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Abstract

The extracellular matrix (ECM) collagen undergoes major remodeling during tumorigenesis.

However, alterations to the ECM are not widely considered in cancer diagnostics, due to mostly

uniform appearance of collagen fibers in white light images of hematoxylin and eosin-stained

tissue sections. Polarimetric second-harmonic generation (P-SHG) microscopy enables label-free

visualization and ultrastructural investigation of non-centrosymmetric molecules, which, when

combined with texture analysis, provides multiparameter characterization of tissue collagen. This

paper demonstrates whole slide imaging of breast tissue microarrays using high-throughput

widefield P-SHG microscopy. The resulting P-SHG parameters are used in classification to

differentiate tumor tissue from normal with 94.2% accuracy and F1-score, and 6.3% false

discovery rate. Subsequently, the trained classifier is employed to predict tumor tissue with 91.3%

accuracy, 90.7% F1-score, and 13.8% false omission rate. As such, we show that widefield P-SHG

microscopy reveals collagen ultrastructure over large tissue regions and can be utilized as a

sensitive biomarker for cancer diagnostics and prognostics studies.

Introduction

Cancer is amongst the leading causes of death, affecting approximately 1 in 5 people worldwide; a

figure that is predicted to increase by ∼ 47% by 2040 [1]. The most common cancer diagnostic

techniques rely on the gold standard histopathology of hematoxylin and eosin (H&E) stained

tissue sections examined with white light microscopy. H&E histopathology focuses predominantly

on characteristics of the cell nuclei and the tissue cell arrangements. However, the ultrastructure

and texture of the background collagen-rich extracellular matrix (ECM) can also serve as an

additional biomarker.

Collagen is a major constituent of the ECM, which undergoes structural alterations during

tumorigenesis [2]. Several stains, including Movat’s pentachrome [3], Masson’s trichrome [4],

picrosirius red [6], as well as immunohistochemical labels [5] have been used to highlight collagen.

However, the use of ECM collagen as a biomarker is not widely employed in cancer diagnostics due

to subtle structural variations which may be too difficult to detect with white light microscopy.
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Second-harmonic generation (SHG) microscopy provides an alternative imaging modality, which

enables label-free visualization of the collagenous ECM with high specificity [7, 8]. The SHG

signal depends on the inherent 3D structure of noncentrosymmetric collagen fibrils, characterized

by the nonlinear susceptibility tensor, as well as incident laser polarization [9]. By taking

advantage of SHG intensity’s dependence on laser polarization, polarimetric SHG (P-SHG) can be

utilized in laser scanning microscopy to measure the nonlinear susceptibility tensor elements for

each imaged voxel of the tissue. It was further used to identify cancer-associated ECM alterations

of multiple human tumor types in lung [10], thyroid [11], breast [12, 13, 14], pancreas [15], and

ovary [16]. However, current P-SHG microscopy techniques rely on raster scanning of the imaged

area, which are slow for whole slide imaging and high-throughput clinical use.

Recently, widefield SHG microscopy was shown to significantly reduced the time required for

large-area imaging compared to laser scanning systems [17]. Based on this technology, we have

developed a high-throughput quantitative imaging technique by integrating P-SHG with widefield

microscopy. Widefield P-SHG microscopy enables rapid scan-less imaging of large sample regions

(∼ several millimeters) using 16 orthogonal polarization states. Moreover, the subsequent image

processing avoids time consuming pixel-by-pixel model fitting, and provides a series of

polarimetric parameters that highlight the ultrastructural properties of the collagenous ECM.

Furthermore, morphological organization of collagen fibers in the ECM of cancer tissue can be

investigated using texture analysis of polarimetric parameters [18, 19]. Texture analysis of P-SHG

polarimetric parameters was previously utilized in studies of lung cancer, revealing significant

features that aid in characterization of tumor tissue [20].

In this work, polarimetric and texture parameters from widefield P-SHG imaging were used to

train a logistic regression classifier, which was able to differentiate normal from tumor tissue with

94.2% accuracy and F1-score, and 6.3% false discovery rate, in human breast tissue microarray

slides. The trained classifier was then further evaluated by predicting the presence of tumor on an

independent data set, yielding 91.3% accuracy, 90.7% F1-score, and 13.8% false omission rate.

Implementation of machine learning into the image postprocessing enhances differentiation of

normal and tumor tissues, potentially enabling automated screening of, for example, tissue

microarrays, as well as mapping areas of altered collagen to improve histopathologic diagnoses.
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Results

Experimental design and overview

We have developed a widefield P-SHG microscopy technique for rapid high-throughput

quantitative imaging, which we applied to breast tissue microarrays. The method generates a set

of information-rich polarimetric and texture parameters, and utilizes these to classify normal and

tumor tissues.

