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Abstract  88 

GWAS have identified more than 700 genetic signals associated with type 2 diabetes (T2D). 89 

To gain insight into the underlying molecular mechanisms, we created the Translational 90 

human pancreatic Islet Genotype tissue-Expression Resource (TIGER), aggregating >500 91 

human islet RNA-seq and genotyping datasets. We imputed genotypes using 4 reference 92 

panels and meta-analyzed cohorts to improve coverage of expression quantitative trait loci 93 

(eQTL) and developed a method to combine allele-specific expression across samples 94 

(cASE). We identified >1 million islet eQTLs (56% novel), of which 53 colocalize with T2D 95 

signals (60% novel). Among them, a low-frequency allele that reduces T2D risk by half 96 

increases CCND2 expression. We identified 8 novel cASE colocalizations, among which 97 

an SLC30A8 T2D associated variant. We make all the data available through the open-98 

access TIGER portal (http://tiger.bsc.es), which represents a comprehensive human islet 99 

genomic data resource to elucidate how genetic variation affects islet function and translate 100 

this into therapeutic insight and precision medicine for T2D. 101 

 102 
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Introduction  104 

Diabetes is a complex metabolic disease, characterized by elevated blood glucose levels, 105 

that affects more than 463 million people worldwide 1. Type 2 diabetes (T2D) accounts for 106 

>85% of diabetes cases and is strongly related to age, obesity and sedentary lifestyles. 107 

Epidemiologic studies forecast a 40% increase in prevalence by 2030 2–4. This makes the 108 

study and understanding of diabetes a top research and healthcare priority. Progressive 109 

pancreatic islet dysfunction is central to the majority of diabetes forms and hereby key to 110 

gain insights into the disease pathophysiology. 111 

Great efforts have been dedicated to uncover the link between genetic variation and 112 

complex disease susceptibility through large-scale genetic studies. For T2D, >700 genetic 113 

loci have been identified to date 5–8. The vast majority of variants in these loci do not disrupt 114 

protein coding sequences 9,10. Thus, the mechanisms by which these variants influence 115 

predisposition to disease remain to be elucidated. As the number of newly identified risk 116 

variants keeps increasing, their functional interpretation constitutes the main bottleneck to 117 

gain insights into the underlying molecular mechanisms and thus, to develop more effective 118 

and targeted preventive and therapeutic strategies 11.  119 

To provide functional interpretation of non-coding variation, large international efforts have 120 

generated and integrated genomic, transcriptomic and epigenomic data from a large variety 121 

of healthy and diseased samples to build comprehensive and genome-wide maps of 122 

functional annotations. Among others, the Genotype-Tissue Expression (GTEx) project uses 123 

expression quantitative trait loci (eQTL) analysis to link genetic variation with gene 124 

expression across 54 different human tissues 12. The Roadmap Epigenomics Mapping 125 

project 13 and the International Human Epigenome project 14 also provide a broad 126 

characterization of epigenomic signatures in a variety of tissues and cell types.  127 

The functional interpretation of genetic variants, which are usually associated with moderate 128 

or small effect sizes, requires tools and resources that focus on cells and tissues that are 129 

impacted in the disease of interest. The islets of Langerhans, which are clusters of 130 

specialized endocrine cells that are essential to maintain glucose homeostasis, play a 131 

central role in the etiology of T2D 15,16. Because human islets are difficult to obtain 17–19, large 132 

multi-tissue resources such as GTEx do not contain islet data and at best use whole 133 

pancreas as a proxy, despite the fact that >97% of the pancreatic tissue consists of exocrine 134 

cells that mask islet signals 20. Hence, the development of publicly available resources and 135 

tools that include data on islet tissue is essential to translate T2D genetic signals into 136 

molecular and physiological mechanisms.  137 
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The first studies of eQTL in human islets pinpointed genes that might be influenced by 138 

genetic variants and thus possibly mediate T2D risk 21,22. Despite the small number of 139 

samples, they identified a few loci linked to differential expression of islet genes, which were 140 

enriched in genome-wide association study (GWAS) signals for T2D and related traits. More 141 

recently, a multinational consortium effort, InsPIRE, generated a largest islet eQTL study 142 

with a sample size of 420 islet donors, which identified 46 T2D GWAS signals that colocalize 143 

with islet eQTL 23.  144 

To further expand the understanding of human islet regulatory genomics, and its role in T2D 145 

the Horizon 2020 T2DSystems consortium (https://www.t2dsystems.eu/) gathered the most 146 

extensive collection to date of human islet samples with gene expression, epigenomic data, 147 

genotypic and phenotypic information, with a total of 514, from which 207 samples were 148 

analyzed by the InsPIRE consortium. In this study, we discovered 40 T2D risk signals that 149 

colocalize with eQTL or ASE signals by improving genotype imputation methods and 150 

analyses and by developing a new method to combine allele-specific expression (cASE) 151 

across samples, knowledge previously unknown. 152 

Importantly, the results from this study are made publicly available to the community through 153 

the Translational human pancreatic Islet Genotype tissue-Expression Resource (TIGER, 154 

http://bsc.tiger.es) portal (Figure 1A). This portal integrates the newly generated data with 155 

publicly available T2D genomic and genetic resources to facilitate the translation of genetic 156 

signals into their functional and molecular mechanisms. 157 

Results  158 

A catalogue of genetic variation and gene expression in human pancreatic islets 159 

To study gene expression and the effects of genetic variation in human pancreatic islets, we 160 

obtained newly generated and published human islet data from 514 organ donors of 161 

European background, distributed across five cohorts (Center for Genomic Regulation, Lund 162 

