1

2

The parasitic nematode *Strongyloides ratti* exists as populations of long-lived asexual lineages.

- Rebecca Cole¹, Nancy Holroyd², Alan Tracey², Matt Berriman² and Mark Viney^{1,3}
- 1. School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
- 9 2. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB1010 1SA, UK.
- 3. Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L697ZB, UK.
- 14

11

15

16 Abstract

Nematodes are important parasites of people and animals, and in natural ecosystems they 17 are a major ecological force. Strongyloides ratti is a common parasitic nematode of wild rats 18 and we have investigated its population genetics using single worm, whole genome 19 20 sequencing. We find that S. ratti populations consist of mixtures of asexual lineages, widely 21 dispersed across the host population. Genes that underly the parasitic phase of its life cycle 22 are hyperdiverse, compared with the rest of the genome. These patterns of parasitic nematode population genetics have not been found before and may also apply to 23 Strongyloides spp. that infect people. 24

25 Introduction

26

Parasitic nematodes are important parasites of humans, livestock and other animals. In 27 humans, parasitic nematodes are responsible for 4 of the twenty World Health Organization-28 defined Neglected Tropical Diseases (WHO 2021). In natural ecosystems parasitic 29 nematodes are highly abundant and so a major force affecting host populations (Lafferty et 30 al., 2005; Kuris et al., 2008), so understanding parasites' biology is critical in understanding 31 wider ecological patterns and processes. Study of the population genetics of parasitic 32 nematodes can give important insights into their biology and patterns of transmission in host 33 34 populations. This has been studied extensively in nematodes parasitizing livestock, for example finding that they exist with very large effective populations sizes, showing limited 35 population genetic substructure, likely due to the high rate of livestock movement (Blouin et 36 al. 1985; Redman et al., 2015; Sallé et al., 2019). The population genetics of parasitic 37 38 nematodes infecting humans has also been investigated to understand their host range and 39 zoonotic potential (Criscione et al., 2007; Thiele et al., 2018). In contrast, there has been much more limited study of the population genetics and genomics of nematodes infecting 40 natural, unmanaged species (Cole and Viney, 2018). 41

42

Strongyloides spp. are a genus of parasitic nematodes, with two species - S. stercoralis and 43 44 S. fuelleborni – infecting some 100-200 million people worldwide. S. ratti is a common parasite of rats, Rattus norvegicus (Fisher and Viney, 1998). In the Strongyloides spp. life 45 46 cycle hosts are infected by parasitic female worms only that reproduce parthenogenetically (Viney, 1994), producing eggs that pass out of the host in its faeces. Outside of the hosts, 47 larvae can develop directly into infective larvae that then infect new hosts. Alternatively, and 48 49 facultatively, larvae outside of the host can develop into a single generation of free-living 50 adult males and females that reproduce sexually (Viney et al., 1993), with their progeny then 51 also developing into infective larvae to infect new hosts. Genetically, this means that 52 Strongyloides reproduces by obligatory mitotic parthenogenesis inside the host and by 53 facultative sexual reproduction outside of the host. The choice between asexual, direct development and sexual, indirect development is affected by environmental conditions 54 55 (particularly the host immune response and the temperature outside of the host), but 56 genotypes also differ in their propensity for these two developmental routes (Viney et al. 1992; Harvey et al. 2000). 57

58

59 Strongyloides' mode of reproduction is very likely to affect is population genetics. If reproduction is exclusively by mitotic parthenogenesis, then the only source of genetic 60 variation is mutation, and such a population would consist of an assemblage of different 61 genetic lineages. In this scenario the mutation rate of a species is key in determining the 62 63 extent of variation within a population. The occurrence of some sexual reproduction would 64 allow genetic lineages of parasites to recombine, though the extent to which this will happen depends on the frequency with which sexual reproduction occurs. A three locus study of S. 65 ratti in the UK found that it consist of one interbreeding population, likely mainly reproducing 66 by direct, asexual reproduction (Fisher and Viney, 1998). 67

68

69 *S. ratti* has a compact 43 Mbp genome consisting of 2 autosomes and an X chromosome, 70 and its genome assembly is the second most contiguous assembled nematode genome 71 after the *C. elegans* reference genome. This facilitates the population genomic analysis of wild S. ratti. Further, genomic, transcriptomic and proteomic analyses have identified genes 72 73 that are putatively critical to Strongyloides' parasitic lifestyle. These were characterised in two ways: genes whose expression was significantly greater in the parasitic female stage 74 75 compared with the free-living female stage; and genomic clusters of genes coding for proteins belonging to one of three families (astacin-like metallopeptidases, CAP domain-76 77 containing proteins, acetylcholinesterases), which are gene families that have expanded as 78 Strongyloides nematodes evolved to be parasites (Hunt et al., 2016).

79

80 In many, but not all, host-parasite systems, parasites can locally adapt to their host population, which enhances the fitness of those parasite genotypes (Greischar et al., 2007). 81 The genes and gene products underlying parasite local adaption are not well known. In 82 83 Strongyloides the genes that have been shown to be central to its parasitism are at the 84 interface between the parasite and its host and therefore may play a role in such adaptation. In such a scenario these genes could be under different selection pressures compared with 85 86 the rest of the genome and so may have population genetic patterns that differ from the rest of the genome. 87

88

89 Here we report the whole-genome, fine-scale population genomics of S. ratti in a wild rat 90 population, describing how parasite genotypes are distributed among individual hosts. We find that S. ratti populations exist as a mixture of asexual lineages. Comparison of these 91 92 lineages with historical, geographically dispersed samples suggests that some of these 93 lineages may be very widely spatially and temporally dispersed. We find that genes and gene clusters critical to the parasitic phase of the S. ratti life cycle are genetically 94 95 hyperdiverse, compared with the rest of the genome, which may contribute to S. ratti's local 96 adaption to its hosts within the context of existing as long-lived asexual lineages.

97 Results

98

99 S. ratti is a common parasite of rats

We sampled rat faecal pellets from three sites in the southwest UK (Figure 1), from which 100 101 we isolated 10,471 S. ratti infective larvae from 114 pellets (from a sample of 308). The 102 proportion of infected faecal pellets significantly differed among the three sites (13, 47 and 62 % at sites CA, AM and LA respectively; χ^2 = 48.9, df = 2, P < 0.0001) (Figure 1; 103 Supplementary Table 1), but is consistent with a previous report of a high prevalence of S. 104 ratti in wild rats in the UK (Fisher and Viney, 1998). The number of S. ratti larvae per pellet 105 ranged from 1 – 1,730 (Supplementary Figure 1). While culturing these faeces for S. ratti 106 we did not observe any sexual free-living adults. We genotyped rat faecal pellets to assign 107 these to individual rats finding that 132 genotyped pellets belonged to 112 rats. 108

109

110 S. ratti is partially genetically clustered at sample sites

We investigated the population genetics of S. ratti by analysing whole genome sequence of 111 90 individual infective larvae collected from the three sites. We identified 170.666 SNPs. 112 giving an average density of 4.1 SNPs per kb. A total of 614 SNPs were tri-allelic, the 113 114 remainder bi-allelic, with a ratio of 1.77 of transitions to transversions. Considering all SNPs together, the 90 parasites were in HWE ($x^2 = 13.65$, df = 19.35, P = 0.48) but this varied 115 116 among SNPs. Overall, there was more heterozygosity than expected; specifically, allele frequencies predicted that 28% of SNP loci would be heterozygous in individual worms, 117 118 whereas 36% (range 28-58%) were.

119

120 We analysed the pattern of parasite population genetic variation (i) within and among rat hosts, and (ii) within and among sampling sites, finding evidence of some differentiation of 121 122 the parasites among the sample sites. The pairwise relatedness (Φ) among the 90 parasites 123 was non-normal (Shapiro-Wilkes test for normalcy W = 0.902, P < 0.0001), suggesting 124 genetic clustering among the worms at some level (Supplementary Figure 2). S. ratti parasitic females reproduce by mitotic parthenogenesis (Viney, 1994) and so siblings will 125 be genetically identical save for individual-specific mutations. We did not detect putative 126 127 sibling parasites within individual rats, despite sampling up to 4 parasites from each rat. (Supplementary Figure 3). This suggests that faecal pellets commonly contained larvae of 128 129 more than 4 genotypes. In faecal pellets containing > 10 larvae, if there indeed had only 130 been 4 genotypes present then our chance of detecting the 4 was < 0.19. It is more likely 131 that faecal pellets contained worms of more than 4 genotypes. Specifically, we had a ≥ 0.50 132 chance of detecting 4 unique genotypes when: > 6 genotypes were actually present in pellets containing 12-18 larvae; > 7 genotypes were present in pellets containing 19-31 133 larvae. The average relatedness among pairs of parasites from the same rat and among 134 parasites from different rats ($\Phi = 0.22$ and 0.214, respectively), was not significantly different 135 136 (t = -0.32, df = 108.81, P = 0.75). Thus, we conclude that individual rats contain genetically diverse parasites (consistent with our S. ratti RFLP genotyping, see Materials and Methods 137 138 section), meaning that genetic clustering of parasites is not at the level of the rat.

139

However, parasites from the same sample site were more closely related (mean same site $\Phi = 0.225$; single, same site Φ , CA = 0.128, LA = 0.258, AM = 0.227) than parasites from different sample sites ($\Phi = 0.206$) (t = -3.68, *df* = 3975.9, P ≤ 0.001) (**Figure 2**). Overall, F_{ST} was very low (0.02), and indeed zero between parasites at the two English sample sites
(Figure 2). Together, these results show that there is some genetic clustering of *S. ratti* at
the level of the sampling site, but not at the level of individual rats.

146

147 S. ratti consists of divergent genetic clades that are widely distributed

We examined the parasite diversity more closely by constructing neighbour-joining dendrograms. This revealed five parasite clades, with most worms (78 of the 90) in one of three clades (clades 1 – 3) (**Figure 3A**). Maximum likelihood trees also confirmed the existence of these clades (**Figure 3B**; **Supplementary Figure 4**). We examined the admixture among the 90 parasites, which most reliably grouped the parasites into five genetic groups, corresponding to the five clades defined by the neighbour-joining tree (**Figure 3C; Supplementary Figure 5**).

155

Parasites belonging to the three main clades were present in all three sampling sites, in ratios expected based on the number of sequenced parasites from each sampling site (Fisher's exact test, P = 0.14). Individual rats contained parasites from multiple clades; specifically, 11 rats contained parasites from two clades, and 3 rats contained parasites from three clades. Principal Component Analysis produced similar results, showing clustering of parasites within clades, and that these clades were dispersed across the three sampling sites (**Supplementary Figure 6**).

163

164 Analysis of Φ and F_{ST} within and among clades 1 - 3 is consistent with *S. ratti* being 165 structured into sympatric, genetically distinct clades, with the three clades dispersed across 166 the three sampling sites. Specifically, Φ was high within clades, especially clades 1 and 3 167 (0.43 and 0.45, respectively), but lower between clades; F_{ST} among the clades was 0.3 and 168 similar (0.22 – 0.35) between clades (**Table 1**). Given that we did not observe any free-living 169 sexual stages of *S. ratti* this further suggests that these clades are asexually derived and 170 maintained.

171

The population genetic structure of S. ratti's mitochondrial genome consists of three 172 173 divergent genetic clades that are not strongly associated with sampling sites, which is 174 consistent with the nuclear genome results. Specifically, in the mitochondrial genome we identified 156 SNPs (average density 9.3 SNPs per kb) identifying 58 haplotypes among the 175 176 90 parasites. There was a strong, positive correlation between the pairwise similarities of 177 mitochondrial and nuclear genomes (Mantel test, r = 0.76, P < 0.01), and between minimum 178 spanning maps of mitochondrial haplotypes and neighbour-joining trees of nuclear genomes 179 (Supplementary Figure 7). The number of mitochondrial SNPs in same sampling site and different sampling site comparisons (23.6 and 24.2, respectively) were not significantly 180 different (t = -0.98, *df* = 3771, P = 0.33). 181

182

We wanted to investigate if the rat host population genetic structure enforced a population genetic structure on the parasites because of the partitioning of parasites among individual hosts. To do this we investigated the population genetics of the rats by genotyping faecal pellets at nine microsatellite locus (**Supplementary Table 2**). These loci were generally not in Hardy-Weinberg equilibrium (HWE); specifically 8, 3 and 5 of the 9 loci at sites CA, AM and LA, respectively, were not (**Supplementary Table 3**). Rat allele frequencies differed 189 markedly among sampling sites, consistent with restricted rat gene flow among the sites. The pairwise relatedness among rats was higher within sites than among sites (average 190 191 Ritland and Lynch relatedness values 0.06 and -0.06, respectively), and the distribution of these relatedness values at each site had a right-hand skew (Supplementary Figure 8), 192 193 showing more closely related pairs of individual rats within sites than expected by chance. We could assign rats to each sample site based on allele frequencies with 89% accuracy. 194 Shannon's mutual information index (^SH_{UA}), which does not assume HWE (Hedrick, 2005; 195 196 Jost et al., 2018), shows that there is moderate genetic differentiation among rats from the 197 three sites (Figure 2). Together these results – differences in allele frequencies among sample sites, higher within-site than among-site relatedness, high accuracy in assignment 198 to sample site, moderate values of ^SH_{UA} – shows that there is genetic differentiation among 199 200 rats at the three sampling sites. The evidence of moderate genetic differentiation among 201 rats at sample sites is broadly consistent with the geographical separation of the three sites, and with limited rat migration of rats among the sites (Figure 1), as has been observed with 202 203 urban rats (Combs et al. 2017). Notably, the genetic structure of the S. ratti populations does 204 not mirror that of its rat hosts.

205

To further investigate the spatial and temporal extent of the S. ratti clades we examined the 206 whole genome sequences of 10 S. ratti isofemale lines derived from rats sampled from the 207 208 UK and Japan between 1989 and 2012 (Supplementary Table 4). A neighbour-joining dendrogram of these isofemale lines and the 90 wild parasites (sampled in 2017/18) showed 209 that these is0female lines are not genetically distinct from the 90 parasites, occurring in 210 211 clades 1, 2 and 4 (Supplementary Figure 9). This observation therefore suggests that 212 these S. ratti genotypes exist as long lived, asexually maintained lineages and that they have a wide geographical representation, possibly one that is global. 213

214

If S. ratti does exist as ancient asexually derived and maintained lineages, then whole-215 216 genome linkage might be expected. Within clades 1 and 3 (where sufficient samples were 217 available to be analysed) LD was higher, and decayed more slowly with genomic distance, compared with the decay in all 90 parasite samples (Supplementary Figures 10 and 11). 218 219 Clade 3's LD was higher and decayed more slowly with distance than clade 1's. Clades 1 and 3 also had linkage blocks spanning tens of kilobases on some chromosomes 220 221 (Supplementary Figure 12), which was not seen among all 90 parasites (Supplementary 222 Figure 13). These patterns of within-clade LD are also consistent with these S. ratti clades 223 being long-lived, asexually maintained lineages.

224

225 In summary, these results show that S. ratti populations consist of mixtures of different 226 genetic clades consisting of asexually maintained lineages that are likely long lived and 227 widely distributed across the host population. These clades may exist on a much larger scale, nationally across the UK, possibly globally, and over decades. The S. ratti life cycle 228 229 is obligately mitotically parthenogenetic (Viney 1994), with facultative sexual reproduction 230 (Viney et al., 1993); the population genetic structure that we have observed suggests that sexual reproduction occurs vary rarely, if at all, in these populations. We observe no obvious 231 232 geographical localisation of the different parasite clades, which might be expected with geographically-based host local adaptation. Indeed, given the likely asexual reproduction 233

these populations it would therefore appear that *S. ratti* cannot genetically adapt to its localhost populations except through mutational processes.

237 S. ratti genes involved in parasitism are highly diverse

238 We next investigated the diversity of genes that S. ratti uses in the parasitic phase of its life 239 cycle. We focussed on two sets of genes: (i) "parasitism genes", which are genes whose expression is at least one log₂-fold greater in the parasitic female morph compared with the 240 241 free-living female morph, and (ii) "expansion clusters", which are genomic regions containing four or more genes coding for members of either astacin-like metallopeptidases, CAP 242 domain-containing proteins, or acetylcholinesterase protein families, which previous 243 analyses have identified as families that have expanded with Strongyloides' evolution of 244 245 parasitism (Hunt et al., 2016).

246

236

247 Genetic diversity in S. ratti is not evenly distributed across the S. ratti genome (Supplementary Figure 14), and we identified high SNP diversity regions, consisting of > 248 200 SNPs per 10 kb. We firstly asked how often parasitism or free-living (which are vice 249 versa compared with parasitism genes) genes occurred in these high SNP diversity regions. 250 251 We found that parasitism genes were significantly over represented within these high 252 diversity regions, compared with their representation in highly conserved genomic regions 253 (< 4 SNPs per 10 kb region), or across the genome as a whole (Figure 4A; Supplementary **Table 5**). In contrast, free-living genes were represented at the same rate in high diversity 254 255 regions, highly conserved regions, and across the genome as a whole (Figure 4A). 256

Furthermore, two classes of genes – those coding for astacin-like metallopeptidases and for CAP-domain domain proteins, both of which are associated with parasitism in *S. ratti* – were more common in these highly diversity regions, compared with the genome as a whole. Specifically, 5.6 and 11.8 % (95% confidence intervals 2.6-10.3 and 6.3-16.4 %, respectively) of genes in these regions code for astacin-like metallopeptidase and CAP domain proteins, which is higher than their representation across the whole genome (1.5 and 0.7 %, respectively).