Figure 1 shows an overview of the experimental workflow. The tissue microarray slide was imaged

under widefield P-SHG microscopy with 16 unique combinations of input and output polarization

states (Fig. 1a). These were combined to generate images of SHG Stokes vector elements, in

accordance with reduced double Stokes-Mueller polarimetry, as illustrated in Fig. 1b (see

supplementary information for more details). Images of the following 5 distinct polarimetric

parameters were extracted and used to characterize the ultrastructure of collagen in each image

pixel: 1) average SHG intensity from all incident circular polarizations, 2) R-ratio, which is the

ratio of 2 achiral second-order nonlinear optical susceptibility elements (χ(2)
zzz/χ

(2)
zxx, where the

z-axis is parallel to the collagen fiber axis), 3) degree of circular polarization (DCP), 4) SHG

circular dichroism (SHG-CD), and 5) SHG linear dichroism (SHG-LD). Each polarimetric

parameter carries unique ultrastructural information about the ECM collagen.

The SHG intensity obtained with circular incident polarization is highly sensitive to the molecular

organization of collagen and is independent of the in-plane orientation of collagen fibers. It has

been shown that the SHG intensity is reduced in various solid tumors [21, 22]. The R-ratio

describes the structural organization of the collagen fibers, and has been successfully used to

differentiate normal and malignant tissues in lung, breast, thyroid, and pancreas [10, 12, 11, 15].

The value of DCP is closely related to the R-ratio in non-scattering tissue and reflects the disorder

and depolarization in the sample. SHG-CD provides information on the collagen polarity and the

out-of-plane fiber orientation in the tissue [23, 24, 9], which has been previously utilized in

investigations of ovarian cancer [25]. Here, we introduce SHG-LD as a new parameter in P-SHG

microscopy to study the in-plane organization of collagen fibers in the ECM. A similar definition

of SHG-LD was previously used in surface SHG measurements of Langmuir–Blodgett films of
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Figure 1: From imaging to

classification. a, Widefield

polarimetric SHG imaging of the

sample at 16 unique polarization

state combinations. b, Calculation

of SHG Stokes vector elements to

compute polarimetric parameter

images. c, Subdivision of polarimetric

images into 64 sub-images, to allow

high-resolution texture analysis and

statistical significance testing. d,

Calculation of mean and mean absolute

deviation of polarimetric parameter, as

well as contrast, correlation, entropy,

angular second moment (ASM), and

inverse difference moment (IDM)

texture parameters of each sub-image

e, Training of a logistic regression

classifier using the polarimetric and

texture parameters, and the subsequent

prediction to differentiate normal and

tumor tissue.

chiral polymers functionalized with a nonlinear optical chromophore [26]. These five parameters

provide complementary information on the ultrastructure of tissue collagen.

The images of each computed polarimetric parameter were further subjected to texture and

statistical analyses. Texture analysis is a well-known method for characterizing tissue morphology

by analyzing the variation in the neighboring pixel values [27]. It is commonly used as a
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classification tool through its ability to recognize patterns that may be indistinguishable to the

human eye [28, 29, 30]. Here, each polarimetric image is comprised of over 4 million pixels. Hence,

to enable high-resolution mapping of texture parameters and statistical investigations, all

polarimetric images were divided into 64 sub-images (Fig. 1c). The mean, mean absolute

deviation (MAD), and 5 of the most useful textures of the polarimetric parameters, including

contrast, correlation, entropy, angular second moment (ASM), and inverse difference moment

(IDM) were computed over all sub-images to characterize the collagen in the tissue (Fig. 1d)

[18, 19].

The final stage of the analysis involved machine learning-assisted diagnostics, as shown in Fig. 1e.

For this, the combination of mean, MAD and texture of 5 polarimetric parameters of normal and

tumor tissue were used to train a logistic regression classifier. The trained classifier was used to

perform predictions on an independent set of images and map the ultrastructural properties of

collagen, leading to differentiation of normal and tumor tissue.

Whole slide P-SHG imaging of tissue microarray

The collagen content of a breast tissue microarray was imaged using widefield P-SHG microscopy,

resulting in images of whole breast tissue cores that were 0.6 mm in diameter, without the need for

raster scanning. Figure 2a shows the annotated H&E-stained microarray of normal (N) and tumor

(T) cores. The latter were characterized by estrogen receptor (ER), progesterone receptor (PR) and

human epidermal growth factor receptor 2 (HER2) expression, and 3 of the most common subtypes

were considered: ER+/PR+/HER2+ (triple positive or +/ + /+), ER+/PR+/HER2− (double

positive or +/+ /−), and ER−/PR−/HER2− (triple negative or −/− /−) [31].

