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Abstract 69 

Quantifying the diversity of species in rich tropical marine environments remains 70 

challenging. Environmental DNA (eDNA) metabarcoding is a promising tool to face 71 

this challenge through the filtering, amplification, and sequencing of DNA traces from 72 

water samples. However, the reliability of biodiversity detection from eDNA samples 73 

can be low in marine environments because eDNA density is low and certainly 74 

patchy in this vast, heterogenous and dynamic environment. So, the number of 75 

sampling replicates and filtered volume necessary to obtain accurate estimates of 76 

biodiversity in rich tropical marine environments using eDNA metabarcoding is still 77 

unknown. Here, we used a paired sampling design of 30L per replicate on 68 reef 78 

transects from 8 sites in three tropical regions and identified fish Molecular 79 

Taxonomic Units (MOTUs) using a 12S marker. We quantified local biodiversity 80 

variation as MOTU richness, compositional turnover and compositional nestedness 81 

between replicated pairs of seawater samples. We report strong turnover of MOTUs 82 

between replicated pairs of samples undertaken in the same location, time, and 83 

conditions. Paired samples contained non-overlapping assemblages rather than 84 

subsets of one-another. As a result, localised diversity accumulation curves showed 85 

that even 6 replicates (180L) in the same location underestimated local diversity (for 86 

an area <1km). However, sampling of regional diversity using ~25 replicates in 87 

variable locations (often covering 10s of km) achieved saturation of biodiversity 88 

accumulation curves. Our results demonstrate high variability of diversity estimates 89 

perhaps arising from heterogeneous and local distribution of eDNA distribution in 90 

seawater or highly skewed frequencies of eDNA traces. This high compositional 91 

variability has consequences for using eDNA to monitor temporal and spatial 92 

biodiversity changes of local assemblages. Future biomonitoring efforts could be 93 

strongly undermined by a high level of false-negative detections under low replication 94 

protocols. We reveal the need to increase replicates or increase sampled water 95 

volume to better inform management of marine biodiversity using eDNA. 96 

 97 
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Introduction 99 

Biodiversity is changing far faster than our ability to accurately quantify species 100 

losses and gains (Ceballos, Ehrlich and Raven, 2020; Filgueiras et al., 2021), with 101 

consequent difficulties in evaluating the degradation of ecosystem functions and 102 

services upon which human well-being depends (Díaz et al., 2019). Traditional 103 

methods such as visual surveys are very costly, time-consuming and require on-site 104 

taxonomic expertise (Kim and Byrne, 2006; Ballesteros-Mejia et al., 2013; Dornelas 105 

et al., 2019). Despite decades of sampling efforts, biodiversity monitoring still covers 106 

only a small fraction of global ecosystems and is particularly challenging in isolated 107 

and remote regions across the oceans (Collen et al., 2009; Webb, Vanden Berghe 108 

and O’Dor, 2010; Dornelas et al., 2018; Letessier et al., 2019). An emerging tool for 109 

rapid biodiversity assessment is environmental DNA (eDNA) metabarcoding (Stat et 110 

al., 2017; Eble et al., 2020), which is proving to be particularly effective for marine 111 

environments (Juhel et al., 2020; Boulanger et al., 2021; Holman et al., 2021). eDNA-112 

based methods rely on the detection of DNA fragments from various sources 113 

including faeces, shed skin cells, organelles, or extruded waste of animals, which 114 

become suspended in the water (Dejean et al., 2012; Collins et al., 2018; Harrison, 115 

Sunday and Rogers, 2019). Using filtered water and molecular analyses, eDNA 116 

metabarcoding can estimate biodiversity across kingdoms at different taxonomic 117 

levels without isolating any target organisms (Valentini et al., 2016; Holman et al., 118 

2021), and even without exhaustive genetic reference databases (Flynn et al., 2015; 119 

Juhel et al., 2020; Marques et al., 2020, 2021). Overall, eDNA metabarcoding has the 120 

potential to overcome some limitations of common sampling methods by targeting 121 

complete species assemblages, detecting rare (Rees et al., 2014), elusive (Boussarie 122 

et al., 2018) or non-indigenous species (Ficetola et al., 2008; Holman et al., 2019) 123 

and is harmless to organisms and less time-consuming (Bohmann et al., 2014; Smart 124 

et al., 2016).  125 

Yet, routine and widespread eDNA applications to marine ecosystems face 126 

multiple challenges (Hansen et al., 2018) with variability introduced to biodiversity 127 

estimates from multiple sources that are still poorly understood (Bessey et al., 2020; 128 

Juhel et al., 2020; Rourke et al., 2021; Thalinger et al., 2021). For example, eDNA 129 

signals from source-species are weakened by the low biomass-to-water volume ratio 130 

and frequent movement of individuals (Moyer et al., 2014). Further, long-persistence 131 

times, the long-distance transport and patchy aggregation of eDNA by currents, 132 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.445742doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445742
http://creativecommons.org/licenses/by/4.0/


 