264

265 We compared the SNP density among the hundred most parasitic and most free-living genes, though we excluded six of the parasitism genes due to concerns about their 266 267 underlying sequence assembly, leaving 94 parasitic genes (Supplementary Tables 6 and 268 7). Parasitism gene SNP density was approximately four times that of free-living genes, or that of the genome as a whole (Figure 4B). The SNPs in these parasitism genes mainly 269 270 code for non-synonymous substitutions, rather than synonymous substitutions, which contrasts with free-living genes, where the rate of both types of SNPs occurred with similar 271 272 frequency (Figure 4C).

273

We also found evidence of high genetic diversity in *S. ratti*'s expansion clusters, compared with the flanking regions (**Supplementary Table 8**). SNPs were three times more dense in the expansion clusters than in the flanking regions (SNP density (SD) per kb 15.9 (18.3) and 4.6 (7.2), in expansion clusters and flanking regions, respectively). Strikingly, SNPs within expansion clusters were approximately twice as likely to code non-synonymously, rather than synonymously, unlike the flanking regions where these rates were similar (**Figure 5D**); a pattern also seen for each individual expansion cluster, except clusters 1 and 8
 (Supplementary Table 5).

282

296

We thought about possible reasons for the elevated genetic diversity in genes involved in 283 284 S. ratti's parasitism. Parasites can locally adapt to their hosts, to maximise parasite fitness, and we hypothesised that evolution of the expansion clusters, independent of the rest of the 285 genome, could be a means by which host local adaptation occurs, where the expansion 286 287 clusters evolve differently from the rest of the genome. To investigate this, we created neighbour-joining trees based on individual expansion clusters to see if they strongly 288 289 diverged from the whole genome-based trees. However, in these expansion cluster-specific tress, the whole genome-defined clades 1 and 3 were still strongly evident (Supplementary 290 Figure 15). We next measured the selection in the expansion clusters and their flanking 291 292 regions, but could also find no consistent evidence for diversifying selection in the expansion clusters compared with their flanking regions (Supplementary Table 9). These results 293 294 therefore do not support the idea that the expansion clusters are locally adapting to host 295 genotypes.

297 Together, these observations - that highly variable genomic regions have an over-298 representation of parasitism genes, and of astacin-like metallopeptidase and CAP domain 299 coding genes; that parasitism genes have SNP densities that are higher than those of free-300 living genes; that parasitism genes have a comparative excess of non-synonymous-coding 301 SNPs; that expansion clusters have higher SNP densities and an excess of non-302 synonymous-coding SNPs – shows that in S. ratti there is a concentration of genetic diversity 303 within genes and genomic regions that very likely play a key role in the parasitic phase of its 304 life cycle.

305 Discussion

306

Parasitic nematodes are ubiquitous parasites of animals and are partitioned among individual hosts, between which they must transmit and so parasite and host biology can affect their population genetic structure ((Blouin *et al.* 1985; Cole and Viney, 2018). Understanding the population genetics of parasitic nematodes can give an insight into their population biology, which is poorly known outside of species infecting humans and livestock (Cole and Viney, 2018).

313

314 For the facultatively sexual parasite of rats S. ratti we have discovered that its population consists of a mixture of genetically diverse clades, where those clades are widely dispersed 315 across host populations (and possibly on a global scale), with very little evidence of 316 317 structuring across three host populations. This is a pattern of population genetic variation 318 that has not, as far as we are aware, been observed in a parasitic nematode before. The life 319 cycle of S. ratti contains an obligatory asexual parthenogenetic stage (Viney, 1994), as well as a facultative sexual stage (Viney et al., 1993),. We observed no sexual stages during our 320 work, suggesting that sexual reproduction is very rare, or even absent, in these populations, 321 322 consistent with previous observations (Viney et al. 1992; Fisher and Viney, 1998). The population genetics of the populations that we studied is also consistent with the absence 323 324 of sexual reproduction.

325

In contrast to the parasites' population genetic patterns, the host rat populations did show some evidence of population genetic differentiation among the different sample sites, consistent with restricted movement of rats between the sites. Studies of the population genetics of rats in cities have also shown evidence of limited dispersal of rats and so population genetic differentiation among rats in different city regions (Gardner-Santana *et al.*, 2009).

332

333 Understanding a parasite's population genetic structure can be important in understanding the host range of a parasite, which is of applied interest for parasites of humans. For 334 335 example, population genetic analysis has been used to understand the possibly changing 336 host range of Guinea worm (Dracunculus medinensis) in human and dog hosts during sustained control efforts in human populations (Durrant et al., 2020). There is considerable 337 338 interest in understanding the host range of S. stercoralis that infects people; specifically, 339 Strongyloides in dogs has been considered to be a source of human infection (Jaleta et al., 2017). If the population genetic structure we have observed with S. ratti – a mixture of 340 asexually maintained clones widely distributed across host populations – also pertains in S. 341 stercoralis, then there is likely to be considerable complexity in understanding the population 342 genetics and host range of S. stercoralis genotypes. Where a species exits as a collection 343 344 of asexually maintained lineages, then each lineage could diverge genetically, which raises the possibility that S. stercoralis could exist as a mixture of lineages each with different host 345 346 ranges, for example some able only to infect people, some only able to infect dogs and some intermediate. Current approaches to studying the host range of S. stercoralis have 347 commonly only used single or a few loci, which might not be able to resolve more complex 348 349 patterns of population genetic variation.

351 Genomic analyses of Strongyloides have discovered genes and gene families that play a critical role in the parasitic phase of its life cycle. We have discovered that in wild S. ratti 352 353 both parasitism genes and genes in expansion clusters are highly diverse compared with other genes. Of particular note, many of these SNPs in the parasitism genes and genes in 354 355 expansion clusters we observed are predicted to code for non-synonymous substitutions, meaning that this genetic diversity may cause functional differences in the gene products. 356 The parasitism genes and genes in expansion clusters are dominated by large gene 357 358 families. Large families can allow genetic diversity to accumulate among gene family members because any potential negative fitness consequence of a mutation in one gene of 359 a family, could be effectively ameliorated by others in that family. In this way, large gene 360 361 families can allow the exploration of genetic space.

362

363 Our observation of comparatively high genetic diversity in these genes is particularly 364 interesting in light of recent observations of genetic diversity in the free-living nematode Caenorhabditis spp. Specifically, analysis of worldwide populations of C. elegans find that 365 genetic variation is concentrated in a number of genomic regions (56 and 19 kb mean and 366 median size, respectively), with evidence suggesting that diversity in these regions is 367 368 maintained by balancing selection (Lee et al., 2021). In the C. tropicalis genome, genetic variation is also distributed heterogeneously across its genome, for example with some 140 369 370 high genetic diversity classified regions extending for no more than 30 kb (Noble et al., 2021). While there is a superficial similarity between the patterns of genomically 371 372 concentrated genetic diversity in two Caenorhabditis species and in S. ratti, the mechanisms generating these patterns might be different. Notably, in S. ratti we did not find any evidence 373 of diversifying selection in the expansion cluster genes. What these two Caenorhabditis 374 studies and the present study do demonstrate is that detailed, whole genome analysis of 375 376 wild individuals is uncovering hitherto un-expected patterns of genomic diversity, which are 377 likely to exit in other taxa too, and which need to be investigated.

378

Parasites have commonly been found to locally adapt to their host populations (Lively *et al.*, 2004; Greischar and Koskella, 2007). If such a phenomena was occurring in *S. ratti*, then it may be manifest as geographical clustering of parasite genotypes *per se* or geographical clustering of parasitism gene genotypes and, or expansion cluster genotypes. However, the dispersion of *S. ratti* genotypes and of the genetic diversity in parasitism genes and expansion clusters that we have observed does not show any suggestive signatures of such local adaptation to hosts.

386

Alternatively, mindful that the products of the parasitism genes and genes in expansion 387 clusters interface with the host, some variants of these genes may give a parasite a fitness 388 389 advantage when infecting certain host genotypes, compared with parasites with other 390 variants. Each individual parasite's suite of these genes may therefore represent a combination of different variants that have been selected for as these parasite lineages have 391 392 over their history infected a range of host genotypes. In this scenario, these parasites are 393 not locally adapted to their host genotypes pe se, but rather have available a set of gene variants that are appropriate for a wide range of already-encountered host genotypes. 394 395 Notwithstanding, further research is needed to understand the full biological significate of high levels of genetic diversity in genes underlying S. ratti's parasitism. 396

397

Our whole-genome, single worm analysis of wild *S. ratti* is a non-destructive method of sampling parasite genetic diversity, and the hope must be that these approaches are now expanded to other parasitic nematodes. Such analyses will likely uncover different patterns of population genetic variation in other species, and understanding this will more fully illuminate the interactions between parasites and hosts, and so underpin a better understanding of the rich ecology of parasites.

404 Materials and Methods

405

406 Parasite and rat sampling

We sampled at three sites in the southern UK – Avonmouth (AV), Cardiff (CA) and Long 407 Ashton (LA) (Supplementary Table 10, Figure 1), collecting fresh rat faecal pellets, which 408 were cultured at 19°C and visually inspected for S. ratti infective third stage larvae (Viney 409 410 and Lok, 2007), which were washed twice in distilled water, once in 1 % w/v SDS, and then 411 twice more in distilled water, before being stored at -80°C. We genotyped rat faecal pellets at 9 dinucleotide repeat microsatellite loci (Supplementary Table 2) that had previously 412 been used with wild rats (Desvars-Larrive et al., 2017; Giraudeau et al., 1999; Gardner-413 Santana et al., 2009; Steen et al., 1999), preparing DNA using the QIAamp DNA Stool Mini 414 415 Kit (Qiagen) (Cole, 2020).

416

417 S. ratti genotyping

Of the more than 10,000 S. ratti larvae that we isolated from wild rats, we had to select a 418 419 sub-sample for whole genome sequencing. We did this mindful that S. ratti parasitic stages reproduce by mitotic parthenogenesis (Viney, 1994), such that in pellets containing more 420 421 than one larva, that those larvae may be genetically identical siblings. Alternatively, a rat may be infected with multiple genotypes of S. ratti in which case there will also be a 422 423 genetically different larvae in individual faecal pellets. We used RFLP genotyping to initially 424 assess the genetic diversity among larvae within individual faecal pellets (Cole 2020). This showed that S. ratti infrapopulations are typically composed of multiple, genetically distinct 425 426 parasitic adults and so we concluded that whole genome sequencing of multiple infective 427 larvae from the same faecal pellet was unlikely to result in extensive resequencing of 428 genetically identical siblings, and as such would be informative both for measuring the 429 genetic diversity within sampling sites as a whole, and for assessing the extent of genetic variation within infrapopulations (Cole 2020) 430

431

432 For whole genome sequencing larvae were lysed and DNA quantified (Cole 2020). Samples were quantified with Biotium Accuclear Ultra high sensitivity dsDNA Quantitative kits using 433 Mosquito LV liquid platform, Bravo WS and BMG FLUOstar Omega plate reader and 434 cherrypicked to 200 ng / 120 µL using a Tecan liquid handling platform. Cherrypicked plates 435 436 were sheared to 450 bp using a Covaris LE220 instrument and post-sheared samples purified using Agencourt AMPure XP SPRI beads on Agilent Bravo WSLibraries were 437 constructed using the NEB Ultra II custom kit on an Agilent Bravo WS automation system. 438 PCRs were set-up using KapaHiFi Hot start mix and IDT 96 iPCR tag barcodes on an Agilent 439 Bravo WS automation system, and then purified using Agencourt AMPure XP SPRI beads 440 on Beckman BioMek NX96 liquid handling platform. Libraries were quantified with Biotium 441 Accuclear Ultra high sensitivity dsDNA Quantitative kit using Mosquito LV liquid handling 442 platform, Bravo WS and BMG FLUOstar Omega plate reader. Libraries were pooled in 443 equimolar amounts on a Beckman BioMek NX-8 liquid handling platform and libraries 444 normalised to 2.8 nM ready for cluster generation on a c-BOT and loading on the Illumina X 445 Ten platform. Sequencing reads from the libraries were aligned to the S. ratti reference 446 assembly version 5 0 4 (Hunt *et al.* 2016, taken from WormBase ParaSite release WBPS7) 447 using Bowtie 2 version 2.2.9 (Langmead and Salzberg, 2012) with default settings. We 448 449 initially whole genome sequenced 225 S. ratti infective larvae at low depth of coverage and

450 calculated the proportion of reads that aligned to the *S. ratti* genome, and used this metric451 to choose 90 libraries for further deep sequencing.

452

453 Sequence analysis

We used BCFtools (Li 2011) to identify SNPs using the criteria that they (i) fell on a nucleotide covered by at least 1,000 reads (cumulative across all samples), (ii) had a mean mapping quality of at least 20, and (iii) had a QUAL score of at least 50. Among the 90 *S. ratti* genome sequences, nucleotides that were identical among all samples (but different from the ED321 reference genome) were removed. We sequenced to an average coverage of 96 % of nucleotides (range 75.8-99.3 %), and an average read depth of 68 (range 20-246; just 5 larvae had mean read depths of less than 30).

461

We noticed that the mean read depth on the X chromosome was 67.9 % of the mean read depth on the two autosomes. We concluded that this was due to the GC content because (i) there was a significant correlation between read depth and GC content (**Supplementary Figure 16**) and (ii) that the X chromosome has a slightly lower GC content (19.7 %) compared with the autosomes (22 %) (Hunt *et al.*, 2016).

467

Basic genetic diversity and population genetic statistics were calculated using VCFtools
version 0.1.12 (Danecek *et al.*, 2011). Hardy-Weinberg equilibrium (HWE) was calculated
considering only biallelic SNPs. Φ relatedness values (Manichaikul *et al.*, 2010) of each pair
of larvae were calculated using VCFtools and we used t-tests to compare Φ values. We also
measured the differentiation among sites using the fixation index, F_{ST}.

473

We generated neighbour-joining dendrograms using TASSEL 5.0 (Bradbury *et al.*, 2007), and visualised in FigTree Version 1.4.3. Clades within the neighbour-joining trees were identified by eye. Fisher's exact tests, performed in R, were used to determine whether there were significant differences in the frequencies of these clades among sampling sites or sampling seasons.

479

480 We constructed maximum likelihood trees of the 90 parasites, producing consensus fasta 481 sequences for each individual, but where an individual was heterozygous the reference allele was applied, with sequences aligned with MAFFT version 7 (Katoh et al. 2009) using 482 483 strategy FF-NST-1 for fast alignment, and maximum likelihood tree estimation performed using RaxML version 8.1.15 (Stamatakis 2006), using the general time reversible gamma 484 model of substitution rate heterogeneity, and rapid bootstrapping with 100 replicates was 485 486 applied. We generated separate maximum likelihood trees for chromosome 1, the first 80 487 Mb of chromosome 2, the remainder of chromosome 2 and the two largest contigs of the X 488 chromosome.

489

We conducted Principal Component Analysis using the R package pcadapt version 4.1.0 (Luu *et al.* 2017) using only loci with a minor allele frequency greater than 0.05. We investigated the admixture among the 90 parasite genotypes using ADMIXTURE version 1.3.0 (Alexander and Large 2011). Due to computational constraints, for the 90 parasites SNP data were first thinned so that no two SNPs were within 500 bp of each other, leaving a dataset of 35,559 SNPs. ADMIXTURE was run separately for k values 2-15.

496

We measured linkage disequilibrium (LD) among the 90 samples for the two autosomes and 497 the two largest X chromosome scaffolds. We initially phased the genotype data into 498 haplotypes using Beagle version 5.0 (Browning and Browning, 2007; Browning et al., 2018), 499 500 where we used 100 burn-in iterations to generate an initial estimate of haplotype frequency, 501 and a further 100 iterations were used to estimate genotype phase for each SNP in each sample. Phasing is influenced by the effective population size (Ne), which isn't known for S. 502 503 ratti, but we estimated this as 50,000; otherwise, default Beagle parameters were used. We 504 also undertook phasing using Shapeit version 2-r900 (O'Connell et al. 2014), where we used 100 burn-in iterations, 100 phasing iterations, and an estimated Ne of 50,000. For both we 505 506 used a window size of 0.5 Mb to estimate haplotypes. Only biallelic loci were used in Shapeit, 507 but triallelic loci were also included in Beagle. We report the results from phasing using 508 Beagle; Shapeit gave similar results.