The SHG intensity images of all core are seen in Fig. 2b. Each core image is comprised of 2048×2048

pixels, corresponding to an area of approximately 670µm×670µm, as shown in Fig. 2c, which

corresponds to core 11, as indicated by yellow border in Fig. 2b. The resolving power of the

microscope (approximate pixel size of 0.3µm×0.3µm) is shown by an enlarged rectangular region

in Fig. 2d, whose location is highlighted with the red rectangle in Fig. 2c. For better viewing of

the SHG images, pixels that exhibited signal-to-noise ratio (SNR) <1 were removed. It is clearly

seen that tumor tissue has markedly lower SHG intensity than normal, consistent with previous
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Figure 2: High-throughput widefield P-SHG imaging of tissue microarray. a, A H&E-

stained breast tissue microarray containing normal and three distinct tumor subtypes. The positive

sign indicates overexpression of estrogen receptor (ER), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2), denoted by ER/PR/HER2. b, Image of circularly-

polarized SHG intensity of the entire microarray slide shows distinctive low signal associated with

tumor cores, except cores 21 and 22 that possess a large amount of collagenous stroma. Scale

bar: 2.5mm. c, A single widefield SHG image consisting of 2048×2048 pixels and an area of

approximately 670µm×670µm. Scale bar: 200µm. d, A magnified region of the tissue, highlighted

by red rectangle in c shows high resolution of the imaging technique. Scale bar: 25µm.

reports in multiple tumor types [10, 12, 11, 15, 32]. This is likely due to collagen degradation in the

tumor microenvironment which results in randomly oriented fibrils, so resembling a centrosymmetric

arrangement. It is also clear that there are considerably fewer pixels with SHG signal present in

the tumor tissues, rendering pixel count as an important classification parameter.

Polarimetric SHG imaging and analysis

Representative polarimetric images of normal, triple negative, double positive, and triple positive

groups are shown in Fig. 3. The H&E-stained core images (Fig. 3a) were segmented to reveal
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Figure 3: Widefield P-SHG polarimetric parameters. a, Representative H&E white

light images of normal and three tumor breast cores with different expressions of the receptors

ER/PR/HER2. Scale bar: 200µm. b, Segmented images display the portion of H&E images

stained by Eosin, which serves as a good estimate for total collagen content of the tissue. c, SHG

intensity of circularly-polarized incident light, highlighting ordered collagen fibers. Normal core

produces much larger SHG signal. d, R-ratio images of cores range from 1.4 to 2.4, indicating the

presence of collagen in the tissue. e, Degree of circular polarization images show larger means in

tumor due to higher R-ratio and low depolarization. f-g, SHG-CD and SHG-LD images depict the

out-of-plane and in-plane fiber orientations, respectively. Due to unbiased sectioning of the tissue,

collagen fibers are at random orientations, resulting in SHG-CD and SHG-LD distributions centered

around zero.
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stained fibrillar components of the ECM using a published convolutional neural network (CNN)

based technique [33] (Fig. 3b). H&E segmented images serve as a visual approximation of the

total collagen content of the tissue. The true arrangement of the ordered collagen fibers can be

visualized with P-SHG microscopy as presented in Fig. 3c. SHG identifies only the ordered

collagen structures in the tissue; hence, highlighting a subset of the segmented collagen image.

As shown in Fig. 3d, the tumor cores have larger R-ratio values than normal, similar to earlier

reports of human breast tissues imaged with a scanning P-SHG microscope [12]. In addition to

the extracted R-ratio, DCP of the SHG signal is obtained. As shown in Fig. 3e, the measured

DCP was on average lower in normal tissue compared to each of the tumor groups.

SHG-CD values (Fig. 3f) were calculated using polarimetric images with circular input

polarizations, and are directly associated with chiral and achiral optical susceptibilities, as well as

the out-of-image-plane tilt angle of collagen fibers [9, 24]. Tissue samples were sectioned without

any fiber orientation bias, resulting in random direction of collagen fibers. Therefore, SHG-CD

mean values did not provide useful information for classification of tumor tissue. However,

collagen in normal tissue appears wavier, leading to a broader distribution of the SHG-CD. Thus,

MAD of SHG-CD distribution was instead used to differentiate between normal and tumor tissues.

The SHG-LD images were constructed using the linear input polarizations (Figs. 3g), and

highlight the in-plane collagen fiber orientation. Similar to SHG-CD, the SHG-LD distribution

appears wider in normal tissue compared to the tumor, reflecting larger variations of the in-plane

collagen fiber orientation in normal tissue. The SHG-LD measurements exhibited diverse

distribution forms, due to random sectioning of breast cores. Hence, in order to further analyze

the degree of variability of in-plane collagen fiber orientation, the MAD of SHG-LD distributions

were computed and compared between normal and tumor groups.