University, University of Oxford/University of Alberta, Edmonton, Università di Pisa and 163 

Université Libre de Bruxelles).  164 

The DNA of 307 new samples was isolated, sequenced and genotyped (Suppl. Table S1, 165 

Suppl. Methods) and aggregated to be harmonized with existing data from 207 samples. 166 

After quality control, filtering of RNA-seq and genotyping array data (Suppl. Methods), 404 167 

human islet samples remained with high quality genotypes and RNA-seq data (Figure 1B).  168 

To fully characterize the genetic variation present in the samples, genotype imputation was 169 

performed separately for each cohort using four different reference panels as previously 170 

described 7,24 (1000 genomes 25, GoNL 26, the Haplotype Reference Consortium 27 and 171 
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UK10K 28). The results were integrated by selecting, for each variant, the imputed genotypes 172 

from the reference panel that achieved the best imputation quality (IMPUTE2 info score > 173 

0.7, Suppl. Methods). This allowed imputation of >22 million unique high-quality genetic 174 

variants across all samples, 10% of which were indels and small structural variants, and 175 

more than 1.05 million variants in chromosome X (Figure 1C) (Suppl. Table S2, Suppl. 176 

Methods). Notably, this strategy allowed accurate imputation of 4 million low-frequency 177 

(minor allele frequency (MAF) between 0.05 and 0.01) and 10 million rare 178 

(0.01>MAF>0.001) variants (Figure 1D).  179 

Additionally, we performed RNA-seq in 514 samples 460 of which were retained after 180 

stringent quality control, including >52 billion raw short reads. We uniquely aligned more 181 

than 48 billion reads (median of 93 million per sample) (Suppl. Table S3), which allowed us 182 

to observe >22K genes expressed at >0.5 transcripts per million (TPM) (Suppl. Methods).   183 

An atlas of eQTLs in human pancreatic islets 184 

To explore the association between genetic variation and gene expression, we performed an 185 

eQTL meta-analysis across four cohorts. First, we performed a cis-eQTL analysis, using 186 

data from each cohort independently (Suppl. Methods). For each analysis, we corrected for 187 

known covariates (age, sex and body mass index (BMI)), genetically derived principal 188 

components, and PEER factors for hidden confounding factors 29. The eQTL results from 189 

each of the four cohorts were then meta-analyzed (Figure 2A). This resulted in >1.11 million 190 

significant eQTLs in more than 21,115 eGenes (12,802 protein coding genes, 8,313 non-191 

coding) at 5% false discovery rate (FDR) after Benjamini-Hochberg correction for multiple 192 

testing 30 (Figure 2B). The quantile-quantile plot showed no baseline inflation in the results 193 

(Suppl. Figure S1). More than 12% of all significant eQTLs were small indels or larger 194 

structural variants, and this type of variation was the top associated variant for 14% of all 195 

genes. This is in line with what has been observed in primary human immune cell types in 196 

which indels comprised 12.5 % of the variants in the 95% credible sets for eQTLs in human 197 

immune cell types 31, and in GTEx, where it was observed that SVs have a stronger effect 198 

than SNVs 32. 199 

To assay the potential functional impact of the identified eQTL variants, we tested for their 200 

enrichment in human islet regulatory regions, defined by a variety of pancreatic islet 201 

chromatin assays 10. We observed that eQTL variants overlapped with gene promoters with 202 

very strong fold enrichment when compared with a control set of genetic variants (3.1-fold 203 

for 1% FDR eQTL variants, p=3×10-166) (Suppl. Methods), as well as with strong enhancers 204 
10 (2-fold, p=1.4×10-16), and open-chromatin regions (1.4-fold, p=3.9×10-45) (Figure 2C, 205 

Suppl. Figure S2). These results are consistent with eQTL studies in other tissues 12. 206 
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Next, we contrasted the TIGER human islet results with the latest GTEx eQTL datasets, 207 

which analyzed 54 human tissues including whole pancreas, but not islets 12. Of all 208 

significant human islet eQTLs, 64.7% were also significant in at least one other GTEx tissue, 209 

whereas 35.3% were exclusive to human islets (Figure 2D, left panel). Only 30.5% of human 210 

islet eQTLs were also significant in whole pancreas in GTEx, an overlap similar to the rest of 211 

GTEx tissues (26% mean overlap with T2D related tissues, 29% with other tissues), 212 

highlighting that whole pancreas is not a better proxy for pancreatic islets compared to other 213 

tissues. In addition, when considering rare and low-frequency variants, the proportion of 214 

TIGER islet exclusive eQTLs increased to 76.5% (Figure 2D, right panel). These 215 

observations highlight again the importance of assaying human islets, since a sizeable 216 

proportion of the eQTLs cannot be found in other tissues. Interestingly, these observations 217 

also held true when we compared the TIGER results with the recently published eQTL 218 

analysis of 420 islet samples 23. Overall, 56.2% of the significant eQTLs were exclusive to 219 

our analysis (not assayed or non-significant in the InsPIRE study 23). Identification of eQTLs 220 

driven by low-frequency or rare variants may be more clinically impactful as significant low-221 

frequency variants tend to have larger effects on disease risk and gene expression 33. 222 

Notably, the proportion of TIGER exclusive eQTLs increased to 74.6% for low-frequency 223 

variants, despite similar sample sizes between the studies. Overall, we identified 125,918 224 

low-frequency eQTLs compared to 113,285 low-frequency eQTLs identified in the InsPIRE 225 

study (Suppl. Figure S3). 226 

Gene ontology analysis of the significant human islet eQTL genes revealed signaling 227 

