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Discovering the rules of synaptic plasticity is an important step for understanding brain learning. Existing plasticity models
are either 1) top-down and interpretable, but not flexible enough to account for experimental data, or 2) bottom-up and
biologically realistic, but too intricate to interpret and hard to fit to data. We fill the gap between these approaches by
uncovering a new plasticity rule based on a geometrical readout mechanism that flexibly maps synaptic enzyme dynamics
to plasticity outcomes. We apply this readout to a multi-timescale model of hippocampal synaptic plasticity induction that
includes electrical dynamics, calcium, CaMKII and calcineurin, and accurate representation of intrinsic noise sources. Using
a single set of model parameters, we demonstrate the robustness of this plasticity rule by reproducing nine published ex
vivo experiments covering various spike-timing and frequency-dependent plasticity induction protocols, animal ages, and
experimental conditions. The model also predicts that in vivo-like spike timing irregularity strongly shapes plasticity outcome.
This geometrical readout modelling approach can be readily applied to other excitatory or inhibitory synapses to discover
their synaptic plasticity rules.

To understand how brains learn, we need to identify the rules
governing how synapses change their strength in neural circuits.
What determines whether each synapse strengthens, weakens,
or stays the same? The dominant principle at the basis of cur-
rent models of synaptic plasticity is the Hebb postulate1 which
states that neurons with correlated electrical activity strengthen
their synaptic connections, while neurons active at different
times weaken their connections. In particular, spike-timing-
dependent plasticity (STDP) models2–4 were formulated based
on experimental observations that precise timing of pre- and post-
synaptic spiking determines whether synapses are strengthened or
weakened5–8. However, experiments also found that plasticity in-
duction depends on the rate and number of stimuli presented to the
synapse9,10, and the level of dendritic spine depolarisation11–15.
The lack of satisfactory plasticity models based solely on neural
spiking prompted researchers to consider more elaborate models
based on synapse biochemistry16. Following a proposed role for
postsynaptic calcium (Ca2+) signalling in synaptic plasticity17,
previous models assumed that the amplitude of postsynaptic cal-
cium controls long-term alterations in synaptic strength, with
moderate levels of calcium causing long-term depression (LTD)
and high calcium causing long-term potentiation (LTP)18,19. Re-
cent experimental data suggests that calcium dynamics is also
important20–24 . As a result, subsequent phenomenological mod-
els of plasticity incorporated slow variables that integrate the
fast synaptic input signals, loosely modelling calcium and its
downstream effectors25–32.

However, even these models do not account for data showing
that plasticity is highly sensitive to physiological conditions such
as the developmental age of the animal33–36, extracellular calcium

and magnesium concentrations37,38 and tissue temperature39–41.
The fundamental issue is that the components of these phe-
nomenological models do not directly map to biological compo-
nents of synapses, so they cannot automatically model alterations
due to physiological and experimental conditions. This absence
limits the predictive power of existing plasticity models.

To tackle this problem, we devised a new plasticity rule based
on a bottom-up, data-driven approach by building a biologically-
grounded model of plasticity induction at a single rat hippocam-
pal CA3–CA1 synapse. We focus on this synapse type because
of the abundant published experimental data that can be used
to quantitatively constrain the model parameters. Compared to
previous models in the literature, we aimed for an intermedi-
ate level of detail: enough biophysical components to capture
the key dynamical processes underlying plasticity induction, but
not the full molecular cascade underlying plasticity expression;
much of which is poorly quantified42. Our model centred on
dendritic spine electrical dynamics, calcium signalling and imme-
diate downstream molecules, which we then mapped to synaptic
strength change via an conceptually new dynamical, geometric
readout mechanism. Crucially, the model also captures intrinsic
noise based on the stochastic switching of synaptic receptors and
ion channels43,44. We found that the model can account for pub-
lished data from spike-timing and frequency-dependent plasticity
experiments, and variations in physiological parameters influenc-
ing plasticity outcomes. We also tested how the model responded
to in vivo-like spike timing jitter and spike failures, and found
that the plasticity rules were highly sensitive to these subtle input
alterations.
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Fig. 1. | The synapse model, its timescales and mechanisms. a, Model diagram with the synaptic components, the pre and postsynaptic com-
partments. Inhibitory receptor bottom left. b, Stochastic dynamics of the different receptors and channels. Plots show the total number of open
channels/receptors as a function of time. AMPArs and NMDArs are activated by glutamate, VGCC are activated by membrane potential, and GABArs
are activated by GABA. The timescale of variable response increases from top to bottom panels. c, Dendritic spine membrane potential (left) and
calcium concentration (right) as function of time for a single causal (1Pre1Post10) stimulus. d, Left: depletion of vesicle pools (reserve and docked)
induced by 30 pairing repetitions delivered at 5 Hz45 (Methods). The same vesicle depletion rule is applied to both glutamate and GABA. Right: BaP
efficiency as function of time. BaP efficiency controls the axial resistance between soma and dendrite in order to phenomenologically capture the
distance-dependent BaP attenuation46,47 (Methods). e, Activated enzyme concentration for CaM, CaN and CaMKII, as function of time for the
stimulus 1Pre1Post10, 30 pairing repetitions delivered at 5 Hz. Note that the vertical grey bar is the duration of the stimuli, 6 s.

Results

A multi-timescale model of synaptic plasticity induction. We
built a computational model of plasticity induction at a single
CA3-CA1 rat glutamatergic synapse (Fig. 1). Our goal was
to reproduce results on synaptic plasticity that explored the ef-
fects of several experimental parameters: fine timing differences
between pre and postsynaptic spiking (Fig. 2-3); stimulation
frequency (Fig. 4); animal age (Fig. 5); external calcium and
magnesium (Fig. 6); stochasticity in the firing structure (Fig. 7),
temperature and experimental conditions variations (Supplemen-
tal Information). Where possible, we set parameters to values
previously estimated from experiments, and tuned the remainder
within physiologically plausible ranges to reproduce our target
plasticity experiments (Methods).

The model components are schematized in Fig. 1a (full
details in Methods). For glutamate release, we used a two-
pool vesicle depletion and recycling system, which accounts
for short-term presynaptic depression and facilitation. When
glutamate is released from vesicles, it can bind to the postsynap-
tic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and
N-methyl-D-aspartate receptors (AMPArs and NMDArs, respec-
tively). When dendritic spine voltage depolarises, it activates
voltage-gated calcium channels (VGCCs) and removes magne-

sium (Mg2+) block from NMDArs. Backpropagating action
potentials (BaP) can also cause spine depolarisation. As an in-
hibitory component, we modelled a gamma-aminobutyric acid
receptor (GABAr) synapse on the dendrite shaft48. Calcium ions
influxing through VGCCs and NMDArs can activate hyperpo-
larising SK potassium channels49,50, bind to calmodulin (CaM)
or to a generic calcium buffer. Calcium-bound calmodulin acti-
vates two major signalling molecules immediately downstream of
Ca/CaM enzymes51: Ca2+/calmodulin-dependent protein kinase
II (CaMKII) or calcineurin (CaN) phosphatase, also known as
PP2B52. We included these two proteins because CaMKII acti-
vation is necessary for Schaffer-collateral LTP53,54, while CaN
activation is necessary for LTD55,56. Later, we show how we map
the joint activity of CaMKII and CaN to LTP and LTD.

Synaptic receptors and ion channels have an inherent ran-
dom behavior, stochastically switching between open and closed
states44. If the number of receptors or channels is large, then
the variability of the total population activity becomes negligible
relative to the mean57. However individual hippocampal synapses
contain only small numbers of receptors and ion channels, for
example ∼10 NMDA receptors and <15 VGCCs58–60, making
their total activation highly stochastic. Therefore, we modelled
AMPAr, NMDAr, VGCCs and GABAr as stochastic processes.
Presynaptic vesicle release events were also stochastic: glutamate
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Fig. 2. | The duration and amplitude of the joint CaN-CaMKII activity differentiates plasticity protocols. a, Activity of CaMKII (solid line)
and CaN (dashed line) (µM) for two protocols. Experimentally the 1Pre2Post10 produces LTP, and 1Pre1Post10 produces no change (NC). Both
are composed of 300 pairing repetitions delivered at 5 Hz. b, Joint enzymatic activity (CaN-CaMKII) for the protocols in panel a. The black dot
indicates the initial resting activity and the arrows the trajectory direction as function of time. The grey points mark the time position (x-axis in
panel a) for both protocols at 2, 10 and 60 s (when the stimulation stops). The black square is the zoomed region in panel c. c, The mean time
spent (colorbar) for each protocol in panel b (100 samples for each protocol for panelsc, f and i). d, Same as in panel a, but for the LTP protocol,
1Pre2Post50 and, the NC protocol, 2Post1Pre50. Both are composed of 300 pairing repetitions at 5 Hz. e, Same as in panel b for protocols in panel d.
f, The mean time spent (colorbar) for each protocol in panel e. g, Same as in panel a and d, but for two protocols with different frequencies and pulse
repetitions. The LTD protocol, 2Pre50 900 at 3 Hz and, the NC protocol 2Pre10 300 at 5 Hz. h, Same as in panel b and e for protocols in panel g. i,
The mean time spent (colorbar) for each protocol in panel h.

release was an all-or-nothing event, and the amplitude of each
glutamate pulse was drawn randomly, modelling heterogeneity in
vesicle size61. The inclusion of stochastic processes to account
for an intrinsic noise in synaptic activation62 contrasts with most
previous models in the literature, which either represent all vari-
ables as continuous and deterministic or add an external generic
noise source63–65.

The synapse model showed nonlinear dynamics across multi-
ple timescales. For illustration, we stimulated the synapse with
single simultaneous glutamate and GABA vesicle releases (Fig.
1b). AMPArs and VGCCs open rapidly but close again within
a few milliseconds. The dendritic GABAr closes more slowly,
on a timescale of ∼10 ms. NMDArs, the major calcium source,
closes on timescales of ∼50 ms and ∼250 ms for the GluN2A
and GluN2B subtypes, respectively.

To show the typical responses of the spine head voltage and
Ca2+, we stimulated the synapse with a single presynaptic pulse
(EPSP) paired 10 ms later with a single BaP (1Pre1Post10) (Fig.
1c, left). For this pairing, when BaP is triggered immediately

after an EPSP, it leads to a large Ca2+ transient aligned with the
BaP due to the NMDArs first being bound by glutamate then
unblocked by the BaP depolarisation (Fig. 1c, right).

Single pre or postsynaptic stimulation pulses did not cause de-
pletion of vesicle reserves or substantial activation of the enzymes.
To illustrate these slower-timescale processes, we stimulated the
synapse with a prolonged protocol: one presynaptic pulse fol-
lowed by one postsynaptic pulse 10 ms later, repeated 30 times at
5 Hz (Fig. 1d-e). The number of vesicles in both the docked and
reserve pools decreased substantially over the course of the stim-
ulation train (Fig. 1d left), which in turn causes decreased vesicle
release probability. Similarly, by the 30th pulse, the dendritic BaP
amplitude had attenuated to ∼85% (∼70% BaP efficiency; Fig.
1d right) of its initial amplitude, modelling the effects of slow den-
dritic sodium channel inactivation47,66. CaM concentration rose
rapidly in response to calcium transients but also decayed back
to baseline on a timescale of ∼500 ms (Fig. 1e top). In contrast,
the concentration of active CaMKII and CaN accumulated over a
timescale of seconds, reaching a sustained peak during the stimu-
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lation train, then decayed back to baseline on a timescale of ∼10
and ∼120 s respectively, in line with experimental data51,54,67

(Fig. 1e).
The effects of the stochastic variables can be seen in Fig.

1b–d. The synaptic receptors and ion channels open and close
randomly (Fig. 1b). Even though spine voltage, calcium, and
downstream molecules were modelled as continuous and deter-
ministic, they inherited some randomness from the upstream
stochastic variables. As a result, there was substantial trial-to-
trial variability in the voltage and calcium responses to identical
pre and postsynaptic spike trains (grey traces in Fig. 1d). This
variability was also passed on to the downstream enzymes CaM,
CaMKII and CaN, but was filtered and therefore attenuated by
the slow dynamics of CaMKII and CaN. In summary, the model
contained stochastic nonlinear variables acting over five different
orders of magnitude of timescale, from∼1 ms to∼1 min, making
it sensitive to both fast and slow components of input signals.

Distinguishing between stimulation protocols using the
CaMKII and CaN joint response. It has proven difficult for
simple models of synaptic plasticity to capture the underlying
rules and explain why some stimulation protocols induce plas-
ticity while others do not. We tested the model’s sensitivity by
simulating its response to a set of protocols used by24 in a recent
ex vivo experimental study on adult (P50-55) rat hippocampus
with blocked GABAr. We focused on three pairs of protocols
(three rows in Fig. 2). In each case in24’s experiments, one of the
pair induced LTP or LTD, while the other subtly different proto-
col caused no change (NC) in synaptic strength. We asked if the
model’s joint CaMKII-CaN activity could distinguish between
each pair of protocols.

The first pair of protocols differed in intensity. A protocol
which caused no plasticity consisted of 1 presynaptic spike fol-
lowed 10 ms later by one postsynaptic spike repeated at 5 Hz
for one minute (1Pre1Post10, 300 at 5Hz). The other protocol
induced LTP, but differed only in that it included a postsynaptic
doublet instead of a single spike (1Pre2Post10, 300 at 5Hz), im-
plying a slightly stronger BaP amplitude initially. For the plots in
Fig. 2a, it was not possible to set a single concentration threshold
on either CaMKII or CaN that would discriminate between the
protocols.

To achieve better separability, we combined the activity of
the two enzymes, plotting the joint CaMKII and CaN responses
against each other on a 2D plane (Fig. 2b). In this geometric
plot, the two protocol’s trajectories can be seen to overlap for the
initial part of the transient, but then diverge. To quantify trial
to trial variability, we also calculated contour maps showing the
mean fraction of time the trajectories spent in each part of the
plane during the stimulation (Fig. 2c). Importantly, both the
trajectories and contour maps were substantially non-overlapping
between the two protocols, implying that they can be separated
based on the joint CaN-CaMKII activity. We found that the
1Pre2Post10 protocol leads to a weaker response in both CaMKII
and CaN, corresponding to the lower blue traces Fig. 2b. The
decreased response to the doublet protocol was due to the en-
hanced attenuation of dendritic BaP amplitude over the course of
the simulation47, leading to less calcium influx through NMDArs
and VGCCs (data not shown).

The second pair of protocols we explored differed in sequenc-

ing. We stimulated the synapse model with one causal (EPSP-
BaP) protocol involving a single presynaptic spike followed 50
ms later by a doublet of postsynaptic spikes (1Pre2Post50, 300 at
5Hz), repeated at 5 Hz for one minute, which24 found caused LTP.
The other anticausal protocol involved the same total number
of pre and postsynaptic spikes, but with the pre-post order re-
versed (2Post1Pre50, 300 at 5Hz). Experimentally this anticausal
(BaP-EPSP) protocol did not induce plasticity. Notably, the only
difference was the sequencing of whether the pre or postsynaptic
neuron fired first, over a short time gap of 50 ms. Despite the
activations being apparently difficult to distinguish (Fig. 2d), we
found that the LTP-inducing protocol caused greater CaN activa-
tion than the protocol that did not trigger plasticity. Indeed, this
translated to a horizontal offset in both the trajectory and contour
map (Fig. 2e–f), demonstrating that another pair of protocols can
be separated in the joint CaN-CaMKII plane.

The third pair of protocols differed in both duration and in-
tensity. In line with previous studies,24 found that a train of
doublets of presynaptic spikes separated by 50 ms repeated at
a low frequency of 3 Hz for 5 minutes (2Pre50, 900 at 3Hz)
induced LTD, while a slightly more intense but shorter duration
protocol of presynaptic spike doublets separated by 10 ms re-
peated at 5 Hz for one minute (2Pre10, 300 at 5Hz) did not cause
plasticity. When we simulated both protocols in the model (Fig.
2g–i), both caused similar initial responses in CaMKII and CaN.
In the shorter protocol, this activation decayed to baseline within
100 s of the end of the stimulation. However the slower and
longer-duration 2Pre50 3Hz 900p protocol caused an additional
sustained, stochastically fluctuating, plateau of activation of both
enzymes (Fig. 2g). This resulted in the LTD-inducing protocol
having a downward and leftward-shifted CaN-CaMKII trajectory
and contour plot, relative to the other protocol (Fig. 2h-i). These
results again showed that the joint CaN-CaMKII activity may be
useful to predict plasticity changes.