Texture analysis and statistical testing

Statistical multiple comparison tests were performed to evaluate the significance of parameter value

differences between tumor and normal cores. Each core image was comprised of over 4 million pixels,

however, pixels with SNR < 3 were discarded from analysis to ensure reliability of the statistical

testing. Each large-area image of the cores was subdivided into 64 sub-images, each with 256×256
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Figure 4: Parameter multiple comparisons testing. a, Circular plot of all multiple comparisons

test between all four groups. Kruskal-Wallis H test and Dunn-Bonferroni post hoc test were

performed. The dashed links indicate significant differences (0.001 < p < 0.05), while solid links

depict highly significant differences (p < 0.001). All non-significant differences are omitted. It is

evident that normal tissue is highly significantly different from all tumor groups across most of

the measured parameters. Parameters that are not significantly different between normal and any

of the tumor groups are denoted by x’s and removed from further investigation. b, Boxplots of

selected parameters show detailed differences between all four considered groups. Color of the plots

correspond to small circles around parameters in a. It is evident that triple positive is the most

different tumor group from normal.

pixels (approximately 84µm×84µm in area). Sub-images located in the corner of each breast core

P-SHG image, as well as those without viable signal were removed from the analysis. The number

of pixels with SNR > 3 in each sub-image was used as an important metric, referred to as the SHG

pixel density (PD) to indicate the abundance of ordered SHG-producing collagen in the tissue.

The PD was found to be on average considerably higher in normal tissue than tumor; therefore,
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it was included in the set of diagnostic polarimetric and texture parameters. The mean, MAD,

and texture features of the polarimetric parameters were used in multiple comparisons testing and

machine learning-assisted classification. Given the large number of resulting parameters (36), the

significance test results are shown as a circular plot in Fig. 4a. The circular plot is divided into

four quadrants, representing normal, triple negative, double positive, and triple positive groups.

The mean, MAD, and textures of each polarimetric parameter are highlighted by distinct colors.

Most differences between normal and tumor groups were statistically highly significant (p<0.001),

as indicated by solid colored links. Links between tumor groups are mostly dashed lines, which

indicate significant differences (0.001 < p < 0.05). Non-significant differences are omitted from

the diagram. It is evident that all three considered molecular subtypes of breast cancer are well-

differentiated from normal with comparable levels of accuracy using widefield P-SHG.

For a more detailed presentation of the data, boxplots of subsets of the computed parameters are

shown in Fig. 4b. Sub-image means of both R-ratio and DCP showed similar trends of being

significantly higher in tumor than normal tissue, with triple positive breast cancer possessing the

largest R-ratio and DCP. The R-ratio results are in agreement with a previous investigation on small

breast tissue regions [12]. The MAD of both SHG-CD and SHG-LD highlighted larger variation of

the collagen fibers orientation in normal tissue, compared to tumor tissue. Between tumor groups,

triple positive had the largest variation in fiber orientation, approaching that of the normal group.

Three of the parameters (SHG-CD mean, SHG-LD mean, and R-ratio IDM) were not significantly

different between normal and any of the tumor groups, as indicated by x’s on their corresponding

nodes in Fig 4a. As such, these parameters were omitted from classification.

Classification and prediction of normal and tumor breast tissue

To showcase the efficacy of collagen as a diagnostic biomarker and display the detection

capabilities of widefield P-SHG microscopy, the polarimetric parameter statistics (mean and

MAD) and texture features were used to train a binary logistic regression classifier. Prior to

classifier training, two cores (one from normal group and one from tumor group) were removed to

form a prediction dataset, which was used to further investigate the predictive power of the

classifier. All tumor cores were combined into a single tumor group and by treating each
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Figure 5: Tissue classification performance. a, Tissue classification and prediction with a

binary logistic regression classifier, trained using all polarimetric and texture parameters. Reported

values are mean ± standard deviation. b, Testing the impact of various parameters using 4 subsets

of the measured parameters, including SHG intensity (INT) and all 5 polarimetric parameters

(POL), with and without texture parameters (TX). All groups include pixel density. Differences

in accuracy, F1-Score, AUROC, and Brier score between groups are statistically highly significant

(p � 0.001), as determined by the Kruskal-Wallis H test and the Dunn-Bonferroni post hoc test.

Using all polarimetric and texture parameters improves the classification performance across all

metrics. All reported accuracy and F1-score values have <0.4% standard error, and AUROC and

Brier score have standard errors of <0.2% and <4.5%, respectively.

sub-image as an individual data point, 544 normal and 543 tumor data points (samples), across 33

different polarimetric and texture parameters (predictors) were used for classification. The

training was repeated 1000 times with random stratified partitioning of the dataset for 5-fold
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cross-validation, and the standard deviation of performance metrics were used to evaluate the

classifier stability [34].