509

518

To reduce computational time during linkage decay analysis, phased VCF files were thinned 510 511 so that no two remaining loci were within 100 bp of one another. To perform linkage decay analysis, VCFTools was used to compare each SNP to each other SNP within a 50 kb 512 513 window of it, with Pearson's coefficient of correlation, r², calculated for each pair. To measure LD across the whole genome we further thinned the phased data so that no two 514 515 SNPs were within 500 bp of each other, when the analysis was repeated as above, except that this time each SNP was compared to every other SNP in the entire genome. We also 516 517 repeated these analyses for sub-sets of parasites within the clades that we identified.

519 We also analysed the mitochondrial genomes (excluding one individual from site AM due to unexpectedly low mitochondrial read depth), and used Analysis of Molecular Variance 520 521 (AMOVA) which was conducted in GenAIEx version 6.5 (Peakall and Smouse 2006, 2012). 522 Haplotype maps were generated in PopART version 1.7 (Leigh and Bryant 2015) using the 523 minimum spanning network method (Bandelt et al. 1999), and maximum likelihood trees 524 based on unique haplotypes were generated with RaxML version 8.1.15 (Stamatakis 2006), using the general time reversible gamma model of substitution rate heterogeneity, and rapid 525 526 bootstrapping with 100 replicates was applied. We calculated the proportion of SNPs (you 527 say "alleles") shared among all pairs or worms and compared this to the nuclear Φ relatedness using a Mantel test. 528

529

530 We also used whole genome sequence data of 10 isofemale lines derived from wild *S. ratti* 531 (**Supplementary Table 4**), which we obtained from the European Variant Archive, study 532 code PRJEB41 <u>https://www.ebi.ac.uk/ena/data/view/PRJEB4163</u>. Among the 90 wild *S. ratti* 533 and 10 isofemale lines, there were 235,393 SNPs of which 928 were tri-allelic, the remainder 534 bi-allelic, with a ratio of 1.8 of transitions to transversions.

535

536 Rat population genetic analysis

537 We only used data for faecal pellets that were successful genotyped at 6 or more loci, 538 resulting in 132 genotyped faecal pellets. Locus D12Rat42 was excluded from further 539 population genetic analyses due to the low number of rats successfully genotyped at this 540 locus. We used GenAlEx's (version 6.5; Peakall and Smouse 2006, 2012) pairwise 541 relatedness function) to detect pellets with identical multi-locus genotypes, which we took to

have come from the same individual rat. We calculated Ritland and Lynch pairwise 542 relatedness (Lynch and Ritland 1999), where each individual was compared with each other 543 544 individual, and doubled these values to give a possible range of -1 to 1 from which we calculated the mean within-sample-site and mean among-sample-site relatedness. We 545 546 determined the log-likelihood of the rat originating from each sampling site using GenAlEx to assign pellet genotypes to each sample site by comparing the multilocus genotype of 547 each rat with the allele frequencies of each of the sampling sites (excluding the rat currently 548 549 being investigated).

550

551 We used Shannon's mutual information index (${}^{S}H_{UA}$) to quantify the differences in allele 552 frequencies among sampling sites and to estimate the number of effective migrants per 553 generation. ${}^{S}H_{UA}$ measures and is valid despite deviations from HWE within subpopulations 554 (Hedrick, 2005; Sherwin *et al.,* 2006). ${}^{S}H_{UA}$ ranges from 0 (indicating unhindered gene flow) 555 to 1 (indicating a complete lack of gene flow).

556

We ensured (beyond visual identification) that none of the faecal pellets that we had 557 genotyped were from species other than *R. norvegicus* by seeking to amplify the nine rat 558 559 microsatellite loci from DNA isolated from other species that may potentially produce contaminating faecal material, specifically that from black rats (R. rattus), moles (Talpa 560 561 europaea), and squirrels (Sciurus carolinensis). With one exception, none of these microsatellite loci successfully amplified from these species (the exception was locus 562 563 D12Rat42 that did amplify R. rattus DNA) confirming that all successful genotypes were from *R. norvegicus*. As positive controls we used primer pairs (i) Scv1 previously used to 564 amplify Sciurus sp. DNA (Hale et al., 2001), which successful amplified our Sciurus sp. DNA, 565 and weakly amplified *R. norvegicus* DNA, and (ii) RodActin previously used to amplify *R.* 566 567 rattus DNA (Apte et al., 2007), which successfully amplified our R. rattus and R. norvegicus 568 DNA.

569

570 **Parasitism and free-living genes and expansion clusters**

571 We followed previous work that identified "parasitism genes" (Hunt *et al.*, 2016). We 572 excluded parasitism genes if they were part of an expansion cluster (below) and the 573 underlying genome assembly was poor. We calculated 95% confidence intervals for 574 percentages from www.sample-size.net.

575

We define an "expansion cluster" as a genomic region containing four or more genes coding for members of one of three protein families (astacin-like metallopeptidases, CAP domaincontaining proteins, or acetylcholinesterases), where there is not more than one other gene between any two genes of those families. This definition differs somewhat from, and is more conservative than that used by (Hunt *et al.*, 2016). As controls we used "flanking regions", which we define as the genomic region directly adjacent to the expansion cluster that is the same size as the cluster itself. Each expansion cluster has two flanking regions.

583

Lists of genes belonging to these three gene families were collated from Hunt *et al.*, 2016 and from this we initially identified 15 expansion clusters. Because clusters 10 and 11 were very close to each other, cluster 10's right flanking region was shortened to end where expansion cluster 11 began, and expansion cluster 11 was considered to not have a left 588 flanking region. Similarly, to avoid overlap of cluster 11's right flanking region and cluster 12's left flanking region we shortened cluster 12's left flanking region to the start of cluster 589 590 11's right flanking region. Across all expansion clusters there were 135 genes in total, of which 126 belonged to one of the three gene families: 46 encoding CAP domain-containing 591 592 proteins. 70 encodina astacin-like metallopeptidases, and 10 encodina acetylcholinesterases, representing 51.7%, 38% and 33.3% of CAP domain-containing 593 proteins, astacin-like metallopeptidase and acetylcholinesterase encoding genes in the 594 595 genome as a whole. Flanking regions collectively contained 216 protein-coding genes the products of which had varying predicted functional descriptions. 596

598 Mindful that these expansion cluster regions were repetitive in nature we checked their original reference genome assembly by realigning the sequencing reads originally used to 599 600 build the reference assembly back to the reference, available at NCBI, BioProject code 601 PRJEB2398, and then assessed the guality of these alignments using Gap5 (Bonfield and 602 Whitman 2010). Repetitiveness of the sequence was examined via Dotplots with the software package Dotter (Sonnhammer and Durbin, 1995). Gene annotation schematics 603 were retrieved from Ensembl's 'Region in Detail' tool (Hubbard et al., 2002), accessed via 604 Parasite (Howe 605 WormBase et al., 2017) version 12 (https://parasite.wormbase.org/index.html) and added to the graphics produced by Gap5. 606 607 Regions with poor mapping quality, unusually large distances between mate pairs and the occurrence of mate pairs facing opposite directions are suggestive of high rates of sequence 608 609 misalignment. Peaks in read depth and fragment depth above background levels were 610 evidence that multiple copies of a repetitive sequence were collapsed in the reference 611 assemblies. Where expansion cluster genes or genes in flanking regions fell in poorly resolved reference assembly areas, these genes were excluded from further analysis. 612

613

597

614 Using this approach, we excluded expansion clusters 4, 11 and 13, and their flanking regions entirely and other genes within various clusters, resulting in 196 genes remaining, of which 615 616 61 were in expansion clusters and 135 were in flanking regions (Supplementary Table 8). Expansion clusters 6, 7, 8, 12 and 14 had no genes excluded. Three expansion clusters had 617 618 genes that did not belong to one of the three target gene families, and were excluded from 619 analyses. Of the remaining 58 in the expansion cluster genes, 29 encoded CAP domain-620 containing proteins, 27 encoded astacin-like metallopeptidases, and 2 encoded 621 acetylcholinesterases.

622

623 Data Deposition

The genome data of the 90 larvae are despoiled in the European Variation Archive, study PRJEB32744, <u>https://www.omicsdi.org/dataset/eva/PRJEB32744</u>.

626 Acknowledgements

627

We would like to thank the land owners for access to the sample sites; Benito Wainwright, Amy Williams Schwartz, and Bristol Zoo Gardens for the provision of mammalian tissue; and Vicky Hunt for helpful discussions. RC was funded by a NERC studentship. The sequence data for this project were produced by the Wellcome Sanger Institute with funding from the Wellcome Trust, grant 206194.

633 **References**

634

643

- Alexander D. H. and Large K. (2011) Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. *BMC Bioinformatics* **12**:246.
- 637
 638 Apte U., Thompson M. D., Cui S., Liu B., Cieply B. and Monga S. P. S. (2007). Wnt/β-catenin
 639 signaling mediates oval cell response in rodents. *Hepatology* 47:288-295.
- Bandelt H., Forster P. and Röhl A. (1999). Median-joining networks for inferring intraspecific
 phylogenies. *Molecular Biology and Evolution* **16**:37-48.
- Blouin M.S., Yowell C.A., Courtney, C.H. and Dame, J.B. (1995). Host movement and the genetic structure of populations of parasitic nematodes. *Genetics* **141**:1007-1014.
- 646
 647 Bonfield J.K. and Whitwham, A. (2010). Gap5 editing the billion fragment sequence
 648 assembly. *Bioinformatics* 26:1699-1703.
- Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y. and Buckler E. S.
 (2007). TASSEL: Software for association mapping of complex traits in diverse samples. *Bioinformatics* 23:2633-2635.
- Browning S. R. and Browning B. L. (2007). Rapid and accurate haplotype phasing and missing data inference for whole genome association studies by use of localized haplotype clustering. *American Journal of Human Genetics* **81:**1084-1097.
- Browning B. L., Zhou Y. and Browning S. R. (2018). A one-penny imputed genome from
 next generation reference panels. *American Journal of Human Genetics* 103:338-348.
- 660
 661 Cole, R.L. (2020). The distribution of genetic diversity within and among the *Strongyloides*662 *ratti* genome. PhD thesis, University of Bristol, UK. https://research-
- 663 information.bris.ac.uk/en/studentTheses/the-distribution-of-genetic-diversity-within-and-664 among-the-strong
- 665
 666 Cole R. and Viney M. (2018). The population genetics of parasitic nematodes of wild
 667 animals. *Parasites and Vectors* **11**:590.
- 668
 669 Combs M., Puckett E. E., Richardson J., Mims D. and Munshi-South J. (2017). Spatial
 670 population genomics of the brown rat (*Rattus norvegicus*) in New York City. *Molecular*671 *Ecology* 27:83-98.
- 672
 673 Criscione, C.D., Anderson, J.D., Sudimack, D., Peng, W., Jha, B., Willilams-Blangero, S.
 674 and Anderson T.J.C. (2007) Disentangling hybridization and host colonization in parasitic
 675 roundworms of humans and pigs. *Proceedings of the Royal Society B* 274:2669-2677.
 676
- Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. *et al.* (2011). The variant call format and VCFtools. *Bioinformatics* **27**:2156-2158.
- 679
 680 Desvars-Larrive A., Pascal M., Gasqui P., Cosson J.-F., Benoit E., Lattard V., Crespin L. *et*681 *al.* (2017). Population genetics, community of parasites, and resistance to rodenticides in
 682 an urban brown rat (*Rattus norvegicus*) population. *PLoS One* **12**:e0184015.
- 683
- 684

Durrant, C., Thiele, E.A., Holroyd, N., Doyle, S.R., Sallé, G., Tracey, A., *et al.* (2020).
Population genomic evidence that human and animal infections in Africa come from the
same populations of *Dracunculus medinensis*. *PLoS Neglected Tropical Diseases* **14:**e0008623.

Fisher M.C. and Viney M.E. (1998) The population genetic structure of the facultatively sexual parasitic nematode *Strongyloides ratti* in wild rats. *Proceedings of the Royal Society* of London Series B **265**:703-709.

689

693

709

713

720

723

726

731

Gardner-Santana L. C., Norris D. E., Fornadel C. E., Hinson E. R., Klein S. L. and Glass
G.E. (2009). Commensal ecology, urban landscapes, and their influence on the genetic
characteristics of city-dwelling Norway rats (*Rattus norvegicus*). *Molecular Ecology*. **18**:2766–2778.

698
699 Giraudeau F., Apiou F., Amarger V., Kaisaki P. J., Bihoreau M.-T., Lathrop M. *et al.* (1999).
700 Linkage and physical mapping of rat microsatellites derived from minisatellite loci.
701 *Mammalian Genome* **10**:405-409.

702
703 Greischar M. and Koskella B. (2007). A synthesis of experimental work on parasite local
704 adaptation. *Ecology Letters* **10**:418-433.

Hale M. L., Bevan R. and Wolff K. (2001). New polymorphic microsatellite markers for the
red squirrel (*Sciurus vulgaris*) and their applicability to the grey squirrel (*S. carolinensis*). *Molecular Ecology Resources* 1:47-49.

Harvey S.C., Gemmill A.W., Read A.F. and Viney M.E. (2000). The control of morph
development in the parasitic nematode *Strongyloides ratti. Proceedings of the Royal Society*of London Series B 267:2057-2063.

Hedrick P. W. (2005). A standardized genetic differentiation measure. *Evolution* 59:16331638.

Howe K. L., Bolt B. J., Shafie M., Kersey P and Berriman M. (2017). WormBase ParaSite –
a comprehensive resource for helminth genomics. *Molecular and Biochemical Parasitology* **215:**2-10.

Hubbard T., Barker D., Birney E., Cameron G., Chen Y., Clark L. *et al.* (2002). The Ensembl genome database project. *Nucleic Acids Research* **30**:38-41.

Hunt V.L., Asai I.J., Coghlan A., Reid A.J., Holroyd N., Foth B.J., *et al.* (2016). The genomic basis of parasitism in the *Strongyloides* clade of nematodes. *Nature Genetics* **48**: 299-307.

Jaleta, T.G., Zhou, S., Bemm, F.M., Schär, F., Khieu, V., Muth, S. *et al.* (2017) Different but
overlapping populations of *Strongyloides stercoralis* in dogs and humans – Dogs as a
possible source for zoonotic strongyloidiasis. *PLoS Neglected Tropical Diseases* **11:**e0005752.

Jost L., Archer F., Flanagan S., Gaggiotti O., Hoban S and Latch E. (2018). Differentiation
measures for conservation genetics. *Evolutionary Applications* **11**:1139-1148.

