second, while our findings suggest that oxytocin might interact with the dopamine 

system to modulate the encoding of PEs, we did not pharmacologically manipulate the dopamine 

system in this study. This hypothesis is well informed by the known involvement of the midbrain 

dopaminergic neurons in encoding social PEs40 and the engagement of midbrain dopaminergic 

neurons by oxytocin to encode social reward13, but will require further validation in human 

studies manipulating both systems at the same time. Third, while our dose-response model of the 

effects of intranasal oxytocin on the encoding of PEs in the prosocial condition suggests that the 

effects of intranasal oxytocin on the phasic and tonic dopamine release from midbrain neurons to 

the sgACC may vary by dose, BOLD fMRI does not allow to test this hypothesis directly. This 

hypothesis could be examined in studies measuring how different doses of oxytocin affect the 
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phasic and tonic dopamine release in the brain during social instrumental learning using 

voltammetry44. 

In summary, we demonstrate a new and selective role of intranasal oxytocin in prosocial 

learning through the modulation of the encoding of PEs in the midbrain-sgACC pathway. Our 

findings expand our understanding of the neurobiological mechanisms underlying prosocial 

learning and suggest that dysfunctions in the oxytocin system might play a key role in 

pathological social behaviour, such as antisocial behaviour, by impeding associative learning of 

prosocial actions that benefit other people. If that is the case, then oxytocin augmentation might 

provide an innovative treatment for antisocial behaviour, where we currently lack viable 

therapeutic options. 

 

Methods 

Participants 

We recruited 24 healthy male adult volunteers (mean age 23.8 years, SD = 3.94, range 20-34 

years). We screened participants for psychiatric conditions using the MINI International 

Neuropsychiatric interview45. Participants were not taking any prescribed drugs, did not have a 

history of drug abuse and tested negative on a urine panel screening test for a range of drugs, 

consumed <28 units of alcohol per week, and smoked <5 cigarettes per day. We instructed 

participants to abstain from alcohol and heavy exercise for 24 hours and from food or any 

beverage other than water for at least 2 hours before scanning. Participants gave written informed 

consent. King’s College London Research Ethics Committee (HR-17/18-6908) approved the 

study. We determined sample size based on a priori statistical power calculations performed 

using G*Power (version 3.1). We estimated 24 participants to be the minimally required sample 
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size to detect a within-factor medium effect size of f=0.25 with 80% statistical power (α=0.05) in 

a repeated measures analysis of variance, assuming a correlation between repeated measures of 

0.5. 

Study design 

We employed a double-blind, placebo-controlled, crossover design. Participants visited our 

centre for one screening session and four experimental sessions spaced 4.3 days apart on average 

(SD = 5.5, range: 2-16 days). During the screening visit, we confirmed participants’ eligibility, 

obtained informed consent, collected sociodemographic data, and measured weight and height. 

Participants also completed a short battery of self-report questionnaires (which were collected in 

relation to other tasks and are not reported here). Participants were trained in a mock-scanner 

during the screening visit to habituate to the scanner environment and minimize its potential 

distressing impact. Participants were also trained on the correct usage of the PARI SINUS 

nebulizer, the device that they would use to self-administer oxytocin or placebo in the 

experimental visits. Participants were randomly allocated to a treatment order using a Latin 

square design.  

 

Intranasal oxytocin administration 

Participants self-administered one of three nominal doses of oxytocin (Syntocinon; 40IU/ml; 

Novartis, Basel, Switzerland). We have previously shown that 40IU delivered with the PARI 

SINUS nebulizer induce robust regional cerebral blood flow (rCBF) changes in the human brain 

as early as 15-32 mins post-dosing using a within-subject design46. In this study, we decided to 

investigate dose-response using a range of doses smaller than the 40IU we have previously 

studied, including a low dose (9IU), a medium dose (18IU) and a high dose (36 IU). Placebo 
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contained the same excipients as Syntocinon, except for oxytocin. Immediately before each 

experimental session started, a researcher not involved in data collection loaded the SINUS 

nebulizer with 2 ml of a solution (1 ml of which was self-administered) containing oxytocin in 

the following concentrations 40 IU/ml, 20 IU/ml and 10 IU/ml or placebo (achieved by a simple 

2x or 4x dilution with placebo).  