Using the complete dataset, the classifier differentiated tumor from normal tissue with 94.2%

accuracy at 50% posterior probability threshold, as indicated in Fig 5a. The threshold-dependent

classification performance metrics (true negative rate, true positive rate, negative predictive value,

and positive predictive value) were within 93-95%. The complimentary metrics (false positive

rate, false negative rate, false omission rate, and false discovery rate) were within 5- 7%. In

addition, the F1-score of 94.2% demonstrates the excellent robustness and accuracy of the trained

classifier in identifying tumor tissue regions.

Two threshold-independent metrics, namely the area under the curve of the receiver operating

characteristic (AUROC) and Brier score, were computed to further examine the classifier

performance. An AUROC value of 1 is ideal, while 0.5 indicates a completely random

classification. The Brier score ranges from 0 (perfectly accurate) to 1 (completely inaccurate). As

shown in Fig 5a, the trained classifier generated an AUROC of 0.984 and Brier score of 0.045,

indicating well-differentiated normal and tumor groups and low misclassification rate.

To determine the importance of polarimetric and texture parameters in classifier performance, 4

subsets of the data were considered (Fig 5b): 1) SHG intensity and PD, which are the most

commonly used parameters, 2) SHG intensity and PD, together with corresponding texture

analysis, 3) the 5 polarimetric parameters (including SHG intensity) and PD, and 4) the 5

polarimetric parameters and PD with corresponding texture parameters (complete dataset).

Classification using only the SHG intensity resulted in the lowest accuracy, F1-score and AUROC

values, and the largest Brier Score. Adding texture analysis provided a modest improvement of

(∼ 1%) across all metrics. A more significant improvement was evident from using all 5

polarimetric parameters (including the SHG intensity), with accuracy and F1-scores reaching

> 90%. Finally, combining all polarimetric and texture parameters, produced the best overall

performance with accuracy and F1-score > 94%, AUROC > 98%, and Brier score of 0.045.

The trained classifier was then used on the prediction set of normal and tumor cores that had not

been part of the training set. As depicted in Fig 5a, the prediction highlighted sub-images with

normal and tumor properties, resulting in 91.3% accuracy, 0.990 AUROC, and 0.067 Brier score.

Normal tissue was better predicted than tumor tissue, with a true negative rate of 98.0%
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compared to a true positive rate of 84.6%. However, the positive predictive value was 97.8%,

resulting in an F1-score of 90.7%.

Discussion

For the first time, we have presented the application of widefield P-SHG microscopy of the

collagenous extracellular matrix as a potential histopathological biomarker for cancer diagnostics.

The instrument provides rapid high-resolution large-area imaging of tissue samples such as the

microarrays shown here, while providing comprehensive ultrastructural information through 33

quantifiable parameters. The lack of moving optics, such as scanning mirrors, in widefield imaging

significantly contributes to the robustness of the technology. This enables simple construction and

customization of the microscope, that is well suited for user-friendly high-throughput applications.

Overall trends in many of the measured parameters showed a clear distinction between tumor and

normal tissues. In particular, triple positive tissue had the greatest differences from normal tissue

across most parameters. However, this distinction was small compared to the overall difference

between normal and all tumor groups, as further illustrated by multiple comparisons tests on the

circular plot of Fig. 4a.

Classification enabled an efficient use of all measured parameters, allowing for accurate predictions

of normal and tumor tissue with performance comparable to other methods involving machine

learning-assisted cancer diagnostics [35, 36, 37]. The pixel density and average SHG intensity were

amongst the most informative measured parameters, with substantial differences in the ECM

between normal and tumor tissues. It is important to note that simply the absence of SHG signal

and, thus, lower pixel density and average SHG intensity are not always indicative of the presence

of tumor; sparsely distributed collagen fibers and adipose tissue often do not result in sufficient

SHG signal, therefore, such regions must be discarded to avoid inflation of false positive rates.

Here, empty regions in the corners of the breast core images, and cores which were mainly

comprised of adipose tissue were manually discarded. However, in future developments, H&E

images may be used simultaneously with widefield P-SHG to identify and discard such areas

automatically. Moreover, most breast cores showed a significant reduction in ordered collagen, as

indicated by lower SHG intensity compared to normal tissue. However, 2 cores showed a high
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degree of stroma, and due to rarity of such tissue types in the microarray, they were discarded

from classification training data.

The calculated classification metrics showed robust and accurate tissue differentiation with 94.2%

accuracy, 6.3% false discovery rate, AUROC of 0.98, and Brier score of 0.045. Capabilities of the

trained classifier were further demonstrated in predicting an independent test dataset with an

accuracy of 91.3%, false omission rate of 13.8%, AUROC of 0.990, and a Brier score of 0.067. It is

important to note that the number and size of the sub-images used, affect the predictive power of

the classifier. For example, subdividing the images into fewer but larger sub-images would

improve the accuracy and specificity, at the cost of decreased classification stability, resulting in

reduced reliability. We found that subdivision level of 64 sub-images per image delivers highly

accuracy classification accuracy with sufficient robustness. We present a detailed investigation of

the optimum number of sub-images for classification of the P-SHG data in the supplementary

information document (See Supplementary Fig. 2).