A geometrical readout mapping joint enzymatic activity to
plasticity outcomes. We found that the simulated CaN-CaMKII
trajectories from the two LTP-inducing protocols (1Pre2Post10
and 1Pre2Post50, at Fig. 2a and D respectively) spent a large
fraction of time near ∼ 20 µM CaMKII and 7–10 µM CaN. In
contrast, protocols that failed to trigger LTP had either lower
(2Post1Pre50 and 2Pre10, Fig. 2d and 2g respectively), or higher
CaMKII and CaN activation (1Pre1Post10, Fig. 2a). The LTD-
inducing protocol, by comparison, spent a longer period in a
region of sustained but lower∼ 12µM CaMKII and∼ 2µM CaN
and activation. The plots in Fig. 2c,f and g, show contour maps
of histograms of the joint CaMKII-CaN activity, indicating where
in the plane the trajectories spent most time. Fig. c and f indicate
this measure can be used to predict plasticity, because the NC and
LTP protocol histograms are largely non-overlapping. In Fig. 2c,
the NC protocol response ‘overshoots’ the LTP protocol response,
whereas in Fig. 2f the NC protocol response ‘undershoots’ the
LTP protocol response. In contrast, when we compared the re-
sponse histograms for LTD and NC protocols, we found a greater
overlap (Fig. 2i). This suggested that in this case the histogram
alone was not sufficient to separate the protocols, and that proto-
col duration is also important. LTD induction (2Pre50) required
a more prolonged activation than NC (2Pre10).

To design a geometrical readout mechanism to map the
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Fig. 3. | Read-out strategy an Tigaret et al. 201624 experiment. a, Illustration of the joint CaMKII and CaN activities crossing the plasticity
regions. Arrows indicate the flow of time, starting at the black dot. Note that here time is hidden and one can only see the changes in enzyme
concentrations. b, Region indicator showing when CaN and CaMKII crosses the LTD or LTP regions in panel a. Leaving the region activates a
leaking mechanism that keeps track of the accumulated time inside the region. Such leaking mechanism drives the transition rates used to predict
plasticity (Methods). c, Plasticity Markov chain with three states: LTD, LTP and NC. There are only two transition rates which are functions of the
plasticity region indicator (Methods). The LTP transition is fast whereas the transition LTD is slow, meaning that LTD change requires longer time
inside the LTD region (panel a). The NC state starts with 100 processes. d, Joint CaMKII and CaN activity for all Tigaret protocols (labelled in F).
The stimulus ends when the trajectory becomes smooth. Corresponds to Fig. 2b,e and h, at 60 s. e, Region indicator for the protocols labelled in F.
The upper square bumps are caused by the protocol crossing the LTP region, the lower square bumps when the protocol crosses the LTD region (as in
panel d). f, Synaptic weight (%) as function of time for each protocol. The weight change is defined as the number (out of 100) of states in the LTP
state minus the number of states in the LTD state (panel c). The trajectories correspond to the median of the simulations in panel g. g, Synaptic
weight change (%) predicted by the model compared to data (EPSC amplitudes) from24 (100 samples for each protocol, also for panel h and i). The
data (grey dots) was provided by24 (note an 230% outlier as the red asterisk), red bands indicate data means. h, Predicted mean synaptic weight
change (%) as function of delay (ms) and number of pairing repetitions (pulses) for the protocol 1Pre2Post(delay), for delay between -100 and 100.
LTD is induced by 2Post1Pre50 after at least 500 pulses. The mean weight change along each dashed line is reported in the STDP curves in panel i. i,
Synaptic weight change (%) as function of pre-post delay. Each plot corresponds to a different pairing repetition number (legend). The solid line
shows the mean, and the ribbons are the 2nd and 4th quantiles. The red dots are the data means estimated in24, also shown in panel g.

enzyme activity to plasticity outcomes, we first drew non-
overlapping boxes of LTP and LTD “plasticity regions” in the
CaN-CaMKII plane (Fig. 3a). We positioned these regions over
the parts of the phase space where the enzyme activities corre-
sponding to the LTP- and LTD-inducing protocols were most
different, as shown by trajectories in Fig. 2. We then fixed these
regions for all subsequent parts of this study. When a trajectory
enters in one of these plasticity regions, it activates LTD or LTP
indicator variables (Methods) which encode the joint enzyme
activities (trajectories in the phase plots) transitions across the
LTP and LTD regions over time (Fig. 3b). These indicator vari-
able drove transition rates in a plasticity Markov chain used to
predict LTP or LTD (Fig. 3c), see Methods. The LTD transition
rates were slower than the LTP transition rates, to reflect studies
showing that LTD requires sustained synaptic stimulation20–22.
The parameters for this plasticity Markov chain (Methods) were

fit to the plasticity induction outcomes from different protocols
(Table M1). In the beginning of the simulation, the plasticity
Markov chain starts with 100 processes48 in the state NC, with
each variable representing 1% weight change, an abstract mea-
sure of synaptic strength that can be either EPSP, EPSC, or field
EPSP slope depending on the experiment. Each process can tran-
sit stochastically between NC, LTP and LTD states. At the end
of the protocol, the plasticity outcome is given by the difference
between the number of processes in the LTP and the LTD states
(Methods).

This readout mechanism acts as a parsimonious model of the
complex signalling cascade linking CaMKII and CaN activation
to expression of synaptic plasticity68. It can be considered as
a two-dimensional extension of previous computational studies
that applied analogous 1D threshold functions to dendritic spine
calcium concentration18,19,30,31. Our model is scalable, as it gives
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Fig. 4. | Frequency dependent plasticity, Dudek and Bear 19929 dataset. a, Example traces of joint CaMKII-CaN activity for each of9’s protocols.
b, Region indicator showing when the joint CaMKII-CaN activity crosses the LTD or LTP regions for each protocol in panel a. c, Synaptic weight
change (%) as function of time for each protocol, analogous to Fig. 3c. Trace colours correspond to panel a. The trajectories displayed were chosen to
match the medians in panel e. d, Mean (100 samples) time spent (s) for protocols 1Pre for 900 pairing repetitions at 3, 10 and 50 Hz. e, Comparison
between data from9 and our model (1Pre 900p, 300 samples per frequency, Table M1). Data are represented as normal distributions with the mean
and variance extracted from9. Note that data from Dudek and Bear are given in field EPSP slope change. f, Prediction for the mean weight change
(%) varying the stimulation frequency and pulse number (24x38x100 data points, respectively pulse x frequency x samples). The red dots show the9

protocol parameters, the corresponding results are shown in panel e.

the possibility for the readout to be extended to dynamics of n
different molecules, using n-dimensional closed regions.

In Fig. 3d, we plot the model’s responses to seven different
plasticity protocols used by24 by overlaying example CaMKII-
CaN trajectories for each protocol with the LTP and LTD regions.
The corresponding region occupancies are plotted as function of
time in E, and long-term alterations in the synaptic strength are
plotted as function of time in F. The three protocols that induced
LTP in the24 experiments spent substantial time in the LTP re-
gion, and so triggered potentiation. In contrast, the 1Pre1Post10
(yellow trace) overshoots both regions, crossing them only briefly
on its return to baseline, and so resulted in little weight change.
The protocol that induced LTD (2Pre50, purple trace) is five
times longer than other protocols, spending sufficient time in-
side the LTD region (Fig. 3f). In contrast, two other protocols
that spent time in the same LTD region of the CaN-CaMKII
plane (2Post1Pre50 and 2Pre10) were too brief to induce LTD.
These protocols were also not strong enough to reach the LTP
region, so resulted in no net plasticity, again consistent with24’s
experiments.

We observed run-to-run variability in the amplitude of the
predicted plasticity, due to the inherent stochasticity in the model.
In Fig. 3g, we plot the distribution of the predicted plasticity from
each protocol (colours) alongside the data from24’s study, finding
a good correspondence.

Experimentally, LTP can be induced by few pulses while LTD
usually requires longer-duration stimulation20–22. We incorpo-
rated this effect into the readout model by letting LTP have faster
transition rates than LTD (Fig. 3c).24 found that 300 repetitions of
anticausal post-before-pre pairings did not cause LTD, in contrast
to the canonical spike-timing-dependent plasticity curve7. We

hypothesized that LTD might indeed appear with the anticausal24

protocol (Table M1) if stimulation duration was increased. To
explore this possibility in the model, we systematically varied the
number of paired repetitions from 100 to 1200, and also co-varied
the pre-post delay from -100 to 100 ms. Fig. 3h shows a contour
plot of the predicted mean synaptic strength change across for the
1Pre2Post(delay) stimulation protocol for different numbers of
pairing repetitions. A LTD window appears after ∼500 pairing
repetitions for some anticausal pairings, in line with our hypothe-
sis. The magnitude of LTP also increases with pulse number, for
causal positive pairings. For either 100 or 300 pairing repetitions,
only LTP or NC is induced (Fig. 3i). The model also made other
plasticity predictions by varying24’s experimental conditions (Fig.
S1). In summary, our model readout reveals that the direction and
magnitude of the change in synaptic strength can be predicted
from the joint CaMKII-CaN activity in the LTP and LTD regions.

Frequency-dependent plasticity. The stimulation protocols
used by24 explored how subtle variations in pre and postsy-
naptic spike timing influenced the direction and magnitude of
plasticity (see Table M1 for experimental differences). In con-
trast, traditional synaptic plasticity protocols exploring the role
of presynaptic stimulation frequency did not measure the tim-
ing of co-occurring postsynaptic spikes9,69,70. These studies
found that long-duration low-frequency stimulation induces LTD,
whereas short-duration high-frequency stimulation induces LTP,
with a cross-over point of zero change at intermediate stimulation
frequencies. In addition to allowing us to explore frequency-
dependent plasticity (FDP), this stimulation paradigm also gives
us further constraints for LTD in the model since in24, only one
LTD case was available. For FDP, we focused on modelling the
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experiments from9, who stimulated Schaffer collateral projections
to pyramidal CA1 neurons with 900 pulses in frequencies rang-
ing from 1 Hz to 50 Hz. In addition to presynaptic stimulation
patterns, the experimental conditions differed from24 in two other
aspects: animal age and control of postsynaptic spiking activity
(see Table M1 legend). We incorporated both age-dependence
and EPSP-evoked-BaPs (Methods). Importantly, the read-out
mechanism mapping joint CaMKII-CaN activity to plasticity is
the same for all experiments in this work.

Fig. 4a shows the joint CaMKII-CaN activity when we stim-
ulated the model with 900 presynaptic spikes at 1, 3, 5, 10 and
50 Hz9. Higher stimulation frequencies drove stronger responses
in both CaN and CaMKII activities (Fig. 4a). Fig. 4b,c show the
corresponding plasticity region indicator for the LTP/LTD region
threshold crossings and the synaptic strength change. From this
set of five protocols, only the 50 Hz stimulation drove a response
strong enough to reach the LTP region of the plane (Fig. 4a a,d).
Although the remaining four protocols drove responses primarily
in the LTD region, only the 3 and 5 Hz stimulations resulted in
substantial LTD. The 1 Hz and 10 Hz stimulations resulted in
negligible LTD, but for two distinct reasons. Although the 10 Hz
protocol’s joint CaMKII-CaN activity passed through the LTD
region of the plane (Fig. 4a,d), it was too brief to activate the
slow LTD mechanism built into the readout (Methods). The 1 Hz
stimulation, on the other hand, was prolonged, but its response
was mostly too weak to reach the LTD region, crossing the thresh-
old only intermittently (Fig. 4b, bottom trace). Overall the model
matched well the mean plasticity response found by Dudek and
Bear (Fig. 4e), following a classic BCM-like curve as function of
stimulation frequency71,72.

We then used the model to explore the stimulation space in
more detail by varying the stimulation frequency from 0.5 Hz to
50 Hz, and varying the number of presynaptic pulses from 50 to
1200. Fig. 4f shows a contour map of the mean synaptic strength
change (%) in this 2D frequency–pulse number space. Under9’s
experimental conditions, we found that LTD induction required
at least ∼300 pulses, at frequencies between 1Hz and 3Hz. In
contrast, LTP could be induced using ∼50 pulses at ∼20Hz or
greater. The contour map also showed that increasing the number
of pulses (vertical axis in Fig. 4e) increases the magnitude of
both LTP and LTD. This was paralleled by a widening of the LTD
frequency range, whereas the LTP frequency threshold remained
around ∼20Hz, independent of pulse number. The pulse depen-
dence amplitude increase predicted in Fig. 4 is also valid for24

experiment shown in Fig. S1f.
Ex vivo experiments in9 were done at 35°C. However, lower

temperatures are more widely used ex vivo because they extend
brain slice viability. We performed further simulations testing
temperature modifications for9’s experiment, finding that it had a
strong effect on plasticity outcomes (Fig. S2d–f).

Variations in plasticity induction with developmental age.
The rules for induction of LTP and LTD change during
development33,35, so a given plasticity protocol can produce dif-
ferent outcomes when delivered to synapses from young animals
versus mature animals. For example, when33 tested the effects of
low-frequency stimulation (1 Hz) on CA3-CA1 synapses from
rats of different ages, they found that the magnitude of LTD
decreases steeply with age from P7 until becoming minimal in

mature animals >P35 (Fig. 5a, circles). Across the same age
range, they found that a theta-burst stimulation protocol induced
progressively greater LTP magnitude with developmental age
(Fig. 5b, circles). Paralleling this, multiple properties of neurons
change during development: the NMDAr switches its dominant
subunit expression from GluN2B to GluN2A73–75, the reversal
potential of the receptor (GABAr) switches from depolarising
to hyperpolarizing34,76,77, and the action potential backpropa-
gates more efficiently with age46. These mechanisms have been
proposed to underlie the developmental changes in synaptic plas-
ticity rules because they are key regulators of synaptic calcium
signalling34,46. However, their sufficiency and individual con-
tributions to the age-related plasticity changes are unclear. We
incorporated these mechanisms in the model (Methods) by param-
eterizing each of the three components to vary with the animal’s
postnatal age, to test if they could account for the age-dependent
plasticity data.

We found that elaborating the model with age-dependent
changes in NMDAr composition, GABAr reversal potential, and
BaP efficiency, while keeping the same plasticity readout param-
eters, was sufficient to account for the developmental changes in
LTD and LTP observed by33 (Fig. 5a,b). We then explored the
model’s response to protocols of various stimulation frequencies,
from 0.5 to 50 Hz, across ages from P5 to P80 (Fig. 5c,e). Fig. 5c
shows the synaptic strength change as function of stimulation fre-
quency for ages P15, P25, P35 and P45. The magnitude of LTD
decreases with age, while the magnitude of LTP increases with
age. Fig. 5e shows a contour plot of the same result, covering the
age-frequency space.

The 1Hz presynaptic stimulation protocol in33 did not induce
LTD in adult animals9. We found that the joint CaN-CaMKII
activity trajectories for this stimulation protocol underwent an
age-dependent leftward shift beyond the LTD region (Fig. 5f).
This implies that LTD is not induced in mature animals by this
conventional LFS protocol due to insufficient activation of en-
zymes. In contrast,24 and78 were able to induce LTD in adult
rat tissue by combining LFS with presynaptic spike pairs re-
peated 900 times at 3 Hz. Given these empirical findings and
our modelling results, we hypothesized that LTD induction in
adult animals requires that the stimulation protocol: 1) causes
CaMKII and CaN activity to stay more in the LTD region than
the LTP region, and 2) is sufficiently long to activate the LTD
readout mechanism. With experimental parameters used by33,
this may be as short as 300 pulses when multi-spike presynaptic
protocols are used since the joint CaMKII-CaN activity can reach
the LTD region more quickly than for single spike protocols. We
simulated two such potential protocols as predictions: doublet
and quadruplet spike groups delivered 300 times at 1 Hz, with 50
ms between each pair of spikes in the group (Fig. 5d). The model
predicted that both these protocols induce LTD in adults (green
and blue curves), whereas as shown above, the single pulse pro-
tocol did not cause LTD (yellow curve). These findings suggest
that the temporal requirements for inducing LTD may not be as
prolonged as previously assumed, since they can be reduced by
varying stimulation intensity. See Fig. S3 for frequency versus
age maps for presynaptic bursts.