Participants self-administered each dose of intranasal oxytocin or placebo, by operating 

the SINUS nebulizer for three minutes in each nostril (6 min in total), based on a rate of 

administration of 0.15-0.17 ml per minute. In pilot work using nebulization on a filter, we 

estimated the actual nominally delivered dose for our protocol to be 9.0IU (CI 95% 8.67 – 9.40) 

for the low dose, 18.1IU (CI 95% 17.34 – 18.79) for the medium dose and 36.1IU (CI 95% 34.69 

– 37.58) for the high dose. The correct application of the device was validated by confirming 

gravimetrically the administered volume. Participants were instructed to breathe using only their 

mouth and to keep a constant breathing rate with their soft palate closed, to minimize delivery to 

the lungs. The PARI SINUS nebuliser (PARI GmbH, Starnberg, Germany) is designed to deliver 

aerosolised drugs to the sinus cavities by ventilating the sinuses via pressure fluctuations. The 

SINUS nebuliser produces an aerosol with 3 µm mass median diameter which is superimposed 

with a 44 Hz pulsation frequency. Hence, droplet diameter is roughly one tenth of a nasal spray 

and its mass is only a thousandth. The efficacy of this system was first shown in a scintigraphy 

study47. Since the entrance of the sinuses is located near the olfactory region, improved delivery 

to the olfactory region is expected compared to nasal sprays. One study has shown up to 9.0% 

(±1.9%) of the total administered dose with the SINUS nebuliser to be delivered to the olfactory 

region, 15.7% (±2.4%) to the upper nose; for standard nasal sprays, less than 4.6% reached the 

olfactory region48. Participants could not guess treatment allocation above chance (reported in our 
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previous manuscript35) 

Procedure 

All participants were tested at approximately the same time in the afternoon (3-5 pm) for all 

oxytocin and placebo treatments, to minimise potential circadian variability in resting brain 

activity49 or oxytocin levels50. Each experimental session began with an assessment of vitals 

(blood pressure and heart rate) and the collection of two 4 ml blood samples for plasma isolation 

(data not reported here). In the first experimental session, participants were also introduced to a 

confederate as part of the setup of the prosocial learning task (see below for more details).  Then 

we proceeded with the treatment administration protocol that lasted about 6 minutes in total (Fig. 

1). Immediately before and after treatment administration, participants completed a set of visual 

analog scales (VAS) to assess subjective drug effects (alertness, mood and anxiety) (these data 

have been reported elsewhere35). After drug administration, participants were guided to an MRI 

scanner, where we acquired a BOLD-fMRI scan during a breath-hold task (lasting 5 minutes 16 

seconds), followed by 3 pulsed continuous arterial spin labelling (ASL) scans (each lasting 5 

minutes and 22 seconds) (data reported elsewhere35), the BOLD-fMRI scan during a prosocial 

reinforcement learning task (21 minutes) reported here, and a resting-state BOLD-fMRI scan 

(data not reported yet). We decided to collect the data from the prosocial reinforcement learning 

task at about 34 – 55 mins post-dosing because we have previously demonstrated robust 

modulation of rCBF in the basal ganglia (a set of regions engaged during reinforcement 

learning9) after a single dose of 40 IU of intranasal oxytocin administered with the PARI SINUS 

nebuliser during the same time-interval46. When the participants left the MRI scanner, we 

assessed subjective drug effects using the same set of VAS. 

Prosocial reinforcement learning task 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.26.445739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445739


 26

The prosocial learning task is a probabilistic reinforcement learning task designed to separately 

assess self-oriented (rewards for self) and prosocial learning (rewards for another person) 3,20. On 

each trial participants had to choose between one of two abstract symbols. One symbol was 

associated with a high probability (75%) and one was associated with a low probability (25%) of 

a reward. These contingencies were not instructed so had to be learned through trial and error. 

The two symbols were randomly assigned to the left or right side of the screen and choices were 

implemented by pressing one of two buttons that corresponded to the selected symbol. 

Participants selected a symbol and then received feedback on whether the response was correct, 

so they learned over time which symbol maximised rewards. Trials were presented in blocks, and 

each block belonged to one of two conditions. In the self-oriented learning condition, earned 

points translated into increased payment for the participants themselves. These blocks started 

with “play for you” displayed and had the word “you” at the top of each screen. In the prosocial 

learning condition, points translated into increased payment for a second participant, who was a 

confederate that participants met at the start of the first session (see below). Participants were told 

that they would never meet the other person again, and that the person was not even aware that an 

additional financial compensation could arise from participants’ performance. The name of the 

confederate, gender-matched to the participant, was displayed on these blocks at the start and on 

each screen (Figure 1). Thus, participants were explicitly aware in each trial who their decisions 

affected. Stimuli were presented using Presentation (Neurobehavioral Systems – 

https://www.neurobs.com/). 

The experiment was subdivided into eight blocks of 16 trials (4 blocks in each condition). 

Within each block, participants were presented with 16 pairings of the same two symbols. 