(including G-protein coupled receptor signaling) and metabolic regulation terms, albeit with 228 

moderate significance (Suppl. Figure S4). In contrast, comparing TIGER-specific eQTL 229 

genes against those also present in GTEx tissues revealed strong enrichment for these 230 

terms as well as “response to stimulus” or “regulation of cell activation”, and immune system 231 

related terms (including “lymphocyte/T-cell activation” and “regulation of immune system 232 

process”) (Figure 2E). This suggests that these novel eQTLs affected genes relevant to β-233 

cell physiology, including some related to immune processes with potential relevance for 234 

type 1 diabetes 34.  235 

Islet eQTLs colocalize with T2D GWAS signals 236 

To assess whether the identified eQTLs can help to identify effector transcripts for T2D risk 237 

variants, we investigated the intersection between cis-eQTLs and known T2D associations 5–238 
7, by performing colocalization analyses using COLOC method35 (Suppl. Methods). 239 

This analysis uncovered 49 eQTL variants associated with expression of 53 genes that 240 

significantly colocalized with T2D GWAS loci (Suppl. Table 4), of which 32 are novel (Table 241 
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1, Suppl. Figure S5). Interestingly, we identified three low-frequency variants, which may 242 

have large effect sizes, that colocalized with gene expression, suggesting a target gene and 243 

direction of effect, i.e,. whether the genetic variant is associated with increased or decreased 244 

gene expression. Among the 49 colocalizing signals (Suppl. Figure S5), rs77864822 245 

(MAF=0.07) minor allele (G) was associated with higher RMST expression and decreased 246 

T2D risk (OR=0.93, p=2.2x10-8). By interrogating the latest GWAS study on glycemic traits 247 
36, we observed that the protective allele was associated with decreased fasting glucose 248 

(beta=-0.024, p=4×10-11), reduced HbA1c (beta=-0.087, p=4.6×10-4), and reduced 2 hours 249 

glucose in an oral glucose tolerance test (beta=-0.064, p=2.4×10-4; Suppl. Table 4). The 250 

variant rs1531583 colocalized with CPLX1 expression (Figure 3A-C). Interestingly, the same 251 

variant was associated with PCGF3 but not with CPLX1 gene expression in whole pancreas 252 

in GTEx (Figure 3B), demonstrating once again the importance of performing eQTL in the 253 

relevant tissue. A detailed analysis of enhancer chromatin marks in human islets showed 254 

that rs73221115 (r2=0.978 with rs1531583) and rs73221116 (r2=0.98 with rs1531583) had 255 

allele-specific H3K27ac binding suggesting that these two variants are the most likely causal 256 

variants of the CPLX1 locus (Figure 3D-E). We also identified significant colocalization 257 

between the low-frequency variant rs76895963, known to reduce T2D risk by half 37, and 258 

increased CCND2 expression in islets (Figure 3F-G). This variant was also associated with 259 

reduced fasting glucose (beta=-0.033, p=0.0017), HbA1c (beta=-0.042, p=3.6×10-8) and 260 

reduced 2 hours glucose in oral glucose tolerance test (beta=-0.095, p=0.01, Suppl. Table 261 

4). 262 

An atlas of cASE in human pancreatic islets 263 

Preferential expression of mRNA copies containing one of the two alleles of a genetic variant 264 

(allele-specific expression, ASE) can result from cis-regulation. However, ASE can occur 265 

while the overall amount of expression of a gene remains constant, and therefore this type of 266 

regulation cannot be identified by conventional eQTL analysis.  267 

We implemented a cASE pipeline for the analysis of ASE replicated across multiple samples 268 

that differ in age, gender, BMI and environmental factors, thereby likely to stem from cis-269 

regulatory genetic variants (Figure 4A). cASE analysis complements eQTL analysis, and 270 

additionally controls for: a) environmental and batch effects, which are important 271 

confounding factors in eQTL studies 38–43, b) sample heterogeneity, which is prevalent in 272 

human islet samples 44, and c) trans effects, since these would affect the two alleles in the 273 

same manner and thus cannot result in ASE. cASE combines ASE from each sample into a 274 

single Z-score statistic that summarizes the overall ASE across the cohort of samples 275 
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(Suppl. Methods, Suppl. Figure S6) 45. Variants that preferentially express the reference 276 

allele result in a positive Z-score and vice versa (Figure 4A).  277 

Using this strategy, we identified 2,707 genes with 5,271 reporter variants showing cASE in 278 

human islets, at 5% FDR (Figure 4B). The similar number of reference and alternate 279 

imbalanced variants (2,606 and 2,589, respectively) showed that alignment biases towards 280 

the reference allele were successfully controlled (see also Suppl. Figure S6B-E). 281 

When comparing cASE genes against a set of non-significant genes (matched by gene 282 

expression level, Suppl. Methods), we observed that cASE genes were enriched for islet-283 

specific expression (2.1-fold, p=2.5×10-54 at 1% FDR) and preferentially located near islet 284 

regulatory regions (1.23-fold, p=3.7×10-11) (Figure 4C). Gene ontology analysis (Suppl. 285 

Methods) revealed islet-specific terms such as “vesicle-mediated transport” and “regulated 286 

exocytosis”, (Figure 4D), related to insulin production and secretion in β-cells. As a notable 287 

example, the islet amyloid polypeptide gene (IAPP) was among the most imbalanced cASE 288 

genes. IAPP had 7 independent reporter SNPs at 1% FDR (Figure 4A, right panel; Suppl. 289 