4 

 

introduce uncertainty linking eDNA signal-to-source (Andruszkiewicz et al., 2019; 133 

Whitney et al., 2021). Detection rates and resultant biodiversity estimates thus 134 

critically depend on eDNA (i) origin (source of an organism’s genetic material shed 135 

into its environment), (ii) state (forms of eDNA), (iii) transport (e.g. through diffusion, 136 

flocculation or settling, currents or biological transport which can vary according to 137 

the depth) and (iv) fate (how eDNA degrades and decays) (Barnes and Turner, 2016; 138 

Harrison, Sunday and Rogers, 2019; Thalinger et al., 2021). Besides, water 139 

chemistry, salinity and temperature affect the persistence of DNA particles which are 140 

best preserved in cold and alkaline waters with low exposure to solar radiation 141 

(Moyer et al., 2014; Pilliod et al., 2014; Strickler, Fremier and Goldberg, 2015; but 142 

see Mächler, Osathanunkul and Altermatt, 2018). As a result, marine eDNA 143 

residence time ranges from a few hours to a few days and is shorter than in 144 

freshwater (Dejean et al., 2011; Thomsen et al., 2012). In contrast to freshwater 145 

systems, marine systems are very open with eDNA particles dispersed by 146 

oceanographic dynamics at local (e.g., tides, currents, and water stratification), 147 

regional (e.g., eddies) and large (e.g., thermohaline currents) scales in interaction 148 

with coastal morphology. Whilst significant dispersal of eDNA from its source may 149 

theoretically occur (Andruszkiewicz et al., 2019; Eble et al., 2020), many studies also 150 

indicate that eDNA detection is limited to a small spatio-temporal sampling window 151 

even in highly dynamic marine habitats (Port et al., 2016; O’Donnell et al., 2017; 152 

Yamamoto et al., 2017; Jeunen, Knapp, Spencer, Lamare, et al., 2019; Stat et al., 153 

2019; West et al., 2020; Boulanger et al., 2021). If marine eDNA is sparse, widely 154 

transported, and heterogeneously distributed, then biodiversity estimates could be 155 

highly variable and eDNA sampling strategies may need to overcome this potentially 156 

high noise-to-signal ratio. 157 

     The most common approach for concentrating marine eDNA is water 158 

filtration along transects (Kumar, Eble and Gaither, 2020) but the appropriate amount 159 

of water to filter to overcome sampling variability remains underdetermined (e.g., 1L 160 

in Nguyen et al., 2020 and 30L in Polanco Fernández et al., 2020). An increased 161 

volume of water should lead to increased compositional similarly among replicates, 162 

but even at 2L 30-50% of the total species pool were missing in any given sample 163 

(Bessey et al., 2020). The question remains whether a larger water volume, that 164 

integrates eDNA signals over multiple kilometres, can provide a less variable and 165 

more consistent estimate of biodiversity. If the net effects of ecological and 166 
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methodological sources of variability are low, we can expect the compositional 167 

similarity of repeated 30L eDNA replicates to be high. In contrast, high biodiversity 168 

turnover among replicates may suggest further development of sampling protocols is 169 

required.  170 

In addition to the volume of water, a high level of eDNA sampling replication in 171 

the field can be required to reduce false negatives (species present but not detected) 172 

and improve the accuracy of biodiversity estimates. For example, 92 x 2L seawater 173 

samples accurately predict (R² = 0.92) the distribution of species richness among fish 174 

families (Juhel et al., 2020). Spatial diversity gradients have been recovered from 175 

only three 0.5L water samples in temperate (Thomsen et al., 2012) and tropical 176 

systems (West et al., 2020). However, West et al. (2020) report that more replicates 177 

were necessary to avoid false-negatives and fully sample diversity in a given site 178 

(>8). However, the number of sampling replicates have budget and time limitations 179 

(Ficetola et al., 2015) – which require optimization to take full advantage of eDNA-180 

based surveys.  181 

Here, we compared biodiversity of replicated eDNA samples in terms of 182 

Molecular Operational Taxonomic Units (MOTUs) since genetic reference databases 183 

have many gaps for tropical fishes (Marques et al., 2020). We assessed within-site 184 

MOTU richness, so local or α-diversity, and between-sites MOTU dissimilarity, so β-185 

diversity, separating the turnover and nestedness components (Baselga, 2012). We 186 

targeted tropical fishes across eight different sites within the Caribbean, Eastern 187 