Symbols were not repeated between blocks or sessions. The 4 blocks in each condition were 
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pseudo-randomly ordered in two playlists, which were randomly allocated to participants in equal 

proportion. In one of the playlists, participants started by playing a self-oriented learning block, 

while in the other they started with a prosocial learning block. All participants played the same 

playlist of the task across the four treatment visits. 

Participants received instructions for the prosocial reinforcement learning task and how 

the points they earned would be converted into money for themselves and for the other 

participant during the screening session. Instructions included that the two symbols differed in 

their probability of earning points for participants, but that the side on which they appeared on the 

screen was irrelevant. Participants then completed one block of practice trials before the main 

task and were informed that outcomes during the practice block would not affect payment for 

anyone. We briefly repeated these instructions in the beginning of each experimental visit to 

confirm that participants still remembered the instructions of the task. 

The success of the prosocial reinforcement learning task depends on convincing 

participants that their performance during the prosocial learning blocks will financially benefit 

someone else. Therefore, our study included an element of deception, whereby we made 

participants believe that this other person was a real participant enrolled in a secondary arm of the 

main study. Unbeknown to the participants, this person was a confederate who did not take part 

in the study but was part of the research team. We allowed for a short period of interaction 

between participants and confederates right in the beginning of their first experimental visit to 

increase the plausibility of our deception. Participants only met the confederate once, in the first 

session. Interaction between participants and confederates was standardized to make sure all 

participants had similar experiences. Both participants and confederates were instructed they 

would be only allowed to greet each other and present their names.  
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After this short period of interaction, the confederate was guided outside of the room. We 

then asked participants to fill in an impression scale19. This scale measured participants’ 

perception of the confederate using eight questions assessing similarity, perceived group 

membership, likeability and attractiveness (see Hein et al.19 for further details). For each 

question, participants were asked to select on a 9-point Likert-scale the number that best 

represented their thoughts about the confederate (i.e. “How similar to you do you think this 

person is?”; anchors: 1 - “Extremely”; 9 - “Not at all”). Participants were informed that their 

responses in this scale would be kept anonymous and that the confederates would also fill the 

same scale to assess their own impression of the participant. 

 

Computational modelling 

We used a reinforcement learning algorithm to model learning in the task. The basis of the 

reinforcement learning algorithm is the expectation that each choice a on trial t is linked with an 

expected outcome. The value of the expected outcome on trial t+1, Qt+1(a) is quantified as a 

function of current expectations Qt(a) and the prediction error �t, which is scaled by the learning 

rate α: 
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Where �t, the prediction error, is the difference between the actual reward experienced on the 

current trial rt (1 for reward and 0 for no reward) minus the expected reward on the current trial 

Qt(a). 
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The learning rate α therefore determines the influence of the prediction error. A low 

learning rate means that new information affects expected value to a lesser extent. The softmax 

link function quantifies the relationship between the expected value of the action Qt(a) and the 

probability of choosing that action on trial t: 
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The temperature parameter β represents the noisiness of decisions – whether the participant 

explores available options or always chooses the option with the highest expected value. A high 

value for β means that available options are randomly explored as they are equally likely 

irrespective of their expected value. A low β means that the participant chooses the option with 

the greatest expected value on all trials. We generated multiple learning models that differed in 

whether there were separate learning rate and temperature parameters for each learning condition.  

 

Model fitting 

We used MATLAB 2019b (The MathWorks Inc) for all model fitting and comparison. To fit the 

variations of the learning model (see below) to (real and simulated) participant data we used an 

iterative maximum a posteriori (MAP) approach as previously described51,52. This method 

provides a better estimation than a single-step maximum likelihood estimation (MLE) alone by 

being less susceptible to the influence of outliers. It does this via implementing two levels: the 

lower level of the individual participants and the higher-level reflecting the full sample. For the 

real participant data, we fit the model across treatment levels to provide the most conservative 

comparison, so this full sample combined our four treatment conditions. 

For the MAP procedure, we initialized group-level Gaussians as uninformative priors 

with means of 0.1 (plus some added noise) and variance of 100. During the expectation, we 
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estimated the model parameters (α and β) for each participant using an MLE approach calculating 

the log-likelihood of the subject’s series of choices given the model. We then computed the 

maximum posterior probability estimate, given the observed choices and given the priors 

computed from the group-level Gaussian, and recomputed the Gaussian distribution over 

parameters during the maximisation step. We repeated expectation and maximization steps 

iteratively until convergence of the posterior likelihood summed over the group, or a maximum 

of 800 steps. Convergence was defined as a change in posterior likelihood <0.001 from one 

iteration to the next. Bounded free parameters were transformed from the Gaussian space into the 

native model space via appropriate link functions (e.g. a sigmoid function in the case of the 

learning rates) to ensure accurate parameter estimation near the bounds.  