735 Katoh K., Asimenos G. and Toh H. (2009). Multiple alignment of DNA sequences with 736 MAFFT. *Methods in Molecular Biology* **537:**39-64. 737 738 Kuris, A.M., Hechinger, R.F., Shaw, J.C., Whitney, K.L., Aguirre-Macedo, L. et al. (2008). 739 Ecosystem energetic implications of parasite free-living biomass in three estuaries. Nature 740 **454:**515-518. 741 742 Lafferty, K.D., Dobson, A.P. and Kuris, A.M. (2005) Lafferty, K.D., Dobson, A.P. and Kuris, 743 A.M. (2008) Parasites dominate food web links. Proceedings of the National Academy of 744 Sciences 103:11211-11216. 745 746 Langmead B. and Salzberg S. (2012). Fast gapped-read alignment with Bowtie 2. Nature 747 Methods 9:357-359. 748 Lee, D., Zdraljevic, S., Stevens, L., Wang, Y., Tanny, R.E., Crombie, T.A., et al. (2021). 749 750 Balancing selection maintains hyper-divergent haplotypes in *Caenorhabditis elegans*. 751 Nature Ecology and Evolution https://doi.org/10.1038/s41559-021-01435-x 752 753 Leigh JW and Bryant D. (2015). PopART: Full-feature software for haplotype network construction. *Methods in Ecology and Evolution* **6**:1110-1116. 754 755 756 Li H. (2011). A statistical framework for SNP calling, mutation discovery, association 757 mapping and population genetical parameter estimation from sequencing data. 758 Bioinformatics 27:2987-2993. 759 760 Lively CM., Dybdahl MF., Jokela J., Osnas EE. and Delph LF. (2004) Host sex and local 761 adaptation by parasites in a snail-trematode interaction. American Naturalist 164:S6-S18. 762 763 Luu K., Bazin E. and Blum M. G. (2017). pcadapt: an R package to perform genome scans 764 for selection based on principal component analysis. Molecular Ecology Resources 17:67-765 77. 766 767 Lynch M. and Ritland K. (1999). Estimation of pairwise relatedness with molecular markers. Genetics 152:1753-1766. 768 769 770 Manichaikul A., Mychaleckyj J. C., Rich S. S., Daly K., Sale M., Chen W. M. (2010). Robust 771 relationship inference in genome-wide association studies. *Bioinformatics* **26**:2867-28773. 772 Noble, L.M., Yuen, J., Stevens, L., Moya, N., Persaud, R., Moscatelli, M., et al. (2021). 773 774 Selfing is the safest sex for *Caenorhabditis tropicalis*. *eLife* **10**:e62587. 775 776 O'Connell J., Gurdasani D., Delaneau O., Pirastu N., Ulivi S., Cocca M. et al. (2014). A 777 general approach for haplotype phasing across the full spectrum of relatedness. PLoS 778 Genetics 10:e1004234. 779 Peakall R. and Smouse P. E. (2006). GENALEX 6: genetic analysis in Excel. Population 780 781 genetic software for teaching and research. *Molecular Ecology Notes* **6**:288-295. 782 783 Peakall R. and Smouse P. E. (2012). GenAIEx 6.5: genetic analysis in Excel. Population 784 genetic software for teaching and research-an update. *Bioinformatics* **28:**2537-2539. 785 786 Redman, E., Whitelaw, F., Tait, A., Burgess, C., Bartley, Y., Skuce, P.J., Jackson, F. and Gilleard J. (2015). The emergence of resistance to the benzimidazole anthelminthics in 787

parasitic nematodes of livestock is characterised by multiple independent hard and soft selective sweeps. PLoS Neglected Tropical Diseases, 9:e0003494 Sallé G., Doyle S. R., Cortet J., Cabaret J., Berriman M, Holyroyd N. et al. (2019). The global diversity of Haemonchus contortus is shaped by human intervention and climate. Nature Communications 10:4811. Sherwin W. B., Jabot F., Rush R. and Rossetto M. (2006). Measurement of biological information with applications from genes to landscapes. *Molecular Ecology* **15**:2857-2869. Sonnhammer E.L.L and Durbin R. (1995). A dot-matrix program dynamic threshold control suited for genomic DNA and protein sequence analysis. *Gene* **167**:GC1-10. Stamatakis A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. Steen R. G., Kwitek-Black A. E., Glenn C., Gullings-Handley J., Van Etten W., Atkinson O. et al. (1999). A high-density integrated genetic linkage and radiation hybrid map of the laboratory rat. Genome Resources 9:AP1-8. Thiele, E., Eberhard, M.L., Cotton, J.A., Durrant, C., Berg, J., Hamm, K. and Ruiz-Tiben, E. (2018). Population genetic analysis of Chadian Guinea worms reveals that human and non-human hosts share common parasite populations. PLoS Neglected Tropical Diseases, :e006747. Viney M.E. and Lok J.B. (2007). Strongyloides spp. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.7.1, http://www.wormbook.org Viney M.E. (1994). A genetic analysis of reproduction in Strongyloides ratti. Parasitology :511-515. Viney M.E., Matthews B.E. and Walliker, D. (1992). On the biological and biochemical nature of cloned populations of Strongyloides ratti. Journal of Helminthology 66:45-52. Viney M.E., Matthews B.E. and Walliker D. (1993). Mating in the parasitic nematode Strongyloides ratti: Proof of genetic exchange. Proceedings of the Royal Society of London Series B 254:213-219. WHO (2021) www.who.int/neglected diseases/diseases/en/

827 TABLES 828 829 Table 1. F_{ST} and Φ among *S. ratti* clades 1, 2 and 3. 830 831 **FIGURES** 832 Figure 1. Map of sampling sites. Showing site LA near Bristol, AM on the English coast of 833 834 the Bristol Channel, and CA on the Welsh coast of the Bristol Channel. Road bridges crossing the channel are shown as dotted lines; a train tunnel is not shown. 835 836 837 Figure 2. Physical and genetic differences among host and parasite populations. A schematic view of (A) Geographical distance among the sample sites, where direct 838 839 distances between the sites are AM-LA = 9.2 km, CA-AM = 31.5 km, CA-LA = 33.5 km. (B) average pairwise relatedness (shown as $1-\Phi$) where Φ AM-LA = 0.244, CA-AM = 0.157, CA-840 841 LA = 0.162, (C) F_{st} among parasites, from the three sample sites where, AM-LA = 0, CA-AM = 0.03, CA-LA = 0.03 and (D) $^{S}H_{UA}$ among rats where, AM-LA = 0.21, CA-AM = 0.22, CA-842 843 LA = 0.15. Note, the scales of the metrics varies among the panels 844 845 Figure 3. S. ratti consists of distinct genetic clades that are widely distributed. (A) A neighbour-ioining dendrogram showing the five clades: (B) a maximum likelihood tree based 846 on chromosome 1 where individuals are colour coded according to their clade membership 847 848 in the neighbour-joining tree; chromosome specific trees as shown in Supplementary Figure 4 (C) the admixture of the 90 larvae for K = 5, which is the most strongly supported 849 850 value of K; the order of individual worms and their neighbour-joining tree clade membership 851 is shown in Supplementary Figure 5. Note, the colour coding in (C) does not correspond 852 to (A) or (B). 853 Figure 4. S. ratti genes involved in parasitism are highly diverse. (A) The percentage 854 of genes in high diversity regions (> 200 SNPs per 10 kb), conserved regions (< 4 SNPs per 855 10 kb), or across the whole genome as a whole, that are parasitism or free-living genes. 856 857 There were 100 genes in the variable regions, 137 in the conserved regions, and 12,464 across the whole genome. Parasitism and free-living genes are as defined by Hunt et al., 858 2016. Errors bars are 95 % confidence intervals. (B) The number of SNPs per kb (+1 SD) in 859 parasitism genes (range 0-85.9), free-living genes (0-41.5) or across the genome as a 860 whole. The SNP density for parasitism and free-living genes is calculated from coding 861 862 sequence only; for the whole genome, all sequence data are used, and so no SD is given.

(C) The density of SNPs of different effect in parasitism and free-living genes. (D) The
 density of SNPs of different effect in expansion clusters and flanking regions.

Figure 2

Figure 4

Table 1. Fst and Φ among *S. ratti* **clades 1, 2 and 3.** Pairwise Fst is shown in italics above

the diagonal, and Φ on and below the diagonal in non-italic text.

	Clade 1	Clade 2	Clade 3
Clade 1	0.43	0.22	0.35
Clade 2	0.18	0.23	0.23
Clade 3	0.06	0.05	0.45

874		SUPPLEMENTARY INFORMATION
875		
876		
877	SUPPL	EMENTARY TABLES
878		
879	1.	The occurrence of <i>S. ratti</i> in rat faecal pellets.
880	2.	Rat microsatellite loci.
881	3.	Population genetics of rat microsatellite loci.
882	4.	Isofemale lines of S. ratti that were whole genome sequenced.
883	5.	Genes in highly variable 10 kb regions.
884	6.	The hundred most parasitic genes.
885	7.	The hundred most free-living genes.
886	8.	S. ratti expansion clusters, revised after further inspection of genome assembly in the
887		cluster region.
888	9.	dN/dS ratios of expansion clusters and their flanking regions.
889	10.	Sampling sites and times.
890		
891	-	
892	SUPPL	LEMENTARY FIGURES
893		
894	1.	Frequency distribution of the number of <i>S. ratti</i> infective larvae isolated from infected
895	•	rat faecal pellets.
896	2.	Histogram of Ψ relatedness values mong 90 S. ratti larvae.
897	3.	The frequency distribution of the pairwise number of SNP differences among the 90
898	4	parasites.
899	4. 5	Maximum likelihood trees of the 90 parasites.
900	ວ. ເ	ADMIXTURE analysis of the 90 parasites.
901	0. 7	PCA analysis of S. fall parasiles. Minimum anonning S. rotti mitophondrial banlatuna mana
902	7. o	Ditland and Lynch poinvice related acce values of rate within compling sites
903	0. Q	S ratti noighbour joining dondrograms of 10 isofomalo linos and 00 langa collected
904 005	9.	from the three sample sites
905	10	Linkage diseguilibrium in the S ratti genome
900	10.	Linkage disequilibrium in the S. ratti genome for clade 1 and 3 parasites
907 QN8	12	Heatmans of linkage disequilibrium in the S. ratti genome for clade 1 and 3 parasites.
900	13	Heatmans of linkage disequilibrium in the S. ratti genome
910	14	The distribution of SNPs across the S ratti genome
911	15	Neighbour-ioining dendrograms based on five expansion clusters
912	16	Correlation of read depth and GC content for 90.S ratti larvae

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445462; this version posted May 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

913

SUPPLEMENTARY TABLES

Supplementary Table 1. The occurrence of *S. ratti* in rat faecal pellets. The proportion of infected pellets did not differ significantly among the seasons when the faecal pellets were collected ($\chi^2 = 6$, *df* = 3, P = 0.11).

Site and season	Number of	Number (and %) of	Number of larvae	Mean (SD) number of
	pellets collected	infected pellets	collected	larvae per infected pellet
CA, Spring	35	7 (20%)	244	34.9 (24.3)
CA, Summer	32	5 (15.6%)	89	17.8 (22.1)
CA, Autumn	19	2 (10.5%)	256	128 (7.1)
CA, Winter	26	1 (3.8%)	6	6 (0)
CA, All seasons	112	15 (13.4%)	595	39.7 (42.1)
AM, Spring	11	8 (72.7%)	137	17.1 (23.5)
AM, Summer	75	23 (30.7%)	428	18.6 (29.3)
AM, Autumn	27	15 (55.6%)	3,044	202.9 (185)
AM, Winter	21	17 (81%)	5,067	298.1 (500.3)
AM, All seasons	134	63 (47%)	8,676	137.7 (296.5)
			-	
LA, Spring	27	14 (51.9%)	211	15.1 (23.1)
LA, Summer	11	7 (63.6%)	40	5.7 (3.7)
LA, Autumn	7	6 (85.7%)	360	60 (46.8)
LA, Winter	13	9 (69.2%)	589	65.4 (83.8)
LA, All seasons	58	36 (62.1%)	1,200	33.3 (52.8)
All sites, Spring	73	29 (39.7%)	592	20.4 (24.3)
All sites, Summer	118	35 (29.7%)	557	15.9 (25)
All sites, Autumn	53	23 (43.4%)	3,660	159.1 (162.4)
All sites, Winter	60	27 (45%)	5,662	209.7 (412.4)
Total	304	114 (37.5%)	10,471	91.9 (226.9)

918 Supplementary Table 2. Rat microsatellite loci. The forward primers are listed first and all primers are 5' to 3'; Length refers to the length 919 in bp of the region amplified by the given primer sequences as determined from Rnor 6.0 (1.7.2014) release of the *R. norvegicus* genome; 920 Fluorophore indicates the fluorophore used to label forward primers and thus PCR products

921

Locus	Primer sequences	Length	Fluorophore	Reference
D3Rat159	CCAGGGATGAGTCCAAGGTA CTGGTCTGCTTCCTCCAGTC	243	VIC	Steen <i>et al</i> ., 1999
D4Rat59	GCAGTGTGTTTGGGGTAGCT GCGGAATGATAGTTACTACGGC	180	FAM	Steen <i>et al.</i> , 1999.
D6Cebr1	GGTTTGGTTGGGGAGAA GTGCTGTCAGGGAAAGATGTA	223	NED	Giraudeau et al., 1999
D8Rat162	TCACTGGCAGCAATTTACCA TCTGAGACCTCTTCAACTCTGTTG	249	VIC	Steen <i>et al.</i> , 1999.
D10Rat105	ATCCAGCCAGAAAGCAAAAC CTGGCTGAGTCCTGTCACAA	100	FAM	Steen <i>et al.</i> , 1999.
D12Rat42	CAACCCAGTGTGTCAAACGT GGGTTGGTGAAGCATTTTCA	128	VIC	Steen <i>et al.</i> , 1999.
D14Rat110	AACATTGTCTTGCTTAGCCTCA CTCCACCCACACACCACG	280	NED	Steen <i>et al.</i> , 1999.
D18Rat11	GCCCAGGAGCTAAGTCTGATT CCAGCCTCAGAGCCAATAAG	133	FAM	Steen <i>et al</i> ., 1999.
D19Rat62	GTGCTAATGTGGGTGGCTTT TGAATTCTACCATGCATCACAG	112	NED	Steen <i>et al.</i> , 1999.

923 Supplementary Table 3. Population genetics of rat microsatellite loci. A. Genetic diversity of loci. Rats genotyped is the number of individual rats in which genotyping was 924 successful; Allele number is the number of alleles identified at the locus; He and Ho are 925 926 expected and observed heterozygosity, respectively; Site diversity is the proportion of allelic diversity that partitions within sites, as opposed to among sites, according to ^SH_{UA}. locus 927 D12Rat42 was not used in analyses due to the low genotyping success rate. B. HWE of 928 929 loci. Locus shows the loci; Site is the sampling site; Rats genotyped the number of rats that were genotyped; Alleles is the number of alleles detected, X² is the statistic testing whether 930 the observed genotype frequencies match HWE expectations with the degrees of freedom 931 (df) in parentheses. Those still significant after Bonferroni correction are shown in bold. 932

933

Α.					
Locus Rats		Allele	He	Но	Site
	genotyped	number			diversity (%)
D3Rat159	103	14	0.779	0.756	18
D4Rat59	105	12	0.822	0.652	8
D6Cebr1	109	14	0.752	0.356	13
D8Rat162	73	15	0.835	0.600	16
D10Rat105	112	8	0.696	0.617	13
D12Rat42	34	9	0.762	0.267	NA
D14Rat110	83	16	0.824	0.529	18
D18Rat11	112	10	0.686	0.319	19
D19Rat62	96	12	0.678	0.462	13

B.						
Locus	Site	Rats genotyped	Alleles	X ² (df)	Probability	
	CA	45	7	41.8 (21)	0.01	
D3Rat159	LA	17	11	89.9 (55)	0.01	
	AM	41	10	98.4 (45)	0.001	
	СА	46	9	74.6 (36)	0.001	
D4Rat59	LA	15	9	39.1 (36)	0.03	
	AM	44	10	67.2 (45)	0.05	
	СА	45	11	100.7 (55)	0.001	
D6Cebr1	LA	18	10	87.6 (45)	0.001	
	AM	46	6	105.1 (15)	0.001	
	СА	25	10	120.1 (45)	0.001	
D8Rat162	LA	13	8	28.3 (28)	0.45	
	AM	35	10	67.7 (45)	0.05	
	CA	47	5	89.6 (10)	0.001	
D10Rat105	LA	19	6	64 (15)	0.001	
	AM	46	7	94.2 (21)	0.001	
	СА	15	9	71.8 (36)	0.001	
D12Rat42	LA	5	4	12 (6)	0.06	
	AM	14	6	33.1 (15)	0.01	
	CA	34	11	112.4 (55)	0.001	
D14Rat110	LA	16	9	45.2 (36)	0.14	
	AM	33	11	113.6 (55)	0.001	
	CA	47	8	66.6 (28)	0.001	
D18Rat11	LA	19	5	34.5 (10)	0.001	
	AM	46	9	141 (36)	0.001	

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445462; this version posted May 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

D19Rat62	СА	39	9	115.2 (36)	0.001
	LA	17	7	40.8 (21)	0.01
	AM	40	5	17.9 (10)	0.06

936

937	7
-----	---

Supplementary Table 4. Iso	female lines of S <i>. ratti</i> that w	ere whole genome sequenced
Isofemale line	Isolation year	Origin
ED36	1990	Hampshire, UK
ED43	1989	Edinburgh, UK
ED53	1990	Kagoshima, Japan
ED132	1990	Kagoshima, Japan
ED336	1995	Berkshire, UK
ED391	1989	Wiltshire, UK
ED399	1989	Sussex, UK
ED405	1989	Sussex, UK
ED428	2012	Bath, UK

2012

Bath, UK

938

ED438

939 Supplementary Table 5. Genes in highly variable 10 kb regions. Region lists the 61 regions (region 1 does not contain any genes); Gene gives the gene's designation; Predicted function is the WormBase ParaSite description of each gene, where Astacin-like 940 metalloendopeptidase is abbreviated to Astacin; Coding SNPs per kb is the number of SNPs per kb within the coding sequence of that 941 gene; SNP type is the absolute number of synonymous (S), nonsynonymous (NS) and STOP codon-causing SNPs; Expression is taken 942 from Hunt et al., 2016, which compared the expression of genes between the parasitic female and free-living female morph, and where the 943 944 expression is one log₂ fold more in the parasitic female morph (Parasitic), free-living female morph (Free-living), not different (Same), or not listed (Unlisted); Expansion cluster is expansion cluster or associated flanking region a gene belongs to, if any. Some genes are marked 945 as "discarded" because they had poor underlying assembly according to Gap5 analysis of expansion clusters and flanking regions and so 946 947 were discounted from further analysis.