Pacific, and Western Indian Ocean using the same standardised protocol. Over 188 

transects 2km long, we filtered 30L of water in a paired sample design. In addition, 189 

we performed a replication experiment in two locations by repeating transects 190 

multiple times in a ~24h period. Our objectives were to: (i) establish the extent of 191 

variation in fish diversity estimates from replicated eDNA samples collected at the 192 

same time, in the same location and under similar conditions, (ii) identify the number 193 

of eDNA replicates required to saturate fish diversity at a given site, (iii) compare the 194 

above patterns among three ecologically distinct tropical ocean regions, and (iv) 195 

examine whether our sampling protocol saturates regional fish biodiversity using 196 

between-transect species accumulation curves as an indication of sampling effort 197 

appropriate for regional biodiversity estimation. Given that we filtered far more water 198 

than previous saturation experiments, we may expect high eDNA recovery rates 199 

whereby MOTU richness and composition should be very similar among the paired 200 
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replicates – providing robust estimates of biodiversity. In this case, the replicate 201 

accumulation curve should saturate rapidly and reach an asymptotic maximum. In the 202 

opposite case, it would indicate that even a high volume of filtration and a large 203 

number of replicates would be required to inventory fish biodiversity regionally.  204 

 205 

Methods 206 

Sampling sites and eDNA sampling 207 

We filtered surface seawater across eight sampling sites in three different oceanic 208 

regions: Caribbean Sea, Western Indian Ocean and Eastern Pacific (Figure 1). At 209 

each of the eight sampling sites, several transects were carried out with at least two 210 

filtration replicates per transect (see Table 1). Filtration replicates per transect were 211 

performed simultaneously on either side of a small boat moving at 2-3 nautical miles 212 

per hour while filtering surface seawater for 30 minutes resulting in approximately 213 

30L of water filtered per replicate. The shape of 2km transect varied to match the 214 

configuration of the reefs but were always consistent between the compared 215 

replicates. eDNA sampling was performed with a filtration system composed of an 216 

Athena® peristaltic pump (Proactive Environmental Products LLC, Bradenton, Florida, 217 

USA; nominal flow of 1�Lmin−1), a VigiDNA® 0.2µM cross flow filtration capsule and 218 

disposable sterile tubing for each filtration capsule (SPYGEN, le Bourget du Lac, 219 

France). After filtration, the capsules were emptied, filled with 80�mL of CL1 lysis 220 

conservation buffer (SPYGEN, le Bourget du Lac, France) and stored at room 221 

temperature. A strict contamination protocol in field and laboratory stages was 222 

followed using disposable gloves and single-use filtration equipment. More details 223 

can be found in Polanco Fernández et al. (2020).  224 

eDNA processing, sequencing, and clustering 225 

eDNA extraction, PCR amplification, and purification prior to library preparation were 226 

performed in separate, dedicated rooms following the protocols described in Polanco 227 

Fernández et al. (2020) and Valentini et al. (2016). eDNA was amplified using the 228 

teleo primer pair, which targets a marker within the mitochondrial 12S ribosomal RNA 229 

gene and shows high accuracy to detect for both bony (Actinopteri) and cartilaginous 230 

fish (Chondrichthyes) (Collins et al., 2019). The primers were 5’-labelled with an 231 

eight-nucleotide tag unique to each PCR replicate, allowing the assignment of each 232 

sequence to the corresponding sample during sequence analysis. Twelve PCR 233 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.445742doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445742
http://creativecommons.org/licenses/by/4.0/


 

7 

 

replicates were run per sample, i.e. 24 per transect. Fifteen libraries were prepared 234 

using the MetaFast protocol (Fasteris). For seven libraries, paired-end sequencing (2 235 

× 125 bp) was carried out using an Illumina HiSeq 2500 sequencer on a HiSeq Rapid 236 

Flow Cell v2 using the HiSeq Rapid SBS Kit v2 (Illumina) and for the remaining eight 237 

libraries (Europa, Grande Glorieuse, Juan de Nova, Tromelin) the paired-end 238 

sequencing was carried on a MiSeq (2 × 125 bp) with the MiSeq Flow Cell Kit v3 239 

(Illumina), following the manufacturer's instructions. Library preparation and 240 

sequencing were performed at Fasteris facilities. Fifteen negative extraction controls 241 

and six negative PCR controls (ultrapure water, 12 replicates) were amplified per 242 

primer pair and sequenced in parallel to the samples to monitor possible 243 

contaminants. 244 

To provide accurate diversity estimation in the absence of a complete genetic 245 

reference database, we used sequence clustering and stringent cleaning thresholds 246 

(Marques et al., 2020). Clustering was performed using the SWARM algorithm which 247 

uses sequence similarity and abundance patterns to cluster multiple variants of 248 

sequences into MOTUs (Fisher et al., 2015b; Rognes et al., 2016). First, sequences 249 

were merged using vsearch (Rognes et al., 2016), cutadapt (Martin, 2011) was then 250 

used for demultiplexing and primer trimming and vsearch to remove sequences 251 

containing ambiguities. SWARM was then run with a minimum distance of one 252 

mismatch to make clusters (Marques et al., 2020). Once the MOTUs are generated, 253 

the most abundant sequence within each cluster is used as a representative 254 

sequence for taxonomic assignment. Then, a post-clustering curation algorithm 255 

(LULU) was applied to curate the data (Frøslev et al., 2017). We finally removed all 256 

occurrences with less than 10 reads per PCR and all MOTUs present in only one 257 