33 also performed theta-burst stimulation (TBS, Table M1) at
different developmental ages, and found that LTP is not easily in-
duced in young rats (Fig. 5b), see also35. The model qualitatively
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matches this trend, and also predicts that TBS induces maximal
LTP around P21, before declining further during development
(Fig. 5b, green curve). Similarly, we found that high-frequency
stimulation induces LTP only for ages >P15, peaks at P35, then
gradually declines at older ages (Fig. 5e). Note that in Fig. 5b,
we used 6 epochs instead of 4 used by33 to increase LTP outcome
which is known to washout after one hour for young rats35.

Fig. 5. | Age-dependent plasticity, Dudek and Bear 199333 dataset
a, Synaptic weight change for 1Pre, 900 at 1 Hz as in33. The solid line
is the mean and the ribbons are the 2nd and 4th quantiles predicted by
our model (same for panel b, c and f). b, Synaptic weight change for
Theta Burst Stimulation (TBS - 4Pre at 100 Hz repeated 10 times at
5Hz given in 6 epochs at 0.1Hz (Table M1) and33. c, Synaptic weight
change as function of frequency for different ages. BCM-like curves
showing that, during adulthood, the same LTD protocol becomes less
efficient. It also shows that high-frequencies are inefficient at inducing
LTP before P15. d, Synaptic weight change as function of age. Proposed
protocol using presynaptic bursts to recover LTD at ≥ P35 with less
pulses, 300 instead of the original 900 from33. This effect is more pro-
nounced for young rats. Fig. S3 shows a 900 pulses comparison. e, Mean
synaptic strength change (%) as function of frequency and age for 1Pre
900 pulses (32x38x100, respectively, for frequency, age and samples).
The protocols in33 (panel a) are marked with the yellow vertical line.
The horizontal lines represent the experimental conditions of panel c.
Note the P35 was used for9 experiment in Fig. 4f. f, Mean time spent
for the 1Pre 1Hz 900 pulses protocol showing how the trajectories are
left-shifted as rat age increases.

In contrast to33’s findings, other studies have found that

LTP can be induced in hippocampus in young animals (<P15)
with STDP. For example,34 found that at room temperature,
1Pre1Post10 induces LTP in young rats, whereas 1Pre2Post10
induces NC. This relationship was inverted for adults, with
1Pre1Post inducing no plasticity and 1Pre2Post10 inducing LTP
(Fig. S5).

Together, these results suggest that not only do the require-
ments for LTP/LTD change with age, but also that these age-
dependencies are different for different stimulation patterns. Fi-
nally, we explore which mechanisms are responsible for plasticity
induction changes across development in the FDP protocol (Fig.
S3) by fixing each parameter to young or adult values for the
FDP paradigm. Our model analysis suggests that the NMDAr
switchiacobucci2017 is a dominant factor affecting LTD induction,
but the maturation of BaP46 is the dominant factor affecting LTP
induction, with GABAr shift having only a weak influence on
LTD induction for33’s FDP.

Plasticity requirements during development do not necessar-
ily follow the profile in33 as shown by34’s STDP experiment. Our
model shows that multiple developmental profiles are possible
when experimental conditions vary within the same stimulation
paradigm. This is illustrated in Fig. S5a–c by varying the age of
STDP experiments done in different conditions.

Effects of extracellular calcium and magnesium concentra-
tion on plasticity. The canonical STDP rule7 measured in cul-
tured neurons, high [Ca2+]o, and at room temperature, was re-
cently found not to be reproducible at physiological [Ca2+]o in
CA1 brain slices38. Instead, by varying the [Ca2+]o and [Mg2+]o
they found a spectrum of STDP rules with either no plasticity
or full-LTD for physiological [Ca2+]o conditions ([Ca2+]o < 1.8
mM) and a bidirectional rule for high [Ca2+]o ([Ca2+]o > 2.5
mM), shown in Fig. 6a–c (data).

We attempted to reproduce38’s findings by varying [Ca2+]o
and [Mg2+]o with the following consequences for the model
mechanisms (Methods). On the presynaptic side, [Ca2+]o modu-
lates vesicle release probability. On the postsynaptic side, high
[Ca2+]o reduces NMDAr conductance79, whereas [Mg2+]o affects
the NMDAr Mg2+ block80. Furthermore, spine [Ca2+]o influx
activates SK channels, which hyperpolarize the membrane and
indirectly modulate NMDAr activity50,81.

Fig. 6a–c compares our model to38’s STDP data at different
[Ca2+]o and [Mg2+]o. Note that38 used 150 (100) pairing repe-
titions for the anti-causal (causal) both delivered at 0.3 Hz. At
[Ca2+]o=1.3 mM, Fig. 6a shows the STDP rule induced weak
LTD for brief causal delays. At [Ca2+]o= 1.8 mM, in Fig. 6b, the
model predicted a full-LTD window. At [Ca2+]o= 3 mM, in Fig.
6c, it predicted a bidirectional rule with a second LTD window
for long pre-before-post pairings, previously theorized by26.

Fig. 6d illustrates the time spent by the joint CaN-CaMKII
activity for 1Pre1Post10 using38’s experimental conditions. Each
density plot corresponds to a different panel in Fig. 6 with the re-
spective Ca/Mg. The response under low [Ca2+]o spent most time
inside the LTD region, but high [Ca2+]o shifts the trajectory to
the LTP region. Fig. S4a presents density plots for the anticausal
post-before-pre protocols.

38 fixed the Ca/Mg ratio at 1.5, although aCSF formulations
in the literature differ (see Table M1). Fig. S4d shows that vary-
ing Ca/Mg ratio and [Ca2+]o for38’s experiments restrict LTP to

8/47

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.03.30.437703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437703
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 6. Effects of extracellular calcium and magnesium concentrations on plasticity a, Synaptic weight (%) for a STDP rule with
[Ca2+]o = 1.3 mM (fixed ratio, Ca/Mg=1.5). According to the data extracted from38, the number of pairing repetitions for positive (nega-
tive) delays is 100 (150), both delivered at 0.3 Hz38. The solid line is the mean, and the ribbons are the 2nd and 4th quantiles predicted by our model
(all panels use 100 samples). b, Same as A, but for [Ca2+]o= 1.8 mM (Ca/Mg ratio = 1.5). c, Same as A, but for [Ca2+]o= 3 mM (Ca/Mg ratio = 1.5).
d, Mean time spent for causal pairing, 1Pre1Post10, at different Ca/Mg concentrations. The contour plots are associated with the panels a, b and c. e,
STDP and extracellular Ca/Mg. Synaptic weight change (%) for causal (1Pre1Post10, 100 at 0.3 Hz) and anticausal (1Post1Pre10, 150 at 0.3 Hz)
pairings varying extracellular Ca from 1.0 to 3 mM (Ca/Mg ratio = 1.5). The dashed lines represent the experiments in the panel a, b and c. We used
21x22x100 data points, respectively calcium x delay x samples. f, Varying frequency and extracellular Ca/Mg for the causal pairing 1Pre1Post10,
100 at 0.3 Hz. Contour plot showing the mean synaptic weight (%) for a single causal pairing protocol (1Pre1Post10, 100 samples) varying frequency
from 0.1 to 10 Hz and [Ca2+]o from 1.0 to 3 mM (Ca/Mg ratio = 1.5). We used 21x18x100 data points, respectively calcium x frequency x samples.

Ca/Mg>1.5 and [Ca2+]o>1.8 mM.
Our model can also identify the transitions between LTD and

LTP depending on Ca/Mg. Fig. 6e shows a map of plasticity
as function of pre-post delay and Ca/Mg concentrations and the
parameters where LTP is induced for the 1Pre1Post10 protocol.
Since plasticity rises steeply at around [Ca2+]o= 2.2 mM, small
fluctuations in [Ca2+]o near this boundary could cause qualita-
tive transitions in plasticity outcomes. For anticausal pairings,
increasing [Ca2+]o increases the magnitude of LTD (Fig. S4b
illustrates this with38’s data).

38 also found that increasing the pairing frequency to 5 or 10
Hz results in a transition from LTD to LTP for 1Pre1Post10 at
[Ca2+]o= 1.8 mM (Fig. S4c), similar frequency-STDP behaviour
has been reported in cortex10. In Fig. 6f, we varied both the
pairing frequencies and [Ca2+]o and we observe similar transi-
tions to38. However, the model’s transition for [Ca2+]o= 1.8 mM
was centred around 0.5 Hz, which was untested by38. The model
predicted no plasticity at higher frequencies, unlike the data, that
shows scattered LTP and LTD (see Fig. S4c). Fig. S1d and
S4e shows that24’s burst-STDP and38’s STDP share a similar
transition structure, but not9’s FDP.

In contrast to38’s results, we found that setting low [Ca2+]o
for24’s burst-STDP abolishes LTP, and does not induce strong
LTD (Fig. S1d). For9’s experiment, Fig. S2a [Mg2+]o con-
trols a sliding threshold between LTD and LTP but not [Ca2+]o
(Fig. S2b). For another direct stimulation experiment, Fig. S4c
shows that in an Mg-free medium, LTP expression requires fewer

pulses21.
Despite exploring physiological [Ca2+]o and [Mg2+]o

38 use
a non-physiological temperature (30°C) which extends T-type
VGCC closing times and modifies the CaN-CaMKII baseline (Fig.
S5i). Fig. S5g,h shows comparable simulations for physiological
temperatures. Overall our model predicts that temperature can
change STDP rules in a similar fashion to [Ca2+]o (Fig. S4a,b).
In summary, plasticity is highly sensitive to variations in extra-
cellular calcium, magnesium, and temperature (Fig. S1a, Fig.
S5d-f;40).

In vivo-like spike variability affects plasticity. In the above
sections, we used highly regular and stereotypical stimulation
protocols to replicate typical ex vivo plasticity experiments. In
contrast, neural spiking in hippocampus in vivo is irregular and
variable78,82. It is unclear how natural firing variability affects
the rules of plasticity induction27,83–85. We explored this question
using model simulations by adding three distinct types of variabil-
ity: 1) spike time jitter, 2) failures induced by dropping spikes, 3)
independent pre and postsynaptic Poisson spike trains83.

We introduced spike timing jitter by adding zero-mean Gaus-
sian noise (s.d. σ ) to pre and postsynaptic spikes, changing spike
pairs inter-stimulus interval (ISI). In Fig. 7a, we plot the LTP
magnitude as function of jitter magnitude (controlled by σ ) for
protocols taken from24. With no jitter, σ = 0, these protocols
have different LTP magnitudes (corresponding to Fig. 3) and
become similar once σ increases. The three protocols with a
postsynaptic spike doublet gave identical plasticity for σ = 50
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ms.
To understand the effects of jittering, we plotted the trajec-

tories of CaN-CaMKII activity (Fig. 7c). 2Post1Pre50 which
"undershoots" the LTP region shifted into the LTP region for jitter
σ = 50 ms. In contrast, 1Pre1Post10 which "overshoots" the LTP
region shifted to the opposite direction towards the LTP region.

Why does jitter cause different spike timing protocols to yield
similar plasticity magnitudes? Increasing jitter causes a fraction
of pairings to invert causality. Therefore, the jittered protocols
became a mixture of causal and anticausal pairings (Fig. 7c).
This situation occurs for all paired protocols. So any protocol
with the same number spikes will become mixed if the jitter is
large enough. Note that despite noise the mean frequency was
conserved at 5 ± 13.5 Hz (see Fig. 7e).

Next, we studied the effect of spike removal. In the previous
sections, synaptic release probability was ∼60% (for [Ca2+]o=
2.5 mM) or lower, depending on the availability of docked vesi-
cles (Methods). However, baseline presynaptic vesicle release
probability is heterogeneous across CA3-CA1 synapses, ranging
from ∼ 10− 90%86,87 and likely lower on average in vivo88,89.
BaPs are also heterogeneous with random attenuation profiles47

and spike failures90. To test the effects of pre and postsynaptic
failures on plasticity induction, we performed simulations where
we randomly removed spikes, altering the previously regular
attenuation in24’s protocols.

In Fig. 7b we plot the plasticity magnitude as function of spar-
sity (percentage of removed spikes). The sparsity had different
specific effects for each protocol. 1Pre2Post10 and 1Pre2Post50
which originally produced substantial LTP were robust to spike
removal until ∼60% sparsity. In contrast, the plasticity mag-
nitude from both 1Pre1Post10 and 2Post1Pre50 showed a non-
monotonic dependence on sparsity, first increasing then decreas-
ing, with maximal LTP at ∼40% sparsity.

To understand how sparsity causes this non-monotonic effect
on plasticity magnitude, we plotted the histograms of time spent
in the CaN-CaMKII plane for 2Post1Pre50 for three levels of spar-
sity: 0%, 30% and 80% (Fig. 7d). For 0% sparsity, the activation
spent most time at the border between the LTP and LTD regions,
resulting in no plasticity. Increasing sparsity to 30% caused the
activation to shift rightward into the LTP region because there
was less attenuation of pre and postsynaptic resources. In con-
trast, at 80% sparsity, the activation moved into the LTD region
because there were not enough events to substantially activate
CaMKII and CaN. Since LTD is a slow process and the protocol
duration is short (60s), there was no net plasticity. Therefore
for this protocol, high and low sparsity caused no plasticity for
distinct reasons, whereas intermediate sparsity enabled LTP by
balancing resource depletion with enzyme activation.

Next we tested the interaction of jitter and spike removal. Fig.
7f shows a contour map of weight change as function of jitter and
sparsity for the 2Post1Pre50 protocol, which originally induced
no plasticity (Fig. 2). Increasing spike jitter enlarged the range of
sparsity inducing LTP. In summary, these simulations (Fig. 7a,b,f
and h) show that different STDP protocols have different degrees
of sensitivity to noise in the firing structure, suggesting that sim-
ple plasticity rules derived from regular ex vivo experiments may
not predict plasticity in vivo.

How does random spike timing affect rate-dependent plastic-
ity? We stimulated the model with pre and postsynaptic Poisson

Fig. 7. | Jitter and spike dropping effects on STDP; and Poisson
spike trains. a, Mean weight (%) for the jittered STDP protocols. The
solid line is the mean, and the ribbons are the 2nd and 4th quantiles pre-
dicted by our model estimated using 100 samples (same for all panels).
b, Mean weight (%) for the same24 protocols used at panel a subjected
to random spike removal (sparsity %). c, Mean time spent (s) varying
jittering. Contour plot shows 2Post1Pre50 and 1Pre1Post10 (300 at 5
Hz) with (grey contour plot) and with jittering (coloured contour plot).
The circles and squares correspond to the marks in panel a. d, Mean
time spent (s) varying sparsity. Contour plot in grey showing 0% sparsity
for 2Post1Pre50 300 at 5Hz (see Fig. 2f). The contour plots show the
protocol with spike removal sparsities at 0% (NC) 30% (LTP), and 80%
(NC). The triangles correspond to the same marks in panel a. e, Distri-
bution of the 50 ms jittering applied to the causal protocol 1Pre1Post10,
300 at 5 Hz in which nearly half of the pairs turned into anticausal.
The mean frequency is 5 ± 13.5 Hz. The protocol 2Post1Pre50 will
have nearly half of the pairings turning into causal, making them have
a similar firing structure and position inside the LTP region. f, Mean
weight change (%) combining both sparsity (panel b) and jittering (panel
a) for 2Post1Pre50, 300 at 5 Hz. g, Mean weight change (%) of pre and
postsynaptic Poisson spike train delivered simultaneously for 10 s. The
plot shows the plasticity outcome for different presynaptic firing rate
(1000/frequency) for a fixed postsynaptic baseline at 10Hz. The upper
raster plot depicts the released vesicles at 40 Hz and the postsynaptic
baseline at 10Hz (including the AP evoked by EPSP). h), Mean weight
change (%) varying the rate of pre and postsynaptic Poisson spike train
delivered simultaneously for 10 s. The dashed line depicts panel g.
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spike trains for 10s, under9’s experimental conditions. We sys-
tematically varied both the pre and postsynaptic rates (Fig. 7h).
The 10s stimulation protocols induced only LTP, since LTD re-
quires a prolonged stimulation21. LTP magnitude monotonically
increased with the presynaptic rate (Fig. 7g,h). In contrast, LTP
magnitude varied non-monotonically as function of postsynaptic
rate, initially increasing until a peak at 10 Hz, then decreasing
with higher stimulation frequencies. This non-monotonic depen-
dence on post-synaptic rate is inconsistent with classic rate-based
models of Hebbian plasticity. We also investigated how this plas-
ticity dependence on pre- and post-synaptic Poisson firing rates
varies with developmental age (Fig. S2g–i). We found that at P5
no plasticity is induced, at P15 a LTP region appears at around 1
Hz postsynaptic rate, and at P20 plasticity becomes similar to the
mature age, with a peak in LTP magnitude at 10 Hz postsynaptic
rate.