Region	Gene	Predicted function	Coding SNPs per kb	SNP type (S/NS/STOP)	Expression	Expansion cluster
2	SRAE_0000058700	Kinesin, motor domain and P-loop- containing	26.7	3/3/0	Unlisted	None
		_				
3	SRAE 2000499400	Hypothetical protein	48.2	5/28/0	Parasitic	None
	SRAE_2000499500	Hypothetical protein	0	0/0/0	Parasitic	None
	SRAE_2000499600	Hypothetical protein	72.2	8 / 20 / 1	Parasitic	None
	SRAE_2000499700	Hypothetical protein	45.7	5/22/0	Parasitic	None
4	SRAE_0000058500	Hypothetical protein	3.3	0/1/0	Unlisted	None
5	SRAE_2000124300	CAP domain-containing	69	17 / 49 / 4	Parasitic	EC3
	SRAE_2000124400	CAP domain-containing	43.3	8 / 30 / 1	Parasitic	EC3
	SRAE_2000124500	CAP domain-containing	50.9	11 / 33 / 2	Parasitic	EC3
6	SRAE_X000232600	Reverse transcriptase domain and Aspartic peptidase domain- containing	45.8	62 / 51 / 1	Unlisted	None
	SRAE_X000232700	Integrase, catalytic core domain and Ribonuclease H-like domain- containing	22.2	5/1/1	Unlisted	None
	SRAE_X000232800	Hypothetical protein	32	6/6/0	Same	None
	SRAE_X000232900	Hypothetical protein	31.7	4/4/0	Unlisted	None

	SRAE_X000233000	Zinc finger, CCHC-type domain- containing	11.8	14 / 36 / 0	Unlisted	None
	SRAE_X000233100	Hypothetical protein	11.3	12 / 22 / 1	Unlisted	None
7	SRAE_0000057800	Hypothetical protein	28.5	1/9/0	Parasitic	None
8	SRAE_X000062200	Poly-glutamine tract binding protein	0	0/0/0	Unlisted	EC13
	(discarded)	1				
	SRAE_X000062300	Acetylcholinesterase	66.2	29 / 86 / 0	Same	EC13
	(discarded)					
9	SRAE_2000478200	Hypothetical protein	6.2	4/0/0	Unlisted	None
	SRAE_2000478300	Hypothetical protein	21.1	5/6/0	Same	None
	SRAE_2000478400	Hypothetical protein	90.7	10 / 29 / 1	Unlisted	None
	SRAE_2000478500	CAP domain-containing	89.3	17 / 47 / 0	Parasitic	None
10	SRAE_X000050900	Hypothetical protein	66.7	13 / 34 / 0	Parasitic	None
	SRAE_X000051000	Hypothetical protein	44.5	8/21/0	Parasitic	None
	SRAE_X000051100	Hypothetical protein	53	6 / 27 / 1	Parasitic	None
12	SRAE_X000026900	Hypothetical protein	51	5 / 19 / 0	Parasitic	None
	SRAE_X000027000	Hypothetical protein	15.8	3/4/0	Unlisted	None
13	SRAE_1000139800	Hypothetical protein	8	12/2/0	Unlisted	None
	SRAE_1000139900	Protein-tyrosine phosphatase-	54.6	42 / 145 / 1	Same	None
		containing				
	SRAE_1000140000	Translation initiation factor SUI1	0	0/0/0	Same	None
		domain-containing				
	SRAE_1000140100	Hypothetical protein	0	0/0/0	Same	None
	SRAE_1000140200	Hypothetical protein	18.1	2/8/0	Same	None
14	SRAE_2000076600	CAP domain-containing	21.2	3 / 14 / 0	Parasitic	EC2
	SRAE_2000076700	CAP domain-containing	60.4	11 / 39 / 0	Parasitic	EC2
	SRAE_2000076800	CAP domain-containing	39.2	11 / 18 / 1	Parasitic	EC2
----	-----------------	---------------------------------	------	--------------	-------------	------
	SRAE_2000076900	CAP domain-containing	36.8	6 / 25 / 0	Parasitic	EC2
	SRAE_2000077000	CAP domain-containing	19	6/9/1	Parasitic	EC2
15	SRAE_2000499000	Hypothetical protein	55.9	2 / 25 / 1	Parasitic	None
	SRAE_2000499100	Hypothetical protein	35.8	7 / 12 / 0	Parasitic	None
16	SRAE_X000037500	Hypothetical protein	21.7	8 / 18 / 1	Unlisted	None
17	SRAE_X000066000	Trypsin Inhibitor-like	36.3	38 / 77 / 0	Parasitic	None
	SRAE_X000066100	Astacin	28.2	18 / 23 / 0	Parasitic	None
18	SRAE_X000032850	Hypothetical protein	69.2	4 / 18 / 0	Unlisted	None
	SRAE_X000032900	Hypothetical protein	54.6	8/11/0	Unlisted	None
	SRAE_X000033000	Hypothetical protein	78.6	9/20/0	Unlisted	None
	SRAE_X000033100	Hypothetical protein	46	4 / 12 / 0	Unlisted	None
19	SRAE_X000050700	Hypothetical protein	34.9	9 / 15 / 0	Parasitic	None
	SRAE_X000050800	Hypothetical protein	37	7 / 16 / 0	Parasitic	None
20	SRAE_0000074500	Aspartic peptidase domain-	46.4	93 / 116 / 6	Free-living	None
		containing			_	
	SRAE_0000074600	Aspartic peptidase domain-	9.5	15 / 19 / 1	Unlisted	None
		containing				
21	SRAE_X000145900	Astacin	82.7	27 / 76 / 1	Same	None
	SRAE_X000146000	Astacin	21.4	7 / 19 / 1	Para	None
22	SRAE_X000186500	Reverse transcriptase domain-	25.3	37 / 65 / 2	Free-living	None
		containing				
	SRAE_X000186600	Cytochrome C oxidase subunit II	43.6	14 / 51 / 0	Same	None

23	SRAE_X000146300	Hypothetical protein	31.3	5/5/1	Unlisted	FR15L
	(discarded)					
	SRAE_X000146400	Hypothetical protein	6.4	2/1/0	Unlisted	FR15L
	(discarded)					
24	SRAE_0000074000	Hypothetical protein	16.7	3/6/1	Unlisted	None
	SRAE_0000074100	Hypothetical protein	10.4	2/6/0	Unlisted	None
	SRAE_0000074200	Aspartic peptidase domain- containing	42	86 / 74 / 0	Same	None
05			50.4		D	
25	SRAE_2000460700	Hypothetical protein	52.4	20 / 112 / 1	Parasitic	None
	SRAE_2000460800	Hypothetical protein	4.6	1/1/0	Parasitic	None
	SRAE_2000460900	Hypothetical protein	6.7	1/3/1	Same	None
26	SBAE X000063000	Acatylabalipactoraca	15.2	0/18/0	Daracitio	EC12
20	(discarded)	Acetylcholinesterase	13.2	971070	Farasilic	
	SRAE X000063100	Poly-glutamine tract binding protein	0.4	0/1/0	Same	FR13R
	(discarded)	1				
27	SRAE_1000045700	E3 ubiquitin-protein ligase MYCBP2	4.9	51 / 20 / 0	Free-living	None
	SRAE_1000045800	Lipase, class 3 family-containing	15.2	7/8/0	Parasitic	None
	SRAE_1000045900	CAP domain-containing	76	19 / 67 / 0	Parasitic	None
	SRAE_1000046000	Speckle-type POZ	4.2	4/1/0	Same	None
28	SRAE_X000051500	CTP synthase 2	26.6	5 / 23 / 1	Unlisted	None
	SRAE_X000051600	CTP synthase 2	62.4	6 / 26 / 0	Unlisted	None
	SRAE_X000051700	Hypothetical protein	9.1	1/3/0	Parasitic	None
	SRAE_X000051800	CTP synthase 2	6,4	2/2/1	Unlisted	None
29	SRAE_0000058000	Reverse transcriptase domain- containing	40.7	19 / 46 / 0	Unlisted	None
	SRAE_0000058100	Integrase	38.9	18 / 21 / 3	Unlisted	None

	SRAE_0000058200	Hypothetical protein	26.5	3/3/1	Unlisted	None
	SRAE_0000058300	Reverse transcriptase domain- containing	3.3	2/8/0	Unlisted	None
30	SRAE_X000146200	Hypothetical protein	23.2	4 / 6 / 1	Unlisted	FR15L
31	SRAE_0000049800	Transposase, ISXO2-like domain- containing	24.9	2/6/2	Unlisted	None
	SRAE_0000049900	Integrase	9.6	4 / 20 / 2	Unlisted	None
32	SRAE_X000088600 Ras-like protein 3		0	0/0/0	Free-living	None
33	SRAE_X000195800	Hypothetical protein	0	0/0/0	Parasitic	None
	SRAE_X000195900	Hypothetical protein	30.7	2/6/0	Parasitic	None
	SRAE_X000196000	Hypothetical protein	12.4	1/6/0	Parasitic	None
	SRAE_X000196100	Hypothetical protein	31.1	2/4/1	Unlisted	None
34	SRAE_0000025500	Plasma membrane calcium- transporting ATPase 3	2.2	4 / 5 / 0	Free-living	None
	SRAE 0000025600	Transthyretin-like family-containing	103.9	11/37/0	Parasitic	None
	SRAE 0000025650	Hypothetical protein	26.3	2/9/1	Unlisted	None
	SRAE 0000025700	Transthyretin-like family-containing	0	0/0/0	Parasitic	None
	SRAE_0000025800	Protein argonaute-4	4.9	5/9/0	Parasitic	None
0.5			0.5			
35	SRAE_0000007600	Amino acid transporter	2.5	4/0/0	Free-living	None
	SRAE_0000007700	Cathepsin L.1	13.4	9/4/0	Unlisted	None
	SRAE_0000007800	Cathepsin L.1	8.2	3/5/0	Free-living	None
	SRAE_0000007900	Hypothetical protein	29.5	14 / 20 / 0	Parasitic	None
	SRAE_0000008000	Hypothetical protein	37.5	10 / 32 / 1	Parasitic	None
36	SRAE_X000138600	Hypothetical protein	2.2	0/1/0	Same	None

	SRAE_X000138700	MAM domain and Concanavalin A- like lectin	2.3	4/0/0	Same	None
37	SRAE_X000236650	Hypothetical protein	24.4	3 / 18 / 1	Unlisted	None
	SRAE_X000236700	Ribonuclease H-like domain and AT hook-like family-containing	10	2/7/0	Unlisted	None
	SRAE_X000236800	Hypothetical protein	18.3	1/8/1	Unlisted	None
	SRAE_X000236900 Aspartic peptidase domain- containing		13.9	10 / 25 / 0	Unlisted	None
	SRAE_X000237000	Hypothetical protein	26.5	8/1/1	Unlisted	None
	SRAE_X000237100	Hypothetical protein	29.2	3/7/0	Unlisted	None
38	38 SRAE_0000057900 Hypothetical protein		42.9	3 / 10 / 0	Parasitic	None
39	SRAE 0000008000	Hypothetical protein	37.5	10 / 32 / 1	Parasitic	None
	SRAE 0000008100	Sulfotransferase family-containing	19.8	5/20/0	Parasitic	None
	SRAE_0000008200	Astacin-like metalloendopeptidase	4.3	4/1/0	Parasitic	None
40	SRAE 2000478600	CAP domain-containing	90	12 / 51 / 1	Parasitic	None
	SRAE_2000478610	Hypothetical protein	7.5	1/3/0	Unlisted	None
	SRAE_2000478700	Zinc finger, BED-type predicted domain-containing	8	8/8/0	Free-living	None
11	SDAE 2000400200	Llunothatical protain	75.7	9/07/0	Dorocitio	Nono
41	SRAE_2000499200		10.7	5/17/0	Parasilic	None
	SRAE_2000499210		40.7		Parasilic	None
	SRAE_2000499300		15.5	27670	Parasilic	INONE
42	SRAE_X000104500	Hypothetical protein	22.2	30 / 81 / 0	Parasitic	None
40			05.0			
43	SRAE_X000038200	Hypothetical protein	25.2	8/5/0	Unlisted	None
	SRAE_X000038300	Synaptogyrin	3.1	2/1/0	Free-living	None
	SRAE_X000038400	EF-hand domain	2.9	2/0/0	Unlisted	None
	SRAE_X000038500	RUN domain-containing	4.9	4/5/0	Parasitic	None

				-		
44	SRAE_X000246300	Hypothetical protein	0	0/0/0	Same	None
45	SRAE_X000222600	Hypothetical protein	30.8	1/10/0	Parasitic	None
46	SRAE X000158400	Astacin-like metalloendopeptidase	1.4	0/2/0	Free-living	None
	SRAE X000158500	Acetylcholinesterase	8.7	1/14/0	Parasitic	None
47	SRAE 2000420700	CAP domain-containing	34.1	5/28/0	Parasitic	None
	SRAE 2000420800	Hypothetical protein	11.1	0/4/0	Unlisted	None
48	SRAE X000221400	U1 small nuclear ribonucleoprotein	0	0/0/0	Same	None
	_	70 kDa				
	SRAE X000221500	Hypothetical protein	5.8	0/2/0	Unlisted	None
	SRAE X000221600	Hypothetical protein	46.4	7/9/0	Unlisted	None
49	SRAE X000062400	Acetylcholinesterase	24.9	14 / 28 / 1	same	EC13
	(discarded)	ded)				
50	SRAE X000201100	Astacin	29.8	17 / 27 / 1	Parasitic	None
	SRAE X000201200	Hypothetical protein	12	1/5/0	Unlisted	None
	SRAE X000201300	Hypothetical protein	0	0/0/0	Unlisted	None
51	SRAE X000247200	Carboxylesterase	6.1	1/13/0	Free-living	None
	SRAE X000247300	ShKT domain-containing	41.8	28 / 100 / 0	Parasitic	None
52	SRAE 1000127500	Amino acid transporter	48.2	41/34/0	Same	None
	SRAE 1000127600	Farnesyltransferase, CAAX box.	14	34 / 16 / 0	Same	None
		beta				
	SRAE 1000127700	Hypothetical protein	2.6	1/1/0	Unlisted	None
53	SRAE X000027100	Hypothetical protein	16.4	2/6/0	Parasitic	None
	SRAE X000027200	Hypothetical protein	38.3	13/13/1	Parasitic	None
	SRAE X000027300	Hypothetical protein	8.2	2/2/0	Parasitic	None
				· · · -		

54	SRAE_X000144200	Astacin	39.5	24 / 24 / 1	Same	EC14
	SRAE_X000144210	Astacin	21.5	6/21/0	Parasitic	EC14
	SRAE_X000144220	Hypothetical protein	9.4	4/4/0	Same	FR14R
55	SRAE_X000199600	Hypothetical protein	11.8	2/9/0	Unlisted	None
	SRAE X000199700	Integrase	8.7	5/11/0	Unlisted	None
	SRAE_X000199800	Hypothetical protein	19.5	2/5/1	Unlisted	None
	SRAE_X000199900	Zinc finger, CCHC-type domain-	24.5	9 / 14 / 0	Unlisted	None
	_	containing				
	SRAE_X000200000	Reverse transcriptase domain-	38.4	25 / 20 / 1	Unlisted	None
		containing				
	SRAE_X000200100	Hypothetical protein	34.2	22 / 16 / 1	Unlisted	None
56	SRAE_1000059600	Ground-like domain-containing	22.8	22 / 50 / 0	Same	None
	SRAE_1000059700	Phosphate-regulating neutral	14.6	10 / 13 / 0	Parasitic	None
		endopeptidase				
	SRAE_1000059800	Phosphate-regulating neutral	11.3	6 / 10 / 0	Parasitic	None
		endopeptidase				
	SRAE_1000059900	Phosphate-regulating neutral	12.5	9/9/0	Same	None
		endopeptidase				
				- / / -		
57	SRAE_X000168300	Hypothetical protein	46.3	8/22/0	Parasitic	None
	SRAE_X000168400	Hypothetical protein	23.8	2/7/0	Parasitic	None
58	SRAE_X000200200	Hypothetical protein	3.2	0/1/0	Unlisted	None
	SRAE_X000200300	Hypothetical protein	2	1/0/0	Parasitic	None
59	SRAE_0000065600	Hypothetical protein	69.8	28 / 30 / 3	Unlisted	None
	SRAE_0000065700	Hypothetical protein	24.8	3/6/0	Unlisted	None
	SRAE_0000065800	Hypothetical protein	12.6	1/3/0	Unlisted	None
	SRAE_0000065900	Ribonuclease H-like domain-	6.4	2/2/0	Unlisted	None
		containing protein				

60	SRAE 2000325900	Astacin	25.3	13 / 20 / 0	Parasitic	EC5
	(discarded)					
	SRAE_2000326000	Astacin	7.6	3/7/0	Parasitic	EC5
61	SRAE_X000233200	Hypothetical protein	11.8	6 / 14 / 1	Unlisted	None
	SRAE_X000233300	Hypothetical protein	11.3	2/3/0	Unlisted	None
	SRAE_X000233400	Hypothetical protein	23.8	3 / 14 / 0	Unlisted	None
	SRAE_X000233500	Reverse transcriptase domain-	23.7	10 / 31 / 4	Unlisted	None
		containing				
	SRAE_X000233600	Hypothetical protein	30.5	9 / 37 / 1	Unlisted	None
62	SRAE_2000124600	CAP domain-containing	8.7	3/5/0	Parasitic	EC3
	SRAE_2000124700	CAP domain-containing	5.2	0/4/1	Parasitic	EC3
	SRAE_2000124800	CAP domain-containing	6.5	4/2/0	Parasitic	EC3
	SRAE_2000124900	CAP domain-containing	6.6	2/4/0	Parasitic	EC3
	SRAE_2000125000	CAP domain-containing	2.2	1/1/0	Parasitic	EC3
	(discarded)	_				
	SRAE_2000125100	CAP domain-containing	38.6	9 / 25 / 2	Parasitic	EC3
	(discarded)					

