
Materials and Methods11

1. Neural decision-making model12

1.1 Overview. We construct a spatially-explicit computational model of neural decision-making that takes in directions to13

the di�erent targets as input, and outputs a vectorial representation of the agent’s future velocity (adapted from (1)). This14

provides us explicit predictions for animal trajectories, allows us to determine which target is reached in each realization of15

the simulation, and facilitates direct comparison with experimental tests. The model takes inspiration from the neuroscience16

literature (2–5), but is a deliberate simplification intended to reveal features that are essential to produce bifurcations in the17

agent’s trajectories (Fig. S2).18

1.2 Framework. Here, the brain is characterized by a recurrent neural network composed of N neurons. Each neuron i encodes19

direction to one of the presented goals p̂i, and exists in one of two states: ‡i = 0 (“not firing”) or ‡i = 1 (“firing”). Note that20

each “neuron” here can be conceived as being a single neuron or a collection of neurons and their combined firing for any goal21

represents neural activity encoding that target. Since each neuron exists in one of two states, there are 2N possible system22

configurations. Energy of the system (for any given configuration) is given by its Hamiltonian, H.23

H = ≠
k

N

ÿ

i”=j

Jij‡i‡j [1]

where, k is the number of options available to the animal and Jij is the interaction strength between neurons i and j. A
positive Jij indicates an excitatory interaction between neuron i and neuron j while a negative Jij indicates an inhibitory
interaction. Here, we assume that neural interactions are excitatory when neurons encode a similar directional preference, and
inhibitory when they encode conflicting directional preferences. This captures both explicit ring-attractor networks, with local
excitation and long-range/global inhibition (as found in fruit flies, and other insects (4)), and computation among distributed
competing neural groups (as in the mammalian brain (3)). The locality of excitatory interactions encoded by Jij , or directional
tuning of the neurons is given by the tuning parameter ‹. Here, Jij is given by

Jij = cos
3

fi

3
|◊ij |

fi

4‹4
[2]

where, ◊ij is the angle between preferred directions of neurons i and j, and ‹ represents the neural tuning parameter. For ‹ = 1,
the interactions become “cosine-shaped” Jij = cos (◊ij), and the network has a Euclidean representation of space (Fig. S1). For
‹ < 1, the network has more local excitation and encodes space in a non-Euclidean manner (Fig. S1). For sake of simplicity,
we assume a fully-connected network. At each timestep, energy of the system H is minimized using the Metropolis-Hastings
algorithm i.e. a change in neural state ‡i is dependent on the change of energy (�H) that accompanies it.

P
(i)
1æ0/0æ1 =

;
exp(≠�H/T ) �H Æ 0
1 �H > 0

[3]

where P
(i)
1æ0/0æ1 is the probability that a neuron switches its state and �H = H2 ≠ H1 where H1 is the energy of the system

before the neuron changes its state and H2 is its energy after the change in state. This is akin to other Ising spin models where
the temperature parameter T is interpreted here as neural noise. The agent then moves with a velocity V̨ determined by the
normalized sum of goal vectors p̂i of all active neurons.

V̨ = v0
N

Nÿ

i=1

p̂i‡i [4]

where v0 is the proportionality constant. The agent moves along V̨ and neurons update their goal vector p̂i to reflect the agent’s
movement. The goal vector p̂i now points from the agent’s updated location to the neuron’s preferred goal with directional
noise chosen from a circularly wrapped Gaussian distribution centered at 0 with a standard deviation ‡e.

1.3 Simulations. We simulated an agent with sixty neurons that is tasked with decision-making in an environment containing24

multiple (two–seven) targets (using seventy neurons for the seven target case). Each neuron was assigned a preference for one25

of the available targets which determined its goal vector p̂i. For each simulation run, the agent was reinitialized at (0, 0) and26

the targets were set at a distance of 5 units, corresponding to 5 m in the fly experiments. In the two-target case, the targets27

were separated by 60° putting them at (4.33, -2.5) and (4.33, 2.5) respectively. In the three-target case, successive targets were28

initialized to be 40° apart putting them at (3.83, -3.21), (5, 0) and (3.83, 3.21) respectively. We ran 500 replicate simulations29

for each condition.30

To demonstrate sensitivity of this algorithm, we examine the e�ect of varying the proportion of neurons pointing to a target,31

on the probability that it is chosen (Fig. S3D and E). The slope of the sigmoid here indicates how a small change in the32
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proportion of neurons encoding a target is amplified to maximize decision accuracy. We also vary the agent’s starting position,33

distance to the target, and the neural tuning ‹ to illustrate the e�ect these parameters on the bifurcation angle (Fig. S3A-C).34

Finally, we also simulate a scenario where the agent is restricted in motion only allowing movement in the direction35

perpendicular to direction to the targets. These simulations are meant to mimic a social decision-making scenario where the36

animal chooses to follow one of several moving conspecifics at a fixed distance behind them (see Fig. 3 in main text). Once37

again, the agent was initialized at (0, 0) while the targets were placed at a fixed distance d along the x≠axis. We varied lateral38

distance between the targets such that their centroid was always at (d, 0) and recorded the agent’s trajectory along the y≠axis.39

Corresponding experiments were conducted with larval zebrafish (see Section 5 for experimental details).40

1.4 Parameter choice. Our model is composed of two ‘free’ parameters, the neural noise parameter (T ) and the neural tuning41

parameter (‹). Here, we will discuss the values chosen for these parameters and their biological interpretation.42

1.4.1 Neural noise. The neural noise parameter T represents the spontaneous firing rate of neurons in the brain. From the phase43

diagrams (see Fig. 1 in main text), it is evident that the animal will spontaneously transition from averaging direction to all44

available options, to eliminating one among the remaining options, so long as the brain is poised below a critical level of noise,45

T < Tc (Fig. 1, B and E in main text and Fig. S7, A and C). Here, we will address behavior of the system when T > Tc for46

decision-making in both the two- and the three-choice case. In the two-choice case, the agent consistently moves towards the47

average of the two target directions. However, any movement in the direction perpendicular to this can be described by a48

di�usive process (Fig. S7B). For the three-choice case, we observe that when T exceeds Tc, geometrical relationship between49

options creates a strong bias towards central targets (Fig. S7D). This prevents the animal from exploring the di�erent targets50

(of equal value) with a similar frequency—as is indicated by our experimental data where ratio of visiting a side target to51

visiting the center target is 0.82 for flies and 1.23 for locusts (this ratio would be 1 if all targets were visited equally). Thus, in52

order to maximize decision-accuracy in the presence of an arbitrary number of targets, biological systems (brains) must be53

poised below a critical level of neural noise, i.e. T must be less than Tc.54

1.4.2 Neural tuning. The bifurcation angle ◊c increases monotonically with the neural tuning parameter, ‹ (Fig. S3C). Thus,55

increasing ‹ inevitably increases travel distance, and hence, the time to decision. Hence, for decisions where time to decision is56

critical, organisms require the neurons in the decision-making ensemble to be highly tuned. However, very high directional57

tuning (low values of ‹) is also detrimental to the animal as this eliminates all options, except one, making the animal less58

sensitive to information that may be acquired as the animal approaches the targets. Thus, we expect the extent of neural59

tuning, together with neural noise, to represent a trade-o� between decision-speed and accuracy.60