A natural extension to this work is introduction of chiral nonlinear susceptibility components.

Consequently, additional polarimetric parameters such as chiral second order nonlinear optical

susceptibility ratio (C = χ(2)
xyz/χ

(2)
zxx) may be introduced to further improve molecular

identification, based on varied polarity of the collagen fibers throughout the tissue sample. The

C-ratio has been previously investigated in scanning P-SHG systems, revealing information on

collagen fiber polarity and organization [9, 41].

In this study, we demonstrated widefield P-SHG microscopy as a potential tool in cancer

diagnostics. However, it is important to also identify the applications of the microscope in

studying other pathologies related to remodeling of the collagen structure in the ECM and in

other collagenous tissues. As an example, widefield P-SHG microscopy may be used to identify

large-scale ultrastructural changes in pathologies relating to abnormalities in fibrillar collagen

types I, II, and III such as, arterial aneurysms, chondrodysplasias, osteogenesis imperfecta,

osteoporosis, osteoarthrosis, intervertebral disc disease, and Ehlers-Danlos syndrome [38].

Scanning P-SHG has also been used to study muscle ultrastructure in rat and drosophila larvae

[39, 40]. Future applications of the widefield P-SHG may include high-throughput investigations

of human muscle pathologies such as muscular dystrophy and multiple sclerosis. In addition,

continuous and uniform illumination of the entire imaged area provided by the widefield P-SHG
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microscope, enables dynamic imaging of processes involving fast kinetics, such as live

ultrastructural imaging of contracting muscle fibers [17] and deformation of collagen fibers during

application of external forces [44].

Methods

Widefield P-SHG microscopy

A custom microscope was designed and constructed for widefield polarimetric SHG imaging as

shown in Fig 6. A high-power amplified laser (PH1-15W, Light Conversion) was used for large

area illumination. The laser power was set to 1.3 W, at 100 kHz repetition rate, and 13µJ pulse

energy. The laser beam was collimated to 4 mm diameter and coupled to the microscope. The

beam passed through an infrared polarizing cube (PBS102, Thorlabs) to produce a linearly

polarized state, followed by an infrared liquid crystal variable retarder (LCC1223-B, Thorlabs),

referred to as the polarization state generator (PSG-LCVR), which was positioned with its fast

axis at 45◦ to the incident linear polarization. An achromatic doublet (AC254-030-AB, Thorlabs)

with a focal length of 30 mm was used to focus the beam on the sample. Widefield imaging was

achieved by placing the sample above the focal plane and adjusting the illumination area (∼1 mm

in diameter) through axial translation of the excitation achromatic doublet. A Plan-Neofluar

20×/0.50 air collection objective (420350-9900-000, Zeiss) was used to collect the SHG signal

radiated in the forward direction. The polarization state analyzer (PSA-LCVR), comprised of a

LCVR in the visible wavelength range (LCC1223-A, Thorlabs), was used to probe the outgoing

polarization of the SHG signal (also positioned with its fast axis at 45◦ to the incident linear

polarization). The SHG signal was passed through a tube lens (452960-0000-000, Zeiss) and a

visible range polarizing beam splitter (PBS251, Thorlabs). A dichroic mirror

(FF662-FDi02-t3-25x36, Semrock) was used to separate the visible SHG signal from infrared

fundamental light. The infrared light transmitted through the dichroic mirror was blocked by a

beam dump. The reflected SHG signal was filtered by two BG40 colored glass filters (FGB37-A,

Thorlabs), a 515/10nm interference filter (65-153, Edmund Optics), and projected onto a sCMOS

camera (ORCA-Flash 4.0 V2, Hamamatsu).
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 Plan-NEOFLUAR
20x/0.5 Pol

sCMOS Camera

SHG-F

Sample

CO

PSG-LCVR

PSA-LCVR

Femtosecond Laser
1.3 W, 100 kHz, 1030 nm

BD

DM

PBS-IR

PBS-VIS

TL

AD

Figure 6: Widefield P-SHG microscope

setup. Schematic representation of the

experimental setup. The laser beam

denoted in red is focused before the sample

after passing polarizing beam splitter (PBS-

IR), liquid crystal variable retarder of

polarization state generator (PSG-LCVR)

and achromatic doublet (AD). The produced

SHG signal, depicted in green is collected

by a collection objective (CO), passed

through the liquid crystal variable retarder

of polarization state analyzer (PSA-LCVR),

tube lens (TL), polarization beam splitter

(PBS-VIS), dichroic mirror (DM), filter

(SHG-F), and projected onto the camera.

The laser beam is terminated at a beam

dump (BD).