Figure S7), all of which with strong imbalance towards the reference allele in the >100 290 

independent samples that were heterozygous for the variants. Notably, there were no 291 

significant eQTLs for this gene, highlighting the complementarity between the two methods 292 

to identify regulatory variation. These findings highlight the potential of cASE to identify 293 

genes involved in regulating pancreatic islet physiology. 294 

Given that eQTL and cASE analyses are complementary methods to detect genes affected 295 

by cis-regulation, we assessed the concordance between each of them. We first interrogated 296 

the proportion of genes with significant eQTL of all cASE genes across absolute Z-score 297 

quartiles (strength of imbalance), and observed that the proportion of eQTL genes increased 298 

with increasing Z-scores (Figure 4E), indicating that stronger cASE effects were more likely 299 

to be also identified in eQTL analysis, and showing a correlation between the two effects. 300 

Of 2,707 cASE significant genes, 2,052 (75.8%) were detected in eQTL analysis, whereas 301 

655 (24.2%) were detected uniquely through cASE (Figure 4F, top panel). The same trend 302 

was observed when considering only islet-specific expressed genes. Among 270 islet-303 

specific significant eGenes detected by cASE, 218 were also detected by eQTL analysis, 304 

while the remaining 52 were exclusively found by cASE and not eQTL analysis (Figure 4F, 305 

bottom panel). 306 

Mapping distal cASE variants allows cASE colocalization analysis and implicates 307 

additional T2D effector genes 308 

We next developed an approach to identify distal putative cASE regulatory variants by 309 

interrogating all variants within the same topologically associated domain as the reporter 310 
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variant (i.e. the variant located in the transcribed gene region). For each candidate 311 

regulatory variant, we stratified samples between heterozygous and homozygous for the 312 

variant. We then recomputed cASE of the reporter variant (i.e., the transcribed variant) for 313 

each of the groups (Figure 5A). This approach allowed us to prioritize the candidate variant 314 

that had the highest reporter cASE when the candidate regulatory variant was also 315 

heterozygous, compared to when the regulatory variant was homozygous (Figure 5B, see 316 

Suppl. Methods).  317 

This analysis uncovered 256,981 putative regulatory variants for 3,425 genes, including 570 318 

genes that had no significant reporter variants by themselves, but that did reach significance 319 

upon stratifying by genotype of regulatory variants (Figure 5C, orange points, see Suppl. 320 

Figure S8 for examples). To assay the potential functional impact of the identified reporter  321 

variants, we tested for their enrichment in human islet regulatory regions 10, observing 322 

overlap with gene promoters with very strong fold enrichment when compared with a control 323 

set of genetic variants (4-fold for 1% FDR eQTL variants, p=4×10-87) (Suppl. Methods), as 324 

well as with strong enhancers 10 (2.5-fold, p=7.8×10-13), and open-chromatin regions (1.5-325 

fold, p=1.8×10-27) (Figure 5D). When comparing these cis-regulatory variants with the 1.11M 326 

eQTLs, we found 123,748 variants significant by both methods (3,138 with MAF<5%), and a 327 

further 133,233 (9,190 with MAF<5%) that were identified only by cASE (Figure 5E), 328 

showcasing the relevance of this analysis for enriching genetic cis-regulatory discovery. 329 

Assigning statistical significance to cASE distal regulatory variants allowed us to test for 330 

colocalization between cASE regulatory variants and T2D GWAS variants. For each T2D 331 

GWAS locus, we assessed all regulatory variants for all imbalanced genes in the region and 332 

identified 14 colocalized locus-gene pairs (Table 2, Suppl. Figure S9). Of these, 6 had also 333 

been identified in eQTL/T2D GWAS colocalization analyses, showing consistency between 334 

the two methods. Interestingly, the 8 colocalizations identified by cASE alone suggested that 335 

these T2D variants may mediate disease risk by causing an imbalance in allelic expression, 336 

rather than altering overall gene expression. A notable example was the highly significant 337 

cASE observed in SLC30A8 (rs11558471; p=2.9×10-14), which showed colocalization with a 338 

well-established T2D-associated variant (Figure 5F-G) (Suppl. Table 5) for which there was 339 

no eQTL colocalization. Thus, our novel cASE analysis uncovered additional disease-340 

relevant genomic regulation and provides a potential biological mechanism underlying the 341 

association. 342 

A web portal to explore regulatory variation and genomic pancreatic islet information 343 

Finally, to provide the research community with a user-friendly open access tool to explore 344 

these findings and mine the molecular basis of complex diseases influenced by pancreatic 345 
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islet biology, we created TIGER (http://tiger.bsc.es) (Figure 6). This portal integrates the 346 

results obtained in this study with other public genomic, transcriptomic and epigenomic 347 

pancreatic islet resources, as well as T2D GWAS meta-analysis summary statistics (Suppl. 348 

Methods). 349 

The TIGER website represents homogeneous gene expression levels from 446 RNA-seq 350 

pancreatic islet samples corrected for batch and covariate effects (Suppl. Figure S10), and 351 

enables comparison with GTEx expression data 12 (Suppl. Methods). 352 

In addition to the eQTL and cASE results and to provide further functional assessment, we 353 

gathered islet regulatory information 9,10,46, methylation marks 47,48 and chromatin 354 

modification datasets 49–51. Further, to enable the translation of genetic variation to disease 355 

risk, we also integrated the latest T2D GWASs meta-analysis summary statistics 5,7,52,53 356 