 

Model comparison 

We compared five models, which differed in whether the model parameters (α and β) for each 

participant had one value across conditions or varied by the learning condition (self-oriented, 

prosocial; Table 2). An additional, null model had a learning rate of 0 across both conditions. For 

model comparison, we calculated the Laplace approximation of the log model evidence (more 

positive values indicating better model fit) and submitted these to a random-effects analysis using 

the spm_BMS routine68 from SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). This 

generates the exceedance probability: the posterior probability that each model is the most likely 

of the model set in the population (higher is better, over 0.95 indicates strong evidence in favour 

of a model). For the models of real participant data, we also calculated the integrated BIC51,52 

(lower is better) and R2 as additional measures of model fit. To calculate the model R2, we 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.26.445739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445739


 31

extracted the choice probabilities generated for each participant on each trial from the winning 

model. We then took the squared median choice probability across participants.  

 

Simulation experiments 

We simulated data from all five models to establish that our model comparison procedure (see 

above) could accurately identify the best model among the five competing models we included in 

our model space20. For this model identifiability analysis, we simulated 10 datasets including 100 

participants, drawing parameters from distributions commonly used in the reinforcement learning 

literature53,54. Learning rates (α) were drawn from a beta distribution (betapdf(parameter,1.1,1.1)) 

and softmax temperature parameters (β) from a gamma distribution (gampdf(parameter,1.2,5)). 

We fitted the models to this simulated dataset using the same MAP process as applied to the 

experimental data from our participants. We then calculated confusion matrices of average 

exceedance probability (across the 10 runs) and counted how many times each model won. 

Our winning model M3 contained three free parameters (αself, αprosocial, β). To assess the 

reliability of our parameter estimation, we also performed parameter recovery on simulated data 

as recommended for modelling analyses that use a ‘data first’ approach55. We simulated choices 

100 times using our experimental schedule and fitted them using the same MAP we described 

above. We then calculated Pearson’s correlations between the true simulated and fitted parameter 

values, using bootstrap (1000 samples). 

 

Statistical analyses of behavioural data 

We used one-sample t-tests to investigate: i) whether the mean of the total scores of the 

impression scale we used to evaluate the perception of the confederates was significantly 
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different from the mid-point of the total score (42); ii) whether participants selected the option 

with higher probability of being rewarded above chance (0.50) in each condition and treatment 

level separately. We used a linear mixed-effects model (LMM) to investigate the effect of 

condition on the probability of selecting the option with higher probability of being rewarded 

(collapsing across blocks and treatment levels). In this model, we specified condition as a fixed 

effect and random intercepts for participants. For the trial-by-trial analysis, we used a generalised 

logistic mixed-effects model to predict binary outcome of choosing the option with the high vs. 

low probability of being rewarded. The final model did not include any interactions between trial 

and the remaining factors to obtain a more parsimonious model. For the analysis on learning 

rates, we used a LMM, where we specified condition, treatment and the interaction between these 

two factors as fixed effects and random intercepts for participants. For the analysis on the beta 

parameter, we used a similar LMM, but this time we only specified treatment as a fixed effect. 

Treatment level was always modelled as a categorical predictor with four levels: placebo, low, 

medium and high dose. In all models, standard errors and statistical significance were assessed 

using bootstrapping (1000 samples), as implemented in JASP (version 0.13.1). Significant 

interactions were followed-up with post-hoc tests, correcting for multiple comparisons with the 

Holm-Bonferroni procedure.   

MRI data acquisition  

We acquired the MRI data in a MR750 3 Tesla GE Discovery Scanner (General Electric, 

Waukesha, WI, USA) using a 32-channel receive only head coil. We acquired a 3D high-spatial-

resolution, Magnetisation Prepared Rapid Acquisition (3D MPRAGE) T1-weighted scan using 

the following parameters: field of view 270 x 270 mm, matrix = 256 x 256, 1.2 mm thick slices 

with a slice gap of 1.2 mm, TR/TE/IT = 7312/3016/400 ms, flip angle 11°. The final resolution of 
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the T1-weighted image was 1.1 x 1.1 x 1.2 mm. While participants were performing the prosocial 

learning task, we acquired functional scans using T2*-sensitive gradient echo planar imaging 

optimised for parallel imaging, using the following parameters: field of view = 211 x 211 mm, 

matrix = 64 x 64, 3 mm thick slices with a 3.3 mm slice gap, 41 slices, TR/TE = 2000/30 ms, flip 

angle = 75°. The final resolution of the functional images was 3.3 x 3.3 x 3.3 mm. The functional 

imaging sequence was acquired in a descending manner, at an oblique angle (∼20°) to the AC–PC 

line to decrease the effect of susceptibility artifact in the orbitofrontal cortex and midbrain56. We 

also collected field maps (phase-difference B0 estimation; echo time 1 (TE1)�=�4.9�ms, echo 

time 2 (TE2)�=�7.3�ms) to control for spatial distortions, which are particularly problematic in 

midbrain fMRI57. 