Discussion
We built a model of a rat CA3-CA1 hippocampal synapse, in-
cluding key electrical and biochemical components underlying
synaptic plasticity induction (Fig. 1). We used a novel geometric
readout of CaN-CaMKII dynamics (Fig. 2-4) to predict the out-
comes from a range plasticity experiments with heterogeneous
conditions: animal developmental age (Fig. 5), aCSF composi-
tion (Fig. 6), temperature (Supplemental files), and in vivo-like
firing variability (Fig. 7).

Our model included critical components for plasticity in-
duction at CA3-CA1 synapses: those affecting dendritic spine
voltage, calcium signalling, and enzymatic activation. We were
able to use model to make quantitative predictions, because its
variables and parameters corresponded to biological components.
This property allowed us to incorporate the model components’
dependence on developmental age, external Ca/Mg levels, and
temperature to replicate datasets across a range of experimental
conditions. The model is relatively fast to simulate, taking ∼1
minute of CPU time to run 1 minute of biological time. These
practical benefits should enable future studies to make experi-
mental predictions on dendritic integration of multiple synaptic
inputs42,91,92 and on the effects of synaptic molecular alterations
in pathological conditions. In contrast, abstract models based
on spike timing28,93,94 or simplified calcium dynamics18,30 must
rely on ad hoc adjustment of parameters with less biological
interpretability.

The model was built based the new concept that the full tem-
poral activity of CaN-CaMKII over the stimulus duration51, and
not their instantaneous activity levels18,19, is responsible for plas-
ticity changes. We instantiated this concept by analyzing the joint
CaN-CaMKII activity in the two-dimensional plane and design-
ing polygonal plasticity readout regions (Fig. 3a). In doing so,
we generalised previous work with plasticity induction based on
single threshold and a slow variable26,28,30,95. Here, we used a
two-dimensional readout, but anticipate a straightforward gener-
alisation to higher-dimensions for different cellular processes in
neuroscience but also in systems biology more broadly. The cen-
tral discovery is that these trajectories, despite being stochastic,
can be separated in the plane as function of the stimulus (Fig. 3).
This is the basis of our new synaptic plasticity rule.

Let us describe the intuition behind our model more concisely.

First, we abstracted away the sophisticated cascade of plasticity
expression. Second, the plasticity regions, crossed by the tra-
jectories, are described with a minimal set of parameters, their
tuning is quite straightforward and done once and for all, even
when the joint activity is stochastic. The tuning of the model is
possible thanks to the decoupling of the plasticity process from
the spine biophysics which acts as a feedforward input to the
plasticity Markov chain and from the distributions of the different
trajectories, which are well separated. It is expected that one can
find other model versions (parameters or conceptual) instantiating
our concept that also match the data well.

In our model, some CaMKII-CaN trajectories overshot the
plasticity regions (e.g. Fig. 3d). Although abnormally high and
prolonged calcium influx to cells can trigger cell death96, the ef-
fects of high calcium concentrations at single synapses are poorly
understood. Notably, a few studies have reported evidence con-
sistent with an overshoot, where strong synaptic calcium influx
does not induce LTP20,24,97.

Intrinsic noise is an essential component of the model. How
can the synapse reliably express plasticity but be noisy at the
same time43,44? Noise can be reduced either by redundancy or by
averaging across time, also called ergodicity98. However redun-
dancy requires manufacturing and maintaining more components,
and therefore costs energy. We propose that, instead, plasticity
induction is robust due to temporal averaging by slow-timescale
signalling and adaptation processes. These slow variables reduce
noise by averaging the faster timescale stochastic variables. This
may be a reason why CaMKII uses auto-phosphorylation to sus-
tain its activity and slow its decay time54,99. In summary, this
suggests that the temporal averaging by slow variables, combined
with the separability afforded by the multidimensional readout, al-
lows synapses to tolerate noise while remaining energy-efficient.

We identified some limitations of the model. First, we
modelled only a single postsynaptic spine attached to two-
compartment neuron for soma and dendrite. Second, the model
abstracted the complicated process of synaptic plasticity expres-
sion, and even if this replicated the “early” phase of LTP/LTD
expression in the first 30–60 minutes after induction, slower
protein-synthesis-dependent processes, maintenance processes,
and synaptic pruning proceed at later timescales100. Third, like
most biophysical models, ours contained many parameters (Meth-
ods). Although we set these to physiologically plausible values
and then tuned to match the plasticity data, other combinations
of parameters may fit the data equally well101,102 due to the ubiq-
uitous phenomenon of redundancy in biochemical and neural
systems103,104. Indeed synapses are quite heterogeneous in re-
ceptor and ion channel counts58–60,105, protein abundances106,107,
and spine morphologies65,108, even within the subpopulation of
CA1 pyramidal neuron synapses that we modelled here. It re-
mains to be discovered how neurons tune their synaptic properties
in this vast parameter space to achieve functional plasticity rules,
or implement meta-plasticity109–111.

Several predictions follow from our results. Since the
model respected the stochasticity of vesicle release112,113,
NMDAr60,74,75,114, and VGCC opening59,115,116, the magnitude
of plasticity varied from simulation trial to trial (Methods,
Fig. 3g,4e). This suggests that the rules of plasticity are in-
herently stochastic63,117 and that the variability observed in
experiments9,21,24,33,34,38,40 is not just due to heterogeneity in
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synapse properties. By running extensive simulations over the
space of protocols beyond those tested experimentally (Fig. 3h,i;
4f; 5c,e and f; 6e,f), we made testable predictions for plasticity
outcomes. For example,24 did not find LTD when using classic
post-before-pre stimulation protocols, but the model predicted
that LTD could be induced if the number of pairing repetitions
was extended (Fig. h,i). The model also predicts that the lack of
LTD induced by FDP in adults can be recovered using doublets
or quadruplet spike protocols (Fig. 5d). We tested the model’s
sensitivity to spike time jitter and spike failure in the stimulation
protocols (Fig. 7). Our simulations predicted that this firing
variability can alter the rules of plasticity, in the sense that it
is possible to add noise to cause LTP for protocols that did not
otherwise induce plasticity.

What do these results imply about the rules of plasticity
in vivo? First, we noticed that successful LTP or LTD induc-
tion required a balance between two types of slow variables:
those that attenuate, such as presynaptic vesicle pools and den-
dritic BaP, versus those that accumulate, such as slow enzymatic
integration62,118,119. This balance is reflected in the inverted-U
shaped magnitude of LTP seen as a function of post-synaptic
firing rate (Fig. 7h). Second, although spike timing on millisec-
ond timescales can in certain circumstances affect the direction
and magnitude of plasticity (Fig. 3), in order to drive sufficient
activity of synaptic enzymes, these patterns would need to be
repeated for several seconds. However, if these repetitions are
subject to jitter or failures, as observed in hippocampal spike
trains in vivo82,120, then the millisecond-timescale information
will be destroyed as it gets averaged out across repetitions by the
slow integration processes of CaMKII and CaN (Fig. 7a–d). The
net implication is that millisecond-timescale structure of individ-
ual spike pairs is unlikely to play an important role in determining
hippocampal synaptic plasticity in vivo83,88,121.

In summary, we presented a new type of biophysical model for
plasticity induction at the rat CA3-CA1 glutamatergic synapse.
Although the model itself is specific to this synapse type, the
study’s insights may generalise to other synapse types, enabling a
deeper understanding of the rules of synaptic plasticity and brain
learning.

Data and Software Availability
The code will be available on Github after peer-review process.
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Online Methods
Data and code availability
All simulations were performed in the Julia programming language (version 1.4.2). Simulating the synapse model is equivalent to
sampling a piecewise deterministic Markov process, and this relies on the Julia package PiecewiseDeterministicMarkovProcesses.jl.
These simulations are event-based, and no approximation is made beyond the ones required to integrate the ordinary differential
equations by the method LSODA (Livermore Solver for Ordinary Differential Equations). We run the parallel simulations in the Nef
cluster operated by Inria.

EXPERIMENT PAPER REPETITIONS FREQ (Hz) AGE (DAYS) TEMP. (°C) Ca (mM) Mg (mM)
STDP 1 300 5 56 35 2.5 1.3

STDP 2 100, positive delays
150, negative delays 0.3

14—20
(21 for LTP)

30
(30.45 for LTP) 1.3—3 Ca/1.5

STDP 3 20 0.2 9—45 24—28 2 2

STDP 4 70—100 5 14—21
24—30
(22.5-23) 2 1

pre-burst 1 300 and 900 3 and 5 56 35 2.5 1.3
FDP 5 900 1—50 35 35 2.5 1.5
FDP 6 900 1 7—35 35 2.5 1.5

TBS 6 3—4 (5) epochs
4Pre at 100 Hz
(10x at 5Hz) 6, 14 and 17 35 2.5 1.5

LFS 7 1—600 1 12—28
30
(26.5-31) 2.4 0

Table M1. Table with the parameters extracted from the respective publications. To fit the data associated to publications displaying a parameter
interval (e.g. 70 or 100) we used a value within the provided limits. Otherwise, we depict in red the value used to fit to the data. For complete
data structure on these publications and the ones used for method validation see github code. We allowed the AP to be evoked by EPSPs for these
protocols:5–7. Note that1 used GABA(A)r blocker modelled by turning GABAr conductance to zero. Also,7 LTD protocol used partial NMDA
blocker modelled by reducing NMDA conductance by 97 %.

Modelling procedures
Notations
We write 1A the indicator of a set A meaning that 1A(x) = 1 if x belongs to A and zero otherwise.

Vesicle release and recycling
Vesicle-filled neurotransmitters from the presynaptic terminals stimulate the postsynaptic side when successfully released. We derived
a vesicle release Markov chain model based on a deterministic approach described in8 on page 183. We denote by (t1, · · · , tn) the time
arrivals of the presynaptic spikes.

Vesicles can be in two states, either belonging to the docked pool (with cardinal D) with fast emptying, or to the reserve pool
(with cardinal R) which replenishes D9. The docked pool loses one vesicle each time a release10 occurs with transition D−→ D−1
(Fig. M1C). The reserve pool replenishes the docked one with transition (R,D)→ (R− 1,D+ 1). Finally, the reserve pool is
replenished with rate (R0−R)/τ

re f
D with the transition (R,D)−→ (R+1,D).

TRANSITION RATE INITIAL CONDITION
(R,D)→ (R−1,D+1) (D0−D) ·R/τD D(0) = D0
(R,D)→ (R+1,D−1) (R0−R) ·D/τR R(0) = R0

(R,D)−→ (R+1,D) (R0−R)/τ
re f
R

Table M2. Stochastic transitions used in the pool dynamics. Note that the rates depend on the pool’s cardinal11.

In addition to the stochastic dynamics in Table M2, each spike ti triggers a vesicle release D−→ D−1 with probability prel :

prel(Capre, [Ca2+]o,D) =
(Capre)

s

(Capre)
s +h([Ca2+]o)

s 1D>0, h([Ca2+]o) = 0.654+
1.349

1+ e4·([Ca2+]o−1.708 mM)

which is a function of presynaptic calcium Capre and extracellular calcium concentration [Ca2+]o through the threshold h([Ca2+]o).
To decide whether a vesicle is released for a presynaptic spike ti, we use a phenomenological model of Capre (see Fig. M1A) based on
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a resource-use function12:{
Ċapre =−

Capre
τpre

Capre(0) = 0

Ċa jump =
1−Ca jump

τrec
−δdecay ·Ca jump ·Capre Ca jump(0) = 1.

(1)

Upon arrival of the presynaptic spikes, t ∈ (t1, · · · , tn), we update Capre according to the deterministic jump:

Capre −→Capre +Ca jump.

Finally, after Capre has been updated, a vesicle is released with probability prel (Fig. M1B).
Parameters for the vesicle release model is given in Table M3. The experimental constraints to devise a release probability model

are given by13 and1. Because [Ca2+]o modifies the release probability dynamics14, we fixed an initial release probability of 68 %
for [Ca2+]o = 2.5 mM as reported by1 (initial value in Fig. M1B and D). Additionally,13 report a 38% reduction in the initial release
probability when changing [Ca2+]o from 2.5 mM to 1 mM. Taking these into account, the decreasing sigmoid function in the Fig. M1E
depicts our [Ca2+]o-dependent release probability model (prel).

Fig. M1E shows that our prel function is in good agreement with a previous analytical model14 suggesting that prel([Ca2+]o) ∝

([Ca2+]o)
2 mM−2. Our model also qualitatively reproduces the vanishing of calcium dye fluorescence levels after 20 s of theta trains

from1 (in their Supplementary Materials). We interpret their fluorescence measurements as an effect of short-term depression (see
Fig. M1B).

Despite our model agreeing with previous works, it is a simplified presynaptic model that does not encompass the vesicle release’s
highly heterogeneous nature. Vesicle release dynamics are known to be sensitivity to various experimental conditions such as
temperature15, the age for some brain regions10 or magnesium concentration13. Furthermore, since our model of vesicle dynamics is
simple, τrec in Equation (1) has two roles: to delay the prel recovery caused by Capre inactivation (enforced by δCa in Equation (1))
and to prevent vesicle release after HFS induced depression9,14. Later, we incorporate a higher number of experimental parameters
(age, temperature, [Ca2+]o, [Mg2+]o) with our NMDAr model, the main postsynaptic calcium source.

NAME VALUE REFERENCE
Vesicle release model (stochastic part)
initial number of vesicles at D D0 = 25 5 to 209,16

initial number of vesicles at R R0 = 30 17 to 20 vesicles16

time constant R→ D
(D recycling) τD = 5 s 1 s9

time constant D→ R
(R mixing) τR = 45 s

20 s (when depleted) to 5 min (hypertonic shock)
9,11

time constant 1→ R
(R recycling) τ

re f
R = 40 s 20 to 30 s9

release probability half-activation curve h adjusted to different [Ca2+]o
release probability sigmoid slope s = 2 adjusted to different [Ca2+]o

Vesicle release model (deterministic part)

Capre attenuation recovery τpre = 20 ms 50 - 500 ms for with dye17

therefore < 50 to 500 ms undyed (unbufered)
deterministic jump attenuation recovery τrec = 20 s ∼ 20 s9

deterministic jump attenuation fraction δca = .0004 inactivation of pre calcium18

Table M3. | Parameter values used in the presynaptic model. Our model does not implement a larger pool called "resting pool" containing
∼ 180 vesicles (CA3-CA1 hippocampus)16. Terminology note: In other works, the larger pool with ∼180 vesicles can be found with different
nomenclatures such as "reserve pool"19 or "resting pool"16. Furthemore, the nomenclature used in our model for the reserve pool, can also be found
as "recycling pool" in9,16.
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Fig. M1. | Presynaptic release. a, Presynaptic calcium in response to the protocol 1Pre, 300 at 5 Hz displaying adaptation. b, Release probability for
the same protocol as panel A but subjected to the docked vesicles availability. c, Number of vesicles in the docked and reserve pools under depletion
caused by the stimulation from panel A. d, Plot of the mean (300 samples) release probability (%) for different frequencies for the protocol 1Pre
300 pulses at [Ca2+]o = 2.5 mM. Note that most of the frequencies are dominated by short-term depression, and the model also displays short-term
facilitation (black curve, at 50 Hz). e, Release probability (%) for a single presynaptic spike given the [Ca2+]o. Note that14 model was multiplied by
the experimentally measured release probability at [Ca2+]o = 2 mM since their model has this calcium concentration as the baseline. Our model also
does not cover the abolishing of release probability at [Ca2+]o = 0.5 mM which can also be difficult to experimentally measure given the rarity of
events13.
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NAME VALUE REFERENCE
Passive cable
leak reversal potential Eleak =−70 mV 69mV from20

membrane leak conductance
(for spine and passive dendrite) gleak = 4 ·10−6 nS/µm2 * see table legend21

membrane leak conductance
(only soma) gsoma = 5.31 ·10−3 nS/µm2 3 ·10−4 to 1.3 ·10−3nS/µm222

47 to 2.1 ·103nS (NeuroElectro:CA1)

membrane capacitance Cm = 6 ·10−3 pF/µm2 1 ·10−2 pF/µm223

17 to 177 pF (NeuroElectro:CA1)
axial resistivity of cytoplasm Ra = 1 ·10−2 GΩµm 2 ·10−3 GΩµm24

Dendrite
dendrite diameter Ddend = 2 µm same as25

dendrite length Ldend = 1400 µm apical dendrites, 1200 to 1600 µm26

dendrite surface area Adend = 8.79 ·103 µm2 π ·Ddend ·Ldend
dendrite volume Voldend = 4.4 ·103µm3 π · (Ddend/2)2 ·Ldend
dendritic membrane capacitance Cdend = 52.77 pF Cm ·Adend
dendrite leak reversal potential gleakdend = 3.51 ·10−2 nS gleak ·Adend
dendrite axial conductance gdi f f = 50 nS Ra ·Adend

Soma
soma diameter Dsoma = 30 µm 21 µm27 page 3
soma area (sphere) Asoma = 2.82 ·103 µm2 (4π/3) · (Dsoma/2)3 ; 2.12 ·103 µm228

soma membrane capacitance Csoma = 16.96 pF Cm ·Asoma

soma leaking conductance gleaksoma = 15 nS gsoma ·Asoma
22

Dendritic spine
spine head volume Volsp = 0.03 µm3 same as29

spine head surface Asp = 4.66 ·10−1 µm2 4π · (3Volsp/4π)2/3

spine membrane capacitance Csp = 2.8 ·10−3 pF Cm ·Asp

spine head leak conductance gleaksp = 1.86 ·10−6 nS gleak ·Asp

Dendritic spine neck
spine neck diameter Dneck = 0.1 µm 0.05 to 0.6 µm30

neck length Lneck = 0.2 µm 0.7±0.6 µm31

neck cross sectional area CSneck = 7.85 ·10−3 µm2 π · (Dneck/2)2

neck resistance gneck = 3.92 nS≈ 255.1 MΩ
CSneck/(Lneck ·Ra)

50 to 550 MΩ (275±27 MΩ)32

Table M4. Parameters for the neuron electrical properties. * The membrane leak conductance in the spine is small since the spine resistance is so
high that is considered infinite (> 106MΩ)21, therefore the current mostly leaks through the neck. Additionally, the dendrite leak conductance is
equally small in order to control the distance-dependent attenuation by the axial resistance term gadapt

BaP in Equations 3 and 4.