(Figure 1A).  357 

The TIGER database currently contains expression and molecular data for >59K Gencode 358 

genes (version gencode.v23lift37 54) and >27M variants. The portal allows users to perform 359 

both variant and gene centric queries. The results are displayed in a set of graphical tools 360 

and a genomic browser that will help visualize and interpret the molecular context of the 361 

query, as well as download the data. As a result of these efforts, the TIGER resource has 362 

already been used in recent studies 55–57. 363 

As an example, we present the visualization of MTNR1B, a gene associated with type 2 364 

diabetes and impaired insulin secretion 58. Although, this gene is lowly expressed in 365 

pancreatic islets (median 0.25 TPM) by comparison with other GTEx tissues it only shows 366 

low expression in testis (median 0.61 TPM) and brain (median 0.06 TPM) but none 367 

expression in whole pancreas and other tissues (median 0 TPM), thus highlighting the utility 368 

of this resource for studying human islet-specific expression (Figure 6A-B). A T2D risk 369 

associated locus has been previously described and fine-mapped 5 to a single variant 370 

(rs10830963, p=4.8×10-43, PP=0.99, Figure 6C, Suppl. Figure S5). Notably, this variant is 371 

located within islet H3K27ac peaks, suggesting potential regulatory implications of this 372 

variant (Figure 6D). In summary, the close lookup at this locus emphasizes that the TIGER 373 

portal can be easily used to interrogate gene expression, epigenomic and genomic variation 374 

regulatory landscape, providing an invaluable resource to the research community for the 375 

study of complex diseases affecting pancreatic islets. 376 

 377 

Discussion  378 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.445616doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445616
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

12 

By analyzing the largest dataset to date of pancreatic islets with gene expression and dense 379 

genotyping information we have uncovered one million significantly associated variant-gene 380 

pairs. Of all the associations we found, 35.3% were islet-specific, highlighting the importance 381 

of performing tissue-specific eQTL studies (Figure 2D). Remarkably, 17 human islet eQTLs 382 

that colocalized with T2D GWAS signals were not associated with gene expression in any 383 

GTEx tissue, including whole pancreas, which emphasizes the fact that pancreas cannot be 384 

used as proxy for pancreatic islets and vice-versa. 385 

We compared our findings with those obtained in the InsPIRE islet eQTL study that 386 

comprised 420 samples 23, of which 207 were also included in our study. We observed that 387 

18 (34%) of the 53 eQTLs that colocalized with T2D GWAS signals were also identified in 388 

InsPIRE study (Suppl. Table 4). The improved power in our study obtained by the use of 389 

integrative approaches, such as combined reference panels genotype imputation and meta-390 

analysis allowed us to detect lower MAF eQTL signals (10.4% with <5% MAF), representing 391 

a 7-fold increment of low frequency eQTL variants compared to this previous large islet 392 

eQTL study. Importantly, the meta-analyses also allow us to compare the heterogeneity of 393 

the associations between cohorts and filter out signals that are not consistent across 394 

cohorts, thereby avoiding false positives.  395 

We detected 32 novel T2D colocalizations with low MAF variants, including variants 396 

associated with expression of CCND2, RMST, and CPLX1. The variant rs76895963 (MAF 397 

0.02) that upregulates CCND2, halves the risk of T2D 37 and is potentially implicated in the 398 

perinatal development of human β-cells 59. While the posterior probability of the 399 

colocalization was below the threshold of 0.8, the SNP had a clear eQTL with the gene, and 400 

a convincing colocalization (see Locus Compare plots, Figure 3G). The variant rs77864822 401 

(MAF=0.07) upregulates RMST expression and decreases T2D risk. RMST 402 

(rhabdomyosarcoma 2 associated transcript) is a reportedly neuron-specific long noncoding 403 

RNA involved in neurogenesis 60; it is well expressed in human islet cells 61 but its function in 404 

β-cells is unknown. The variant rs1531583, with the minor T allele associated with increased 405 

T2D risk 5, upregulates CPLX1, encoding complexin-1, again a reportedly neuron-specific 406 

gene. Complexin-1 plays a role in Ca2+ dependent insulin exocytosis in rodent β-cells, 407 

although it is intriguing that both CPLX1 silencing and overexpression impaired insulin 408 

secretion 62. GWAS often report as a target the gene closest to the variant, in this case 409 

PCGF3, for which eQTLs exist in many GTEx tissues. Notably, rs1531583 lies in an intronic 410 

region of PCGF3, and is an eQTL for this gene in several GTEx tissues. However, we 411 

demonstrate here that it is specifically associated with CPLX1 expression in human islets 412 

and not with PCGF3, challenging the hypothesis that the closest gene is often the most likely 413 

target gene (Figure 3A-E). 414 
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The imputation with four reference panels allowed us to analyze different sources of genetic 415 

variation, including indels and structural variants. In our study, 12.6% of the eQTL are indels. 416 

This stresses the fact that indels are a significant part of the genetic background influencing 417 

RNA expression. Unfortunately, the largest available T2D GWAS dataset 5 did not consider 418 

indels, and so we could not include them in our colocalization analysis. In the near future, 419 

this approach could be used to fine-map the contribution to disease risk of indels and 420 

structural variants. 421 

Capitalizing on this valuable pancreatic islet resource, we also analyzed cis-regulation via 422 

ASE for the first time. We developed a novel method named cASE, which combines ASE 423 

across samples, maximizing the power to detect variants associated with ASE. We identified 424 

variants associated with allelic imbalanced expression while not changing the overall gene 425 

expression, and thus undetectable by eQTL. We extended the cASE results in colocalization 426 

analysis and identified 14 T2D colocalizations. While 6 of them were detected in the 427 

eQTL/T2D GWAS colocalization, 8 were novel signals, including WFS1, SLC30A8, KCNJ11, 428 