 

MRI data preprocessing and first-level modelling 

Preprocessing: We carried out the preprocessing using FEAT, as part of the FMRIB Software 

Library (FSL) v6.0. Data preprocessing followed a standard pipeline, which included: i) standard 

head motion correction by volume-realignment to the middle volume using MCFLIRT; ii) 

distortion correction using phase-difference B0 estimation; iii) slice-time correction; iv) skull-

stripping of both functional and structural images using the Brain Extraction Tool (BET); v) 

high-pass filter (0.01 Hz); vi) registration and spatial normalization to the Montreal Neurological 

Institute (MNI) 152—T1 2-mm template. Individual's functional images were first registered to 

their high-resolution MPRAGE scans via a 6-parameter linear registration (FLIRT), and the 

MPRAGE images were in turn registered to the MNI template via a 12-parameter nonlinear 

registration (FNIRT). These registrations were combined to align the functional images to the 

template. Functional images were resampled into the standard space with 2-mm isotropic voxels 
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and were smoothed with a Gaussian kernel of 6-mm full-width at half-maximum. We excluded 

one participant because they moved excessively in two out of the four sessions (mean frame-wise 

displacement > 0.5 mm). 

 

First-level modelling: We used eight event types to construct regressors in which event 

timings were convolved with a canonical hemodynamic response function. The two learning 

conditions at the time of the cues and at the time of the outcome were modelled as separate 

regressors using stick functions. Each of these regressors was associated with a parametric 

modulator taken from our winning computational model (M3). At the time of the cue this was the 

value of the chosen action, and at the time of the outcome, the PE. The PEs and values of chosen 

actions were estimated using mean estimates for alpha and beta across all participants and 

treatment conditions, calculated for each learning condition separately, as per previous studies58-

60. This ensures more regularized predictions by minimizing the chance that some participants 

with smaller alphas will have parametric regressors with very low variance. For all analyses, we 

mean centred the parametric modulators beforehand and disabled the orthogonalization 

procedure. This means that all parametric modulators compete for variance, and we thus only 

report effects that are uniquely attributable to the given regressor. The instruction cue at the 

beginning of each block was also modelled in a single regressor as a stick function. In some 

participants, an eighth regressor modelled all missed trials, on which participants did not select 

one of the two symbols in the response window. We also included 24 head motion parameters (6 

head motion parameters, 6 head motion parameters one time point before, and the 12 

corresponding squared items) to model the residual effects of head motion as covariates of no 

interest – this approach has been shown to more efficiently remove head motion effects from 

BOLD-fMRI data 61,62. We applied pre-withening to remove residual temporal autocorrelation. 
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Subject-level contrast maps were generated using FSL’s FLAME in mixed-effects mode and then 

used for further second-level analyses, as described below. 

 

Statistical analyses of fMRI data (second-level) 

Regions-of-interest analyses: Our ROI analyses were focused on three regions: the 

sgACC, the nucleus accumbens and the midbrain. In all three regions, we used anatomically 

defined masks to extract the median parameter estimate of all voxels within each ROI. The 

sgACC mask included the regions s24 and s25 from the SPM Anatomy toolbox 63; the nucleus 

accumbens and midbrain anatomical masks were derived from a high-resolution atlas of 

subcortical structures64. The midbrain mask included both VTA and SN. These masks were 

derived from probabilistic anatomical maps by thresholding each map to include voxels with 50% 

probability or higher of belonging to a certain ROI and then binarizing the thresholded maps. 

Since the sgACC and nucleus accumbens susceptible to drop out of the BOLD signal65, we only 

extracted data from the voxels of these ROIs that had less than 10% of BOLD signal loss in all 

participants and treatment conditions. This allowed us to sample within each ROI the same 

number of voxels in each participants/condition while discarding voxels where the BOLD signal 

could not be measured reliably. Hence, the final number of voxels in each ROI was: midbrain, 

161 voxels; nucleus accumbens = 300 voxels; sgACC = 977 voxels.  

We investigated either the effect of learning condition or the effects of learning condition, 

treatment and learning condition x treatment, as applicable, using LMMs. In all models, we 

included random intercepts for participants. Significant interactions were followed-up with post-

hoc tests, correcting for multiple testing with the Holm-Bonferroni procedure. The correlations 

between PE parameter estimates in each ROI and learning rates were calculated using Pearson 
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correlation with bootstrapping (1000 samples). Direct comparisons between correlations were 

performed using the Fisher r-to-Z transform. 