PCR within the entire dataset. This additional step is necessary as PCR errors are 258 

unlikely to be present in more than one PCR occurrence and it removes spurious 259 

MOTUs inflating diversity estimates; see Marques et al., (2020) for more details. 260 

MOTU richness 261 

We first compared MOTU local richness with the expected richness of the species 262 

pool in the eight sites. For this, we created a MOTU presence-absence matrix 263 

containing every replicate of each region and compiled fish species lists for each of 264 

the eight sites from the literature: Scattered Islands (Grande Glorieuse, number of 265 

species = 576; Europa Island, n = 506; Juan de Nova Island, n = 480; Tromelin 266 
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Island, n = 239; personal communication with Terres Australes et Antarctiques 267 

Francais; www.taaf.fr), Tayrona Park (n = 515; SIBM, 2021), Providencia (n = 343; 268 

Robertson and Van Tassell, 2019), Malpelo (n = 257; Robertson and Allen, 2015) 269 

and Guadeloupe (n = 425; Froese and Pauly, 2000). To examine whether the 270 

transect MOTU richness varied among oceanic regions (n=3), we performed a 271 

Kruskal-Wallis rank sum test and related the MOTU richness per replicate to the site 272 

richness (from species lists) using a linear model. We also estimated the recovered 273 

MOTU richness for each filtration replicate per transect. We determined if the mean 274 

α-diversity differed between paired filtration replicates for a given transect using a 275 

Wilcoxon signed rank test. 276 

MOTU compositional dissimilarity 277 

To understand the variability in MOTUs recovered between filtration replicates we 278 

quantified the compositional similarity of MOTUs. We estimated the pairwise 279 

Jaccard’s dissimilarity index (βjac) between filtration replicates per transect using the 280 

R package vegan  (Oksanen et al., 2019). The Jaccard index ranges from 0 (species 281 

composition between the replicates is identical, i.e., complete similarity) to 1 (no 282 

species in common between the replicates, i.e., complete dissimilarity). We 283 

partitioned the Jaccard index into turnover (βjtu) and nestedness (βjne) components 284 

using the R package betapart (Baselga and Orme, 2012). Nestedness quantifies the 285 

extent to which replicates are subsets of each other. Turnover indicates the amount 286 

of species replacement among replicates, i.e., the substitution of species in one 287 

replicate by different species in the other one (Baselga and Orme, 2012; Legendre 288 

and De Cáceres, 2013). In addition, we tested whether βjac differed between the 289 

regions using a Kruskal-Wallis rank sum test. 290 

Local-scale MOTU accumulation curves  291 

To analyse the local-scale richness accumulation, we repeated circular transects 292 

multiple times in Malpelo and Santa Marta. We sampled two locations in Santa Marta 293 

filtrating 6 replicates at each within 20 hours, and one location in Malpelo filtrating 10 294 

replicates within three days. This sampling design defined three local MOTU 295 

accumulation ‘experiments’. We produced MOTU richness accumulation curves 296 

across filtration replicates from each location using the specaccum function from the 297 

R package vegan (Oksanen et al., 2019). The ‘random’ method was used to 298 

generate 1,000 accumulation curves, which were used to fit models describing the 299 
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relationship between the number of replicates and MOTU richness. We fitted fourteen 300 

models to each saturation experiment and ranked fitted models by AIC score. We 301 

generated multi-model mean averages which were used for asymptote calculations, 302 

extrapolation and visualisation using the sars_average function from the sars R 303 

package (Matthews et al., 2019). We next used the sar_pred function to extrapolate 304 

MOTU richness for up to 60 filtration replicates. We defined asymptotes as the 305 

number of replicates at which less than 1 new MOTU was added per additional 306 

sample.  307 

 308 

Regional-scale MOTU accumulation curves 309 

In contrast to the saturation curves at one location, we assessed the extent to which 310 

our eDNA protocol captures regional fish biodiversity. MOTU accumulation curves 311 

were calculated using all filtration replicates in each of the 8 sites. Species 312 

accumulation curves were produced and compared as above (Figure 1; Table 1) 313 

rather than within localised repeated transects. All transects and replicates from all 314 

stations within a sampling site were pooled to form a site-wide (or regional) 315 

accumulation curve.  316 

 317 

All analyses were performed in R version 4.0.1 (R Core Team, 2020). The activities 318 

in Malpelo were undertaken with the permit: “Resolución Número 0170-2018 MD-319 

DIMAR-SUBDEMAR-ALIT 8 de marzo de 2018”. 320 

  321 
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Table 1. Overview of eDNA sampling across regions and sites in our study. Filtration replicates 322 

are our observation units, all samples in column ‘Total filtration replicates’ were used in our 323 

accumulation curves. Only paired samples on a given transect were used in the ‘MOTU 324 

compositional similarity between filtration replicates’ analyses, indicated by brackets in the ‘Total 325 

filtration replicates’ column.  326 

 327 

  Region Site Number of transects 
per site 

Total filtration 
replicates 

Local 
accumulation 
curves  

Eastern Pacific 
Ocean 

Malpelo 5 10 

Caribbean Sea Santa Marta (#1) 1 6 

  Santa Marta (#2) 3 6 

Regional 
accumulation 
curves 

Western Indian 
Ocean 

Europa 6 12 (12) 