1.5 Calculating susceptibility. Susceptibility is a key concept in physics and mathematics, from statistical mechanics to dynamical61

systems theory. It quantifies the change of a system’s state in response to change in some external field. The reason physicists62

and mathematicians are interested in the quantity is because it exhibits a sharp increase when a complex system approaches63

a critical phase transition and is hence, predictive of the system being close to a tipping point (6, 7). For decision-making64

systems, susceptibility represents increased sensitivity of the system to small di�erences between the targets, making a rise65

in susceptibility highly desirable. Here, we show that the brain breaks down multi-choice decisions to a series of binary66

decisions, each of which is marked by a bifurcation, inevitably causing a peak in susceptibility. We measure susceptibility as67

the directional deviation of the agent given one extra neuron that fires for one of the targets (making it ≥ 2% more attractive).68

To do this we simulate a decision-making agent that at each timestep, outputs a desired direction of movement (following the69

exact procedure described above). Additionally, we introduce a second neural network composed of one extra neuron encoding70

one of the targets, that at each timestep reaches equilibrium through iterative collective dynamics (here, for 1000 timesteps)71

and computes a second desired direction of movement. Susceptibility at the agent’s current location is then measured as the72

di�erence in the agent’s direction of travel output by the two networks (representing sensitivity to the presence of an extra73

neuron in the second network). As expected, we observe a peak in susceptibility close to the bifurcation point. Quantifying the74

agent’s decision accuracy reveals that the system is able to amplify such small di�erences and the agent almost always chooses75

the ‘correct’ target (Fig. S3, D and E).76

1.6 Spatial asymmetry in target locations. In the above model formulation, neurons encode target locations, and attractiveness77

of a target is encoded in the proportion of neurons that point to that target. This formulation fails to encapsulate certain78

spatial geometries. For example, when two targets are in directional proximity while a third target is directionally distant from79

the agent’s egocentric perspective. Since neurons encode directions to targets, and two of the three targets are in directional80

proximity, the agent always goes to one of these targets (Fig. S8). Previous work in fruit-flies suggests that this is not true81

and that animals will lump directionally similar targets and consider them as a single target; that they will still visit an82

equally attractive, but directionally distant target (8). To account for this, we incorporate an ‘overlap’ function in our model83

implementation. This function reduces e�ective size of the decision-making ensemble by discounting a proportion of neurons84

encoding a target if there are other targets in directional proximity. Biologically, this can be seen as saturation of neurons that85

encode that direction. Here, each neuron encodes direction to its preferred target with a Gaussian error, Ái centered around the86

direction to the target.87
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Á = N (0, ‡
2) [5]

where, ‡
2 is the variance of the error distribution. Neurons are then discounted from network depending on their deviation from

their preferred target relative to their deviation from direction to other targets. Probability that neuron i is still considered, or
probability that it is not discounted ci is given by

ci = f(◊ij)q
j

f(◊ij)
[6]

where, f(◊ij) is the probability density at ◊ij from a normal distribution N(0, ‡
2) and ◊ij is the deviation in the preferred

direction of neuron i from the centre of target j. E�ectively, a discounted neuron in the decision-making ensemble and a neuron
that does not fire i.e. ‡i = 0 are treated identically. Fig. S4 shows results from a model with and without implementation of
the ‘overlap’ function for symmetric setups (an illustration of including gaussian error in the directional vectors), while Fig. S8
shows these results in an asymmetric setup as discussed above.

1.7 Mean-field approximation. Here, we present a mean-field approximation of the neural decision-making model described88

above. The neural model largely draws inspiration from spin models used in physics, primarily to explain magnetism (1, 9). As89

analogy, neural activity here akin to spins in these models, excitatory neural interactions are described as being ferromagnetic90

and inhibitory interactions as antiferromagnetic. We will henceforth refer to our system in the biological context of an animal91

making spatial decisions, but it is worth noting that derivation of the analytical equations largely come from the physical spin92

system.93

In our model the N neurons are divided into k equal groups Gi(i = 1, . . . , k), where k is the number of options (potential94

targets in space) available to the animal. The fraction of the total number of neurons that are in a firing state towards p̂i is95

given by96

ni = 1
N

ÿ

jœGi

‡j [7]

Then we can rewrite equation [4] in the following way97

V̨ = v0

kÿ

i=1

p̂ini [8]

The rule by which a neuron switches its state from not firing (‡i = 0) to firing (‡i = 1) is constructed such that the neuron98

is more likely to fire if the animal is already moving in that direction. This can be expressed by Glauber dynamics (10).99

r
(i)
1æ0 = r0

1 + exp
1

2kV̨ ·p̂i
T

2 r
(i)
0æ1 = r0

1 + exp
1

≠
2kV̨ ·p̂i

T

2 [9]

where r
(i)
1æ0 is the rate in which a neuron in group Gi changes from “firing” state to “not firing” and r

(i)
0æ1 is the rate of the

opposite transition, from “not firing” to “firing”. r0 is a constant rate which we set to one. The model also includes noise in the
neural system i.e. the rate at which neurons will fire or turn o� spontaneously independent of the collective dynamics involved.
In spin systems, this is analogous to the temperature parameter that introduces randomness in the spin-flipping dynamics.
Then the equations of motion (master equation) in the limit of N ∫ 1 are

dni

dt
=

1
k ≠ ni

1 + exp
1

≠
2kV̨ ·p̂i

T

2 ≠
ni

1 + exp
1

2kV̨ ·p̂i
T

2 [10]

We rearrange the above equation [10] to get100
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dni

dt
= 1

k

1
1 + exp

1
≠

2kV̨ ·p̂i
T

22 ≠ ni [11]

The steady state solution of this equation can be written as the solution of the following system of algebraic equations101

ni = 1

k

1
1 + exp

1
≠

2kV̨ ·p̂i
T

22 i = 1, 2, ..., k [12]

The system of equations that including k equations [12] and the 2 equations [8] in 2D is our basic system that gives us as its102

solution the velocity V̨ and the fraction of active neurons in each group ni at steady state. We will henceforth refer to this103

system as the “model equations”.104

When the targets are at infinity, the angles between the targets are constant, and the Hamiltonian is time-independent and105

describes a system in equilibrium. We now examine the simplest case of two targets at infinity, i.e. where k = 2 and p̂1 and p̂2106

are fixed. In this case, there exists a symmetric solution that describes a compromise between the two targets.107

V̨ = V

1
p̂1 + p̂2

2

2
[13]

Substituting equation [10] into equation [8] gives the following algebraic equation:108

V = 1
1 + exp

!
≠

2V (1+cos ◊)
T

" [14]

which always has a solution for (0 < ◊ < fi; 0 < T < 1). In the three-choice case (k = 3), we get a similar compromise solution
when the targets are radially symmetric, p̂1 · p̂2 = p̂3 · p̂3.