Whole-brain analyses: We also conducted exploratory analyses at the whole-brain level. 

For the placebo session where we investigated the effect of learning condition, we performed 

paired t-tests. For the effects of learning condition, treatment and learning condition x treatment 

using data from all sessions, we took a partitioned errors approach to account for the likely 

violation of sphericity present in data from full within-subjects designs66. Briefly, to calculate the 

main effect of learning condition, we averaged the first-level maps across treatment levels for 

each learning condition and participant and then entered these averaged maps into a paired t-test. 

To calculate the main effect of treatment, we averaged the first level maps across learning 

conditions for each treatment level and subject and then entered these averaged maps into a 

repeated-measures one-way ANOVA. To calculate the learning condition x treatment interaction, 

we subtracted the first-level maps from learning condition levels and then entered this difference 

map into a repeated-measures one-way ANOVA. For all whole-brain analyses, we used cluster-

level inference at α = 0.05 using family-wise error (FWE) correction for multiple comparisons 

and a cluster-forming threshold of p=0.001 (uncorrected). 

All statistical analyses (behavioural and fMRI data) were conducted with the researcher 

unblinded regarding treatment condition. Since we used a priori and commonly accepted 

statistical thresholds and report all observed results at these thresholds, the risk of bias in our 

analyses is minimal, if not null. 

 

Psychophysiological interactions (PPI) 
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We performed psychophysiological interaction analysis24 with the midbrain as a seed region. 

Here, the entire time series over the experiment was extracted from each subject and treatment 

level from the midbrain anatomical ROI described above. To create the PPI regressors, we 

multiplied the midbrain time series by the PE parametric regressors. These PPI regressors were 

used as covariates in a separate PPI-GLM, which included all the regressors plus motion 

covariates described above for the main first-level GLM. The resulting parameter estimates of the 

two PPI regressors represent the extent to which activity in each voxel of the brain correlates with 

the activity in the midbrain that relates to the encoding of PEs during the self-oriented and 

prosocial learning conditions.  

From the individual PPI contrast maps, we extracted the median parameter estimates in all 

voxels of the sgACC and nucleus accumbens ROIs described above and used these for a number 

of analyses. First, using data from the placebo session, we tested the effect of learning condition 

on PE encoding in the functional coupling between the midbrain – sgACC and midbrain – 

nucleus accumbens. We used LMMs with learning condition as a fixed effect and participant-

level random intercepts. Second, we used Pearson correlations with bootstrapping (1000 samples) 

to investigate correlations between these estimates and the self-oriented and prosocial learning 

rates. Finally, we investigated learning condition, treatment and learning condition x treatment 

effects using LMMs, including random intercepts for participants. Significant interactions were 

followed-up with post-hoc tests, correcting for multiple testing with the Holm-Bonferroni 

procedure.   

 

Dynamic Causal Modelling (DCM) 

We used a one-state bidirectional DCM model for task fMRI25, as implemented in SPM12, to 

estimate the effective connectivity between the midbrain and sgACC and within each region 
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during the prosocial learning blocks. DCM for fMRI couples a bilinear model of neural dynamics 

with a biophysical model of hemodynamics to infer effective connectivity between cortical 

regions25. Details regarding this method can be found elsewhere25. We extracted the principal 

eigenvariate of the time-series of the BOLD signal during the prosocial blocks from all voxels in 

the sgACC and midbrain ROIs, adjusted for the F-contrast of the effects of interest. We defined a 

fully connected vanilla DCM model, which included both forward and backward connections 

between the midbrain and sgACC and intrinsic connections within each node. We set PEs as a 

driving input to both nodes. This full model was inverted for all participants and treatment levels. 

The participant-specific DCMs were taken to a second level analysis where we used the 

Parametrical Empirical Bayes (PEB) approach26 as implemented in SPM12 for group level 

inference; these routines assess how individual (within-subject) connections relate to group 

means, taking into account both the expected strength of each connection and the associated 

uncertainty. This means that participants with more uncertain parameter estimates are 

downweighted, while participants with more precise estimates have greater influence. The PEB 

approach involves (i) estimating group level parameters using a general linear model (GLM) that 

divides inter-subject variability into regressor effects and unexplained random effects, followed 

by (ii) comparison of different combinations of these parameters to identify those that best 

explain commonalities and differences in connectivity (Bayesian model comparison). Our second 

level PEB model included four regressors: i) commonalities; ii) effect of low dose (low dose 

versus placebo); iii) effect of medium dose (medium dose versus placebo); effect of high dose 