950 Supplementary Table 6. The hundred most parasitic genes. Gene gives the gene's designation; Predicted function is the WormBase ParaSite description of each gene, where Astacin-like metalloendopeptidase is abbreviated to Astacin; Coding SNPs per kb is the number 951 of SNPs per kb within the coding sequence of that gene; SNP type is the absolute number of synonymous (S), nonsynonymous (NS) and 952 STOP codon-causing SNPs; Fold change is the log₂ difference in expression of the gene between the parasitic female and free-living 953 female morphs taken from Hunt et al., 2016, here shown as positive values indicating greater expression in the parasitic female morph; 954 955 Expansion cluster is expansion cluster or associated flanking region a gene belongs to, if any; Variable region is as defined in Supplementary Table 5. Some genes are marked as "discarded", because they had poor underlying assembly according to Gap5 analysis 956 of expansion clusters and flanking regions and so were discounted from analyses. 957 958

Gene	Predicted function	Coding SNPs per kb	SNP type (S/NS/STOP)	Fold Change	Expansion cluster	Variable region
SRAE_2000436100	Hypothetical protein	4.7	1/2/0	14.5	None	None
SRAE_X000014200	Hypothetical protein	15.2	0/6/1	13.4	None	None
SRAE_X000201000	Hypothetical protein	1.9	0/1/0	13	None	50
SRAE_1000182300	CAP domain-containing	0	0/0/0	12.9	EC1	None
SRAE_2000498800	Phloem filament PP1 domain-containing	0	0/0/0	12.7	None	None
SRAE_2000067500	Transthyretin-like family- containing	15.9	1/6/0	12.6	None	None
SRAE_X000201200	Hypothetical protein	12	1/5/0	12.1	None	None
SRAE_1000182700	CAP domain-containing	0	0/0/0	12.1	EC1	None
(discarded)						
SRAE_2000420000	Astacin	1.7	0/1/1	12	None	None
SRAE_X000200300	Hypothetical protein	2	1/0/0	11.8	None	None
SRAE_X000124900	Hypothetical protein	0	0/0/0	11.8	None	None
SRAE_2000485600	Tissue inhibitor of metalloproteinase family	15	3/3/1	11.8	None	None
SRAE_X000222400	Hypothetical protein	73.8	7 / 20 / 0	11.7	None	45
SRAE_X000055800	Hypothetical protein	54.3	3 / 12 / 0	11.7	None	None
SRAE_2000498700	Hypothetical protein	27.8	4/9/0	11.7	None	None
SRAE_X000124800	Hypothetical protein	0	0/0/0	11.6	None	None
SRAE_X000037700	Hypothetical protein	0	0/0/0	11.6	None	None
SRAE_0000057900	Hypothetical protein	42.9	3/10/0	11.5	None	38
SRAE_2000457510	CAP domain-containing	13.8	4/6/0	11.4	None	None

SRAE_1000045800	Lipase, class 3 family- containing	15.2	7/8/0	11.4	None	27
SRAE_2000506800	Hypothetical protein	14.7	8/27/0	11.3	None	None
SRAE_0000045600	CAP domain-containing protein	9.5	3/4/0	11.3	None	None
SRAE_2000453600	Astacin	0	0/0/0	11.3	EC7	None
SRAE_2000522700	Trypsin Inhibitor-like	9	3/3/0	11.2	None	None
SRAE_0000071120	Metalloendopeptidase	1	0/1/0	11.2	None	None
SRAE_2000522300	Purple acid phosphatase	4.8	2/5/0	11.2	None	None
SRAE_2000465200	Hypothetical protein	0	0/0/0	11.1	None	None
SRAE_X000246200	Hypothetical protein	0	0/0/0	11.1	None	None
SRAE_2000475600	Hypothetical protein	34.9	3/10/0	11.1	None	None
SRAE_2000077400	CAP domain-containing	13	4/7/0	11.1	EC2	None
SRAE_2000465000	Hypothetical protein	0	0/0/0	11.1	None	None
SRAE_X000168300	Hypothetical protein	46.3	8/22/0	11	None	57
SRAE_2000499910	Hypothetical protein	7.5	2/2/0	11	None	None
SRAE_2000499810	Hypothetical protein	41.4	4 / 17 / 0	11	None	None
SRAE_0000057800	Hypothetical protein	28.5	1/9/0	11	None	7
SRAE_0000077300	Trypsin Inhibitor-like	6.3	1/1/1	11	None	None
SRAE_1000296600	Hypothetical protein	0	0/0/0	10.9	None	None
SRAE_2000499820	Hypothetical protein	1.6	1/0/0	10.9	None	None
SRAE_2000522600	Trypsin Inhibitor-like	25.6	10 / 7 / 0	10.9	None	None
SRAE_X000144210	Astacin	21.5	6/21/0	10.9	EC14	54
SRAE_2000486100	Tissue inhibitor of metalloproteinase family	51.9	7 / 17 / 0	10.9	None	None
SRAE_X000168800	Prolyl endopeptidase	0	0/0/0	10.9	None	None
SRAE_2000453500	Astacin	2.5	0/3/0	10.8	EC7	None
SRAE_2000485800	Tissue inhibitor of	0	0/0/0	10.8	None	None
	metalloproteinase family					
SRAE_2000499500	Hypothetical protein	0	0/0/0	10.7	None	3
SRAE_X000065700	Prolyl endopeptidase	3.1	4/3/0	10.7	None	None
SRAE_2000461200	Hypothetical protein	25.2	3/13/0	10.7	None	None
SRAE_X000051700	Hypothetical protein	9.1	1/3/0	10.6	None	28

SRAE_2000456500	Metalloendopeptidase	2.3	2/1/0	10.6	None	None
SRAE_1000182400	CAP domain-containing	1.2	1/0/0	10.6	EC1	None
SRAE_2000460300	Zinc metalloproteinase	17.1	5 / 19 / 0	10.6	None	None
SRAE_2000525700	Astacin	29.4	3 / 22 / 0	10.6	EC11	None
(discarded)						
SRAE_X000201100	Astacin	29.8	17 / 27 / 1	10.5	None	50
SRAE_0000008000	Hypothetical protein	37.5	10 / 32 / 0	10.5	None	35
SRAE_X000038800	Hypothetical protein	0	0/0/0	10.4	None	None
SRAE_2000076800	CAP domain-containing	39.2	11 / 18 / 1	10.4	EC2	14
SRAE_2000515500	Hypothetical protein	2.9	9 / 15 / 0	10.4	None	None
SRAE_X000055700	Hypothetical protein	0	0/0/0	10.4	None	None
SRAE_1000182600	CAP domain-containing	17.8	2 / 14 / 0	10.4	EC1	None
(discarded)						
SRAE_X000168400	Astacin	23.8	2/7/0	10.3	None	None
SRAE_X000169100	Prolyl endopeptidase	0	0/0/0	10.3	None	None
SRAE_0000081000	Metalloendopeptidase	0	0/0/0	10.3	None	None
SRAE_0000000600	Hypothetical protein	0	0/0/0	10.3	None	None
SRAE_X000195900	Hypothetical protein	30.7	2/6/0	10.3	None	58
SRAE_2000523800	Astacin	2.8	2/2/0	10.3	EC10	None
SRAE_1000183100	CAP domain-containing	20.4	3 / 14 / 1	10.3	EC1	None
(discarded)						
SRAE_2000077000	CAP domain-containing	19	6/9/1	10.2	EC2	14
SRAE_X000226400	CAP domain-containing	2	1/1/0	10.2	None	None
SRAE_X000066100	Astacin	28.2	18 / 23 / 0	10.2	None	17
SRAE_X000055500	Hypothetical protein	0	0/0/0	10.2	None	None
SRAE_2000499920	Hypothetical protein	85.9	14 / 52 / 0	10.2	None	None
SRAE_X000191900	Hypothetical protein	0	0/0/0	10.1	None	33
SRAE_X000222600	Hypothetical protein	30.8	1 / 10 / 0	10.1	None	None
SRAE_2000451600	Transthyretin-like family-	20.6	2/8/0	10.1	None	None
	containing					
SRAE_X000191800	Hypothetical protein	0	0/0/0	10.1	None	None
SRAE_2000455000	Astacin	2.6	1/2/0	10.1	EC8	None
SRAE_0000078700	Hypothetical protein	0	0/0/0	10	None	None

SRAE_2000455300	Acetylcholinesterase	0	0/0/0	10	EC8	None
SRAE_X000200700	Hypothetical protein	57.9	3 / 26 / 0	10	None	None
SRAE_2000499200	Hypothetical protein	75.7	8/27/2	10	None	41
SRAE_2000071300	Hypothetical protein	30.3	8 / 17 / 0	10	None	None
SRAE_X000158300	Acetylcholinesterase	3	3/2/0	10	None	57
SRAE_2000124300	CAP domain-containing	69	17 / 49 / 4	10	EC3	5
	protein					
SRAE_2000457710	Metallopeptidase, catalytic	1.8	2/0/0	10	None	None
	domain-containing					
SRAE_2000527500	CAP domain-containing	3.3	3/0/0	10	EC12	None
SRAE_2000453700	Astacin	5.5	0/7/0	9.9	EC7	None
SRAE_2000325600	Astacin	0.9	1/0/0	9.9	EC5	None
SRAE_2000525800	Astacin	1.4	0/1/0	9.9	EC11	None
(discarded)						
SRAE_X000055600	Hypothetical protein	0	0/0/0	9.9	None	None
SRAE_2000482710	Zinc metalloproteinase	17.8	6 / 19 / 0	9.8	None	None
SRAE_0000077800	Hypothetical protein	4.6	0/1/0	9.8	None	None
SRAE_2000489900	Aspartic peptidase family	0.9	1/0/0	9.8	None	None
SRAE_2000289800	Astacin	0	0/0/0	9.8	EC11	None
(discarded)						
SRAE_2000508100	Hypothetical protein	66	4 / 14 / 2	9.8	None	None
SRAE_2000456300	Acetylcholinesterase	5.2	1/8/0	9.7	None	None
SRAE_0000071100	Metalloendopeptidase	0	0/0/0	9.7	None	None
SRAE_0000082200	Trypsin Inhibitor-like	18.1	6 / 19 / 0	9.7	None	None
SRAE_2000126100	Hypothetical protein	8.6	6/2/0	9.7	FR3R	None
SRAE_X000147300	Astacin	3	3/2/0	9.7	None	None
SRAE_0000081500	CAP domain-containing	5.6	2/3/0	9.7	None	None
	protein					

Supplementary Table 7. The hundred most free-living genes. Gene gives the gene's designation; Predicted function is the WormBase ParaSite description of each gene; Coding SNPs per kb is the number of SNPs per kb within the coding sequence of that gene; SNP type is the absolute number of synonymous (S), nonsynonymous (NS) and STOP codon-causing SNPs; Fold change is the log₂ difference in expression of the gene between the parasitic female and free-living female morphs taken from Hunt *et al.*, 2016, here shown as positive values indicating greater expression in the free-living female morph; Expansion cluster is expansion cluster or associated flanking region gene belongs to, if any; Variable region is as defined in Supplementary Table 5.

Gene	Predicted function	Coding SNPs per kb	SNP type (S/NS/STOP)	Fold Change	Expansion cluster	Variable region
SRAE_2000529300	ShKT domain-containing protein	13.5	0/4/0	11	None	None
SRAE_2000226500	ShKT domain-containing protein	41.5	5 / 17 / 0	10.8	None	None
SRAE_X000147400	Phosphate-regulating neutral endopeptidase	4.8	2/5/0	10.4	None	None
SRAE_1000161500	DUF148 domain-containing	1.6	0/1/0	10.3	None	None
SRAE_X000018600	Mucin 18B	2.4	2/2/0	10.3	None	None
SRAE_X000158400	Astacin-like metalloendopeptidase	1.4	0/2/0	10.1	None	46
SRAE_2000474600	ShKT domain-containing protein	2.2	0/2/0	10.1	None	None
SRAE_X000135300	Collagen alpha-5(IV) chain	1	1/0/0	10	None	None
SRAE_2000463500	Hypothetical protein	5.5	1/1/1	9.8	None	None
SRAE_2000079600	Transcription factor Sp6	5.3	3/1/0	8.8	None	None
SRAE_1000062000	Nematode cuticle collagen	5.3	4/1/0	8.8	None	None
SRAE_2000491300	ShKT domain-containing protein	0	0/0/0	8.7	None	None
SRAE_1000170700	Hypothetical protein	6.9	8/2/0	8.6	None	None
SRAE_1000213600	Aspartic peptidase family	2.2	2/1/0	8.5	None	None
SRAE_2000400600	Saposin-like type B, 1 domain	0	0/0/0	8.4	None	None
SRAE_2000477400	ShKT domain-containing protein	8.4	1/5/0	8.4	None	None
SRAE_1000227500	Hypothetical protein	3.5	0/2/0	8.2	None	None

SRAE_2000292900	GH07323p	1.2	1/1/0	8	None	None
SRAE_X000034300	Hypothetical protein	8	1/5/0	8	None	None
SRAE_2000126900	Nematode cuticle collagen	2.1	1/1/0	7.9	FR4R	None
SRAE_X000032100	Lipase, class 3 family-	3.1	2/1/0	7.9	None	None
	containing					
SRAE_1000151800	Protein COL-120	4.1	4/1/0	7.7	None	None
SRAE_X000215700	Hypothetical protein	9.6	2/1/0	7.7	None	None
SRAE_2000363400	Hypothetical protein	2.8	1/0/0	7.5	None	None
SRAE_2000434700	Collagen alpha-5(IV) chain	1	0 /1 / 0	7.5	None	None
SRAE_1000352300	Serine/threonine- /dual	0.8	1/0/0	7.4	None	None
	specificity protein kinase					
SRAE_1000099100	Hypothetical protein	0.7	1/0/0	7.4	None	None
SRAE_X000100400	Hypothetical protein	0.9	0/1/0	7.4	None	None
SRAE_1000220400	Hypothetical protein	0	0/0/0	7.4	None	None
SRAE_2000033400	Heat shock protein Hsp-12.2	0	0/0/0	7.2	None	None
SRAE_1000228700	Cell death specification	1.2	1/0/0	7.2	None	None
	protein 2					
SRAE_X000095500	Hypothetical protein	0	0/0/0	7.2	None	None
SRAE_1000073100	Protein lin-32	0	0/0/0	7.2	None	None
SRAE_1000271200	MSP domain; PapD-like	0	0/0/0	7.2	None	None
	domain-containing					
SRAE_2000115300	Metallothionein, family 4,	3	0/2/0	7.1	None	None
	echinoidea-containing					
SRAE_1000098100	Hypothetical protein	0	0/0/0	7.1	None	None
SRAE_2000006500	Hypothetical protein	0	0/0/0	7	None	None
SRAE_2000425600	Hypothetical protein	0	0/0/0	7	None	None
SRAE_0000045200	von Willebrand factor, type	3.2	10/8/0	7	None	None
	A domain-containing					
SRAE_1000198200	Glycoside hydrolase	1.2	1/1/0	7	None	None
SRAE_1000159100	Hypothetical protein	0.7	0/1/0	6.9	None	None
SRAE_1000268100	Nematode cuticle collagen	0	0/0/0	6.9	None	None
SRAE_2000473500	Sulfotransferase family	11	5/3/3	6.9	None	None
SRAE_X000144300	Protein GLF-1	0.6	0/1/0	6.8	FR14R	None