20/47

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.03.30.437703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437703
http://creativecommons.org/licenses/by-nc-nd/4.0/


Membrane potential and currents
Our model is built over three compartments, a spherical dendritic spine linked by the neck to a cylindrical dendrite connected to a
spherical soma. The membrane potential of these compartments satisfy the equations below (parameters in Table M4). The different
currents are described in the following sections.

Csp ·V̇sp = gneck · (Vdend−Vsp)+gsp
L · (Erev−Vsp)+ IT + IL + IR + INMDA + IAMPA + ISK (2)

Cdend ·V̇dend = gadapt
BaP · (Vsoma−Vdend)+gneck · (Vsp−Vdend)+gdend

L · (Erev−Vdend)+ IGABA (3)

Csoma ·V̇soma = gadapt
BaP · (Vdend−Vsoma)+gsoma

L · (Erev−Vsoma)+βage · (IBaP + INa)+ IK (4)

Action-potential backpropagation (BaP)
Postsynaptic currents
The postsynaptic currents are generated in the soma, backpropagated to the dendritic spine and filtered by a passive dendrite. The
soma generates BaPs using a version of the Na+ and K+ channel models developed by33. The related parameters are described in
Table M5 (the voltage unit is mV).

Sodium channel Potassium channel

αm(Vsoma) = 0.4 · Vsoma +30

1− e−
Vsoma+30

7.2
αn(Vsoma) = e−0.11·(Vsoma−13)

βm(Vsoma) = 0.124 · Vsoma +30

e
Vsoma+30

7.2 −1
βn(Vsoma) = e−0.08·(Vsoma−13)

minf(Vsoma) =
αm(Vsoma)

αm(Vsoma)+βm(Vsoma)
ninf(Vsoma) =

1
1+αn(Vsoma)

mτ(Vsoma) =
1

αm(Vsoma)+βm(Vsoma)
nτ(Vsoma) = max

(
50 · βn(Vsoma)

1+αn(Vsoma)
;2
)

αh(Vsoma) = 0.01 · Vsoma +45

e
Vsoma+45

1.5 −1
ṅ(Vsoma) =

ninf−n
nτ

βh(Vsoma) = 0.03 · Vsoma +45

1− e−
Vsoma+45

1.5
IK = γK ·n · (ErevK−Vsoma)

ḣ(Vsoma) = αh(Vsoma) · (1−h)−βh(Vsoma) ·h

ṁ(Vsoma) =
minf−m

mτ

INa = γNa ·m3 ·h · (ErevNa−Vsoma).

To trigger a BaP, an external current IBaP is injected in the soma at times t ∈ {t1, ..., tn} (postsynaptic input times) for a chosen
duration δin j with amplitude Iamp (nA):

IBaP =
n

∑
i=1

H(ti) · (1−H(ti +δin j)) · Iamp.

The current injected in the soma is filtered in a distance-dependent manner by the dendrite before it reaches the dendritic spine. The
distant-dependent BaP amplitude attenuation changes the axial resistance gadapt

BaP (see equations 3 and 4) between the dendrite and the
soma as follows (Fig. M2C top):

gadapt
BaP = β ·gdi f f ·βsoma, βsoma(dsoma) = 0.1+

1.4
1+ e0.02·(dsoma−230.3µm)

(5)

where dsoma is the distance of the spine to the soma and where the factor β is dynamically regulated based on a resource-use equation12

with a dampening factor βaux changing the size of the attenuation step δdecay:

β̇ =
1−β

τrec
−δdecay ·β−1

aux ·β · IBaP(t)

β̇aux =
1−βaux

τaux
rec

−δaux ·βaux · IBaP(t).
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Fig. M2. | AP Evoked by EPSP. a, Model and data comparison for the distance-dependent BaP amplitude attenuation measured in the dendrite
and varying the distance from the soma. The stimulation in panel A is set to reproduce the same stimulation as24. Golding measurements have
neurons that are strongly attenuated and weakly attenuated (dichotomy mark represented by the dashed line). However, in this work, we consider
only strongly attenuated neurons. b, Attenuation of somatic action potential from37 and model in response to five postsynaptic spikes delivered at
100 Hz. The value showed for the model is the spine voltage with distance from the soma set to zero (scale 25 ms, 20 mV).c, Top panel shows the
βsoma used in Equation (5) to modify the axial conductance between the soma and dendrite. Bottom panel shows the age-dependent changes in the
step of the resource-use equation, in Equation (6) that accelerates the BaP attenuation and decreases the sodium currents in the Equation (4). d,
Probability of evoking an AP multiplied by the successfully evoked AP (pAP(Vevoked) ·1(evoked) for the protocol 1Pre, 300 at 5 Hz (2.5 mM Ca). d,
Two-pool dynamics with the stimulation than panel D showing the vesicle release, the reserve and docked pools, and the evoked AP. e, Probability of
evoking an AP for the protocol 1Pre 300 pulses at different frequencies (3 and 5 Hz have the same probability).

The BaP attenuation model is based on24 data for strongly attenuating neurons. Therefore, the second type of attenuation (weakly
attenuating) in neurons is not considered (dichotomy in Fig. M2A). Fig. M2A compares Golding data to our model and illustrates the
effect of BaP attenuation in the upper panels of Fig. M2A and B.

Table M5 shows the BaP attenuation parameters. The plasticity outcomes as function of the dendritic spine distance from the soma
are shown in Fig. S2C and Fig. S1E.

Age-dependent BaP adaptation
Age-dependent BaP attenuation modifies the neuronal bursting properties through the maturation and expression of potassium and
sodium channels34, therefore changing the interaction of polarizing and depolarizing currents (see Fig. M2B)35,36. We reproduce37

somatic attenuation profiles (Fig. M2B) with our model by including an age-dependent BaP amplitude attenuation factor. We define
the attenuation factor βage (Fig. M2C bottom), as follows.

β̇age =
1− Iage

τ
age
rec

−δage ·βage · IBaP(t), δ
age
rec =

1.391 ·10−4

1+ e0.135(age−16.482 days)
. (6)

In Equation (4), the age effects are introduced by multiplying the attenuation factor βage by the sodium INa and the external IBaP
currents.

AP evoked by EPSP
A presynaptic stimulation triggers a BaP if sufficient depolarization is caused by the EPSPs reaching the soma27 chapter 13. We
included an option to choose whether an EPSP can evoke an AP using an event generator resembling the previous release probability
model (prel). Like the prel , the BaPs evoked by EPSPs are estimated before the postsynaptic simulation. To this, we use a variable
Vevoke which is incremented by 1 at each presynaptic time t ∈ (t1, ..., tn) and has exponential decay:{

V̇evoke =−Vevoke
τv

Vevoke(0) = 0
Vevoke −→Vevoke +1.

(7)
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NAME VALUE REFERENCE
Soma parameters for Na+ and K+ channel

sodium conductance γNa = 8 ·102 nS
0.32 nS/µm233

see legend commentary

potassium conductance γK = 40 nS
0.48 nS/µm233

see legend commentary
reversal potential sodium ErevNa = 50 mV 33

reversal potential potassium ErevK =−90 mV 33

BaP attenuation parameters

attenuation step factor (age) δage
see Equation (6) and Fig. M2B and C bottom

24,37

attenuation step factor δdecay = 1.727 ·10−5 adjusted to fit
24,37

auxiliary attenuation step factor δaux = 2.304 ·10−5 adjusted to fit
24,37

recovery time for the attenuation factor τrec = 2 s
adjusted to fit

24,37

recovery time for the auxiliary attenuation factor τaux
rec = 2 s

adjusted to fit
24,37

recovery time for the age attenuation factor τ
age
rec = 0.5 s

adjusted to fit
24,37

AP evoked by EPSP
decay time for Vevoke τV = 40 ms 23

delay AP evoked by EPSP δdelay−AP = 15 ms 41

Table M5. The Na+ and K+ conductances intentionally do not match the reference because models with passive dendrite need higher current input to
initiate action potentials42. Therefore we set it to achieve the desired amplitude on the dendrite and the dendritic spine according to the predictions
of24 and43.

Since the BaPs evoked by EPSP are triggered by the afferent synapses and are limited by their respective docked pools (D), we use
the previous prel to define the probability of an AP to occur. We test the ratio of successful releases from 25 synapses to decide if a
BaP is evoked by an EPSP, setting a test threshold of 80%. Therefore, we express the probability of evoking an AP, pAP(Vevoke), with
the following test:

∑
25 1(rand < prel(Vevoked , [Ca2+]o,D))

25
> 80 %.

The EPSP summation dynamics on the soma and dendrites depend on the complex neuron morphology38,39 which was not
implemented by our model. Therefore, our "AP evoked by EPSP test" intends to give a simplified way to produce BaPs similar to an
integrate-and-fire model8.

Previous work suggests that BaPs can be evoked with a ∼5 % probability for low-frequencies40 in the Dudek and Bear 1992
experiment ([Ca2+]o = 2.5 mM). Our model covers this estimation, but the chance to elicit an AP increases with the frequency38. This
is captured by the Vevoke (in a integrate-and-fire fashion27) as shown in Fig. M2F. The Fig.s M2D and E show how a 5 Hz stimulation
evokes APs. The delay between the EPSP and the evoked AP is set to δdelay−AP = 15ms, similar to the EPSP-spike latency reported
for CA1 neurons41.

AMPAr
Markov chain
The AMPAr is modeled with the Markov chain (Fig. M3) described by44,45 and adapted to temperature changes according to46. Here,
we introduce the additional parameters ρAMPA

f ,ρAMPA
b to cover AMPAr temperature-sensitive kinetics46. The corresponding parameters

are given in Table M6.
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C0 C1 C2 C3 C4

D0 D1 D2 D3 D4

O2 O3 O4

D22 D23 D24

4k1 · [Glu] ·ρAMPA
f

k−1 ·ρAMPA
b

3k1 · [Glu] ·ρAMPA
f

2k−1 ·ρAMPA
b

2k1 · [Glu] ·ρAMPA
f

3k−1 ·ρAMPA
b

k1 · [Glu] ·ρAMPA
f

4k−1 ·ρAMPA
b

3k1 · [Glu] ·ρAMPA
f

k−2 ·ρAMPA
b

3k1 · [Glu] ·ρAMPA
f

k−1 ·ρAMPA
b

2k1 · [Glu] ·ρAMPA
f

2 · k−1 ·ρAMPA
b

k1 · [Glu] ·ρAMPA
f

3k−1 ·ρAMPA
b

2k1 · [Glu] ·ρAMPA
f

k−1 ·ρAMPA
b

k1 · [Glu] ·ρAMPA
f

2k−1 ·ρAMPA
b

4δ0γ0 δ1γ1 2δ1γ1 3δ1γ1 4δ1γ1

δ2γ2 2δ2γ2 3δ2γ2

α2β α3β α4β

Fig. M3. AMPAr Markov chain with three sub-conductance states and two desensitisation levels. It includes parameters ρAMPA
f , ρAMPA

b (binding and
unbinding of glutamate) which depend on temperature. Open states are O2, O3 and O4; closed states are C0, C1, C2, C3 and C4; desensitisation
states are D0, D1, D2, D3 and D4; deep desensitisation states are D22, D23 and D24.

The AMPAr current is the sum of the subcurrents associated to the occupancy of the three subconductance states O2, O3 and O4
of the Markov chain in the Fig. M3 and described as follows:

IAMPA = (ErevAMPA−Vsp) · (γA2 ·O2+ γA3 ·O3+ γA4 ·O4).

The adaptation of the Markov chain from44 is made by changing the forward ρAMPA
f and backward ρAMPA

b rates in a temperature-
dependent manner matching the decay time reported by46:

ρ
AMPA
f =

10.273
1+ e−0.473·(T−31.724°C)

, ρ
AMPA
b =

5.134
1+ e−0.367·(T−28.976°C)

.

The effects of temperature change on AMPAr dynamics are presented in Fig. M4, which also shows that the desensitisation is
unaltered between temperature changes (Fig. M4B and C). The recovery time from desensitisation is the same as at room temperature44.
Desensitisation measurements are required to account for a temperature-dependent change in the rates of the "vertical" transitions in
Fig. M3, see46. This can be relevant for presynaptic bursts.

Fig. M4. | Effect of temperature in the AMPAr. a, Probability of AMPAr opening ( O2+O3+O4
NAMPA

) and the decay time at different temperatures in
response to 1 mM glutamate during 1 ms (standard pulse).46 data (our model) suggests that AMPAr decay time at 35°C is ∼ 0.5 ms (∼ 0.6 ms) and at
25°C is ∼ 0.65 ms (∼ 0.95 ms), this shows a closer match towards more physiological temperatures. b, Desensitisation profile of AMPAr at 35°C
showing how many AMPAr are open in response to a glutamate saturating pulse (5 mM Glu during 20 ms) separated by an interval (x-axis). c, Same
as in panel B but for 25°C.
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NAME VALUE REFERENCE
Glutamate parameters
duration of glutamate in the cleft gluwidth = 1 ms 47

concentration of glutamate in the cleft gluamp = 1 mM 47

glutamate variability
(gamma distribution Γ) glucv = Γ(1/0.52,0.52) 48

glutamate signal Glu
glucv ·gluamp

for AMPAr, NMDAr and copied to GABA neurotransmitter
AMPAr parameters
number of AMPArs NAMPA = 120 29

reversal potential ErevAMPA = 0 mV 29

subconductance O2 γA2 = 15.5 pS 16.3 pS45

subconductance O3 γA3 = 26 pS 28.7 pS45

subconductance O4 γA4 = 36.5 pS 37.8 pS45

glu binding k1 = 1.6 ·107M−1s−1 44

glu unbinding 1 k−1 = 7400 s−1 44

glu unbinding 2 k−2 = 0.41 s−1 44

closing α = 2600 s−1 44

opening β = 9600 s−1 44

desensitisation 1 δ1 = 1500 s−1 44

desensitisation 2 δ2 = 170 s−1 44

desensitisation 3 δ0 = 0.003 s−1 44

re-desensitisation 1 γ1 = 9.1 s−1 44

re-desensitisation 2 γ2 = 42 s−1 44

re-desensitisation 3 γ0 = 0.83 s−1 44

Table M6. Parameter values for the AMPAr Markov chain and glutamate release affecting NMDAr, AMPAr. Properties of GABA release are the
same as those for glutamate.