To carry out polarimetric measurements, four orthogonal incoming polarization states were

generated including left circular polarized (LCP), horizontally linearly polarized (HLP), right

circularly-polarized (RCP), and vertically linearly polarized (VLP), corresponding to quarter-wave

(λ/4), half-wave (λ/2), three-quarter-wave (3λ/4), and full-wave (λ) retardances of the

PSG-LCVR, respectively. For each incoming polarization state, four SHG signal polarization

states (set by the PSA-LCVR) corresponding to the same set of retardance values (quarter-wave,

half-wave, three-quarter-wave and full-wave) were measured, resulting in 16 combinations of

polarization states. Each polarization state was imaged with a 10 s exposure time, and 5 s of delay

time was used for switching polarization states between exposure times, so that polarimetric

measurement of each 670µm×670µm imaged area was completed in 4 minutes. Therefore, P-SHG

imaging of the entire microarray was achieved in approximately 3 hours. It is important to
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mention that whole-microarray imaging time may be significantly reduced by decreasing the

polarization switch delay time to <1s, in which case, whole-array P-SHG measurement would be

complete in < 2.5 hours. Furthermore, the camera exposure time may be reduced with larger

illumination areas and higher laser powers, however, such conditions were not considered in this

work and will need to be tested for photobleaching and photodamage.

Polarimetric parameter calculations

The polarization state of the SHG signal can be characterized by a Stokes vector [42, 43]

s = (s0, s1, s2, s3)
T (1)

, where s0 is the total intensity, s1, s2 are the linearly polarized Stokes vector components, and s3 is

the circularly-polarized Stokes vector component. The measured SHG of the 16 polarization state

combinations were used to compute SHG Stokes vector elements. Using these elements, polarimetric

parameters of interest were calculated to reveal ultrastructural properties of interest, including: the

average SHG intensity produced with circularly-polarized incident light; a ratio of two achiral second

order nonlinear optical susceptibility tensor elements, χ(2)
zzz/χ

(2)
zxx (R-ratio), where z points along the

fiber axis; the degree of circular polarization (DCP); SHG circular dichroism (SHG-CD); and SHG

linear dichroism (SHG-LD). R-ratio and DCP have been shown previously to provide valuable

information on the ultrastructural and molecular organization of collagen fibers, while SHG-CD

and SHG-LD probe the three-dimensional fiber orientation [10, 12, 11, 15, 41, 44, 45]. For detailed

calculation of all the Stokes vector elements, refer to supplementary information document.

The orientation-independent SHG, ICP , of each core was computed from the average SHG signal

from right and left (RCP and LCP) circular polarizations of the incident light

ICP =
1

2
(sRCP0 + sLCP0 ) (2)

, where the superscripts refer to the PSG polarization states, and the subscripts identify Stokes

vector components of SHG signal. The R-ratio was calculated in terms of 1st and 4th elements of

the measured SHG Stokes vector [48]:

R =
χ(2)
zzz

χ
(2)
zxx

= 1 + 2

(
sRCP0 + sLCP0

sRCP3 − sLCP3

)
+ 2

√√√√(sRCP0 + sLCP0

sRCP3 − sLCP3

)2

− 1
)

(3)
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DCP was defined as the average of the magnitude of circular Stokes element, over the total intensity,

such that [49]

DCP =
1

2

(
|sRCP3 |
sRCP0

+
|sLCP3 |
sLCP0

)
(4)

In addition, we computed SHG-CD, which was conventionally expressed as [46, 47, 48]

SHGCD = 2

(
sRCP0 − sLCP0

sRCP0 + sLCP0

)
(5)

and SHG-LD as:

SHGLD = 2

(
sV LP0 − sHLP0

sV LP0 + sHLP0

)
(6)

, where both SHG-CD and SHG-LD range from -2 to 2.

Texture analysis

Textural parameters were extracted from a grey-level co-occurrence matrix (GLCM), which is a

second-order statistical representation of the grey-level distribution in a region of interest [27].

The GLCM was built by counting the occurrence of a pixel of grey level i followed by a pixel of

grey level j at a distance d along a direction specified by angle θ. In the case of nearest neighbors

(d = 1), the four angles of analysis were θ = {0◦, 45◦, 90◦, 135◦}. GLCMs of all four angles were

constructed and averaged, forming a direction-independent GLCM. The probability density

function, Pd,θ(i, j), of finding certain grey-level pairs was obtained through normalization of the

resulting GLCM. From this, we calculated the five textural parameters of interest, as described by

Haralick et.al [27].

A custom-built texture analysis program was written in MATLAB, taking advantage of the

available functions. The size of the GLCM depends on the number of grey levels (Ng) specified by

the user. Since the program runtime was highly dependent on Ng, a testing routine was carried

out to determine the optimal Ng, represented by discretization level of continuous polarimetric

parameters (refer to supplementary information and Supplementary Fig. 1 for detailed calculation

of Ng).