SRAE_X000086900	Hypothetical protein	7.2	1/4/0	6.8	None	None
SRAE_1000058300	Hypothetical protein	7.6	3/6/0	6.8	None	None
SRAE_X000224800	Nematode cuticle collagen	1.9	1/1/0	6.8	None	None
SRAE_1000033500	_1000033500 Collagen alpha-5(IV) chain		0/1/0	6.7	None	None
SRAE_1000004900	Glycoside hydrolase, family	1.3	1/0/0	6.7	None	None
	25					
SRAE_1000015400	Lipase EstA/Esterase EstB	2	1/1/0	6.7	None	None
	family-containing					
SRAE_2000439500	Collagen alpha-5(IV) chain	0	0/0/0	6.7	None	None
SRAE_X000039100	Brain-specific homeobox	0	0/0/0	6.7	None	None
	protein homolog					
SRAE_1000049700	Hypothetical protein	0	0/0/0	6.7	None	None
SRAE_1000036400	Histidine decarboxylase	12	3/4/0	6.6	None	None
SRAE_2000476800	Hypothetical protein	0	0/0/0	6.5	None	None
SRAE_2000431300	Nematode fatty acid retinoid	0	0/0/0	6.5	None	None
	binding family-containing					
SRAE_X000210100	Domain of unknown function	1.3	1/0/0	6.4	None	None
	DB domain-containing					
SRAE_2000437000	CAP domain-containing	12.6	3/5/0	6.4	None	None
	protein					
SRAE_X000195000	Si:ch211-105d4.5	0	0/0/0	6.4	None	None
SRAE_2000145200	Nematode cuticle collagen	0.9	1/0/0	6.4	None	None
SRAE_2000482000	N-acylethanolamine-	1.7	1/1/0	6.4	None	None
	hydrolyzing acid amidase					
SRAE_1000115300	Hypothetical protein	1.3	1/1/0	6.3	None	None
SRAE_2000459400	Acyl-CoA N-acyltransferase	0	0/0/0	6.3	None	None
	domain-containing					
SRAE_2000468700	Protein dyf-8	0	0/0/0	6.3	None	None
SRAE_2000214100	Nematode cuticle collagen	1	1/0/0	6.3	None	None
SRAE_2000481600	MD-2-related lipid-	1.9	1/0/0	6.3	None	None
	recognition domain					
SRAE_1000158100	Hypothetical protein	2.5	2/2/0	6.2	None	None

SRAE_0000015000	MD-2-related lipid-	3.7	0/2/0	6.2	None	None
	recognition domain-					
	containing					
SRAE_2000365700 Glycoside hydrolase,		2.5	0/1/1	6.2	None	None
	catalytic domain					
SRAE_2000466700	Properdin	5	7/4/0	6	None	None
SRAE_2000324800	Hypothetical protein	16.2	15/5/0	6	None	None
SRAE_2000014200	Saposin B domain	2.4	0/1/0	5.9	None	None
SRAE_1000271800	MSP domain; PapD-like	0	0/0/0	5.9	None	None
	domain-containing					
SRAE_1000068700	Thrombospondin, type 1	6.7	4/0/0	5.9	None	None
	repeat-containing					
SRAE_X000188000	Sphingosine-1-phosphate	2.2	2/4/0	5.8	None	None
	lyase 1					
SRAE_X000258800	Thioredoxin-like fold	0	0/0/0	5.7	None	None
	domain-containing					
SRAE_2000009100	Protein-tyrosine	1.1	0/1/0	5.7	None	None
	phosphatase					
SRAE_0000012300	Hypothetical protein	4.7	0/2/0	5.7	None	None
SRAE_2000448200	Hypothetical protein	5.6	0/2/0	5.6	None	None
SRAE_X000101600	Hypothetical protein	5.6	5/3/0	5.6	None	None
SRAE_2000041300	LDLR class B repeat	0	0/0/0	5.5	None	None
SRAE_X000083300	Protein CUTL-16	2.1	2/1/0	5.5	None	None
SRAE_X000079800	Hypothetical protein	0	0/0/0	5.5	None	None
SRAE_X000138300	Protein mesh	0	0/0/0	5.4	None	None
SRAE_1000020600	Hypothetical protein	4.3	0/2/0	5.4	None	None
SRAE_2000476700	Hypothetical protein	0	0/0/0	5.4	None	None
SRAE_2000347100	Lipase EstA/Esterase EstB	1	0/1/0	5.4	None	None
	family-containing					
SRAE_2000380600	GPCR, rhodopsin-like	0.9	0/1/0	5.4	None	None
SRAE_2000052400	Alpha crystallin/Hsp20	1.2	3/1/0	5.4	None	None
	domain					
SRAE_X000138500	Lipase, class 3 family-	8.8	4/4/0	5.3	None	None
	containing					

SRAE_X000166100	SRAE_X000166100 Protein CDH-10		5/12/0	5.3	None	None
SRAE_1000022400	Epidermal growth factor-like	2.7	11/7/0	5.3	None	None
	domain					
SRAE_X000157300	Homeobox protein HMX1	2.5	1/2/0	5.3	None	None
SRAE_X000043300	Proteasomal ubiquitin	6.3	0/7/0	5.3	None	None
	receptor ADRM1 homolog					
SRAE_2000424300	Fatty-acid amide hydrolase	1.8	3/0/0	5.3	None	None
	2					
SRAE_X000098100	Astacin-like	1.2	0/2/0	5.3	None	None
	metalloendopeptidase					
SRAE_X000095600	Hypothetical protein	4.1	0/2/0	5.2	None	None
SRAE_2000482100	Hypothetical protein	11.4	6/11/0	5.2	None	None
SRAE_2000377500	Nematode cuticle collagen	2	2/0/0	5.2	None	None
SRAE_2000360100	Alpha amylase family;	5	3/3/0	5.2	None	None

Supplementary Table 8. S. ratti expansion clusters, revised after further inspection of genome assembly in the cluster region. Region shows the numbered Flanking Regions (FR) and Expansion Clusters (EC); Gene the genes present within these regions; Predicted function is the WormBaseParaSite's description of the gene; Coding SNPs per kb is the number of SNPs per kb within the coding sequence of that gene; SNP type is synonymous (S), non-synonymous (NS) or STOP-causing (STOP); Expression shows whether the gene is upregulated (with a difference in expression of log₂-fold difference of at least 1 being considered upregulation) in the parasitic adult female morph (Parasitic), the free-living adult female morph (Free-living), or not differentially expressed (Same), all taken from Hunt *et al.*, 2016, or unlisted there.

Region	Gene	Predicted function	Coding	SNP type	Expression
			SNPs per kb	(S/NS/STOP)	
FR1L	SRAE_1000180400	Transcriptional regulator ATRX	3.7	6/5/0	Parasitic
	SRAE_1000180500	Formin	2.8	4/5/0	Same
	SRAE_1000180600	Hypothetical protein	1.4	0/2/0	Same
	SRAE_1000180700	Glycosylphosphatidylinositol-	1.7	0/1/0	Same
		mannosyltransferase I			
	SRAE_1000180800	Hypothetical protein	1.9	1/0/0	Same
	SRAE_1000180900	Rhodopsin-like	0.7	1/0/0	Same
	SRAE_1000181000	TPM domain-containing protein	1.4	0/1/0	Same
	SRAE_1000181100	MIF4-like	1.2	1/1/0	Same
	SRAE_1000181200	Sodium/potassium-transporting ATPase α	0	0/0/0	Free-living
		subunit			
	SRAE_1000181300	Hypothetical protein	0	0/0/0	Free-living
	SRAE_1000181400	Mediator of RNA polymerase II transcription	5.2	2/0/0	Same
		subunit 9			
	SRAE_1000181500	Serine/threonine-protein kinase Chk1	0.7	1/0/0	Same
	SRAE_1000181600	Hypothetical protein	1.1	1/0/0	Same
	SRAE_1000181700	Hypothetical protein	2.7	3 /1 / 0	Same
	SRAE_1000181800	Hypothetical protein	1.2	0/1/0	Free-living
	SRAE_1000181900	Eukaryotic translation initiation factor 2A	2.5	0/4/0	Same
	SRAE_1000182000	Hypothetical protein	0	0/0/0	Same
	SRAE_1000182100	Heme transporter HRG	0	0/0/0	Same
EC1	SRAE_1000182200	CAP domain-containing	1.1	0/1/0	Parasitic
	SRAE_1000182300	CAP domain-containing	0	0/0/0	Parasitic

	SRAE_1000182400	CAP domain-containing	1.2	1/0/0	Parasitic
	SRAE_1000183300	CAP domain-containing	3.4	2/1/0	Parasitic
FR1R	SRAE_1000183400	Nanchung	1.4	1/2/0	Same
	SRAE_1000183500	Hypothetical protein	0	0/0/0	Free-living
	SRAE_1000183600	SMc04008-like domain-containing	1.4	0/3/0	Same
	SRAE_1000183700	Hypothetical protein	0	0/0/0	Unlisted
	SRAE_1000183800	1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase	0	0/0/0	Same
	SRAE_1000183900	Transmembrane receptor	7.1	9/4/0	Parasitic
	SRAE_1000184000	Predicted transmembrane / coiled-coil 2- containing	0.7	0/1/0	Unlisted
	SRAE_1000184100	Band 7 protein family and Stomatin family- containing	3.2	3/0/0	Unlisted
	SRAE_1000184200	Basic-leucine zipper domain-containing	2.5	3/2/0	Unlisted
	SRAE_1000184300	TBC1 domain family member 13	1.6	2/0/0	Unlisted
	SRAE_1000184400	BTB/POZ domain-containing	0.7	1/0/0	Unlisted
FR2L	SRAE_2000075900	NHR/GATA-type domain-containing	2.5	4 /2 / 0	Same
	SRAE_2000076000	MIP20649p	3.2	6/3/0	Same
	SRAE_2000076100	MIP20649p	0.8	1/0/0	Unlisted
	SRAE_2000076200	Hypothetical protein	5.7	10 / 5 / 0	Free-living
	SRAE_2000076300	Hypothetical protein	2.4	2/3/0	Parasitic
EC2	SRAE_2000076400	CAP domain-containing	29.8	7 / 13 / 0	Parasitic
	SRAE_2000076600	CAP domain-containing	21.2	3 / 14 / 0	Parasitic
	SRAE_2000076700	CAP domain-containing	60.4	11 / 39 / 0	Parasitic
	SRAE_2000076800	CAP domain-containing	39.2	11 / 18 / 1	Parasitic
	SRAE_2000076900	CAP domain-containing	36.8	6 / 25 / 0	Parasitic
	SRAE_2000077000	CAP domain-containing	19	6/9/1	Parasitic
	SRAE_2000077100	CAP domain-containing	14	6/6/0	Parasitic
	SRAE_2000077200	UDP-glucosyltransferase	12.7	12/8/0	Parasitic
	SRAE_2000077300	CAP domain-containing	17.4	5/10/0	Parasitic

	SRAE_2000077400	CAP domain-containing	13	4/7/0	Parasitic
	SRAE_2000077500	CAP domain-containing	4.4	2/4/0	Same
FR2R	SRAE_2000077600	Hypothetical protein	10	8 / 14 / 0	Same
	SRAE_2000077700	BTB/POZ domain-containing	7.9	1/4/1	Unlisted
	SRAE_2000077800	Hypothetical protein	2.9	1/0/0	Unlisted
	SRAE_2000077900	Protein kinase-like domain-containing	2.1	1/2/0	Unlisted
	SRAE_2000078000	Ubiquitin-conjugating enzyme, E2 domain	4.5	2/0/0	Same
	SRAE_2000078100	WH2 domain-containing	5.9	3/0/0	Same
	SRAE_2000078200	Casein kinase II subunit beta	8.3	2/3/0	Same
	SRAE_2000078300	Hypothetical protein	0	0/0/0	Unlisted
	SRAE_2000078400	Hypothetical protein	0	0/0/0	Same
	SRAE_2000078500	Serine/threonine-protein kinase haspin	11.1	7/9/0	Same
	SRAE_2000078600	PDZ domain-containing	1.4	0/1/0	Unlisted
	SRAE_2000078700	CAP domain-containing	15.2	5 / 10 / 0	Parasitic
	SRAE_2000078800	Hypothetical protein	1.4	4/0/0	Same
FR3L	SRAE_2000123100	Transcription elongation factor SPT5	0.4	0/1/0	Same
	SRAE_2000123200	Armadillo-like helical domain -containing	1.3	3/3/0	Same
	SRAE_2000123300	Hypothetical protein	0	0/0/0	Unlisted
	SRAE_2000123400	Gamma-aminobutyric acid receptor subunit beta	2	3/0/0	Same
	SRAE 2000123500	Hypothetical protein	6.1	2/1/0	Unlisted
	SRAE_2000123600	Phosphodiesterase	0.9	2/0/0	Same
	SRAE 2000123700	Glycosyl transferase	3.4	1/4/0	Same
	SRAE 2000123800	Tyrosine-protein kinase	0	0/0/0	Unlisted
	SRAE 2000123900	Bax inhibitor 1-related family-containing	0	0/0/0	Unlisted
	SRAE 2000124000	Bloom syndrome protein	2	3/6/0	Free-living
	SRAE_2000124100	Protein lethal(2)essential for life	7.8	4/1/0	Parasitic
	SRAE_2000124200	Hypothetical protein	14.5	5/21/0	Parasitic
EC3	SRAE_2000124300	CAP domain-containing	69	17/49/4	Parasitic
	SRAE 2000124400	CAP domain-containing	43.3	8 / 30 / 1	Parasitic

	SRAE_2000124500	CAP domain-containing	50.9	11 / 33 / 2	Parasitic
	SRAE_2000124600	CAP domain-containing	8.7	3/5/0	Parasitic
	SRAE_2000124700	CAP domain-containing	5.2	0/4/1	Parasitic
	SRAE_2000124800	CAP domain-containing	6.5	4/2/0	Parasitic
	SRAE_2000124900	CAP domain-containing	6.6	2/4/0	Parasitic
FR3R	SRAE_2000126100	Hypothetical protein	8.6	6 /2 / 0	Parasitic
	SRAE_2000126200	Hypothetical protein	50	3 / 17 / 1	Unlisted
	SRAE_2000126290	Hypothetical protein	10.7	3/7/0	Unlisted
	SRAE_2000126300	Hypothetical protein	14.1	6/7/0	Parasitic
	SRAE_2000126400	Hypothetical protein	11.8	3 / 7 / 1	Parasitic
	SRAE_2000126500	Hypothetical protein	0	0/0/0	Parasitic
	SRAE_2000126600	CAP domain-containing	18.5	6/11/0	Parasitic
	SRAE_2000126700	Hypothetical protein	3.6	1/2/0	Same
	SRAE_2000126800	Serine/threonine-protein phosphatase	0.5	0/1/0	Unlisted
	SRAE_2000126900	Nematode cuticle collagen	2.1	1/1/0	Free-living
	SRAE_2000127000	Hypothetical protein	8.5	3/7/0	Unlisted
	SRAE_2000127100	Hypothetical protein	2.5	1/1/0	Unlisted
	SRAE_2000127200	Flavin-containing monooxygenase	2.9	2/2/0	Same
	SRAE_2000127300	Serine/threonine-protein kinase RIO1	2.6	3/1/0	Same
	SRAE_2000127400	Hypothetical protein	1.9	2/2/0	Same
FR5L	SRAE_2000325100	IA-2 ortholog	2	2/5/0	Same
	SRAE_2000325200	Hypothetical protein	4.7	0/1/0	Unlisted
	SRAE_2000325300	Integrator complex subunit 9	0.5	0/1/0	Same
	SRAE_2000325400	Hypothetical protein	0	0/0/0	Unlisted
	SRAE_2000325500	UDP-glucuronosyltransferase	3.8	2/4/0	Free-living
EC5	SRAE_2000325600	Astacin-like metalloendopeptidase	0.9	1/0/0	Parasitic
	SRAE_2000326000	Astacin-like metalloendopeptidase	7.6	3/7/0	Parasitic
FR5R	SRAE_2000326100	Epidermal growth factor-like domain-	0.6	1/1/0	Free-living
		containing			

r			T	T	1
FR6L	SRAE_2000450300	UDP-glucosyltransferase	5.7	2/7/0	Parasitic
EC6	SRAE_2000450400	Astacin-like metalloendopeptidase	1.9	1/2/0	Parasitic
	SRAE_2000450500	Astacin-like metalloendopeptidase	4	1/4/0	Parasitic
	SRAE_2000450600	Astacin-like metalloendopeptidase	6.5	2/6/0	Parasitic
	SRAE_2000450700	Astacin-like metalloendopeptidase	22.3	7 / 25 / 0	Parasitic
FR6R	SRAE_2000450800	Nematode fatty acid retinoid binding	5.5	3/0/0	Unlisted
	SRAE_2000450900	Hypothetical protein	5.3	1/5/0	Unlisted
	SRAE_2000451000	Hypothetical protein	22.2	6/3/0	Parasitic
FR7L	SRAE_2000452400	Hypothetical protein	3.6	3/0/0	Unlisted
	SRAE 2000452500	ATP-binding cassette sub-family D member 4	2.3	3/1/0	Free-living
	SRAE 2000452600	ATP-binding cassette sub-family D member 4	1.1	1/1/0	Parasitic
	SRAE 2000452700	Hypothetical protein	1.7	1/2/0	Unlisted
	SRAE 2000452800	Hypothetical protein	1.8	3/0/0	Unlisted
	SRAE 2000452900	Hypothetical protein	0	0/0/0	Unlisted
	SRAE 2000453000	Hypothetical protein	0	0/0/0	Same
	SRAE 2000453100	Hypothetical protein	20.9	7/10/0	Parasitic
EC7	SRAE 2000453200	Astacin-like metalloendopeptidase	9.6	3/8/0	Parasitic
	SRAE 2000453300	Astacin-like metalloendopeptidase	2.6	0/3/0	Parasitic
	SRAE 2000453400	Sulfotransferase family-containing	0	0/0/0	Unlisted
	SRAE 2000453500	Astacin-like metalloendopeptidase	2.5	0/3/0	Parasitic
	SRAE 2000453600	Astacin-like metalloendopeptidase	0	0/0/0	Parasitic
	SRAE 2000453700	Astacin-like metalloendopeptidase	5.5	0/7/0	Parasitic
	SRAE 2000453800	Astacin-like metalloendopeptidase	34.8	15 / 26 / 0	Parasitic
	SRAE 2000453900	Astacin-like metalloendopeptidase	5.1	4/2/0	Parasitic
FR7R	SRAE 2000454000	Zinc metalloproteinase	3.4	3/1/0	Unlisted
	SRAE 2000454100	Hypothetical protein	3.7	7/4/0	Free-livina
	SRAE 2000454200	Hypothetical protein	0	0/0/0	Same