(high dose versus placebo). Each treatment effect regressor specified the placebo condition as -1 

and the treatment conditions as 1, so that all regressors were mean centred and the first 

commonalities regressor estimated the mean group effect. Next, we used Bayesian model 

reduction (BMR) to test all nested models within each full PEB model (assuming that a different 
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combination of connections could exist for each participant) and to “prune” connection 

parameters that did not contribute to the model evidence. The parameters of the best 256 pruned 

models were averaged and weighted by their evidence (Bayesian model averaging, BMA) to 

generate group estimates of connection parameters. Last, we compared models using free energy 

and calculated the posterior probability for each model as a softmax function of the log Bayes 

factor. We characterized the between-condition effects on each parameter by using the BMA 

expected values for the strength of each connection and their respective posterior probability (Pp) 

of being different from zero. The higher the Pp, the greater the confidence that a certain 

parameter is different from zero. Here, we interpreted Pp>0.90 as strong evidence and Pp>0.80 as 

moderate evidence in favour of a reliable difference from zero. 

In a secondary analysis, we used data from the placebo session only to investigate 

whether the strength of the connections in our DCM model could capture inter-individual 

differences in prosocial learning. We used the DCMs and PEB modelling procedure described 

above, but this time testing for correlations between each of our connectivity parameters and 

learning rates during self-oriented and prosocial learning. Hence, our second level PEB GLM 

model contained three regressors: i) commonalities; ii) mean centred regressor of the learning 

rates during self-oriented learning; iii) mean centred regressor of the learning rates during 

prosocial learning. 

 

Data availability: Data can be accessed from the corresponding author upon reasonable request. 

The code used for the computational modelling can be found in 

https://doi.org/10.17605/OSF.IO/XGW7H. A reporting summary for this article is available as a 

Supplementary Information file. 
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 Figures 
 
Figure 1. Protocol of the study (a) and prosocial reinforcement learning task (b). In panel 

(a), we provide an overview of the experimental procedures of our study. Pre-Scanning period: 

Each session started with a quick assessment of vitals (heart rate and blood pressure) and 

collection of two blood samples for plasma isolation. Then, participants self-administered one of 

three possible doses of intranasal oxytocin (~9, 18 or 36 IU) or placebo using the PARI SINUS 

nebulizer. The participants used the nebulizer for three mins in each nostril (total administration 6 

mins). Immediately before and after drug administration, participants filled a battery of visual 

analog scales (VAS) to assess subjective drug effects (alertness, mood and anxiety). Scanning 

Period: Participants were then guided to a magnetic resonance imaging scanner, where acquired 

BOLD-fMRI during a breath hold (BH) task, three consecutive arterial spin labelling (ASL) 

scans, the BOLD-fMRI prosocial learning task, followed by structural scans (T1 or T2 / FLAIR) 

and one resting-state fMRI (RS-fMRI) at the end. We present the time-interval post-dosing (mean 

time from drug administration offset) during which each scan took place. At the end of the 

scanning session, we repeated the same battery of VAS to subjective drug effects. In panel (b), 

we present an overview of the prosocial reinforcement learning task. Participants had to learn the 

probability that abstract symbols were rewarded to gain points over 16 trials in each block. At the 

beginning of each block, participants were told who they were playing for either themselves or 

for other participant (unbeknown to the participants, this other participant was a confederate). 

Points from the ‘self-oriented learning’ condition were converted into additional payment for the 

participant themselves, points from the ‘prosocial learning’ condition were converted into money 

for the other participant. Participants played four blocks in each condition.  
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Figure 2. Dose-response effects of intranasal oxytocin on the dynamics of self-oriented and

prosocial reinforcement learning over blocks. Evolution across blocks of the probabilities of

selecting the option with higher probability of being rewarded, for each treatment and learning

condition separately (probabilities were averaged across trials within the same block). Lines

result from locally weighted scatterplot smoothing and shades correspond to the respective 95%

confidence intervals. 
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Figure 3. Dose-response effects of intranasal oxytocin on encoding of prediction errors in

the subgenual anterior cingulate cortex, nucleus accumbens and midbrain. Learning

condition, treatment and learning condition x treatment effects on encoding of prediction errors in

the BOLD signal of the subgenual anterior cingulate (a), nucleus accumbens (b) and midbrain (c)

Significant interactions were followed up with post hoc tests, applying the Holm-Bonferroni

correction for multiple testing. * indicates padj<0.05; # indicates padj = 0.067 (trend-level). 
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Figure 4. Dose-response effects of intranasal oxytocin on the functional coupling between

the midbrain and subgenual anterior cingulate cortex related to prediction errors encoding