When the angle is large enough (◊ > ◊c) and the temperature is low enough (T < Tc), there exists a second non-symmetric109

solution to the model equations that we term “decision” as it describes breaking the compromise between the targets and110

change in the direction of movement. The curve in the phase diagram where the second solution appears is called “binodal111

curve” or “coexistence curve” (represented by the dashed line; see Fig. 1B and E in main text). For larger angles, the symmetric112

solution becomes unstable. In the phase diagram this instability happens at the “spinodal curve” (represented by the solid line;113

see Fig. 1B and E in main text). Between the two curves we have the metastable region where both the compromise and114

decision are possible, and we expect a transition between them in a form of a bifurcation of the compromise solution. This is a115

typical hysteresis region of first order phase transition that at higher temperatures becomes second order. The transition to a116

second order phase transition happens at the tri-critical point where the coexistence and spinodal curves coincide into the117

second order phase transition curve (above the tri-critical point). In the case of three targets, we have at the first bifurcation118

point a phase transition between two di�erent compromise solutions—for small angles we have a compromise between all three119

directions to the targets while for large angles we have a compromise between two of the three targets. Thus, the symmetry is120

broken sequentially.121

Let us now find the criterion for instability of a general solution of the model equations. The dynamical equation for the122

velocity can be obtained using equations [8] and [11].123

dV̨

dt
=

kÿ

i=1

dni

dt
p̂i =

kÿ

i=1

1

k

1
1 + exp

1
≠

2kV̨ ·p̂i
T

22 p̂i ≠ V̨ [15]

Let V̨ = V̨0 be a solution of the model equations and consider a small perturbation to the velocity in the perpendicular124

direction to the velocity V̨0.125

V̨ = V̨0 + ‘n̂
0 [16]
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where, n̂
0 is the normal to V̨0. Substituting into equation [15], expanding to first order in ‘ and taking the normal component,126

we get the following equation for the perturbation ‘.127

d‘

dt
= ≠A‘ + O(‘2) [17]

where

A © 1 ≠
1

2T

kÿ

i=1

sech2
3

kV̨0 · p̂i

T

4
(n̂0

· p̂i)2 [18]

Therefore, the solution V̨ = V̨0 is stable if A > 0 and unstable if A < 0. Hence, the curve A = 0 for the compromise solution is128

the spinodal curve.129

1.7.1 Susceptibility. Susceptibility is defined as the response of the order parameter of a system to an external field (11). In this130

model, a bias towards one of the targets is equivalent to application of an external field in models of spin interactions (1). The131

order parameter in our model is the velocity component normal to the individual’s previous direction of movement. Here, we132

examine its response to introduction of a small imbalance in the normal direction. Let us denote a small asymmetry in one of133

the neural groups as –. Without loss of generality we take the first neural group G1 (assuming n̂
0

· p̂i ”= 0). Then the velocity134

can be written as135

V̨ =
kÿ

i=1

1

k

1
1 + exp

1
≠

2kV̨ ·p̂i
T

22 p̂i + –p̂1 [19]

When we decompose the velocity to the initial velocity and the small perturbation vn in the normal direction n̂
0

136

V̨ = V̨0 + vnn̂
0 [20]

in which case, the susceptibility ‰ (at constant temperature) is given by

‰ = d(V̨ · n̂
0)

d–

-----
vn=0,T =const.

[21]

We substitute the decomposition equation [20] into the normal component of equation [19].137

V̨ · n̂
0 = 1

k

kÿ

i=1

1

1 + exp
1

≠2kV̨0·p̂i≠2kvn(p̂i·n̂0)
T

2 p̂i · n̂
0 + –p̂1 · n̂

0 [22]

Taking the derivative at vn = 0 yields138

d(V̨ · n̂
0) = 1

2T

kÿ

i=1

sech2
3

kV̨0 · p̂i

T

4
(n̂0

· p̂i)2
dvn + (p̂1 · n̂

0)d– [23]

Using the definition from equation [18] and the fact that d(V̨ · n̂
0) = dvn, we can write the susceptibility as139

‰ = p̂1 · n̂
0

A
[24]

Thus, susceptibility diverges when A æ 0, i.e. on the spinodal curve (see Fig. S5). Based on this analysis, we arrive at140

the conclusion that maximal susceptibility is obtained when the bifurcation occurs at the highest possible angle—as late as141

possible from the perspective of an animal approaching the di�erent spatial targets.142
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1.7.2 Short-time response function. Let us consider that our system of N neurons is in the averaging/compromise regime. Since143

the order parameter of the system is the velocity component in the direction normal to the movement direction, we will denote144

it by Vn, so that a change in the direction of the movement will be a result of Vn ”= 0. At t = 0, we add a single neuron that145

encodes direction to one of the targets, say p̂1. The short time response of the system is defined here as the response of the146

system as manifested in a change of the order parameter Vn in a very short time, so short that it allows for only one neuron147

to switch states. In other words we are looking for a change ”Vn over the firing time of a single neuron ”t as a result of bias148

introduced by the additional neuron. In doing this, we generalize a similar calculation that appeared for a one dimensional spin149

model in (9).150

From equation [8], we see that the change in state of a single neuron that encodes target i (pointing towards p̂i direction)151

makes the following change in the normal component of the velocity vector.152

�Vn = p̂i · n̂

N
[25]

First, we consider a simple limit T æ Œ where there is no response. The probability of a neuron in the group i to be in the153

firing state (‡i = 1) is given by154

P = r
(i)
0æ1

r
(i)
0æ1 + r

(i)
1æ0

= 1

1 + exp
1

≠
2kV̨ ·p̂i

T

2 [26]

which in the limit T æ Œ gives 1/2. We add a single neuron that encodes direction to the target pointing towards p̂1.
Therefore it contributes to Vn according to equation [25]. In order to find the contribution of the rest of the neurons in the
decision-making ensemble, we have to multiply the probability that each neuron fires (which is 1/2 without response) by the
number of neurons in the group and the contribution of one active neuron according to equation [25]. We therefore get

Vn =
kÿ

i=1

1
2 ·

N

k
·

p̂i · n̂

N
+ p̂1 · n̂

N
= 1

2k

kÿ

i=1

(p̂i · n̂) + 1
N

(p̂1 · n̂) [27]

When the targets are symmetric with respect to the direction of movement, the first term in equation [27] vanishes, and we155

get156

Vn =
sin( ◊

2 )
N

[28]

where ◊ is the angle between the targets in the case of two targets, and the angle between the leftmost and the rightmost
targets in the case of three targets.

Now let us return to the response of a single neuron over time t. At t = 0, we introduced an additional neuron that encodes157

direction p̂1. Prior to any response, equation [27] gives the expression for Vn. We can write the contributions of the change in158

state of all neurons in the ensemble in the following way which gives us the response of the system.159

”Vn = 1
2 ·

N

k

kÿ

i=1

r
(i)
0æ1

p̂i · n̂

N
”t ≠

1
2 ·

N

k

kÿ

i=1

r
(i)
1æ0

p̂i · n̂

N
”t + p̂1 · n̂

N
”t [29]

Substituting the rates from equations [9], we get160

”Vn =
kÿ

i=1

p̂i · n̂

2k
tanh

3
kV̨ (0) · p̂i

T

4
”t + p̂1 · n̂

N
”t [30]

Let us assume that we start from the symmetric compromise solution for t < 0, so that Vn = 0, and thus at t = 0, Vn is161

still small. Then we can look at it as a small perturbation of V̨ (0) according to equation [19], and obtain to first order in the162

perturbation vn163
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”Vn

”t
=

kÿ

i=1

p̂i · n̂0
2k

tanh
3

kV̨0 · p̂i

T

4
+ vn(1 ≠ A) + p̂1 · n̂0

N
[31]

where A is given in equation [18]. Since A Ø 0 for stable solutions, from the structure of the equation [31] we see that the
response is maximal when A = 0, namely at the spinodal on the verge of instability (see Fig. S5).

Since there is no response yet at t = 0, we can substitute for vn the expression from equation [27]. Then for two and for164

three symmetric targets, we get165

”Vn

”t
=

sin ◊
2

N

5
1 +

sin2 ◊
2

2T
sech2

3
2V0 cos ◊

2
T

46
[32]

and

”Vn

”t
=

sin ◊
2

N

5
1 +

sin2 ◊
2

T
sech2

3
3V0 cos ◊

2
T

46
[33]

respectively.