	SRAE_2000454300	Sulfotransferase	4.2	4/0/0	Same
	SRAE_2000454400	Sulfotransferase	1.8	2/0/0	Same
	SRAE_2000454500	Estradiol 17-beta-dehydrogenase 12	0	0/0/0	Parasitic
	SRAE_2000454600	Alpha-(1,3)-fucosyltransferase C	3.1	0 /3 / 0	Unlisted
	SRAE_2000454700	Glycosyl transferase, family 14-containing	2.3	1/2/0	Same
FR8L	SRAE_2000454800	Cytochrome P450 4V2	1.3	1/1/0	Same
EC8	SRAE_2000454900	Acetylcholinesterase	1.2	2/0/0	Parasitic
	SRAE_2000455000	Astacin-like metalloendopeptidase	2.6	1/2/0	Parasitic
	SRAE_2000455100	Hypothetical protein	1.6	1/0/0	Parasitic
	SRAE_2000455200	CAP domain-containing	0	0/0/0	Parasitic
	SRAE_2000455300	Acetylcholinesterase	0	0/0/0	Parasitic
FR8R	SRAE_2000455400	Hypothetical protein	0	0/0/0	Unlisted
	SRAE_2000455500	Hypothetical protein	0	0/0/0	Same
	SRAE_2000455600	Zona pellucida domain-containing	0.9	0/1/0	Unlisted
	SRAE_2000455700	Hypothetical protein	0	0/0/0	Free-living
	SRAE_2000455800	Hypothetical protein	0	0/0/0	Unlisted
FR9L	SRAE_2000497000	Hypothetical protein	1.4	5/4/0	Free-living
EC9	SRAE_2000497100	Astacin-like metalloendopeptidase	5.2	1/5/0	Parasitic
FR9R	SRAE 2000497600	Cad96Cb	4.5	9/0/0	Parasitic
	SRAE_2000497700	Zinc finger, RING/FYVE/PHD-type domain-	1.5	1/0/0	Parasitic
	_	containing			
	SRAE_2000497800	Protein lethal(2)essential for life	0	0/0/0	Parasitic
FR10L	SRAE_2000522800	Trypsin Inhibitor-like, cysteine rich domain-	22.7	10 / 5 / 0	Parasitic
		containing			
	SRAE_2000522900	Glycosyl transferase, family 14-containing	4.3	2/4/0	Unlisted
	SRAE_2000523000	Transthyretin-like family-containing	9.1	3/1/0	Parasitic

	SRAE_2000523100	7TM GPCR, (Sre) family-containing	0	0/0/0	Unlisted
	SRAE_2000523200	7TM GPCR, (Sre) family-containing	4.3	0/2/0	Unlisted
	SRAE_2000523300	Hypothetical protein	1.4	0/1/0	Unlisted
	SRAE_2000523400	Nuclear hormone receptor	3.9	4/1/0	Same
	SRAE_2000523500	Proteinase inhibitor I25	0	0/0/0	Free-living
	SRAE_2000523600	Carboxylic ester hydrolase	3.4	2/4/0	Unlisted
EC10	SRAE_2000523700	Astacin-like metalloendopeptidase	5.2	1/5/0	Parasitic
	SRAE_2000523800	Astacin-like metalloendopeptidase	2.8	2/2/0	Parasitic
	SRAE_2000523900	Astacin-like metalloendopeptidase	26.1	8 / 29 / 1	Parasitic
	SRAE_2000524000	Astacin-like metalloendopeptidase	4	1/4/0	Parasitic
FR12L	SRAE_2000526900	Importin-beta	2.2	4/2/0	Same
	SRAE_2000527000	Hypothetical protein	14.3	8 / 17 / 0	Unlisted
EC12	SRAE_2000527100	CAP domain-containing	71.1	9 / 54 / 1	Parasitic
	SRAE_2000527200	CAP domain-containing	18.6	1 / 15 / 1	Parasitic
	SRAE_2000527300	CAP domain-containing	4.6	2/2/0	Parasitic
	SRAE_2000527400	CAP domain-containing	5.5	2/3/0	Unlisted
	SRAE_2000527500	CAP domain-containing	3.3	3/0/0	Parasitic
	SRAE_2000527600	CAP domain-containing	2.2	0/2/0	Parasitic
	SRAE_2000527700	CAP domain-containing	1.1	0/1/0	Parasitic
FR12R	SRAE_2000527800	Hypothetical protein	18.5	2/10/0	Unlisted
	SRAE 2000527900	Hypothetical protein	41.5	9 / 17 / 0	Unlisted
	SRAE 2000528000	Hypothetical protein	1.8	0/1/0	Unlisted
	SRAE 2000528100	Hypothetical protein	3	3/4/0	Unlisted
FR14L	SRAE X000143400	Ferric-chelate reductase 1	10.1	5/3/0	Unlisted
	SRAE_X000143500	Hypothetical protein	7.1	7/9/0	Same
	SRAE X000143600	1x GPCR, rhodopsin-like, 7TM domain-	0.7	1/0/0	Same
	_	containing			
	SRAE X000143700	Hypothetical protein	4.1	3/1/0	Same

EC14	SRAE_X000143800	Astacin-like metalloendopeptidase	15.5	8/9/1	Parasitic
	SRAE_X000143900	Astacin-like metalloendopeptidase	18.3	8/13/2	Parasitic
	SRAE_X000144000	Astacin-like metalloendopeptidase	7.2	4/5/0	Parasitic
	SRAE_X000144100	Astacin-like metalloendopeptidase	2.4	0/3/0	Parasitic
	SRAE_X000144200	Astacin-like metalloendopeptidase	39.5	24 / 24 / 1	Parasitic
	SRAE_X000144210	Astacin-like metalloendopeptidase	21.5	6/21/0	Parasitic
FR14R	SRAE_X000144220	Hypothetical protein	9.4	4 / 4 /0	Same
	SRAE_X000144300	Amine oxidase domain-containing	0.6	0/1/0	Free-living
EC15	SRAE_X000146800	Astacin-like metalloendopeptidase	29.3	16 / 21 / 0	Parasitic
	SRAE_X000146900	Astacin-like metalloendopeptidase	47.5	25 / 34 / 0	Free-living
FR15R	SRAE_X000146950	Hypothetical protein	3.2	1/0/0	Unlisted
	SRAE_X000147000	Hypothetical protein	5.1	0/1/0	Parasitic
	SRAE_X000147100	Hypothetical protein	6.3	2/1/0	Unlisted
	SRAE X000147200	Hypothetical protein	26.9	15 / 22 / 0	Parasitic

977 Supplementary Table 9. dN/dS ratios of expansion clusters and their flanking regions.

The dN/dS ratio for genes in expansion clusters and in parentheses the number of genes,
N. We calculated dN/dS ratios by analysing parasites from clades 1 and 3 (Figure 3),
treating each as separate populations.

981

Expansion cluster	Expansion cluster mean dN/dS ratio (N)	Flanking region mean dN/dS ratio (N)
2	0.257 (1)	2.088 (2)
3	0.454 (5)	0.735 (6)
6	1.373 (1)	0.408 (1)
7	3.419 (2)	0.278 (3)
14	0.322 (3)	1.242 (1)

983 Supplementary Table 10. Sampling sites and times.

984

Site (code)	Coordinates	Туре
Cardiff (CA)	51°29'54"N 3°07'25"W	Industrial
Avonmouth (AM)	51°30'43"N 2°40'15"W	Industrial
Long Ashton (LA)	51°26'08"N 2°38'41"W	Farm
Season	Sampling start date	Sampling End date
Spring	2.2017	3.2017
Summer	6.2017	6.2017
Autumn	9.2017	11.2017

2.2018

12.2017

985

Winter

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445462; this version posted May 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

986

SUPPLEMENTARY FIGURES

Supplementary Figure 1. Frequency distribution of the number of *S. ratti* infective
 larvae isolated from infected rat faecal pellets. Uninfected pellets (N = 178) are not
 shown. The x-axis is in increments of 20 larvae, with only the upper limit shown, and only
 alternate increments labelled.

994 Supplementary Figure 2. Histogram of Φ relatedness values among 90 *S. ratti* larvae.

The x-axis is in increments of 0.05 with only the upper limit shown.

996

Relatedness

Supplementary Figure 3. The frequency distribution of the pairwise number of SNP differences among the 90 parasites. The x-axis is in categories of 10,000, save for the 1001 first three which are 0-1,000, 1,000-5,000, 5,000-10,000; in all the lower end of the range is 1002 shown. The frequency is 1 in the first category.

Supplementary Figure 4. Maximum likelihood trees of the 90 parasites. In each tree, the support for each node is shown, and the clade membership of the worm is shown by the coloured dots, which correspond to the neighbour-joining tree (**Figure 3**). Trees are calculated based on analysis of chromosome 1 only, part 1 of chromosome 2, part 2 of chromosome 2, part 1 of the X chromosome and part 2 of the X chromosome.

1011

Chromosome 1

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445462; this version posted May 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Chromosome 2, part 1

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445462; this version posted May 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1017

Chromosome X, part 1

1021 **Supplementary Figure 5. ADMIXTURE analysis of the 90 parasites.** The ADMIXTURE 1022 diagrams are shown for K = 2, 3, 4, 5 (with cross validation errors of 0.22965, 0.16255, 1023 0.16335, 0.16136, respectively). For K = 6, only five groups are detected. All diagrams have 1024 the same right to left order of worms, which is shown in a Table at the end of the figure. 1025

Position in ADMIXTURE	Worm designation	NJ tree clade membership
diagram		
Far left	CA273_8	1
	CA273_30	1
	CA275_47	1
	LA217_14	1
	LA219_13	1
	LA222_45	1
	LA223_8	1
	LA223_29	1
	LFA14_5	1
	LA315_1	1
	LA315_4	1
	LA316_4	1
	LA316_5	1
	LA317_2	1
	LA319_5	1

LA319_8	1
AM99_8	1
AM99_21	1
AM100_37	1
AM190_17	1
AM194_1	1
AM242_30	1
AM252_62	1
AM253_77	1
AM280_49	1
AM282_1	1
AM282_67	1
AM283_1	1
AM283_2	1
AM283_3	1
AM283_4	1
AM283_5	1
AM284_59	1
AM284_60	1
AM284_61	1
AM286_88	1
AM286_92	1
AM287_67	1
AM288_1	1
AM288_2	1
AM291_93	1
AM292_2	1
AM293_2	1
AM294_2	1
 AM296_4	1
AM299_79	1
CA338_1	2a
LA217_5	2a
LA319_3	2a
LA320_1	2a
AM245_61	2a
AM253_6	2a
AM287_65	2a
AM293_94	2b
CA273_38	2b
CA275_20	2b
CA338_4	2b
CA338_6	2b
LA320_11	2b

	AM99_31	2b
	AM100_35	2b
	AM100_50	2b
	AM294_4	2b
	CA273_10	3
	CA273_26	3
	CA275_11	3
	CA275_51	3
	LA315_3	3
	LA319_6	3
	LA320_5	3
	AM99_19	3
	AM99_30	3
	AM187_14	3
	AM258_25	3
	AM281_5	3
	AM282_63	3
	AM296_1	3
	AM298_2	3
	AM187_12	4a
	AM287_58	4a
	AM114_2	4a
	AM287_56	4a
	AM105_9	5
	AM280_56	5
	AM294_1	5
	AM295_1	5
	AM296_2	5
	AM292_3	Not in clade
	CA338_2	Not in clade
Far right	AM296_5	Not in clade
Supplementary Figure 6. PCA analysis of *S. ratti* parasites. Projections of principal components (PC) 1 and 2 of the 90 parasites from the three samples sites and the 10 isofemale lines, where PCs 1 and 2 explained 91% of the variance. Individuals are coloured according to (A) sampling site and (B) neighbour-joining dendrogram clades (Figure 3).

1037 Supplementary Figure 7. Minimum spanning S. ratti mitochondrial haplotype maps. Individual pellets are shown by their sampling 1038 site (AM, CA, LA) and the number preceding the underscore; the number after the underscore is the unique identifier of that worm 1039 Haplotypes represented by multiple individuals are denoted by single letters. Four mitochondrial clades (A – D) are evident. Individual worms are coded either by the sampling site from which they were obtained or by the nuclear clade to which they belong (Figure 3). 1040 Mitochondrial clades A, B and C contained individuals from all 3 sampling sites, though at different rates. Mitochondrial clade A contains 1041 1042 all individuals from nuclear clades 3 and 5 as well as one individual from nuclear clade 2b. Mitochondrial clade B contains individuals from 1043 nuclear clades 1, 2a and 4b. Mitochondrial clade C contains only individuals from nuclear clade 2b. The two individuals of nuclear clade 1044 4a appear as intermediate between mitochondrial clades B and C in the haplotype map and so are designated as minor mitochondrial 1045 clade D.

1051 **Supplementary Figure 8. Ritland and Lynch pairwise relatedness values of rats within** 1052 **sampling sites.** The x-axis is in increments of 0.1, with only the upper limit shown. At each 1053 site there is a right-hand skew to these distributions; Shapiro-Wilkes test for normality 1054 statistics W = 0.89 for site AM, W = 0.9. for site CA and W = 0.87 for site LA, P > 0.0001 in 1055 all cases.

1056

Supplementary Figure 9. S. ratti neighbour-joining dendrograms of 10 isofemale lines and 90 larvae collected from the three sample sites. Isofemale lines are prefixed by ED (Supplementary Table 4). Five of the isofemale lines (derived from parasites collected from the southern UK in 1989-90, and Japan in 1990) are within clade 2b, which is the most diverse of the clades, but the other 5 isofemale lines are in clades 1, 2a and 4.

1064

1067 **Supplementary Figure 10. Linkage disequilibrium in the** *S. ratti* **genome.** LD shown as 1068 r^2 values. X1 and X2 are the largest and second largest X chromosome scaffolds, 1069 respectively.

Genomic distance (bp)

Supplementary Figure 11. Linkage disequilibrium in the *S. ratti* genome for clade 1
and 3 parasites. LD is shown as r² values for (A) clade 1 and (B) clade 3 parasites. X1 and
X2 are the largest and second largest X chromosome scaffolds, respectively.

Supplementary Figure 12. Heatmaps of linkage disequilibrium in the *S. ratti* genome
for clade 1 and 3 parasites. LD is shown as r² values on a coloured scale for (A) clade 1
and (B) clade 3. X1 and X2 refer to the largest and second largest scaffolds of the X
chromosome, respectively. The inserts enlarge regions to show areas of high LD.

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445462; this version posted May 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplementary Figure 13. Heatmaps of linkage disequilibrium in the *S. ratti* genome. Phasing of genotypes was carried out by Beagle (above the diagonal) or Shapeit (below the diagonal). X1 and X2 refer to the largest and second largest scaffolds of the X chromosome, respectively. Vertical and horizontal white lines in chromosome 1 represent two megabase long tracts of Ns that separate the three X chromosome scaffolds, whose genomic order is not known.

1093

Supplementary Figure 14. The distribution of SNPs across the *S. ratti* genome. The distribution of SNPs for all 90 parasites for discrete, 10 Kb windows, each represented by a vertical bar, for chromosomes 1, 2 and the two scaffolds of the X chromosome.

1101 Supplementary Figure 15. Neighbour-joining dendrograms based on five expansion clusters. Clusters, 6, 7, 8, 12 and 14 are the clusters from which no genes were excluded 1102 due to concerns about genome assembly. Each tree was calculated based on the entire 1103 1104 sequence from the start to the end of each cluster (excluding flanking regions). Clades (1 -5) and sub-clades (2a and 2b, 4a and 4b) are defined based on the whole genome 1105 dendrogram (Figure 3). Individual parasites are marked with circles coloured according to 1106 1107 their (sub-)clade in the whole genome dendrogram. Branch lengths are relative such that 1108 the distance between the two most distant individuals is 1, and so absolute distance differs 1109 among the panels.

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445462; this version posted May 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Expansion Cluster 7

Expansion Cluster 12

114 Expansion Cluster 14

1116 Supplementary Figure 16. Correlation of read depth and GC content for 90 S. ratti

1117 **larvae**. GC content is measured in non-overlapping 10 kb regions. Correlation ρ = 0.783, *df*

1118 = 4,008, P < 0.00001.

1119