Postsynaptic Ca2+ influx
The effects of experimental conditions in the calcium dynamics are due to receptors, ion channels and enzymes. A leaky term models
the calcium resting concentration in the Equation (8). The calcium fluxes from NMDAr and VGCCs (T, R, L types) are given in
Equation (9). The diffusion term through the spine neck is expressed in Equation (10). Finally, the buffer, the optional dye and the
enzymatic reactions are given in Equation (11) (parameter values given at the Table M7):

Ċa =
Ca∞−Ca

τCa
+ (8)

CaNMDA + IT + IR + IL

2 ·F ·Asp
+ (9)

max(Ca∞,Ca/3)−Ca
τCaDi f f

− (10)

˙Bu f fCa− ˙Dye+ enzymes. (11)

Despite the driving force to the resting concentration, Ca∞ = 50 nM, the tonic opening of T-type channels causes calcium to
fluctuate making its mean value dependent on temperature, extracellular calcium and voltage. The effects of this tonic opening in
various experimental conditions are shown in Fig. S4C. To avoid modelling dendritic calcium sources, we use a dampening term
as one-third of the calcium level since calcium imaging comparing dendrite and spine fluorescence have shown this trend49. The
Equation (10) implements the diffusion of calcium from the spine to the dendrite through the neck. The time constant for the diffusion
coefficient τCaDi f f , is estimated as described in50. The calcium buffer and the optional dye are described as a two states reaction
system51:

˙Bu f fCa = kBu f f
on · (Bu f fcon−Bu f fCa) ·Ca− kBu f f

o f f ·Bu f fCa

˙Dye = kFluo5
on · (Fluo5 fcon−Dye) ·Ca− kFluo5

o f f ·Dye.

We estimated the calcium reversal potential for the calcium fluxes using the Goldman–Hodgkin–Katz (GHK) flux equation
described in52. The calcium ion permeability, PCa, was used as a free parameter adjusting a single EPSP to produce a calcium
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amplitude of ∼ 3 µM as reported in53.

φ = zCa ·Vsp ·F/R · (T +273.15K)

ΦCa =−PCa · zCa ·F ·φ ·
[Ca]i− [Ca]o · e−φ

1− e−φ
(12)

ΦCa is used to determine the calcium influx through NMDAr and VGCC in the Equations 13, 14, 15 and 16.

NAME VALUE REFERENCE
Buffer and dye

association buffer constant kBu f f
on = 0.247 µM−1ms−1 29

dissociation buffer constant kBu f f
o f f = 0.524 ms−1 29

buffer concentration Bu f fcon = 62 µM 76.7 µM29

Calcium dynamics
Calcium baseline concentration Ca∞ = 50 nM 37±5 to 54±5 nM17

Calcium decay time τCa = 10 ms
50 to 500 ms for with dye17

therefore < 50 to 500 ms undyed (unbufered)
Calcium diffusion DCa = 0.3338 µm2ms−1 0.22 to 0.4 µm2ms−129,50

Calcium diffusion time constant τCaDi f f =
Volsp

2D2
Ca·Dneck

+
L2

neck
2DCa

= 0.5 ms 8 ms for a Vsp = 0.7 µm350

GHK
temperature T = 35°C converted to Kelvin in the Equation (12) given the protocol
faraday constant F = 96.485 C mol−1 52

gas constant R = 8.314 J K−1 mol−1 52

Calcium permeability PCa = 0.045 µm ms−1 adjusted to produce 3 µM Calcium in response to a Glu release
supplementary files from53

Calcium ion valence zCa = 2 52

Table M7. Postsynaptic calcium dynamics parameters.

NMDAr - GluN2A and GluN2B
Markov chain
In the hippocampus, the NMDAr are principally heteromers composed of the obligatory subunit GluN1 and either the GluN2A or
GluN2B subunits. These N2 subunits guide the activation kinetics of these receptors with the GluN1/GLUN2B heteromers displaying
slow kinetics (∼ 250ms) and the GluN1/GluN2A heteromers displaying faster kinetics (∼ 50ms). We modeled both NMDA subtypes.
The NMDAr containing GluN2A is modeled with the following Markov chain54 where we introduce the additional parameters
ρNMDA

f ,ρNMDA
b :

A0 A1 A2 A3 A4 AO1 AO2

ka · [Glu] ·ρNMDA
f

k−a ·ρNMDA
b

kb · [Glu] ·ρNMDA
f

k−b ·ρNMDA
b

kc ·ρNMDA
f

k−c ·ρNMDA
b

kd ·ρNMDA
f

k−d ·ρNMDA
b

ke ·ρNMDA
f

k−e ·ρNMDA
b

k f ·ρNMDA
f

k− f ·ρNMDA
b

The NMDAr containing GluN2B is modeled with a Markov chain based on the above GluN2A scheme. We decreased the rates by
∼75% in order to match the GluN2B decay at 25°C as published in55.

B0 B1 B2 B3 B4 BO1 BO2

sa · [Glu] ·ρNMDA
f

s−a ·ρNMDA
b

sb · [Glu] ·ρNMDA
f

s−b ·ρNMDA
b

sc ·ρNMDA
f

s−c ·ρNMDA
b

sd ·ρNMDA
f

s−d ·ρNMDA
b

se ·ρNMDA
f

s−e ·ρNMDA
b

s f ·ρNMDA
f

s− f ·ρNMDA
b

The different rates are given in Table M8.

NMDAr and age switch
The age-dependent expression ratio of the subtypes GluN2A and GluN2B (rage) was obtained from hippocampal mice data56. We
added noise to this ratio causing ∼1 NMDAr subunit to flip towards GluN2A or GluN2B (see Fig. M5E). The population of 15
NMDAr is divided in the two subtypes according to the ratio plotted in Fig. M5B as function of age. The ratio to define the number
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Fig. M5. | NMDAr changes caused by age, temperature and extracellular and magnesium concentrations in the aCSF.A Decay time of
the NMDAr-mediated EPSP recorded from neocortical layer II/III pyramidal neurons (grey)57 compared to the decay time from the GluN2B
channel estimated by our model (yellow) and data from Iacobussi’s single receptor recording (purple)55. b, Comparison of our implementation of
GluN2B:GluN2A ratio and the GluN2B:GluN2A ratio from the mice’s CA1. c, Comparison of our implementation of NMDAr conductance change
in response to the extracellular against data58. d, Forward and backwards temperature factors implemented to approximate NMDAr subtypes decay
times at room temperature55 and temperature changes observed in57. e, NMDAr subtypes number on our model given age. We add noise to have
a smoother transition between different ages. f, Calcium concentration changes for causal and anticausal protocols in response to different aCSF
calcium and magnesium compositions with fixed Ca/Mg ratio (1.5). Scale 50 ms and 5 µM.

NMDAr subtypes as function of age reads:

rage = 0.507+
0.964

1+ e0.099·(age−25.102 days)
+N (0,0.05)

NGluN2B = round
(

NNMDA · rage

rage +1

)
NGluN2A = round

(
NNMDA

rage +1

)
.

The round term in the two previous equations ensures that we have an integer value for the NMDAr subtypes, making the stair
shaped curve seen in Fig. M5E.

NMDAr and temperature
We adjusted the GluN2A and GluN2B forward and backward rates to follow the temperature effects on NMDAr-mediated EPSP57

(see Fig. M5A and D). Because GluN2B dominates the NMDAr-mediated EPSP, we fit its decay time on the NMDAr-mediated EPSP
as function of temperature as reported by57 using a logistic functions ρNMDA

f and ρNMDA
b . The decay time comparison is shown in

Fig. M5A. Then, we applied the same temperature factor ρNMDA
f and ρNMDA

b for GluN2A. The decay times of GluN2A and GluN2B
are similar to the ones reported by Iacobucci55. The forward and backward factors are described as follows:

ρ
NMDA
f =−1230.680+

1239.067
1+ e−0.099·(T+37.631°C)

, ρ
NMDA
b = 3.036+

1621.616
1+ e−0.106·(T−98.999°C)

.
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NMDAr current and Ca2+-dependent conductance
NMDAr conductance is modulated by external calcium and is modelled according to the next equations using NMDAr subconductances
AO1 and AO2 (GluN2A), and BO1 and BO2 (GluN2B).

γNMDA = 33.949+
58.388

1+ e4·([Ca2+]o−2.701 mM)
pS

B(Vsp, [Mg]o) =
1

1+ [Mg]o
3.57 · e

−0.062·Vsp

NMDA = (BO1 +BO2 +AO1 +AO2) ·B(Vsp, [Mg]o) · γNMDA

INMDA = (ErevNMDA−Vsp) ·NMDA

We now modify the conductance function γNMDA reported by58. The reported NMDAr conductance at [Ca2+]o = 1.8 mM is
53±5pS. Here, we used the higher conductance 91.3 pS for NMDAr (for both subtypes) at [Ca2+]o = 1.8 mM to compensate for the
small number of NMDArs reported by59. Hence, we cover58 data differently to account for this constraint: this caused a right-shift in
the NMDA-conductance curve (Fig. M5C). The calcium influx CaNMDA is modulated by the GHK factor, Equation (12), as function of
the internal and external calcium concentrations and the spine voltage:

CaNMDA = fCa ·ΦCa ·NMDA. (13)

The combined effect of Magnesium60 and extracellular Calcium concentration are displayed in Fig. M5F.

GABA(A) receptor
Markov chain
We used the GABA(A) receptor Markov chain (Fig. M6) presented in Bush and Sakmann 199063,64 and we estimated temperature
adaptations using Otis and Mody 199265 measurements.

C0 C1 C2

O1 O2

rb1 · [Gaba]

ru1

rb2 · [Gaba]

ru2

ro1rc1 ·ρGABA
b

ro1rc2 ·ρGABA
b

Fig. M6. | GABAr Markov chain model. Closed states (C0, C1 and C2) open in response to GABAr and can go either close again or open (O1 and
O2)

GABA(A)r and temperature
Because the amplitude of GABA(A) current is altered by the GABAr shift66 during development, we applied temperature changes only
to the closing rates using a logistic the function ρGABA

b estimated by fitting65 measurements (data comparison in the Fig. M7B and E).

ρ
GABA
b = 1.470− −1.279

1+ e0.191·(T−32.167) .

GABA(A)r current and age switch
The GABA(A)r-driven current changes during development3 passing from depolarizing (excitatory) to hyperpolarizing (inhibitory)67.
That is, the reversal potential of chloride ions permeating GABA(A)r shifts from above the membrane resting potential (inward driving
force - excitatory) to below the membrane resting potential (outward driving force - inhibitory)66. Such effect mediated by chloride
ions is associated with the KCC2 pump (K Cl co-transporter) which becomes efficient in extruding chloride ions during maturation66.
To cover the GABA(A)r shift, we fit the chloride reversal potential (ECl

rev) using the data published by66 (Fig. M7C):

ECl
rev =−92.649+

243.515
1+ e0.091·(age−0.691 days)

IGABA = (O1 +O2) · (ECl
rev−Vdend) · γGABA.

Table M9 presents the parameters to model the GABAr.
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NAME VALUE ENCE
NMDAr (GluN2A)
glutamate binding ka = 34 µM−1s−1 54

glutamate binding kb = 17 µM−1s−1 54

forward rate kc = 127 s−1 54

forward rate kd = 580 s−1 54

opening rate ke = 2508 s−1 54

opening rate k f = 3449 s−1 54

closing rate k− f = 662 s−1 54

closing rate k−e = 2167 s−1 54

backward rate k−d = 2610 s−1 54

backward rate k−c = 161 s−1 54

glutamate unbinding k−b = 120 s−1 54

glutamate unbinding k−a = 60 s−1 54

NMDAr (GluN2B)
glutamate binding sb = 0.25kb adapted from GluN2A54,55

glutamate binding sc = 0.25kc adapted from GluN2A54,55

forward rate sc = 0.25kc adapted from GluN2A54,55

forward rate sd = 0.25kd adapted from GluN2A54,55

opening rate se = 0.25ke adapted from GluN2A54,55

opening rate s f = 0.25k f adapted from GluN2A54,55

closing rate s− f = 0.23k− f adapted from GluN2A54,55

closing rate s−e = 0.23k−e adapted from GluN2A54,55

backward rate s−d = 0.23k−d adapted from GluN2A54,55

backward rate s−c = 0.23k−c adapted from GluN2A54,55

glutamate unbinding s−b = 0.23k−b adapted from GluN2A54,55

glutamate unbinding s−a = 0.23k−a adapted from GluN2A54,55

other parameters
total number of NMDAr NNMDA = 15 5-3029,47,59

distribution of GluN2A and GluN2B defined by rage
56

NMDAr conductance depending on calcium γNMDA
58

NMDAr reversal potential ErevNMDA = 0 mV 61

fraction of calcium carried by NMDAr fCa = 0.1 62

Table M8. NMDAr parameters.

NAME VALUE ENCE
GABA(A) receptor
number of GABA NGABA = 34 3068

chloride reversal potential see age-dependent equation 66

GABAr conductance γGABA = 36 pS 27 pS69

binding rb1 = 20 ·106M−1 s−1 same as63

unbinding ru1 = 4.6 ·103 s−1 same as63

binding rb2 = 10 ·106 M−1s−1 same as63

unbinding ru2 = 9.2 ·103 s−1 same as63

opening pore rro1 = 3.3 ·103 s−1 same as63

opening pore rro2 = 10.6 ·103 s−1 same as63

closing pore rc2 = 400 s−1 based on63,65

closing pore rc2 = 9.8 ·103 s−1 based on63,65

Table M9. GABAr parameters.
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Fig. M7. | GABA(A)r current, kinetics and chloride reversal potential. a, States of GABA(A)r Markov chain at 25°C in response to a presynaptic
stimulation. Opened = O1 +O2, closed = C0 +C1 +C2. b, Model and data comparison65 for GABA(A)r current at 25°C. Even though data were
recorded from P70 at 25°C and P15 at 35°C, we normalize the amplitude to invert the polarity and compare the decay time. This is done since the
noise around P15 can either make GABAr excitatory or inhibitory as shown by Ecl data in panel C. c, Chloride reversal potential (ECl

rev) fitted to66

data. Note we used both profiles from axon and dendrite age-depended ECl
rev changes since exclusive dendrite data is scarce. d, States of simulated

from GABA(A)r Markov chain at 35°C in response to a presynaptic stimulation. e, Model and data comparison65 for GABA(A)r current at 25°C
(same normalization as in panel B). f, Change in the polarization of GABA(A)r currents given the age driven by the ECl

rev.

VGCC - T, R and L type
Markov chain
A stochastic VGCC model was devised using the channel gating measurements from CA1 rat’s (2-8 weeks) pyramidal neurons by
Magee and Johnston 1995 at room temperature70. Our model has three different VGCC subtypes described by the Markov chains in
Fig. M8: the T-type (low-voltage), the R-type (medium-to-high-voltage) and the L-type (high-voltage).

C0 C1

C2 OR

αR
m(Vsp) ·ρV GCC

f

β R
m(Vsp) ·ρV GCC

b

αR
m(Vsp) ·ρV GCC

f

β R
m(Vsp) ·ρV GCC

b

αR
h (Vsp) ·ρV GCC

fβ R
h (Vsp) ·ρV GCC

b αR
h (Vsp) ·ρV GCC

fβ R
h (Vsp) ·ρV GCC

b

OL1 C0 OL2

β L
1 (Vsp) ·ρV GCC

b

αL(Vsp) ·ρV GCC
f

αL(Vsp) ·ρV GCC
f

β L
2 (Vsp) ·ρV GCC

b

C0 C1

C2 OT

αT
m (Vsp) ·ρV GCC

f

β T
m (Vsp) ·ρV GCC

b

αT
m (Vsp) ·ρV GCC

f

β T
m (Vsp) ·ρV GCC

b

αT
h (Vsp) ·ρV GCC

fβ T
h (Vsp) ·ρV GCC

b αT
h (Vsp) ·ρV GCC

fβ T
h (Vsp) ·ρV GCC

b

Fig. M8. From left to right, R-, L-, and T-type VGCCs Markov chain adapted from Magee and Johnston 199570. The R- (left scheme) and T- type
(right scheme) have a single open state (red colour), respectively, Or and OT . The L-type VGCC (middle) has two open states, OL1 and OL2.