Now let us look at response due to the same bias that is introduced at t = 0, but Vn(t < 0) ”= 0 as it is essential in order to166

calculate the response function after the first bifurcation. In this case, Vn is not small and there is a response for t < 0. We167

can add the additional neuron that encodes direction p̂1 in the following way168

V̨ (t = 0) = V̨ (t < 0) + p̂1 · n̂

N
n̂ [34]

where we denote V̨ (t < 0) = V̨0. We can write the response to this additional neuron at t = 0 over the very short time ”t in the
following schematic form

”Vn =
kÿ

i=1

p̂i · n̂

N
(P (1)

i,0æ1 ≠ P
(1)
i,1æ0)”t + p̂1 · n̂

N
”t [35]

where P
(1)
i,0æ1 is the firing probability of an inactive neuron in group Gi as a response to bias introduced by the additional

neuron that encodes direction p̂1, and P
(1)
i,1æ0 is the probability that a firing neuron in group Gi turns o� as a response to bias

introduced by the additional neuron.

P
(1)
i,0æ1 = N

k
r

(i)
1æ0(t < 0)r(i)

0æ1(t = 0)

P
(1)
i,1æ0 = N

k
r

(i)
0æ1(t < 0)r(i)

1æ0(t = 0) [36]

where
N/k is the number of spins in group i,
P

(i)
1æ0(t < 0) = 1

1+exp
1

2kV̨0·p̂i
T

2 is the probability of having a non-firing neuron at t < 0 in group Gi,

P
(i)
0æ1(t < 0) = 1

1+exp
1

≠ 2kV̨0·p̂i
T

2 is the probability of having a firing neuron at t < 0 in group Gi,

P
(i)
1æ0(t = 0) = 1

1+exp
1

2kV̨ (t=0)·p̂i
T

2 is the probability of a neuron to stop firing at t = 0 in group Gi,

P
(i)
0æ1(t = 0) = 1

1+exp
1

≠ 2kV̨ (t=0)·p̂i
T

2 is the probability of a neuron to start firing at t = 0 in group Gi,

P
(i)
1æ0(t < 0)r(i)

0æ1(t = 0) is the probability of having a non-firing neuron at t < 0 in group Gi, that starts firing at t = 0,

P
(i)
0æ1(t < 0)r(i)

1æ0(t = 0) is the probability of having a firing neuron at t < 0 in group Gi, that stops firing at t = 0.
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Substituting equation [34] into equation [35] and taking the limit of large N(N ∫ k), we get169

”Vn =
kÿ

i=1

p̂i · n̂

N
·

N

4k
sech2

3
kV̨0 · p̂i

T

4 S

U1 + 2k(p̂1 · n̂)(p̂i · n̂)

NT

1
1 + exp

1
2kV̨0·p̂i

T

22

T

V ”t

≠
p̂i · n̂

N
·

N

4k
sech2

3
kV̨0 · p̂i

T

4 S

U1 ≠

2k exp
1

2kV̨0·p̂i
T

2
(p̂1 · n̂)(p̂i · n̂)

NT

1
1 + exp

1
2kV̨0·p̂i

T

22

T

V ”t + p̂1 · n̂

N
”t [37]

= p̂1 · n̂

N
(2 ≠ A)”t

where A is given by equation [18]. Also in this case we see that the response is maximal when A = 0, namely at the spinodal
on the verge of instability (see Fig. S5).

1.7.3 Trajectories. We use the same model equations for a time-dependent Hamiltonian form [1] and consider them at every170

position to calculate trajectories for a system with targets at a finite distance (see Fig. S5 for trajectories obtained from the171

mean-field approximation and Fig. S6 for comparison with simulations of smaller system sizes).172

All results of this section can be generalized to any value of the neural tuning parameter by replacing the cosines of the173

scalar products between the directions p̂i by the expression given in equation [2].174

2. Collective decision-making model for animal groups175

2.1 Overview. The bifurcation pattern described above for binary decision-making is reminiscent of work on collective decision-176

making in bird flocks (12), fish schools (13) and baboon troops (14). We expose an established model of consensus decision-making177

in animal groups (14) to a multi-choice decision scenario. As suspected, the model predicts that animal groups, like the178

brain, will break multi-choice decisions to a series of binary decisions (see Fig. 4 in main text). Thus, our results may be179

broadly applicable across scales of biological organization—neural ensembles and animal collectives. At both these scales,180

decision-making can be conceived as a consensus paradigm among elements that compose the system—consensus among181

neurons at the individual level and among individuals at the group level.182

2.2 Framework. Groups are composed of N individuals, each characterised by a position vector ci(t) and unit direction vector183

v̂i(t) where i is the individual identity and t is the current time step. Individuals modify their own motion by responding to184

neighbours within a certain distance from them. They turn away from nr neighbours encountered within a small repulsion185

zone of radius rr. This represents collision avoidance and maintenance of personal space, and as is apparent in real animal186

groups, takes highest priority.187

d̨i(t + �t) = ≠

nrÿ

i=1,i”=j

cj(t) ≠ ci(t)
|cj(t) ≠ ci(t)|

[38]

where di(t + �t) represents the individual’s desired direction of travel in response to conspecifics. If no neighbor is present in
this zone, the focal individual is attracted to and aligns with na neighbours within a larger interaction zone of radius ra.

d̨i(t + �t) =
naÿ

i=1,i”=j

cj(t) ≠ ci(t)
|cj(t) ≠ ci(t)|

+
naÿ

j=1

vj(t)
|vj(t)| [39]

Here, di(t + �t) is subsequently converted to the corresponding unit vector d̂i(t + �t) = di(t + �t)/|di(t + �t)|. To188

incorporate target preferences, individuals are given information about a preferred direction. Each individual is attributed a189

goal vector gi(t) that points to one of the targets amongst which the group must choose. For sake of simplicity, we assume all190

individuals have a preferred target, and that the number of individuals with preference for a given target is the same as the191

number of individuals with preference for any other target. Individuals balance this personal preference with social interactions192

using a weighting term Ê to give their desired direction of travel.193

d̨i
Õ
(t + �t) = d̂i(t + �t) + Êgi(t)

|d̂i(t + �t) + Êgi(t)|
[40]
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Motion of all individuals is subject to noise (error in movement and/or sensory integration) which is implemented by rotating194

d̨i
Õ
(t + �t) by a random angle chosen from a circularly wrapped Gaussian distribution centered at 0 and of standard deviation195

‡e. Once the desired direction is determined, individuals turn towards d̨i
Õ
(t + �t) with a maximum turning rate of Â�t.196

As in (15), we implement feedback on Ê. At each timestep, if individuals find themselves moving in the direction of their197

preferred motion (here, within 20° of their preferred direction), Ê is reinforced by a small value Êinc until it reaches a maximum198

value Êmax. Otherwise, it is reduced by Êdec until it reaches 0. Since the group stays together, group movement towards a199

given option activates individuals with similar directional preferences by increasing their Ê while inhibiting individuals with200

opposing directional preferences by decreasing their Ê.201

We also perform simulations without feedback on to emphasise that this is an essential feature for the model to produce202

bifurcations based on egocentric geometry of the presented options (Fig. S17). Without the feedback, the model predicts that203

animal groups will rarely leave the averaging regime and that groups tend to split. For the three-choice case, in the few cases204

where the group does not split, it approaches the middle target (Fig. S17).205

2.3 Simulations. We simulated a group of sixty agents exposed to two or three targets in their environment. Individuals were206

initialized in proximity to (0, 0) with random positions and directions. For the two-choice case, targets were positioned at a207

distance of 5 units and 60° apart from the group’s perspective (corresponding to target locations in the neural model, and the208

fly experiments). This places the two targets at locations (4.33, -2.5) and (4.33, 2.5) respectively. For three targets, distance209

was still maintained at 5 units but successive targets were now placed 40° apart. The targets were now located at (3.83, -3.21),210