The presence of significant background in widefield P-SHG imaging results in highly skewed

texture parameter distributions, leading to reduced differentiation between the groups. As such,

the background pixels were converted to “not a number” (NaN) and were not included in the
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analysis. Consequently, the texture parameters only reflect the structure of the signal-producing

entities, such as collagen fibers.

The measured texture parameters were contrast, correlation, entropy, angular second moment

(ASM) and inverse difference moment (IDM). The contrast, ν, is defined by:

ν =
Ng−1∑
i,j=0

(i− j)2Pd,θ(i, j) (7)

, which is a measure of pixel value differences between grey-level pairs. Contrast is highly sensitive

to variation in neighboring pixel values and it can be used to probe collagen fiber density in the

tissue.

Correlation, ρ, quantifies a linear dependence between grey-level pairs, is expressed as:

ρ = −
Ng−1∑
i,j=0

Pd,θ(i, j)
[
(i− µ)(j − µ)

σ2

]
(8)

, where µ is the mean and σ is the standard deviation of the grey levels. The correlation ranges

from -1 to 1 for perfectly negatively or perfectly positively correlated images, respectively. In the

context of widefield polarimetric SHG microscopy, correlation may be used to showcase well-defined

structures and patterns in the acquired images.

Entropy, S, is defined by:

S = −
Ng−1∑
i,j=0

Pd,θ(i, j) log2 (Pd,θ(i, j)) (9)

, which measures the level of disorder or lack of spatial organization of the grey levels. Entropy

increases as disorder increases; however, it is also indicative of the size of the pixel clusters, which

often represent bundles of collagen fibers.

Conversely, angular second moment (ASM) is a measure of orderliness and ranges from 0 to 1, where

1 is characteristic of a completely uniform image. ASM also varies with the size of pixel clusters

of comparable values and is a measure of the average size of similar collagen fiber bundles in an

image. ASM is expressed as:

ASM =
Ng−1∑
i,j=0

(Pd,θ(i, j))
2 (10)

Finally, the inverse difference moment (IDM) describes the homogeneity of an image. Similar to

ASM, the range of IDM is from 0 to 1, where 1 is indicates of a completely uniform image. IDM is

provided by:

IDM =
Ng−1∑
i,j=0

Pd,θ(i, j)

1 + (i− j)2
(11)
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Statistical analysis and machine learning

Each polarimetric image was divided into 64 sub-images for high-resolution texture analysis, and

to compute the statistics of polarimetric parameters. The performance and stability of the logistic

regression classifier in differentiating tumor from normal tissue were considered to establish the

optimal discretization level of 64 sub-images for each polarimetric image (see supplementary

information and Supplementary Fig. 2 for more detail). The results indicated a range of optimal

discretization levels from 4 to 64 sub-images per image. The latter was chosen, since it results in a

large AUROC and Brier scores, while performing with the highest stability.

Sub-images without SHG signal were discarded and the mean and mean absolute deviation

(MAD) of all remaining sub-images were computed using standard MATLAB toolboxes. To

reduce the effects of extreme outliers, data points below the 1st, and above the 99th percentiles of

parameters in each group were discarded. These statistics were then used in further multiple

comparisons tests to establish statistical significance between various groups. There were 544

normal, 103 triple negative, 325 double positive, and 115 triple positive data points across 36

polarimetric and texture parameters. Most parameters did not form normal distributions as

indicated by Q-Q plots, and the Shapiro-Wilk test. Hence, MATLAB’s Kruskal-Wallis H test with

1086 degrees of freedom, along with the Dunn-Bonferroni post hoc test, were used to determine

the significance of the difference between normal and all three tumor groups, for all polarimetric

and texture parameters, separately. Differences with p-values < 0.05 and < 0.001 were considered

to be significant and highly significant, respectively.

Breast tissue microarray preparation

The tissue samples were collected following an institutionally-approved protocol (University Health

Network, Toronto, Canada). The microarray contained 45 circular tissue samples (cores) from 12

different patients. The cores were 0.6 mm in diameter and 5µm thick, obtained from formalin-fixed

tissues and mounted on a glass slide. The tissue was H&E-stained and imaged with a bright-field

microscope scanner (Aperio Whole Slide Scanner, Leica Biosystems) for reference. Cores that were

mainly comprised of adipose tissue did not produce significant SHG signal and were removed from

the analysis. In addition, two tumor cores containing significant collagenous stroma with minor
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tumor foci were excluded, due to their rarity in the microarray. In total, 15 normal cores, 5 triple

negative cores, 11 double negative cores, and 4 triple positive cores (20 tumor cores in total) were

considered. The tissue assessment and tumor identification were performed by expert pathologists

(S.J.D. and E.Z.).
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