Grande Glorieuse 5 10 (10) 

Juan de Nova 5 9 (8) 

Tromelin 3 6 (6) 

Caribbean Sea Guadeloupe 18 28 (16) 

 Providencia 10 20 (20) 

Eastern Pacific 
Ocean 

Malpelo 13 24 (24) 

Caribbean Sea Santa Marta 8 20 (8) 

 328 

 329 

  330 
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 331 

 332 

 333 

Figure 1. Sampling sites in the Eastern Pacific, Caribbean and Western Indian Ocean. The eight 334 

sampled sites represented by Google Earth imagery show the spatial distribution of transects 335 

within sites. Markers represent the beginning of eDNA transects in each site; colour and shape 336 

indicate whether samples were used in local accumulation analysis (static samples repeated 337 

multiple times in a shorter period, red circles) or regional/island level accumulation curves (blue 338 

triangles).  339 
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Results 341 

Overview of eDNA biodiversity patterns 342 

We detected a total of 789 unique MOTUs assigned to bony and cartilaginous fish 343 

taxa. Site MOTU richness was significantly and positively associated with the size of 344 

the site species pool (slope=0.1, t=4.7, p<0.001; Figure 2) reconstructing large-scale 345 

biodiversity gradients across the tropics. 346 

 347 

 348 

Figure 2. Sites ranked by their expected species richness based on species lists in different 349 

regions (see Methods). One single filtration replicate recovered up to 162 fish MOTUs in the most 350 

diverse site monitored. Overall, we found an association between the size of the species pool and 351 

the number of MOTUs recovered in a single replicate. The relatively consistent proportional 352 

MOTU samples from the full species pools suggests that in richer sites filtration replicates were 353 

not saturated with available eDNA. The bold central lines correspond to median values across 354 

transects (filtration replicate pairs), interquartile range (25th-75th) corresponds to box edges, and 355 

whiskers extend to 1.5 x interquartile range.     356 
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MOTUs richness per replicate 357 

The fish MOTU richness detected by each filtration replicate (n = 100) ranged from 3 358 

to 162, with a mean of 58.3 ± 35.6 MOTUs (Figure 2). The mean α-diversity detected 359 

by each filtration replicate for a given transect did not differ significantly (Wilcoxon 360 

signed rank test: n =50, Z = -0.927, p = 0.354). The MOTU richness detected at each 361 

transect (i.e., two filtration replicates combined, n = 50) ranged from 19 to 184, with a 362 

mean of 82.5 ± 42.7 MOTUs and did not differ significantly among regions (Kruskal-363 

Wallis rank sum test: χ2 = 4.0682; p = 0.1308). On average, 69.7% of the MOTU 364 

richness along a transect was identified by a single filtration replicate, ranging from 365 

11.5% to 98.1%, with variations among regions (Western Indian Ocean = 63.6%, n = 366 

36; Eastern Pacific = 74.5%, n = 20; Caribbean = 72.5%, n = 44).  367 

MOTU compositional dissimilarity between replicates 368 

The composition of fish MOTUs was highly dissimilar between paired replicates 369 

(Figure 3; mean similarity = 0.598 ± 0.155 where 1 is full dissimilarity with no MOTU 370 

is common), and varied among transects ranging from 0.174 to 0.882. The level of 371 

dissimilarity between paired replicates varied significantly among regions (Kruskal-372 

Wallis rank sum test: χ2 = 22.791; p < 0.001) being most dissimilar in the West Indian 373 

Ocean (mean=0.729 ± 0.102) than in the Caribbean (0.528 ± 0.146) and the Eastern 374 

Pacific (0.511 ± 0.081). MOTU compositional differences between replicates were 375 

primarily due to MOTU turnover (Figure 3; n = 49, Z = -6.097, p < 0.001; mean 376 

turnover = 0.450 ± 0.153) with a lower contribution of nestedness (mean = 0.149 ± 377 

0.146). Turnover ranged from 0.095 to 0.846 and nestedness from 0.005 to 0.646. 378 

  379 
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 380 

Figure 3. Boxplots of the MOTU compositional dissimilarity between eDNA filtration replicates (β-381 

diversity), and deconstruction into turnover and nestedness components for three ocean regions. 382 

The bold central lines correspond to median values across transects (filtration replicate pairs), 383 

interquartile range (25th-75th) corresponds to box edges, and whiskers extend to 1.5 x 384 

interquartile range.    385 

  386 
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Local-scale MOTU accumulation curves 387 

The accumulated fish MOTU richness in the two locations in Santa Marta was 388 

between 109 and 131 and the one location was 114. After 6-10 replicates sampling in 389 

the same location, MOTU richness did not fully saturate with additional replicates 390 

adding new MOTUs to the total (Figure 4). Modelled accumulation curves suggest 391 

that 27-58 filtration replicates would be required to reach an asymptotic richness of 392 