(5, 0) and (3.83, 3.21). All individuals were assigned a preferred target randomly such that each target had equal number of211

individuals whose goal vector pointed to it. We ran simulations with and without feedback on the Ê term to show that this212

feature is essential to produce such patterns (Fig. S17). We ran 500 replicate simulations for each condition and each replicate213

run was considered successful when the group reached a given target without splitting.214

3. Experiments with fruit flies (Drosophila melanogaster)215

3.1 Fly preparation. All experiments were conducted on 3- to 5-day old female wild-type CS strain Drosophila melanogaster216

raised at 26 � on a 12 hr light, 12 hr dark cycle. Prior to the experiment, individual flies were anaesthetized in an icebox.217

The anaesthetized flies were placed on a Peltier stage maintained at 4 � and glued to a 0.15 mm V2A stainless steel pin218

using UV-curing glue. The animals were given at least 20 min to recover from the anesthesia before introducing them to the219

experimental setup. All experiments were carried out in the last 4 hr of the animal’s subjective day at 20 �.220

3.2 Fly virtual reality experiments. Experiments were conducted in a flyVR setup procured from loopbio GmbH. Tethered221

flies were positioned in the center of an acrylic bowl of diameter 20 cm, lowered 7 cm from the bowl surface. The bowl is222

used as a hemispherical projection surface for the visual stimuli. Flies were filmed from an angle using a camera (Basler223

acA645-100gm; lens: kowa 25 mm/f 1.4) equipped with an infrared filter (Lee filters, transmission above 730 nm) at 100 Hz224

and were illuminated using infrared light at 850 nm to track their heading direction. We assume that the fly flies at constant225

speed of 0.2 m/s in this direction to close the loop in our 2D virtual reality setup. A constant speed assumption causes the226

visual stimulus to update even when the fly stops flapping its wings. To ensure that the fly flies (flaps its wings) during the227

entire course of the experiment, the experimenter gently blew on it when it stopped flying. Trials where flies stopped flying228

more than five times during the course of the experiment were excluded from further analyses.229

3.3 Visual stimuli. Custom 3D scenes were designed using 3D modelling program Blender (version 2.77) and projected on the230

bowl with a projector (Optoma ML750e DLP) at 120 Hz refresh rate. The stimulus created was a white ‘shadeless’ cube of side231

50 m that served as background and ten black cylinders of 1m diameter each. Making the objects shadeless removes interaction232

of the object with light and hence removes any edges that may otherwise be visible on the cube. The position of each cylinder233

was determined from an SQLite database that was generated automatically (see experimental design for details). Pillars that234

were not part of the current stimulus were placed at >100 m distance where they were visually occluded by the cube.235

3.4 Data collection. Tethered Drosophila melanogaster were exposed to either a two-choice or a three-choice decision task in the236

virtual reality environment. Each experimental trial lasted 15 min where flies were exposed to five stimuli—three experimental237

stimuli and two control stimuli. The experimental stimuli consisted of two or three cylinders (depending on the experimental238

condition) that were presented to the animal in three di�erent angular conditions. The order in which the stimuli were239

presented were randomized. The control stimulus was presented before and after the experimental conditions. This was a stripe240

fixation task where the fly was exposed to a single cylinder and was expected to orient and fly towards this cylinder. This is241

a well-known response in tethered Drosophila and flies that did not perform this were excluded from further analyses. The242

actual position of cylinders in all stimuli were randomized rotationally to prevent e�ects of any directional bias that may arise243

from the geometry of the physical setup around the fly. In all conditions, the position of the fly was reset to the origin once it244

reached a cylinder or flew a corresponding distance in any direction. To ensure true randomizations during our experiment, we245

implemented them prior to starting any experimentation. An SQLite database was created which had positions of all posts for246

all experiments. A total of 60 flies were tested in the VR setup. Of these, 30 flies were exposed to a stimulus that consisted247

two targets, and 30 flies were exposed to a stimulus that consisted three targets.248
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3.5 Data analysis. Each trajectory of a fly (travelled in virtual space from the origin till the position when the location of the fly249

was reset) was considered to be an event. We rotated all trajectories such that the x-axis points from the origin, to the centre250

of mass of the targets (see Fig. S11 for fly trajectories in the presence of two and three options). To visualize trajectories in251

the various experimental conditions, we create time-normalized (proportion of maximum) density plots. Each density plot252

was constructed by picking, for each pixel, the maximum value among normalized density plots (proportion of maximum) for253

varying times in a sliding time window. In the two-choice case, flies show no bias towards either target, and the trial results are254

symmetric about the x≠axis. For the three-choice case, we observe some asymmetry that may arise from random perturbations255

that inherently a�ect individual trajectories. We symmetrize our data by mirroring it about y = 0 to remove this asymmetry256

(based on the two-choice results). Next, to quantify the decision points, we fold the data about the line of symmetry, y = 0.257

We then applied a density threshold to the time-normalized (proportion of maximum across a sliding time window) density258

plot to reduce noise and fit a piecewise phase transition function to quantify the bifurcation.259

y =
;

0 x Æ xc

A|x ≠ xc|
–

x > xc
[41]

where xc is the critical bifurcation point, – is the critical exponent, and A is the proportionality constant. To avoid bias in the
fit that arises from y = 0 part of the data (to the left of the bifurcation), we exclusively fit the above function in a range starting
near to the suspected bifurcation point. For the three-choice case, the piecewise function is fit to each bifurcation separately.
Additionally, for each bifurcation we also performed randomization tests where we repeated the exact fit procedure described
above to data where the trajectories were randomized by keeping the x≠coordinates, and swapping the y≠coordinates with
values from other random events. Occurrences of a bifurcation is then assessed using the following criteria: (a) The bifurcation
occurred between x = 0 and x = Tx, where Tx is the x≠cooridnate of the two targets in consideration, (b) The critical exponent
0.2 < – < 2, and (c) The proportionality constant A > 0.2. Based on these criteria, randomizations showed that the resultant
fit to our experimental data were highly significant (p < 0.01 for binary choice and p < 10≠4 for the three-choice case).

4. Experiments with desert locusts (Schistocerca gregaria)260

4.1 Locust preparation. All experiments were conducted on instar 5 desert locusts (Schistocerca gregaria) raised in the Animal261

Research Facility of the University of Konstanz. Locusts were moved to the experimental room one night prior to the experiment,262

where they were maintained at 26 �. Experiments were then conducted at ≥31 � and 20 ≠ 22% relative humidity with fully263

intact locusts. Each locust was used only once.264

4.2 Locust virtual reality experiments. Experiments were conducted in a locustVR setup procured from loopbio GmbH (Fig.265

S10). The setup consists of three main components: (a) the locomotion compensator, (b) the recording system with a closed-loop266

extension, and (c) the FreemoVR system (16).267

The locomotion compensator (a) is a two-dimensional treadmill composed of a hollow polyethylene sphere of diameter 60268

cm. Two servo-motors with rotary encoders turn the sphere to compensate for the animal’s movement, allowing it to move269

infinitely on the sphere (mechanics are adapted from (17)). The recording system with closed-loop extension (b) consists of a270

recording unit—a 100 fps infrared machine vision camera and an LED spotlight at 850 nm (infrared) and functions as the271

tracking and feedback-loop component of the system. Tracking the animal’s movement facilitates feedback to the locomotion272

compensator to keep the animal centered on the sphere. Optical tracking is performed using a contrast-based method. The273

optical center of mass of the animal is detected and its deviation from the center of the sphere is converted into a compensation274

response of the motors. Finally, the closed-loop extension software feeds the animal movement to the VR system (c) to update275

projection of the stimulus accordingly. A vertical cylinder (70 cm tall; 80 cm diameter) was used as the projection surface and276

projections were done using three Optoma GT1070Xe projectors with overlapping projections. From the animal’s perspective,277

this projection surface covers 360° field-of-view horizontally, and 74.9° vertically.278