Learning condition, treatment and learning condition x treatment effects on psychophysiological

interaction parameter estimates reflecting the strength of functional coupling between the

subgenual anterior cingulate cortex (a) or the nucleus accumbens (b) and the midbrain associated

with encoding of prediction errors during self-oriented and prosocial learning. Significant

interactions were followed up with post hoc tests, applying the Holm-Bonferroni correction for

multiple testing. * indicates padj<0.05. 
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Figure 5. Dose-response effects of intranasal oxytocin on the excitatory midbrain-to-

subgenual anterior cingulate (sgACC) forward transmission and midbrain self-inhibition

We conducted dynamic causal modelling (DCM) on BOLD time series from the midbrain and

subgenual anterior cingulate cortex (sgACC) during the prosocial blocks to investigate how

different doses of intranasal oxytocin modulated effective connectivity between these two

regions. We fitted a fully connected one-state vanilla DCM model to all participants and

treatment levels at the first-level. We then used the estimates from this first-level models to

examine commonalities and treatment effects at the group-level within the Parametric Empirical

Bayes framework (second level analysis). Our design matrix for the second level analysis

included 4 regressors: i) mean; ii) effects of the low dose as compared to placebo (low vs

placebo); iii) medium vs placebo; iv) high vs placebo. Our second level PEB models (a – upper

panel) included eight competing models with all possible combinations of treatment effects. M3

was the winning model with the highest posterior probability and the lowest free energy (a –

lower panel). This model included effects only for the regressors “Low vs placebo” and “High vs

placebo”. We investigated these effects further by looking at the expected estimates and posterior

probabilities (Pp) of each parameter of the reduced PEB model. In panel B, we provide a
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schematic diagram of these effects. Grey/black lines present the mean expected estimates. In

green, we present the effects of the low dose; in red, we present the effects of the high dose. Bold

lines indicate strong evidence in favour of an expected estimate reliably different from 0

(Pp>0.90). The dashed line indicates that the evidence was only moderate (Pp > 0.80). OT –

oxytocin; sgACC – Subgenual anterior cingulate cortex; H – High dose; M – Medium dose; L –

Low dose; PL – Placebo; Pp – Posterior probability; 1 – Midbrain intrinsic connection; 2 –

sgACC – midbrain backwards connection; 3 – Midbrain – sgACC forward connection; 4 – sgAcc

intrinsic connection. 
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Tables 
 
Table 1. Dose-response effects of intranasal oxytocin on self-oriented and prosocial 

reinforcement learning (generalized logistic mixed model). To investigate dose-response 

effects of intranasal oxytocin on self-oriented and prosocial reinforcement learning, we used a 

generalized logistic mixed model where we tried to predict trial-by-trial choices (0 – lower 

chance of reward option; 1 – higher chance of reward option) using trial number, block, learning 

condition, treatment and all possible interactions as fixed predictors and participants as random 

effects. We present a summary of the type III likelihood ratio tests for fixed effects. Significance 

was assessed with bootstrapping (1000 samples). 

 

Type III fixed effects 

Effect df �
2 p (bootstrap) 

Trial 15 733.648 < 0.001 

Block 3 53.502 < 0.001 

Learning condition 1 138.240 < 0.001 

Treatment 3 6.331 0.097 
Block * Learning 

condition 
3 151.056 < 0.001 

Block * Treatment 9 21.695 0.010 
Learning condition* 

Treatment 
3 6.024 0.110 

Block * Learning 
condition* Treatment 

9 23.382 0.005 

 

 

Table 2. Computational modelling - Model space and selection: We used Rescorla-Wagner 

(RW) computational models of reinforcement learning to estimate learning rates (α) and 

temperature parameters (β). Our model space included five competing models. In each model, we 

created variations of the classical RW through the number of parameters used to explain the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.26.445739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445739


 55

learning rate and temperature parameters in the task (M1-M5). We fitted all models pooling data 

across treatment levels. Our model selection procedure was based on three criteria. First, we used 

the integrated Bayesian Information Criteria (iBIC) to perform fixed effects model selection 

(lower is better). Second, we examined the predictive capability of each model in predicting 

choice probability (higher is better) (R2). Third, we performed Bayesian model selection and 

calculated the exceedance probability of each model (higher is better). M3 was the winning model 

according to the three criteria. 

 

 Alpha (�) Beta (β) iBIC 
Choice 

probability (R2) 

Exceedance 

probability 

M1 0 β 16845.95 0.25 0.00 

M2 � β 11315.24 0.68 0.00 

M3 
�self-oriented, 

�prosocial 
β 11079.22 0.69 0.99 

M4 � 
βself-oriented, 

βprosocial 
11179.32 0.66 0.00 

M5 
�self-oriented, 

�prosocial 

βself-oriented, 

βprosocial 
11109.93 0.67 5.46 x10-4 
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