164-251 MOTUs in Santa Marta, and 23 filtration replicates to reach an asymptotic 393 

richness of 134 MOTUs in Malpelo.  394 

 395 

Regional-scale MOTU accumulation curves  396 

At a regional scale, MOTU accumulation curves detected various proportions of the 397 

total asymptotic MOTU richness (defined as <1 additional MOTU per filtration 398 

replicate; 98.8% on average in the Caribbean Sea, 103.3% on average in Malpelo, 399 

67.4% on average in the Western Indian Ocean). The Caribbean and Eastern Pacific 400 

filtration replicates saturated MOTU richness after 18 to 28 replicates (i.e., within our 401 

number of replicates), except for Santa Marta, where an additional 6 replicates are 402 

predicted to be required to reach an asymptote (Figure 5). In the Western Indian 403 

Ocean, where sampling was less exhaustive, regional MOTU richness did not 404 

saturate and reached between 46.4% (Tromelin) and 82.7% (Grande Glorieuse) of 405 

the predicted asymptotic MOTU richness. To reach an asymptotic richness of 172.3-406 

320.2 MOTUs in the Western Indian Ocean, our estimates suggest that between 30-407 

52 additional replicates would be required. The shapes of regional accumulation 408 

curves were qualitatively different between the three oceans and showed differing 409 

levels of both diversity and sampling exhaustiveness across sites (Figure 5).  410 

  411 
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Figure 4. Local-scale MOTU richness accumulation analysis of eDNA filtration replicates from 412 

Santa Marta and Malpelo. The curves show the multi-model mean average of the local MOTU 413 

richness and richness extrapolation for the filtration replicates collected by repeated sampling at 414 

the same location over a short period. Coloured text boxes indicate the final sampled richness 415 

and the percentage of the estimated richness asymptote reached with our filtration replicates. 416 

Points on the curve mark the asymptote (defined as a < 1 MOTU increase in species richness per 417 

added sample). The asymptotic MOTU richness plus the number of filters required to reach the 418 

asymptote are noted in the white text box next to the curves. The solid line shows the richness of 419 

the filters collected during actual sampling; the dotted line is the extrapolation of richness up to 60 420 

filters. The curve colour corresponds to the sampling regions: Santa Marta (light orange: 421 

‘tayrona_camera_1’, dark orange: ‘tayrona_camera_2’), Malpelo (blue). 422 

 423 

 424 

Figure 5. Regional MOTU richness accumulation curves of eDNA filtration replicates across the 425 

Caribbean, Eastern Pacific and Western Indian Ocean. The curves show the multi-model mean 426 

averages of the local richness and richness extrapolation (number of MOTUs) for the number of 427 

filters (sample size) from each region. Points on the curve represent the asymptote (defined as a 428 

less than 1 MOTU increase in species richness per added sample). The asymptote for the MOTU 429 

richness plus the number of filters needed to reach the asymptote are noted in the text box below 430 

the curves. The solid line shows the richness of the filters collected; the dotted line is the 431 

extrapolation of richness up to 60 filters. The colours of the curves correspond to the sampling 432 

area: Caribbean Sea (orange), Eastern Pacific (light blue), Western Indian Ocean (grey). 433 
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Discussion 434 

Our results reveal that, without adequate replication, sampling variability undermines 435 

biodiversity estimates in highly diverse tropical ecosystems, such as coral reefs 436 

(Cilleros et al., 2019; Bessey et al., 2020; Juhel et al., 2020; Polanco Fernández et 437 

al., 2020). The variability of eDNA biodiversity estimates showed high compositional 438 

dissimilarity between filtration replicates so, for some locations, even extensive 439 

sampling with 6-20x 30L replicates could reach an asymptotic number of detected 440 

MOTUs. Promisingly, there was little difference in overall MOTU richness between 441 

paired replicates, although these replicates recovered different species identities so 442 

are essential in eDNA sampling design.  443 

 The similar MOTU richness but different composition between replicates 444 

suggest that eDNA distribution varies at a fine-scale in seawater and is certainly 445 

patchier than previously thought. This patchiness of fish eDNA in tropical reefs is 446 

further supported by Bessey et al. (2020) who report that multiple collections from a 447 

single site 2m apart have <30% overlapping species detections. The fine-scale 448 

distribution of eDNA in the environment could be a function of multiple factors. For 449 

example, ambient eDNA in seawater could be modified by complex sea currents, 450 

surface slicks (Whitney et al., 2021), local water dynamics, thermohaline circulation 451 

forces, spatio-temporal variation in organism activity and behaviours (e.g., spawning, 452 

feeding, diel migrations), different DNA shedding, degradation and decay rates 453 

(Harrison, Sunday and Rogers, 2019). Identifying when, where, and to what extent 454 

these varying processes act to modify spatial and temporal eDNA distribution is 455 

critical to disentangle biodiversity variation from sampling variation on reefs.  456 