4.3 Visual stimuli. Custom 3D scenes were designed using 3D modelling program Blender (version 2.77) and projected on the279

projection surface. The stimulus created was identical to what is described above for flies (see Section 3.3), with the exception280

that the target cylinders for the locusts were of diameter 0.2 m.281

4.4 Data collection. The data collection procedure for the desert locusts was identical to the procedure adopted for flies (see282

Section 3.4) except each experimental trial lasted 48 min—the three experimental stimuli lasted 12 min each, and the two283

control stimuli lasted 6 min each. As with the flies, the control stimulus was a stripe fixation task for the two-choice experiments.284

For the three-choice experiments, however, this was modified to be a two-choice decision task. A total of 156 locusts were285

tested in the VR setup. Of these, 57 locusts were exposed to stimulus that consisted two targets, and 99 locusts were exposed286

to a stimulus that consisted three targets (see Fig. S12 for locust trajectories during decision-making in the presence of two287

and three options).288

4.5 Data analysis. The analyses procedure adopted for the desert locusts was identical to the procedure adopted for flies (see289

Section 3.5). Randomizations performed on locust trajectories also showed that the resultant fit to these experimental data290

were highly significant (p < 0.01 for binary choice and p < 10≠4 for the three-choice case).291
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5. Experiments with larval zebrafish (Danio rerio)292

5.1 Fish preparation. All experiments were conducted on 1 cm ± 0.1 cm long zebrafish (Danio rerio) of age 24 to 26 days293

post-fertilization raised in a room at 28 � on a 16 hr light, 8 hr dark cycle. The fish were bred and raised by the animal294

care sta� of the Department of Collective Behaviour at the Max Planck Institute of Animal Behavior and the University of295

Konstanz. Fish were transferred to the experimental room at least 12 hr prior to the experiments in water from their holding296

tanks. This ensured that the water quality and temperature in the experimental room was the same as in their holding facility.297

This water was also used in the VR setups where a water change was done once a day. All fish were tested individually. They298

were naive, and chosen at random from their holding tanks. All experiments were conducted in accordance with the animal299

ethics permit approved by Regierungsprasidium Freiburg, G-17/170.300

5.2 Fish virtual reality experiments. Experiments were conducted in a fishVR setup procured from loopbio GmbH (See (16) for301

setup details). Larval zebrafish were tested in an acrylic bowl of diameter 34 cm between 07:00 and 19:00. Once a fish was302

introduced in the arena, it was given 20 min to acclimatize to the environment. This was followed by a 10 min control where it303

was presented a single virtual conspecific circling the arena in a circle of radius 8 cm (Fig. S14). The purpose of this control304

was to assess whether the real fish would follow a virtual conspecific. We later included data from all fish in our analysis as305

nearly all of them followed the virtual fish during this control. After the control, the real fish was exposed to choice experiments306

that lasted 1.5 hr with the virtual fish initialized with random lateral distances between them and random swim direction.307

5.3 Visual stimuli. Custom 3D scenes were designed using 3D modelling program Blender (version 2.77) and projected on the308

bowl with a projector (Optoma ML500) at 100 Hz refresh rate. The stimulus created was a larval zebrafish of length 1 cm. The309

fish was set to swim at an average speed of 4 cm/s with burst-and-glide motion extracted from a random real fish’s swimming310

pattern (Fig. S14). The background for the stimulus was light blue, the default projection color on the Optoma projector.311

5.4 Data collection. As choice experiments, the real fish was exposed to two or three virtual conspecifics that swam side-by-side312

with lateral distance between them varying from 0.5 cm to 10 cm (in steps of 0.5 cm). The virtual fish swam back-and-forth at a313

3 cm depth, and along a straight line of length 24 cm (Fig. S13). To exclude boundary e�ects and the e�ect of sharp turns that314

the virtual fish make near the edge, we only consider data where the virtual fish are farther than 5 cm from the boundary for315

further analyses. The following filters were used to extract data where the real fish was considered to be potentially interacting316

with virtual conspecifics:317

1. A distance filter determined whether the real fish had the opportunity to interact with a virtual fish. If the real fish was318

within 5 cm front-back distance or 5 cm left-right distance of the outermost virtual fish, it was considered to be within319

interaction range.320

2. Since the real fish receives no feedback from its virtual conspecifics, we only consider cases where the virtual fish lead321

the real fish i.e. cases where the virtual fish are ahead of the real fish in a coordinate system centered at the real fish’s322

frame of reference, and where the real fish is behind the virtual fish in a coordinate system centered at the centroid of the323

virtual fish and pointing in the direction of their motion.324

3. Since we are interested in which conspecific(s) the real fish will follow, we exclude all data where the angle between the325

real fish’s direction and the virtual fish’s direction („) is larger than 30°.326

4. Finally, for the purpose of analysis, we switch identities of the virtual fish after each turn. This is done to ensure relative327

positions of the virtual fish are conserved; that virtual fish are always treated as being to the left or right of the real fish.328

A total of 390 fish were tested. Of these, 198 fish were exposed to decision-making with two virtual targets, and 39 fish were329

exposed to decision-making with three targets. In the two-choice case, the real fish experienced five di�erent virtual fish speeds.330

Our analyses focus only on data where the virtual fish swim at an average speed of 4 cm/s, the average swim speed of larval331

zebrafish. We also conducted experiments where the real fish was exposed to a single virtual fish, or where two real fish were332

tested in pairs with no stimuli. 39 fish were exposed to a single virtual fish while 114 fish were tested in pairs (57 pairs) and333

without stimuli. When real fish were tested in pairs, data were filtered to only consider cases when the two fish maintained a334

distance of 0.5 cm to 20 cm between them (tracking accuracy reduced at distances closer than this). Relative 3D positions were335

then collected by reorganizing the follower’s position in the leader’s coordinate frame (all relevant filters used in the virtual fish336

case were also used here). Comparing these two cases—two real fish compared to one real fish swimming with one virtual337

fish—we find that in the VR, and otherwise, the two fish swim on the same plane (Fig. S15). Hence, all further analyses for338

decision-making were conducted on this plane in 2 dimensions.339

5.5 Data analysis. The main focus of our analyses was to reveal the role of lateral distance between the virtual fish L, on the340

decision of the real fish to follow these virtual targets. We applied the above mentioned filters to the data and obtained a341

density plot of the real fish’s position in a coordinate system centered at the centroid of the virtual fish’s positions (Fig. S13;342

see Fig. S16 for density plots for varying lateral distance between the virtual fish). The marginal distributions along the343

direction of the virtual fish’s motion for various lateral distances L are then normalized (proportion of maximum) and stacked344

to obtain the bifurcation plot (Fig. S13). This figure plot shows the e�ect of virtual fish geometry on the real fish’s position345

while following them. An identical protocol was followed to obtain the three-choice bifurcation plot.346
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Supplementary Text347