TSPAN8, C18orf8 and CALR. For these, the lead SNP causes allelic imbalance but no 429 

overall gene expression change. These findings suggest that a subset of regulatory genetic 430 

variants confer disease risk by causing imbalance in allelic expression of their target genes, 431 

a novel mechanism for which knowledge is lacking. A particular locus of interest was the 432 

colocalization for common variant rs3802177 associated with SLC30A8. rs3802177 is in 433 

strong linkage disequilibrium with rs13266634 T2D associated variant, widely discussed in 434 

the literature 63–66. In our study both variants had nearly identical p-values (p=2.9×10-14 for 435 

rs3802177 and p=3.3×10-14 for rs13266634), showing that any or both of those SNPs could 436 

induce allelic imbalance. Rare loss-of-function variants in SLC30A8 strongly reduce T2D risk 437 
67 by enhancing insulin secretion 68. However, the direction of effect of the common coding 438 

variants is not known. Our cASE results suggest that imbalanced expression towards the 439 

rs13266634-T allele is protective for T2D. Since SLC30A8 loss-of-function decreases risk, 440 

these results suggest that the rs13266634-T allele may cause reduced SLC30A8 function. 441 

In summary, we generated the largest to date expression regulatory variation resource in 442 

human pancreatic islets, a tissue with a central pathogenic role in most if not all types of 443 

diabetes. All these results are available through the TIGER web portal, which constitutes a 444 

user-friendly visualization tool that facilitates the exploration of the datasets, democratizing 445 

human islet genomic information to all islet researchers and clinicians. 446 

We expect that this resource, in combination with the growing number of large-scale genetic 447 

and functional studies will represent a critical step forward towards understanding the 448 

molecular underpinnings of complex diseases that impact pancreatic islet biology and 449 

provide a path for the identification of novel and personalized drug targets. 450 
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 451 

Data and code availability  452 

The eQTL and cASE results are available for browsing at TIGER (http://tiger.bsc.es) and the 453 

full summary statistics will also be available for download upon publication. 454 

The cASE code is available through https://github.com/imoran-BSC/TIGER_cASE. 455 

Source data used for this study supporting all findings are available within the article and its 456 

Supplementary Information files or from the appropriate repositories. Already published 457 

genotype, sequence, methylation and expression data was obtained from the European 458 

Genome-phenome Archive (EGA; https://www.ebi.ac.uk/ega/) under the following accession 459 

numbers: EGAD00001001601; EGAD00001003946; EGAD00001003947 and Gene 460 

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under the following 461 

accession numbers: GSE50244; GSE76896; GSE53949; GSE35296. Samples used to 462 

generate Islet regulome annotations, ChIP-seq and ATAC-seq were taken from EGA 463 

repository, under the accession numbers: EGAD00001005203, EGAD00001005202, 464 

EGAD00001005204, EGAD00001005201 and their corresponding processed files are 465 

available through https://www.crg.eu/es/programmes-groups/ferrer-lab#datasets. New 466 

genotype, RNA-sequencing and associated metadata from Pisa and CRG samples are 467 

being deposited in EGA (EGA number pending). 468 
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Tables. 

Table 1. Novel human pancreatic islet colocalization of expression quantitative trait loci meta-
analysis (eQTL) with type 2 diabetes (T2D) genome-wide association studies (GWAS).  

   COLOC T2D GWAS eQTL 

Chr SNP Gene PP.H4.abf SNP.PP.H4 EAF EA NEA OR P-value P-value Direction 

1 rs1127215 PTGFRN 1,00 0,99 0,42 T C 0,95 2,3E-13 4,8E-15 ---- 

1 rs1127215 CD101 1,00 0,96 0,42 T C 0,95 2,3E-13 1,2E-07 ---- 

1 rs1493694 NBPF7 0,81 0,09 0,11 T C 1,09 2,1E-16 1,0E-05 ?+?+ 

1 rs340874 RP11-478J18.2 0,98 1,00 0,56 C T 1,07 5,6E-26 1,3E-06 ++++ 

1 rs4659836 TBCE 0,82 0,12 0,65 A G 1,04 4,7E-09 2,9E-07 ---- 

3 rs3887925 ST6GAL1 1,00 1,00 0,55 T C 1,06 1,4E-17 2,1E-13 ++++ 

3 rs3887925 AC007690.1 1,00 1,00 0,55 T C 1,06 1,4E-17 5,2E-09 ++++ 

3 rs7640294 SERBP1P3 0,97 0,06 0,56 A C 1,04 3,0E-08 1,6E-09 ++++ 

4 rs1531583 CPLX1 0,87 0,13 0,046 T G 1,12 1,2E-12 1,2E-06 ++++ 

4 rs1580278 BDH2 0,81 0,73 0,53 A C 0,96 2,9E-10 1,1E-09 ++++ 

4 rs58730668 ACSL1 0,89 0,04 0,14 C T 0,93 1,0E-13 2,5E-05 ++++ 

6 rs6557267 RGS17 0,94 0,08 0,42 T C 1,04 6,0E-08 8,2E-08 ---- 

8 rs1059592 RP11-582J16.5 0,81 0,12 0,35 A G 1,03 4,5E-05 4,1E-15 ---- 

8 rs77292833 LRP12 0,84 0,05 0,12 G C 0,96 1,6E-05 8,1E-08 ++++ 

9 rs10811660 CDKN2B-AS1 0,99 0,48 0,17 A G 0,85 6,6E-79 1,6E-07 ---- 

9 rs10963924 SAXO1 0,82 0,09 0,43 C G 1,04 9,2E-10 1,6E-05 ---- 

10 rs827237 PCBD1 0,99 0,19 0,21 T C 1,04 2,3E-07 2,4E-10 ---- 

11 rs15818 HMBS 0,84 0,06 0,4 G A 1,03 4,5E-05 2,5E-07 ++++ 

11 rs529623 FXYD2 0,92 0,83 0,52 C T 0,97 5,8E-06 3,4E-07 ++++ 

11 rs57635800 HSD17B12 0,95 0,24 0,29 A G 1,05 8,5E-13 1,1E-19 ---- 

12 rs731304 ABCC9 0,80 0,19 0,24 A G 0,97 1,1E-05 3,0E-11 ++++ 

12 rs76895963 CCND2 0,36 1,00 0,02 G T 0,62 5,3E-70 1,7E-06 +++? 