Since biodiversity changes are most often detected as compositional turnover, 457 

but not necessarily richness changes, we highlight a major challenge in developing 458 

eDNA to monitor ecosystem modifications through space and time (Dornelas et al., 459 

2014; Hill et al., 2016; Santini et al., 2017; Blowes et al., 2019). Our results imply that 460 

if sample variability is not accounted for, or survey designs are not well replicated, 461 

eDNA-derived time-series could over-emphasise compositional turnover by 462 

containing many false-negatives. This point will be exacerbated where incomplete 463 

reference databases recover a small portion of common species and falsely identify 464 

low species turnover among samples (Schenekar et al., 2020), even though MOTU 465 

turnover identified here may be very high. We found MOTU compositional differences 466 
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between replicates to be higher in the more speciose Western Indian Ocean (under 467 

similar sampling protocols), perhaps due to the larger species pool, further 468 

challenging eDNA applications in most diverse tropical systems (Juhel et al. 2020). 469 

Current protocols should be cautiously applied to biomonitoring if such limitations 470 

remain unresolved. Our results also imply that many replicates of >30L water are 471 

needed to reach a stable estimate of total local biodiversity. Promisingly, the regional 472 

biodiversity of tropical systems was relatively well-quantified through repeated eDNA 473 

sampling (e.g., Figure 5), and more exhaustive biodiversity estimates may be 474 

achieved by including mesophotic coral ecosystems (from -300m depth to sub-475 

surface) and various habitats (e.g. lagoons, reef-slope, mangroves, sea grass) (Juhel 476 

et al. 2020). 477 

 The well-established community pattern that many species are rare and few 478 

are common (McGill et al., 2007) also likely exists in eDNA particles. Moreover, 479 

finding rare eDNA fragments in any given sample may be exacerbated by features of 480 

marine systems. For example, we likely sampled vagrant open-ocean species, which 481 

only pass through temporarily, in some of our remote sites (e.g., Malpelo) which may 482 

have increased sampling variability. Compared to terrestrial systems, the seawater 483 

environment may homogenise eDNA that comes from different habitats (e.g., coral, 484 

rock, sand, seagrass). The eDNA species pool could be larger in a seawater sample 485 

than expected based on habitat variation along a given transect. Dispersion of eDNA 486 

between distinct habitats (e.g., from seagrass beds to coral reefs) would enhance the 487 

likelihood of finding a rare habitat specialist from a different habitat type and 488 

increasing perceived sampling variability. As such, eDNA variability may be greater in 489 

seascapes with a greater diversity of habitats. Sampling designs may need to 490 

account for the extent that a given water body accumulates sources of eDNA, and 491 

the amount of habitat variation that a water sample signal is aggregated over. eDNA 492 

statistical analyses may also need to control for habitat variations before reaching 493 

conclusions (Boulanger et al., 2021). 494 

Marine eDNA protocols are challenged by the compositional turnover between 495 

replicates. As in traditional approaches, saturation of biodiversity samples only 496 

occurs with many replicates on tropical reefs (MacNeil et al., 2008). However, 497 

traditional methods like underwater visual census (UVC) and baited remote 498 

underwater video (BRUVs) are systematically biased by observer effects and fish 499 
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behaviour, leading to false negatives for cryptic and elusive species (Ackerman and 500 

Bellwood, 2000; MacNeil et al., 2008; Bernard et al., 2013). For example, we found 501 

~30 Chondrichthyes species that typically would not be encountered on visual 502 

surveys (e.g., 2 Mobula sp., 6 Carcharhinus sp.; Polanco Fernández et al., 2020), 503 

among other elusive and endangered megafauna that have been uncovered during 504 

similar sampling regimes (Juhel et al., 2021). We highlight that eDNA replicates may 505 

be affected by factors that contribute to the precision of biodiversity estimates, rather 506 

than a biased biodiversity signal as obtained with UVC or BRUVs, e.g. a lack of 507 

eDNA in water samples leading to availability errors; although see Stat et al., (2019) 508 

for biases against specific genera and Kelly, Shelton and Gallego, (2019) for 509 

discussions of primer efficiency biases. 510 

Coral reefs are extremely speciose (Fisher et al., 2015a; Edgar et al., 2017), 511 

and thus 60L (two replicates) or even 180L (six replicates) does not seem to capture 512 

the extent of local biodiversity. Instead, in support of other eDNA studies that filtered 513 

far less water, our replicates only sampled a portion of diversity (DiBattista et al., 514 

2017; Jeunen, Knapp, Spencer, Taylor, et al., 2019; Koziol et al., 2019; Sigsgaard et 515 

al., 2019; Stat et al., 2019; Bessey et al., 2020; Juhel et al., 2020). In temperate 516 

systems, 20L of water was sufficient for fish family richness to saturate (Koziol et al., 517 