Model features that determine network behavior348

Based on our theoretical studies, we conclude that our results are robust to the model assumptions, and the algorithm described349

is generic; that decision-making systems will break multi-choice decisions to a series of binary decisions so long as they share350

the following features:351

1. Neurons in the decision-making ensemble exhibit local excitation and long-range/global inhibition. The locality of their352

excitation modulates, or the extent of their directional tuning determines the exact location of the bifurcation.353

2. Decision-making is spatially explicit. As the animal moves through space, its geometrical relationship with the targets354

changes. Since neural interactions depend on the geometrical relationship of the individual with the targets, space355

provides a continuous variable by which the individual traverses the time-varying landscape of neural firing rates.356

Although detailed models considering the specifics of each system would be expected to provide additional quantitative357

fits (at the expense of losing some generality and analytical tractability), our results are broadly independent of the model358

implementation details. Based on direct comparison with experimental results from fruit-flies (Drosophila melanogaster),359

desert locusts (Schistocerca gregaria) and zebrafish (Danio rerio), we conclude that “cosine-shaped” interactions cannot360

explain trajectory patterns observed in real animals; that the brain represents space in a non-Euclidean fashion and excitatory361

interactions among neurons are more local (Fig. S1). Beyond this, the bifurcation patterns observed are agnostic to the exact362

nature of neural interactions. We illustrate this by using truncated Mexican hat-shaped neural interactions that produce similar363

predictions at the level of animal movement (Fig. S1). We specifically chose this function as it has been shown to represent364

orientation selectivity in neurons of the visual cortex (18).365

Jij = A

!
1 ≠ h◊

2
ij

"
exp(≠h◊

2
ij) ≠ c [42]

where, A is the amplitude of the Mexican hat, ◊ij is the angle between preferred directions of neurons i and j, h is the
concentration of the hat and c represents global inhibition. Thus, neural interactions with both long-range inhibition and
global inhibition make similar predictions regarding the animal’s movement.

Experiments in virtual reality366

Testing our model predictions experimentally is expected to be di�cult. If we are correct, by far the clearest window into the367

system dynamics will be when animals are presented with two, or more, identical options. This is due to the fact that the very368

reason that the brain should exhibit bifurcation dynamics—to maximize sensitivity—will also result in amplification of subtle369

di�erences between options to obscure our ability to see the underlying system bifurcations. The fact that the experimentalist370

may often be unaware of such di�erences (such as a slight air motion, or light gradient, or other di�erences imperceptible to371

humans), and that these di�erences can break the symmetry (between apparently identical options) makes these experiments372

extremely challenging with a conventional design. To address this limitation, we conduct our experiments in immersive virtual373

reality (16) in which we can (instantly) randomize our starting conditions, and conduct relatively high-throughput analysis of374

spatial decision-making.375

Predictions for symmetric geometries and increasing number of targets376

So far, we have discussed predictions from the model and experimental results for the two- and three-choice cases for specific377

geometries. However, as described section 5.4, we conducted choice experiments for fruit-flies in three di�erent geometrical378

configurations. An especially interesting case here is one where the targets are in radial symmetry—two targets 180° apart379

or three targets 120° apart. Once again, we find congruence among predictions of our neural model, the animal collectives380

model and behavioral experiments with flies (Fig. S9). Because these symmetric conditions represent cases where the animal is381

already beyond the bifurcation angle, we find that it goes straight to one of the available targets. Further, to illustrate model382

results beyond three targets, we also ran simulations for four, five, six, and seven targets. Once again, our predictions hold and383

the agent continues to eliminate targets based on egocentric geometry, thus binarising its decisions (see Fig. 2 in main text).384
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Fig. S1. Relationship between the nature of neural interactions and the bifurcation patterns observed in the agent’s trajectory. (A) The strength of neural interactions as a
function of the angular distance between directions encoded by the neurons. We explore models with three different type of neural interactions, a global “cosine-shaped”
interactions model, and two local models—with a truncated Mexican hat-shaped interaction curve (amplitude A = 1.8, hat concentration h = 0.25 and global inhibition
c = 1), and a model where ‹ = 0.5. The orange region indicates angles where Jij is positive—excitatory interactions, and the grey region indicates negative Jij—inhibitory
interactions. (B) A simplified representation of this in polar coordinates. (C) Density plots of trajectories adopted by a model for the corresponding neural interaction curves. The
axes represent x≠ and y≠coordinates in Euclidean space. Comparing agent trajectories from the simulations with experimental results (see Fig. 1 in main text) from fruit flies
and desert locusts reveals a lack of fit by a model with “cosine-shaped” interactions.
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Fig. S2. Schematic of the goal-direction cells in an animal’s brain when moving through space. (A) It is known that an ensemble of neurons in the brain collectively represents
direction to goals (2). Here, we simplify this by representing neurons in the model that individually represent direction to a target. (B) The decision-making ensemble is assumed
to be a collection of such goal-directed neurons. (C) In presence of multiple targets, the ensemble is composed of multiple neural populations that encode directions to the
different targets. The agent’s decision is thus a consensus among neurons in this ensemble.
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Fig. S3. Robustness of bifurcations to spatial and system parameters. (A) A heatmap showing whether or not the neural network has reached a consensus. The agent makes a
decision close to the black dotted arc, which represents the locus of a point that is equiangular from the two targets. Angle subtended by the targets on the animal determines
the location of the bifurcation. White dotted lines show example trajectories of animals as they would move through space. The axes represent x≠ and y≠coordinates in
Euclidean space. The exact value of the critical bifurcation angle results from the interplay between two timescales—a timescale for movement and one for the neural dynamics.
(B) Effect of the starting distance to the targets on the critical bifurcation angle. We fit an exponential decay to the points to obtain the critical angle (represented here as a
dotted line). (C) The neural tuning parameter (‹) also influences the bifurcation angle. Here, the angle flattens at 60°(represented by the dotted line) as this is the starting
angular condition where the agent is initialized. (D-E) Minor difference between the targets causes the agent to choose the correct target with near certainty. The slope of the
sigmoid indicates sensitivity of the system. D shows this sensitivity in the presence of two targets while E shows this for the three-target case. Here, we separate sensitivity to
the center target vs sensitivity to a side target. As shown, the agent is equally sensitive to all three targets in its environment. See Table S1 for model parameters used here.
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Fig. S4. The role of directional error on simulated trajectories. Results of our neural model without (A, C) and with (B, D) implementation of gaussian error and the ‘overlap’
function for decision-making in a two- (A and B) and three-choice (C and D) context. The symmetric case modelled here puts the targets at an angular configuration where the
‘overlap’ function does not affect predicted results. However, Gaussian error still introduces noise in the simulated trajectories. Parameters used were identical to Fig. S8. The
axes represent x≠ and y≠coordinates in Euclidean space.
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Fig. S5. Predicted trajectories and susceptibility from the mean-field approximation. Predicted animal trajectories for decision-making in a two-choice (A) a three-choice (B)
context. In both A and B, the susceptibility in the mean-field approximation (dashed line) diverges at the bifurcation points (represented here by the dotted vertical line). The
solid line represents the short time average responses of one neuron flip in reaction to one biased neuron towards one of the targets. The short time response shows a peak at
the bifurcation point and is normalized by its maximal value. See Table S1 for parameters used.
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Fig. S6. Effect of system size on observed bifurcations. Comparison of panels A-D shows that bifurcation patterns are observed both for small and large system sizes. Panels
A, B, and C show trajectories predicted by the neural model for system sizes N = 18, N = 30, and N = 60 respectively. Panel D shows the predicted trajectories at the
mean-field limit of very large system sizes N æ Œ. The axes represent x≠ and y≠coordinates in Euclidean space.
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Fig. S7. Role of neural noise on producing the experimentally observed bifurcation patterns. Each panel contains trajectories from 500 replicate simulations of our neural
decision-making model. The model reproduces experimentally observed bifurcation patterns below a critical level of neural noise (A and C). Above this critical noise level, the
agent exhibits diffusive movement for the two-choice case (B) with a bias towards more central targets (D). A and B show trajectories for decision-making in the presence of two
targets, while C and D show trajectories for decision-making in the presence of three targets. The axes represent x≠ and y≠coordinates in Euclidean space. See Table S1 for
parameter values used in A and C. B and D were produced with identical parameters except the neural noise parameter T = 2.0.
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Fig. S8. Decision-making in asymmetric geometries. Results of our neural model without (A) and with (B) implementation of the ‘overlap’ function. This function allows us to
account for spatial geometries where some targets may be in directional proximity compared to others. The Gaussian error in B was of standard deviation ‡=0.25. The axes
represent x≠ and y≠coordinates in Euclidean space.
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Fig. S9. Decision-making in radial symmetry. Trajectories predicted by two different models of decision-making and experimental trajectories obtained from fruit flies, all in the
presence of two and three targets placed in radial symmetry. The animal starts at (0, 0) and chooses one of the available targets. The axes represent x≠ and y≠coordinates
in Euclidean space. Panels A and D show results for two- and three-choice decision making from a collective decision-making model, B and E show results from our neural
decision-making model, and C and F show experimental results of fruit-flies exposed to two and three identical targets respectively. See Table S1 for parameters used in A and
D, and Table S2 for parameters used in B and E.
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Top viewFront global viewA B