The VGCC Markov chain derived from Magee and Johnston 199570 are composed of two gates (h,m) for T- (Fig. M9A and D)
and R-types (Fig. M9B and E) and a single gate for L-type (Fig. M9C), as described in the equations below.
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R-type h-gate rates

τ
R?
h = 100

hR?
in f (Vsp) =

1

1+ e
Vsp+39

9.2

α
R
h (Vsp) =

hR
in f

τR
h

β
R
h (Vsp) =

1−hR
in f

τR
h

R-type m-gate rates

β
R?
m = 40

mR?
in f =

1

1+ e
3−10

8

α
R?
m r = β

R?
m ·

mR?
in f

1−mR?
in f

τ
R
m =

1
αR?

m +β R?
m

mR
in f =

1

1+ e
3−Vsp

8

α
R
m(Vsp) =

mR
in f

τR
m

β
R
m(Vsp) =

1−mR
in f

τR
m

T-type h-gate rates

τ
T?
h = 50

hT?
in f (Vsp) =

1

1+ e
Vsp+70

6.5

α
T
h (Vsp) =

hT
in f

τT
h

β
T
h (Vsp) =

1−hT
in f

τT
h

T-type m-gate rates

β
T?
m = 1

mT?
in f =

1

1+ e
−32+20

7

α
T?
m r = β

T?
m ·

mT∗
in f

1−mT?
in f

τ
T
m =

1
αT?

m +β T?
m

mT
in f =

1

1+ e
−32−Vsp

7

α
T
m(Vsp) =

mT
in f

τT
m

β
T
m (Vsp) =

1−mT
in f

τT
m

L-type rates

α
L(Vsp) =

0.83

1+ e
13.7−Vsp

6.1

β
L
1 (Vsp) =

0.53

1+ e
Vsp−11.5

6.4

β
L
2 (Vsp) =

1.86

1+ e
Vsp−18.8

6.17

VGCC and temperature
We used the same temperature factor for every VGCC subtype, respectively ρV GCC

f and ρV GCC
b (see Fig. M9F), as follows:

ρ
V GCC
f = 2.503− 0.304

1+ e1.048·(T−30.668)

ρ
V GCC
b = 0.729+

3.225
1+ e−0.330·(T−36.279) .

The VGCC subtypes are differently sensitive to temperature, with temperature factors for decay times ranging from 271 to 50-fold72.
It further complicates if T-type isoforms are considered. Indeed, they can have temperature factors that accelerate or slow down the
kinetics. For instance, when passing from room to physiological temperatures, the isoform Cav3.3 has a closing time ∼50 % faster71

and the isoform Cav3.1 becomes ∼15 % slower. To simplify, the same temperature factor is adopted to all VGCC subtypes.

VGCC currents
The VGCC currents are integrated to the dendritic spine and estimated using the GHK Equation (12), as follows:

IT = γT ·ΦCa ·OT (14)
IR = γR ·ΦCa ·OR (15)
IL = γL ·ΦCa · (OL1 +OL2) (16)
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Table M10 presents the parameters to model the VGCC channels.

NAME VALUE ENCE
VGCC
VGCC T-type conductance γCaT = 12 pS same as70

VGCC R-type conductance γCaR = 17 pS same as70

VGCC L-type conductance γCaL = 27 pS same as70

number of VGCCs 3 for each subtype 1 to 2073

Table M10. VGCC parameters

Fig. M9. | VGCC rates and temperature factors. a, Activation (αm(Vsp)) and deactivation rates (βm(Vsp)) for the T-type m-gate. b, Activation
(αm(Vsp)) and deactivation rates (βm) for the R-type m-gate. c, Activation (αm(Vsp)) and both deactivation rates (β L

2 (Vsp) and β 1
2 (Vsp)) for the L-type

VGCC. d, Activation (αh(Vsp)) and deactivation rates (βh(Vsp)) for the T-type h-gate. e, Activation (αh(Vsp)) and deactivation rates (βh(Vsp)) for the
R-type h-gate. f, Temperature factor applied to all the rates, forward change (ρV GCC

f ) for the α rates and backward change (ρV GCC
b ) for the β rates.

SK channel
The small potassium (SK) channel produces hyperpolarizing currents which are enhanced in the presence of intracellular calcium
elevations. The SK channel current was based on the description of62 as follows:

r(Ca) =
Caσ

Caσ +hσ
SK

ṁsk =
r(Ca) ·ρSK

f −ms

τSK ·ρSK
b

ISK = γSK · (ESK
rev −Vsp) ·msk ·NSK .

We chose a temperature factor to decrease the decay time of hyperpolarizing currents by a factor of two when passing from
physiological to room temperature. Despite that the ences for temperature effects on the SK channel are few, a report74 suggests a
left-ward shift in the SK half-activation when changing from 37°C (hSK = 0.38±0.02 µM) to 25°C (hSK = 0.23±0.01 µM) ; that is
a 65% decrease.

ρ
SK
b = 149.37− 147.61

1+ e0.093·(T−98.85C)
, ρ

SK
f = 0.005+

2.205
1+ e−0.334·(T+25.59C)

Table M11 presents the parameters to model the SK channel.
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NAME VALUE ENCE
SK channel
number of SK channels NSK = 15 10–20075

SK conductance γSK = 10 pS 76

SK reversal potential ESK
rev =−90 mV 62

SK half-activation hSK = 0.333 µM 62

SK half-activation slope σ = 6 4 in62

SK time constant τSK = 6.3 ms 62

Table M11. SK channel parameters.

Enzymes - CaM, CaN and CaMKII
Markov chain
To model the enzymes dynamics, we adapted a monomeric CaM-CaMKII Markov chain from77 which builds over78. Our adaptation
incorporates a simplified CaN reaction which only binds to fully saturated CaM. That is, CaM bound to four calcium ions on N
and C terminals (see Markov chain in the Fig. M10). A consequence of the Pepke coarse-grained model is that calcium binds and
unbinds simultaneously from the CaM terminals (N,C). We assumed no dephosphorylation reaction between CaMKII and CaN since79

experimentally suggested that no known phosphatase affects CaMKII decay time which is probably caused only by CaM untrapping79.
This was previously theorized by80’s model, and it is reflected in Chang data53,77. The structure of the corresponding Markov chain is
shown in Fig. M10.

Chang’s data77 provides a high-temporal resolution fluorescence measurements for CaMKII in the spines of rat’s CA1 pyramidal
neurons and advances the description of CaMKII self-phosphorylation (at room temperature). We modified Chang’s model of CaMKII
unbinding rates k2,k3,k4,k5 to fit CaMKII dynamics at room/physiological temperature as shown by53 supplemental files. Previous
modelling of CaMKII77,78 used a stereotyped waveform with no adaptation to model calcium. Our contribution to CaMKII modelling
was to use calcium dynamics sensitive to the experimental conditions to reproduce CaMKII data, therefore, allowing us to capture
physiological temperature measurements from53. Note that CaMKII dynamics has two time scales and we only capture the fastest one
(after stimulation ceases, 60 s) and the relative amplitude of CaMKII between the different temperatures. The slowest one occurs
at the end of the stimulus, close to the maximum (Fig. M11A); this can be caused by the transient volume increase in the spine as
measured by53.

Table M12 shows the concentration of the enzymes and Table M13 shows the parameters to model enzymes reactions in the Fig.
M10.

NAME VALUE REFERENCE
Enzyme concentrations
free CaM concentration CaMcon = 30 µM 81

free KCaM concentration mKCaMcon = 70 µM 82,83

free CaN concentration mCaNcon = 20 µM 5–20 µM84

Table M12. Concentration of each enzyme.

Temperature effects on enzymatic-activity
We then included temperature factors in the coarse-grained model using Chang data77, as shown in Fig. M11. For CaMKII, we fitted
the modified dissociation rates of the phosphorylation states k2, k3 and k5 to match the data on relative amplitude and decay time using
the following logistic function:

ρ
CaMKII
b = 162.171− 161.426

1+ e0.511(T−45.475°C)
.

For CaN, we fit the85’ data at 25°C as seen in Fig. M12A. However, since CaN-CaM dissociation rates at physiological temperatures
were not found, we set the temperature factor to CaN that fits the outcomes of the protocols we proposed to reproduce. A reference
value from the CaN-AKAP79 complex86 showed a Q10 = 4.46 = (2.19 s−1/9.78 s−1) which is nearly the temperature factor used in
our model for CaM. Therefore, both the association and dissociation rates are modified using the following logistic functions:

ρ
CaN
f = 2.503− 0.304

1+ e1.048(T−30.668°C)

ρ
CaN
b = 0.729+

3.225
1+ e−0.330(T−36.279°C)

.

33/47

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.03.30.437703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.30.437703
http://creativecommons.org/licenses/by-nc-nd/4.0/


CaM0 CaM2N

CaM2C CaM4

KCaM0 KCaM2N

KCaM2C KCaM4

PCaM0 PCaM2N

PCaM2C PCaM4

P mKCaM

P2

CaNCaM4

CaM-Ca and CaM-CaN reactions

KCaM-Ca reactions

KCaM phosphorylation

autonomous activity

k2N
f

k2N
b

k2N
f

k2N
b

k2C
f

k2C
b

k2C
f

k2C
b

kK2N
f

kK2N
b

kK2N
f

kK2N
b

kK2C
f

kK2C
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kK2C
f

kK2C
b

kCaM0
bkCaM0

f kCaM2N
bkCaM2N

f

kCaM2C
bkCaM2C

f kCaM4
bkCaM4

f

F · k1 F · k1

F · k1 F · k1

ρCaMKII
b · k5k4

ρCaMKII
b · k2 ρCaMKII

b · k2

ρCaMKII
b · k2ρCaMKII

b · k2

ρCaN
f · kCaN

f

ρCaN
b · kCaN

b

ρCaMKII
b · k3

Fig. M10. | Coarse-grained model of CaM, CaMKII and CaN adapted from77 and78 The reaction description matches with the color: Releases
2Ca, consumes 2Ca, consumes mKCaM, releases mKCaM, releases CaM2C, CaM2N, CaM0, CaM2N, releases mCaN, consumes mCaN, phoshorylate
K units to P units, phosphorylated states and dephosphorylation.
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Fig. M11. | CaMKII temperature changes in our model caused by 1Pre, 30 at 0.49 Hz with Glutamate uncaging (no failures allowed), 1Mm
Ca, 2mM Mg, P4-7 organotypic slices from mice hippocampus. a, CaMKII fluorescent probe lifetime change measured by53 for 25°(blue) and
35°C (red)53. The decay time (τ) was estimated by fitting the decay after the stimulation (30 pulses at 0.49Hz) using a single exponential decay,
y = a ·e−t·b ; τ = 1\b. b, Simulation of the CaMKII concentration change (with respect to the baseline) at 25°in response to same protocol applied in
the panel A. The simulations on the panels B, C, E and F show the mean of 20 samples. c, Same as in panel B but for 35°C. d, Estimated temperature
change factor for the dissociation rates k2, k3 and k5 in the Markov chain at the Fig. M10. e, Change in the concentration of the CaMKII states
(25°C) which are summed to compose CaMKII change in the panel B. f, Same as in panel E for 35°C with reference to the panel C.

Fig. M12. | CaN temperature changes in our model caused by 1Pre, 100 at 20 Hz with Glutamate uncaging (no failures allowed), 2Mm Ca,
Free Mg, 11-13 days in vitro. a, Simulated caN change (blue solid line) in response to the same stimuli of the CaN measurement from85 RY-CaN
fluorescent probe (green solid line). The decay time (τ) estimated from data (y = a · e−t·b) is 94.83 s (dashed purple line) and for our model (solid
purple line) is 82.66 s. b, Simulated CaN change for physiological temperature with decay time 54.44 s. Due to the lack of data, CaN kinetic change
was set to fit plasticity on the protocols use in this work. c, Temperature change, ρCaN

f and ρCaN
b , aplied to CaN association and dissociation rates.

Our dissociation rate becomes 0.006 s−1 for 22°C (same temperature as in87), 0.0012 s−1), at the same temperature the association rate becomes
9.45 ·106M−1s−1 (46 ·106M−1s−1 in87).
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REACTIONS VALUE REFERENCE
Coarse-grained model, CaM-Ca reactions
CaM0 + 2Ca⇒ CaM2C
CaM2N + 2Ca⇒ CaM4 k2C

f = adapt(k1C
on ,k

2C
on ,k

1C
o f f ,k

2C
on ,Ca) 78

CaM0 + 2Ca⇒ CaM2N
CaM2C + 2Ca⇒ CaM4 k2N

f = adapt(k1N
on ,k

2N
on ,k

1N
o f f ,k

2N
on ,Ca) 78

CaM2C⇒ CaM0 + 2Ca
CaM4⇒ CaM2N + 2Ca k2C

b = adapt(k1C
o f f ,k

2C
o f f ,k

1C
o f f ,k

2C
on ,Ca) 78

CaM2N⇒ CaM0 + 2Ca
CaM4⇒ CaM2C + 2Ca k2N

b = adapt(k1N
o f f ,k

2N
o f f ,k

1N
o f f ,k

2N
on ,Ca) 78

k1C
on = 5 ·106M−1s−1 1.2 to 9.6 ·106M−1s−178

k2C
on = 10 ·106M−1s−1 5 to 35 ·106M−1s−178

k1N
on = 100 ·106M−1s−1 25 to 260 ·106M−1s−178

k2N
on = 200 ·106M−1s−1 50 to 300 ·106M−1s−178

k1C
o f f = 50 s−1 10 to 70 s−178

k2C
o f f = 10 s−1 8.5 to 10 s−178

k1N
o f f = 2000 s−1 1 ·103 to 4 ·103 s−178

k2N
o f f = 500 s−1 0.5 ·103 to > 1 ·103 s−178

Coarse-grained model, KCaM-Ca reactions
KCaM0 + 2Ca⇒ KCaM2C
KCaM2N + 2Ca⇒ KCaM4 kK2C

f = adapt(kK1C
on ,kK2C

on ,kK1C
o f f ,k

K2C
on ,Ca) 78

KCaM0 + 2Ca⇒ KCaM2N
KCaM2C + 2Ca⇒ KCaM4 kK2N

f = adapt(kK1N
on ,kK2N

on ,kK1N
o f f ,k

K2N
on ,Ca) 78

KCaM2C⇒ KCaM0 + 2Ca
KCaM4⇒ KCaM2N + 2Ca kK2C

b = adapt(kK1C
o f f ,k

K2C
o f f ,k

K1C
o f f ,k

K2C
on ,Ca) 78

KCaM2N⇒ KCaM0 + 2Ca
KCaM4⇒ KCaM2C + 2Ca kK2N

b = adapt(kK1N
o f f ,k

K2N
o f f ,k

K1N
o f f ,k

K2N
on ,Ca) 78

kK1C
on = 44 ·106M−1s−1 78

kK2C
on = 44 ·106M−1s−1 78

kK1N
on = 76 ·106M−1s−1 78

kK2N
on = 76 ·106M−1s−1 78

kK1C
o f f = 33 s−1 78

kK2C
o f f = 0.8 s−1 0.49 to 4.9 s−178

kK1N
o f f = 300 s−1 78

kK2N
o f f = 20 s−1 6 to 60 s−178

Coarse-grained model, CaM-mKCaM reactions
CaM0 + mKCaM⇒ mKCaM0 kCaM0

f = 3.8 ·103M−1s−1 78

CaM2C + mKCaM⇒ mKCaM2C kCaM2C
f = 0.92 ·106M−1s−1 78

CaM2N + mKCaM⇒ mKCaM2N kCaM2N
f = 0.12 ·106M−1s−1 78

CaM4 + mKCaM⇒ mKCaM4 kCaM4
f = 30 ·106M−1s−1 14 to 60 ·106M−1s−178

mKCaM0⇒ CaM0 + mKCaM kCaM0
b = 5.5 s−1 78

mKCaM2C⇒ CaM2C + mKCaM kCaM2C
b = 6.8 s−1 78

mKCaM2N⇒ CaM2N + mKCaM kCaM2N
b = 1.7 s−1 78

mKCaM4⇒ CaM0 + mKCaM kCaM4
b = 1.5 s−1 1.1 to 2.3 s−178

Coarse-grained model, self-phosphorylation reactions
KCaM0⇒ PCaM0
KCaM2N⇒ PCaM2N
KCaM2C⇒ PCaM2C
KCaM4⇒ PCaM4

k1 = 12.6 s−1 77

Fraction of activated CaMKII F =CaMKII/mKCaMcon see Equation (17)77

PCaM0⇒ P+CaM0
PCaM2N⇒ P+CaM2N
PCaM2C⇒ P+CaM2C
PCaM4⇒ P+CaM4

k2 = 0.33−1 0.33 s−1 ; adapted from77

P⇒mKCaM k3 = 4 ·0.17s−1 0.17s−1 adapted from77

P⇒P2 k4 = 4 ·0.041s−1 0.041s−1 adapted from77

P2⇒P k5 = 8 ·0.017s−1 0.017s−1adapted from77

Calcineurin model, CaM-CaM4 reactions
CaM4+mCaN⇒mCaNCaM4 kCaN

f = 10.75 ·106M−1s−1 46 ·106M−1s−187

mCaNCaM4⇒CaM4+mCaN kCaN
b = 0.02 s−1 0.0012 s−187

see temperature factor

Table M13. Parameters for the coarse-grained model published in78 and adapted by77 and this work.78 rate adaptation for the coarse-grained model
adapt(a,b,c,d,Ca) = a·b

c+d·Ca .
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Readout
We describe the readout mechanism which provides the plasticity event which takes place in the synapse. First, we define the following
variables which are representative of "active CaMKII" and "active CaN":

Active CaN
CaN =CaN4

Active CaMKII
KCaM = KCaM0+KCaM2C+KCaM2N +KCaM4
PCaM = PCaM0+PCaM2C+PCaM2N +PCaM4

CaMKII = KCaM+PCaM+P+P2. (17)

It is known that the calcium entry initiates a cascade of events that ultimately leads to short and long term plasticity changes. Specific
concentrations of CaMKII and CaN trigger activation functions actD and actP when they belong to one of the two polygonal regions
(P and D), termed plasticity regions:

˙actD = aD ·1D−bD · (1−1D) ·actD
˙actP = aP ·1P−bP · (1−1P) ·actP.