2019; but see Evans et al., 2017), but tropical systems are more challenging to 518 

monitor. The number of eDNA replicates to ensure tropical fish diversity saturation 519 

varies widely. For example, 32-39 samples of 0.5L of water began to saturate fish 520 

genera diversity in western Australia (Stat et al., 2019), but 92 samples of 2L did not 521 

saturate diversity in West Papua, Indonesia, a hotspot of fish diversity (Juhel et al., 522 

2020). Furthermore, even the largest sample of 2L in Bessey et al. (2020) only 523 

detected <43% (75/176) of the total species pool reported in the Timor Sea.  524 

eDNA accumulation curves often confound site-accumulated (regional) and 525 

replicate-accumulated (local) diversity presenting challenges for replicate number 526 

and water volume refinements (but see Bessey et al. 2020). Comparing available 527 

estimates, integrative sampling (performed here), rather than point sampling, e.g., 528 

Stat et al., (2019) and Juhel et al. (2020), appears very promising. For example, in 529 

Caribbean and Eastern Pacific sites within ~25 filters we find additional filters added 530 

only <1 MOTU. Previous works using point samples have far higher sampling 531 

numbers, and higher bioinformatic costs per filter so leading to apparently lower cost-532 
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effectiveness (unless filters are aggregated at the DNA extraction step; e.g., Stat et 533 

al., 2019; Juhel et al., 2020). Future work should optimise sampling designs and the 534 

trade-off between water sample volume and replicate number, which we only partially 535 

explore, and how these factors contribute to the precision of biodiversity estimates in 536 

controlled settings (Miya et al., 2015). For example, if sampling nearer to substrate 537 

bottoms greatly improves recovery of eDNA this additional cost (e.g., divers, 538 

submersibles, and additional expertise) could work out as a cost-effective solution to 539 

address surface sampling variability. Another option would be to use previous 540 

knowledge of biodiversity in each site to adapt the number of replicates to reach 541 

expected saturation. 542 

 A similar pattern of low compositional similarity, and consistent richness in 543 

replicates, could arise if filters saturate with eDNA and prevent the full quantification 544 

of biodiversity. Our analyses suggest this is unlikely because the richness recovered 545 

from the eDNA filters was associated with the size of the species pools, which would 546 

be unexpected if filters had a maximum richness capacity that was reached 547 

consistently. Furthermore, we might expect nestedness to be more important if filters 548 

or PCR processes were first saturated with the most commonly available eDNA, but 549 

we found MOTU compositional differences between replicates were more strongly 550 

related to turnover than nestedness. Finally, if filters first saturate with common 551 

species, eDNA recovery of rare species would be limited but in our eDNA protocol we 552 

find many species that remain undetected or rare in visual surveys (Polanco 553 

Fernández et al., 2020). Promisingly, this suggests not only that our sampling 554 

protocol is robust but also that sampling and filtering an even greater water volume 555 

per filtration replicate is a feasible approach to better quantify the high fish diversity of 556 

coral reefs. Given the low biomass-to-water ratio in marine systems a high volume of 557 

filtered water is likely a prerequisite to have a representative sampling of the marine 558 

environment (Bessey et al., 2020). However, other parameters must be considered 559 

and explored in the future to identify whether physicochemical and local 560 

oceanographic conditions introduce variability in biodiversity estimates. 561 

Conclusion 562 

Our findings underline both the promises and limitations of eDNA derived biodiversity 563 

estimates in hyper-diverse tropical ecosystems. On one hand, local richness 564 

estimation appears to rapidly resolve broad-scale richness patterns of under-565 
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documented tropical marine biodiversity (Costello et al., 2010; Menegotto and 566 

Rangel, 2018). On the other hand, high stochasticity between samples urges 567 

cautious application to biomonitoring, and further protocol refinement, to avoid 568 

misattribution of biodiversity trends to detection errors. A better understanding of the 569 

behaviour of eDNA in diverse physicochemical marine environments will help design 570 

more effective eDNA sampling protocols and disentangle sampling errors from true 571 

biodiversity patterns (Harrison, Sunday and Rogers, 2019). Resolving whether more 572 

replicates, or greater water volumes, leads to higher probability of eDNA recovery is 573 

critical for cost-effective eDNA protocols – but integrative sampling of tens of litres 574 

along boat transects appears a promising approach. We also recommend testing 575 

various water sampling strategies, for example sampling not only surface water, but 576 

taking eDNA along a depth gradient where the ecology of eDNA may differ. 577 

Physicochemical parameters of the water bodies could be important to consider 578 

when designing the eDNA sampling strategy. Accurate, cheap and fast biodiversity 579 

estimates are critically needed to monitor changes in the Anthropic ocean. Current 580 

eDNA protocols provide higher and more realistic estimates of biodiversity than 581 

traditional methods for a given sampling effort. This opens very promising and 582 

realistic perspectives to quantify biodiversity since increasing the volume of water 583 

filtered and replicates numbers is feasible, particularly in regions with high 584 

biodiversity. Further refinement of our marine eDNA protocol will better quantify, 585 

monitor, and manage changing tropical marine biodiversity. 586 

  587 
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