Fig. S10. Overview of the locustVR experimental setup. (A) The front-view of the locustVR setup shows the three projectors, the cylindrical projection surface, and the
locomotion compensator sphere. (B) The top-view of the setup shows a custom checkerboard stimulus along with the locust on the center of the locomotion compensator
sphere. The inset shows a zoomed in side-view of the locust.
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Fig. S11. Raw trajectories and density plots of fruit flies exposed to two and three targets. (A-F) present raw trajectories (A-C) and density plots (D-F) of fruit flies exposed to
two targets. The axes represent x≠ and y≠coordinates in Euclidean space. A shows trajectories where the fruit fly reached the target in a relatively short duration, where
trajectories to the targets were relatively direct, and B shows the remaining trajectories that could potentially exhibit the bifurcation. D and E show the corresponding density
plots, normalized such that the maximum intensity in E is set to 1, and in D is set to the proportion of trajectories in E relative to this condition. C and F show the raw trajectories
and the normalized density plot for all fly experiments combined. Similarly, G-L present raw trajectories (G-I) and density plots (J-L) of fruit flies exposed to three targets. G and
J show direct trajectories to a target and the corresponding density plot. H and K show the remaining trajectories that potentially exhibit the bifurcations, and the corresponding
density plot. I and L show raw trajectories and the density plot for all fly experiments combined. Note that the three-choice trajectories here are symmetrized for the sake of
visualization.
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Fig. S12. Raw trajectories and density plots of desert locusts exposed to two and three targets. (A-H) present raw trajectories (A-D) and density plots (E-H) of locusts exposed
to two targets. The axes represent x≠ and y≠coordinates in Euclidean space. A shows trajectories where the locust reached the target in a relatively short duration, where
trajectories to the targets were relatively direct, C shows trajectories where the locust took long to reach the target, where trajectories to the targets were noisy, and B shows
the remaining trajectories that could potentially exhibit the bifurcation. E-G show the corresponding density plots, normalized such that the maximum intensity in F is set
to 1, and in E and G is set to the proportion of trajectories in F relative to this condition. D and H show the raw trajectories and the normalized density plot for all locust
experiments combined. Similarly, I-P present raw trajectories (I-L) and density plots (M-P) of locusts exposed to three targets. I and M show direct trajectories to a target and
the corresponding density plot, K and O show noisy trajectories to a target and the corresponding density plot, and J and N show the remaining trajectories that potentially
exhibit the bifurcations, and the corresponding density plot. L and P show raw trajectories and the density plot for all locust experiments combined. Note that the three-choice
trajectories here are symmetrized for the sake of visualization.
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Fig. S13. Overview of experiments and data analyses with larval zebrafish. (A) Two virtual fish swim back-and-forth in the arena beside each other at varying lateral distances
(0.08 m in this particular case). (B) Data were centered on a coordinate system with origin at the centroid of the virtual fish’s positions and decisions were considered along
the axis perpendicular to their direction of motion. (C) An example of the real fish’s position density relative to the virtual fish. We obtain a normalized marginal probability
distribution of the real fish’s position (perpendicular to the virtual fish’s movement direction) and stack these distributions for varying lateral distances between the virtual fish (D).
We can do this without losing information along the virtual fish’s movement direction as the real fish maintains relatively stable front-back distance with its virtual conspecifics (E).
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Fig. S14. Behavioral experiments with larval zebrafish in virtual reality. (A) Burst-and-glide movement adopted by the virtual zebrafish. The average movement speed was
extracted statistically from freely swimming larval zebrafish and the burst-and-glide movement was adopted from a random real fish. (B) Interaction of the real fish with its virtual
conspecific in one of the control runs where the virtual fish swims in a circular path.
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Fig. S15. Fish respond similarly to real and virtual conspecifics. Density plots from 3D tracking of pairs of fish within and without the VR. Both panels A and B represent the
position of a follower in a coordinate system centered on the leader. The dashed line in B represents position of the leader on the z≠plane. Panels C and D show the turning
(left-right) and the forward (front-back) speeds of the follower in a coordinate system centered on the leader. (A and C) Two larval zebrafish fish swimming together. (B and D) A
larval zebrafish swimming with a virtual conspecific.
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Fig. S16. Normalized density plots for larval zebrafish exposed to two or three virtual fish. The red dots represent positions of the virtual zebrafish that are presented to the real
fish. Density plots represent position of the real fish as it follows these virtual fish. Top row presents positions of the real fish in presence of two virtual fish and the bottom row
presents positions of the real fish in presence of three virtual fish.
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Fig. S17. Role of local excitation and long-range/global inhibition on producing the experimentally observed bifurcation patterns. Trajectories resulting from a decision-making
model of animal collectives with (A and C) and without feedback (B and D) on individual preferences (500 replicates). A and B show trajectories for decision-making in the
presence of two targets, while C and D show trajectories for decision-making in the presence of three targets. The axes represent x≠ and y≠coordinates in Euclidean space.
See Table S2 for parameters used in A and C. B and D were produced with identical parameters except Êinc = 0 and Êdec = 0.
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Table S1. An overview of the parameter values explored for the neural decision-making model.

Parameter Symbol Value(s)

System size (simulations) N 60
Neural tuning ‹ 0.5
Directional noise (simulations) ‡e 0.02
Neural noise / Temperature T 0.2
Lateral distance in cm (fish simulations) L 0–10
Front-back distance in cm (fish simulations) d 1.5–3
Directional error (overlap implementation) ‡◊ 0.25
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Table S2. An overview of the parameter values explored for the neural decision-making model.

Parameter Symbol Value(s)

Total agents N 60
Repulsion radius rr 1
Attraction / Alignment radius ra 6
Turning rate Â 2
Speed |v| 1
Omega initialization Ê0 0.3
Omega increment Êinc 0.012
Omega decrement Êdec 0.0008
Maximum omega Êmax 0.4
Timestep increment �t 0.1
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