12 rs77864822 RMST 0,99 0,81 0,07 G A 0,93 2,2E-08 2,9E-14 ++++ 

12 rs77864822 RP11-528M18.2 0,95 0,17 0,07 G A 0,93 2,2E-08 3,6E-06 +-++ 

13 rs34584161 CDK8 1,00 0,98 0,24 G A 0,95 2,9E-10 1,3E-17 ---- 

13 rs488321 KL 0,98 0,27 0,83 C T 0,95 6,8E-10 4,3E-06 ++++ 

14 rs10151752 ACTR10 0,86 0,26 0,59 G A 0,97 7,2E-08 4,0E-06 ++++ 

14 rs1803283 RP11-600F24.7 0,81 0,02 0,65 T C 1,04 1,4E-07 2,5E-05 -+-- 

15 rs13737 RP11-817O13.8 0,84 0,10 0,24 T G 0,96 7,3E-10 2,3E-06 ++++ 

17 rs7218899 USP36 0,96 0,41 0,51 T C 0,97 1,5E-06 2,4E-10 ++++ 

17 rs8070260 ZNHIT3 0,94 0,13 0,53 G A 0,97 1,1E-05 4,1E-08 ---- 

18 rs303760 NPC1 0,95 0,08 0,36 T C 1,03 3,8E-06 2,4E-24 ---- 

Colocalizations not reported in Viñuela et al. 23 The R COLOC package reports the approximate Bayesian factor 
posterior probability (PP.H4.abf) that there is one common causal variant and the posterior probability (SNP.PP.H4) 
that the SNP is the associated causal variant. The GWAS establishes the link between the SNP and type 2 diabetes; 
the effect alleles (EA) with a frequency (EAF) is shown with the associated effect odd-ratio (OR) and the p-value. The 
GWAS data is as reported by the DIAGRAM consortium 5. The eQTL p-value is reported with the direction of the 
effect: up- (‘+’) or down-regulation (‘-‘) direction for the effect allele in the four meta-analysis cohorts (order: CRG, 
Oxford, Lund and Pisa). ‘?’ means that not enough samples are available in the cohort for the minor allele in order to 
compute a p-value. 
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Table 2. Colocalization of allele specific expression (cASE) with type 2 diabetes (T2D) genome-wide association study 
(GWAS).  

   COLOC T2D GWAS cASE 

Chr SNP Gene PP.H4.abf SNP.PP.H4 EAF EA NEA OR P-value Reporter 

variant 

Ref Alt P-value Z-score 

1 rs1127215 PTGFRN 0.99 0.98 0,42 T C 0.95 2.3E-13 rs1127656 C T 8.5E-09 14.6 
4 rs10937721 WFS1 0.95 0.26 0,59 C G 1.09 1.6E-40 rs1046320 G A 3.2E-16 -20.9 
8 rs3802177 SLC30A8 1.00 0.61 0,31 A G 0.90 6.3E-55 rs11558471 A G 2.9E-14 19.5 
10 rs2280141 PLEKHA1 0.96 0.06 0,48c G T 0.95 2.0E-13 rs1045216 A G 1.7E-11 17.2 
11 rs35251247 HSD17B12 0.95 0.21 0,29 A G 1.05 8.5E-13 rs11555762 C T 5.1E-93 52.9 

11 rs35251247 RP11-613D13.5 0.93 0.07 0,29 A G 1.05 8.5E-13 rs35251247 G A 6.8E-12 -17.5 
11 rs5215 KCNJ11 0.83 0.36 0,63 T C 0.93 2.0E-26 rs5215 C T 8.6E-06 -11.1 
11 rs529623 FXYD2 0.95 1.00 0,52 C T 0.97 5.8E-06 rs529623 T C 3.4E-231 84.1 
11 rs529623 RP11-728F11.3 0.91 0.81 0,52 C T 0.97 5.8E-06 rs869789 G A 7.2E-16 20.7 
12 rs10879261 TSPAN8 0.85 0.08 0,41 G T 1.05 3.7E-13 rs3763978 C G 7.2E-11 -16.6 
16 rs6600191 ITFG3 0.86 0.24 0,18 C T 0.94 7.0E-13 rs7193384 C G 1.1E-07 13.4 
18 rs1788762 C18orf8 0.96 0.06 0,64 C G 0.97 2.3E-06 rs1788820 A G 3.2E-25 -26.7 
18 rs1788762 NPC1 0.96 0.06 0,64 C G 0.97 2.3E-06 rs1788820 A G 3.2E-25 -26.7 
19 rs3111316 CALR 0.99 0.47 0,59 A G 1.05 1.6E-12 rs1049481 G T 1.6E-76 -47.9 

The R COLOC package reports the approximate Bayesian factor posterior probability (PP.H4.abf) that there is one common 
causal variant and the posterior probability (SNP.PP.H4) that the SNP is the associated causal variant. The GWAS 
establishes the link between the SNP and type 2 diabetes; the effect alleles (EA) with a frequency (EAF) is shown with the 
associated effect odd-ratio (OR) and the p-value. The GWAS data is as reported by the DIAGRAM consortium 5. The cASE 
analysis provides the allelic imbalance for the allele represented by the reporter SNP with a reference allele (Ref) and an 
alternative allele (Alt), a p-value (FDR threshold of 0.006) and a z-score.   An increased Z score refers to increased 
expression of the reference allele 
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Figure legends. 