To Specify the LTP/LTD rates, termed Drate and Prate, we use the activation functions, actD and actP, as follows:

Prate(actP) = t−1
P

acthP
P

acthP
P +KhP

P

Drate(actD) = t−1
D

acthD
D

acthD
D +KhD

D

.

The Markov plasticity chain (see Fig. M13) starts with initial conditions NC=100, LTD=0 and LTP=0. Fig. M14 shows how the
readout works to predict plasticity for a single orbit. Table M14 shows the parameters to define the polygons of the plasticity regions
(see Fig. M14)B.

LTD NC LTP
Prate(actP)

Drate(actD)

Prate(actP)

Drate(actD)

Fig. M13. | Plasticity Markov Chain.
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Fig. M14. | Plasticity readout for the protocol 1Pre2Post10, 300 at 5Hz, from1. a, CaMKII and CaN activity in response to protocol 1Pre2Post10.
b, Enzymatic joint activity in the 2D plane showing LTP and LTD’s plasticity regions. The black point marks the beginning of the stimulation, and
the white point shows the end of the stimulation after 60 s. c, Region indicator illustrating how the joint activity crosses the LTP and the LTD regions.
d, The leaky activation functions are used respectively as input to the LTP and LTD rates. The activation function has a constant rise when the
joint-activity is inside the region, and exponential decay when it is out. e, The LTD rate in response to the leaky activation function, actD, in panel D.
Note that this rate profile occurs after the stimulation is finished (60 s). The joint-activity is returning to the resting concentration in panel A. f, The
LTP rate in response to the leaky activation function, actP, in panel D. g, Outcome of the plasticity Markov chain in response to the LTD and LTP
rates. The EPSP change (%) is estimated by the difference between the number of processes in the states LTP and LTD, LT P−LT D. h, Normalized
LTP and LTD rates (multiplied to their respective time constant, tD, tP) sigmoids. The dashed line represents the half-activation curve for the LTP and
LTD rates. Note in panel D that the leaky activation function reaches the half-activation Kp = 1.3e4.

NAME VALUE REFERENCE
Leaking variable (a.u.)
rise constant inside the LTD region aD = 0.1 a.u. ·ms−1 fitted to cover all protocols in Table M1
rise constant inside the LTP region aP = 0.2 a.u. ·ms−1 fitted to cover all protocols in Table M1
decay constant outside the LTD region bD = 2 ·10−5 a.u. ·ms−1 fitted to cover all protocols in Table M1
decay constant outside the LTP region bP = 1 ·10−4 a.u. ·ms−1 fitted to cover all protocols in Table M1
Plasticity Markov chain
LTD rate time constant tD = 1.8 ·104 ms fitted to cover all protocols in Table M1
LTP rate time constant tP = 1.3 ·104 ms fitted to cover all protocols in Table M1
hill coefficient LTP hP = 2 fitted to cover all protocols in Table M1
hill coefficient LTD hD = 2 fitted to cover all protocols in Table M1
half occupation LTP KP = 1.3 ·104 a.u. fitted to cover all protocols in Table M1
half occupation LTD KD = 8 ·104 a.u. fitted to cover all protocols in Table M1
Plasticity region (edges of the polygons)
LTP region (CaMKII) - top border 29.5 fitted to cover all protocols in Table M1
LTP region (CaMKII) - bottom border 1.4 fitted to cover all protocols in Table M1
LTP region (CaN) - right border 10. fitted to cover all protocols in Table M1
LTP region (CaN) - left border 6.35 fitted to cover all protocols in Table M1
LTD region (CaMKII) - top border 29.5 fitted to cover all protocols in Table M1
LTD region (CaMKII) - bottom border 1.4 fitted to cover all protocols in Table M1
LTD region (CaN) - right border 1.85 fitted to cover all protocols in Table M1
LTD region (CaN) - left border 6.35 fitted to cover all protocols in Table M1
LTD region - upper diagonal (line equation in the 2D map) CaMKII =+1.64 ·CaN +20.20 fitted to cover all protocols in Table M1
LTD region - lower diagonal (line equation in the 2D map) CaMKII =−5.18 ·CaN +20.91 fitted to cover all protocols in Table M1

Table M14. Parameters to define the plasticity readout.
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Supplementary files
Supplemental files present some experiments and predictions extending the notion of parameter sensitivity. Also, they show the effect
of modifications in the experimental parameters in Table M1. For instance, Fig. S1 show variations on1’s experiment.

Fig. S1. | Varying1 experimental parameters. Related to Fig. . a, Mean synaptic weight change for 1Pre2Post(delay) varying the temperature,
original temperature is 35°C (dashed grey line). b, Mean synaptic weight change for 1Pre2Post(delay) varying the age, original age is P50-55 (dashed
grey line). c, Mean synaptic weight change for 1Pre2Post(delay) varying the frequency, original frequency is 5 Hz (dashed grey line). d, Mean
synaptic weight change for 1Pre2Post(delay) varying the [Ca2+]o, original [Ca2+]o= 2.5 mM (dashed grey line). e, Mean synaptic weight change for
1Pre2Post(delay) varying the distance from the soma, original distance is 200 µm (dashed grey line). A similar trend in distal spines was previously
found in2. f, Mean synaptic weight change of 1Pre2Post50 and 2Post1Pre50 when number of pulses increases or deacreses. Note the similarity with3

in Fig. S4C.
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Fig. S2 shows variations of4 parameters for [Ca2+]o, [Mg2+]o, temperature and dendritic spine distance from the soma. Also, it
shows the Poisson spike train protocol (as in Fig. G and H) for temperature and age parameters obtained from an estimation of the
body temperature regulation during development (or thermoregulation maturation, also called maturation of temperature homeostasis,
estimated in Fig. S5G).

Fig. S2. | Varying experimental parameters in4 and Poisson spike train during development. Related to Fig. and . a, Mean synaptic weight
change for the FDP experiment varying the [Mg2+]o, original [Mg2+]o= 1.5 mM (dashed grey line). b, Mean synaptic weight change for the FDP
experiment varying the [Ca2+]o, original [Ca2+]o= 2.5 mM (dashed grey line). c, Mean synaptic weight change for the FDP experiment varying
the distant from the soma, original 200 µm (dashed grey line). Changing the distance from the soma modifies how fast BaPs evoked by EPSP will
attenuate. Note that LTD is prevalent for a spine situated far from the soma. This could justify why spines distant from the soma are smaller in size
since distance correlates with synaptic weight. d, Mean synaptic weight change for the FDP experiment varying the temperature, original temperature
35°C (dashed grey line). e, Mean synaptic weight change for the FDP experiment varying the pairing repetitions at 33°C showing how LTD is
enhanced. f, Mean synaptic weight change for the FDP experiment varying the pairing repetitions at 37°C showing how LTD is abolished. g, Mean
synaptic weight change for pre and postsynaptic Poisson spike train during 30 s for P5 and 34°C. The panel shows that there is weak and diffused
LTP. h, Mean synaptic weight change for pre and postsynaptic Poisson spike train during 30 s for P15 and 35°C. The panel shows that there is a start
of LTP window forming for slow postsynaptic rates (<1 Hz). i, Mean synaptic weight change for pre and postsynaptic Poisson spike train during 30 s
for P20 and 35°C. The panel shows that a window forms around 10 Hz postsynaptic rate similar to what is shown by5 and in Fig. H.

Fig. S3 expands the presynaptic burst strategy hypothesized to recover the LTD in adult slices (Fig. C) for 900 pairing repetitions.
Also, Fig. S3 tries to isolate the contribution of each age-dependent mechanism (NMDAr, GABAr, BaP efficiency switches) for 3 and
5 Hz predictions in6 experiment. To this we fixed each of the three mechanisms coding for age in our model at P5 and P50, to observe
how they shape the plasticity. Note the experiment in Fig. S4D-I is only to theoretically show how each age mechanism contributes to
plasticity in Fig. . Also we compare predictions of between different STDP experiments across age.
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Fig. S3. | Duplets, triplets and quadruplets for FDP, perturbing developmental-mechanisms for LFS and HFS in6, and age-related changes
in STDP experiments1,7,8. Related to Fig. and . a, Mean synaptic weight change (%) for the duplet-FDP (2Pre50) experiment varying age. The
panel shows showing that not only LTD is enhanced but also LTP. b, Mean synaptic weight change (%) for the triplet-FDP (3Pre50) experiment
varying age. The panel shows that LTD magnitude further enhanced for adult rats and that a leftward shift of the LTD-LTP transition. c, Mean
synaptic weight change (%) for the quadruplet-FDP (4Pre50) experiment varying age. The panel shows a further leftward shift on the LTD-LTP
transition (compared to 3Pre50). d, Mean synaptic weight change (%) for the 1 Pre 900 at 30 and 3 Hz with6. The panel shows the fixed NMDAr at
P5 (more GluN2B) causing an increase of LTD magnitude and a slight increase of LTP magnitude for adult rats compared to baseline (grey solid
line). e, Same experiment as panel D but fixing BaP maturation at P5 (higher BaP attenuation). LTP is abolished, but LTD is not affected. This
is because AP induced by EPSP attenuate too fast for 30 Hz not able to produce enough depolarization to activate NMDAr Mg-unblock. f, Same
experiment as panel D but fixing GABAr maturation at P5 (excitatory GABAr) what causes only slightly enhances LTD (3 Hz) for adult rats. g, Same
experiment as panel D but fixing NMDAr at P50 (more GluN2A). LTD appears with decreased magnitude for young rats compared to baseline (grey
solid line). h, Same experiment as panel D but fixing BaP maturation at P50 (less BaP attenuation). LTP is enhanced for young rats because the BaP
pairing with the slow closing GluN2B produces more calcium influx. i, Same experiment as panel D but fixing GABAr maturation at P50 (inhibitory
GABAr) which does not affect the FDP experiment. j, Mean synaptic weight change (%) for8’s single versus burst-STDP experiment for different
ages. The data from Meredith (boxplots) were pooled by the age as shown in the x-axis. The solid line represents the mean, and the shaded ribbon
the 2nd and 4th quantiles simulated by the model (same for panels A-F). k, Mean synaptic weight change (%) for7’s STDP experiment in which the
number of postsynaptic spikes increases. The x-axis marker from 14-21 indicates that only this interval was published without further specification.
We use our model to estimate age related changes to7 protocols. Note that the model does not cover the 1Pre2Post10 properly (model predicts only
outcomes near the first data quantile). Notice that single and burst STDP leads to LTD, meanwhile8’s to LTP or NC. l, Mean synaptic weight change
(%) for1’s STDP experiment which compares single versus burst STDP. The x-axis marker from 50-55 indicates that only a interval was published
without further specification. We use our model to estimate age related changes to1 protocols. It is noticeable that each STDP experiment has a
different development.
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Fig. S4 presents modifications of7’s STDP experiment and the reproduction of3 data.

Fig. S4. | [Ca2+]o and [Mg2+]o related modifications for7’s experiment. Related to Fig. . a, Mean time spent for anticausal pairing, 1Post1Pre10,
at different Ca/Mg concentrations. The contour plots are associated with the Fig. A, B and C. b, STDP and extracellular Ca/Mg. Synaptic weight
change (%) for causal (1Pre1Post10, 100 at 0.3 Hz) and anticausal (1Post1Pre10, 150 at 0.3 Hz) pairings varying [Ca2+]o from 1.0 to 3 mM (Ca/Mg
ratio = 1.5). c, Varying frequency and extracellular Ca/Mg for the causal pairing 1Pre1Post10, 100 at 0.3 Hz. Synaptic weight change (%) for a single
causal pairing protocol varying frequency from 0.1 to 10 Hz. [Ca2+]o was fixed at 1.8 mM (Ca/Mg ratio = 1.5). d, Mean synaptic weight change (%)
for7’s STDP experiment showing how temperature qualitatively modifies plasticity. The dashed lines are ploted in panel B. e, Mean synaptic weight
change (%) showing effects 0.5°C from panel A. Black and grey solid lines represent the same color dashed lines in panel A (30 and 30.5°C). The
bidirectional curves, black and grey lines in panel A (dashed) and panel B (solid), becoming full-LTD when temperature increases to 34.5 and 35°C,
respectively yellow and purple lines in panel A (dashed) and panel B (solid). Further increase abolishes plasticity. f, Mean synaptic weight change
(%) for3’s experiment in Free-Mg ([Mg2+]o= 10−3mM for best fit) showing the different time requirements to induce LTP and LTD. For LTD, to
simulate the NMDAr antagonist D-AP5 which causes a NMDAr partial blocking we reduced the NMDAr conductance by 97%. Note the similarity
with Fig. S1F. g, Mean synaptic weight change (%) of7’s STDP experiment changing [Ca2+]o and Ca/Mg ratio. h, Mean synaptic weight change (%)
of7’s STDP experiment changing pre-post delay time and frequency. Note the similarity with Fig. S1C. i, Mean synaptic weight change (%) of7’s
STDP experiment changing pre-post delay time and age. Age has a weak effect on this experiment done at [Ca2+]o= 2.5 mM.
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Fig.S5 shows multiple aspects related to temperature in STDP experiments and the temperature and age choices for the publications
described in Table M1 compared to physiological conditions. We estimate how the rat’s body temperature physiologically evolves in
function of age using9 and10’s data.

Fig. S5. | Age and temperature effects. Related to Fig. and . a, Mean synaptic weight change (%) for11’s STDP experiment for 1Pre1Post10,
70-100 at 5 Hz (see Table M1) showing a full LTD window. Our model also reproduces the fact that increasing temperature to 32-34°C the LTD is
abolished (data not shown). b, Mean synaptic weight change (%) for11’s STDP experiment for 1Pre2Post10, 70-100 at 5 Hz (see Table M1) showing
a bidirectional window. c, Mean synaptic weight change (%) for11’s STDP experiment for 1Pre2Post10, 20-30 at 5 Hz (see Table M1) showing a
bidirectional window. We report that for11 experiment done in room temperature the temperature sensitivity was higher than other experiments. d,
Core temperature varying with age representing the thermoregulation maturation. This function (not shown) was fitted using rat10 and mouse data9

added by 1°C to compensate species differences10. The blue and white bars represent the circadian rhythm as shown in9. However, the "rest rhythm"
for young rats (P5-14) may vary. e, Plot showing how far from being physiological are plasticity experiments done in physiological temperatures.
Suggesting, there is scarcity of physiologically relevant data to model and understand plasticity. The dashed grey line is an approximation of the
mean value from panel G. f, Initial conditions for CaN-CaMKII resting concentration for different [Ca2+]o and temperature values. When [Ca2+]o is
changed temperature is fixed at 35°C, while temperature is changed [Ca2+]o is fixed at 2 mM.
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