 
Figure 1: Project overview and genotype imputation. A) Overview of the TIGER data portal. 
B) Datasets of the T2DSystems consortium and project workflow. C) Multi-panel genotype 
imputation identified 13.1-15.7M autosomal variants (top) and 550-700k chrX variants (bottom), 
with D) a large proportion of low frequency (MAF 1-5%) and rare (<1%) variants, including 
10.2% of Structural Variants (SVs), including small indels and large SVs. 
 
Figure 2: Cis-eQTL meta-analysis in human pancreatic islets. A) Overview of the meta-
analysis. B) Manhattan plot of all eQTLs including chrX, analyzed with female-only (F) or male-
only (M) samples, and jointly (X). C) Fold enrichment over controls of significant eQTL variants, 
in islet regulatory chromatin regions. P-values for 1% FDR eQTL enrichments are shown. D) 
Proportion of eQTLs novel in TIGER human islets (green) and previously found in GTEx project: 
tissues related to T2D aetiology (orange), other tissues (blue); means in dashed lines. Right 
panel restricted to low minor allele frequency (MAF) variants only. E) Gene ontology analysis of 
the genes of TIGER-specific eQTLs. 
 
Figure 3: Examples of co-localization of pancreatic islets eQTLs with T2D GWAS. A) 
Boxplots representing expression of CPLX1 across different genotypes of variant rs1531583 in 
each of the cohorts and final meta-analysis results. B) rs1531583 was not significant in GTEx 
whole pancreas for CPLX1, but instead it was for PCGF3 (bottom). C) LocusZoom plots of islet 
eQTL (top) and T2D GWAS (bottom) signals for rs1531583-CPLX1, and their co-localization 
(right). ABF: Approximate Bayes Factor, PP: Posterior Probability. D) An islet enhancer overlaps 
with rs73221115 and rs73221116, part of the CPLX1 credible set of SNPs. E) Two human islet 
samples heterozygous for rs73221115 and rs73221116 showed allelic imbalance in their 
H3K27ac enhancer chromatin marks. F) eQTL meta-analysis of CCND2 and the low frequency 
cis-regulatory variant rs76895963. G) Co-localization plots for rs76895963-CCND2, as in B).  
 
Figure 4: Combined ASE analysis in human islets. A) Overview of the cASE analysis, with 
IAPP as example of a gene with an imbalanced reporter variant, rs12826421. B) Manhattan plot 
of cASE, positive values refer to Reference-biased genes, negative to Alternate. C) Significant 
cASE genes are enriched for islet-specific expression and proximity to islet-regulatory regions. 
P-values for 1% FDR eQTL enrichments are shown. D) Gene ontology analysis of cASE 
significant genes. E)  In genes with significant cASE, the proportion of also eQTL significant 
increased with increasing cASE magnitude. F) Total number of cis-regulated genes (top) and of 
islet-specific expressed (bottom), identified only by the eQTL analysis (green), cASE (purple), 
and by both (orange). 
 
Figure 5: Identification of cis-regulatory variants in Combined ASE. A) Overview of the 
analysis. B) An example of cis-regulatory variant analysis; the samples Het for the candidate 
variant (green) have a higher cASE Z-score for the reporter SNP, while samples that are Hom 
for the candidate (yellow) do not show significant imbalance for the reporter SNP. C) Candidate 
variants often have stronger Z-scores than the reporters, including some reporter variants that 
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were non-significant by themselves (orange). D) Fold enrichment over controls of significant 
cASE variants, in islet regulatory chromatin regions. P-values for 1% FDR cASE enrichments. 
E) Total number of candidate cis-regulatory variants (top) and low-frequency variants (bottom) 
identified by only the eQTL analysis (green), cASE (purple), and by both (orange). F) cASE 
analysis for SLC30A8, its best reporter SNP (top) and best candidate variant (bottom). G) 
LocusZoom plots of islet cASE (top) and T2D GWAS (bottom) signals for rs3802177-SLC30A8, 
and their co-localization (right). ABF: Approximate Bayes Factor, PP: Posterior Probability. 
 
Figure 6: TIGER platform example. A) MTNR1B normalized log10(TPM) expression in islets; 
table (top) displays MTNR1B normalized TPM expression in each cohort and across the cohorts 
(bold); histogram (bottom) shows log10(TPM) gene expression distribution in 495 human islets 
samples, the red dashed line corresponds to MTNR1B log10(TPM) expression. B) MTNR1B 
normalized TPM expression in islets vs other GTEx tissues where each boxplot represents one 
tissue; MTNR1B has higher expression in pancreatic islets (black) compared to the whole 
pancreas (brown), which has almost no expression. C) Table showing the list of variants in a 
100Kb window around MTNR1B and displaying results from either eQTL or DIAMANTE GWAS 
data sorted by ascending eQTL p-value; the eQTL variant rs10830963 (p=4.04×10-19) 
colocalizes with DIAMANTE (p=1.50×10-43). D) 15Kb human islet genomic context of variant 
rs10830963 (chr11:92708710); islet significant regions (black/blue boxes) and peaks are 
represented in each track, the blue line corresponds to rs10830963 position. 
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