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Abstract

Here we present an exome-wide rare genetic variant association study for 30 biomarkers in 191,640

individuals in the UK Biobank. We perform gene-based association tests for separate functional variant

categories to increase interpretability and identify 201 significant gene-biomarker associations, which include

novel associations such as GIGYF1 with diabetes markers. In addition to performing gene-based variant

collapsing tests, we design and apply variant-category-specific kernel-based tests that integrate quantitative

functional variant effect predictions for missense variants, splicing and the binding of RNA-binding proteins.

For these tests we present a powerful and computationally efficient combination of the likelihood-ratio and

score tests that found 32% more associations than the score test alone. Kernel-based tests identified 12-31%

more associations than their gene-based collapsing counterparts with large overlaps, and had advantages in

the presence of gain of function missense variants. We introduce local collapsing by amino acid position

for missense variants and use this approach to identify potential novel gain of function variants in PIEZO1,

and interpret a position-specific association of ABCA1 -variants with inflammation marker CRP. Our results

show the benefits of separately investigating different functional mechanisms when performing rare-variant

association tests, and highlight the strengths of biomarker panels for large biobanks.

1 Introduction1

Large biobanks that combine in-depth phenotyping with exome sequencing for hundreds of thousands of indi-2

viduals promise new insights into the genetic architecture of health and disease [1]. Whilst common-variant3

association studies have detected tens of thousands of loci associated with heritable traits, the underlying func-4

tional mechanisms remain largely unknown due to linkage disequilibrium and the fact that the majority of loci5

lie in non-coding regions of the genome [2]. Furthermore, effect sizes of common variants tend to be small, as6
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variants with large detrimental effects are selected against, which limits their frequency [3, 4].7

Association studies using whole exome-sequencing (WES) do not face these issues to the same extent, as they8

are limited to more interpretable loci where an enrichment for large effect sizes is expected [5]. However, the9

majority of genetic variants identified by WES are extremely rare, and the vast number of these variants poses10

challenges for rare variant association studies (RVAS), given the burden of multiple testing and low statistical11

power due to low allele frequencies [6, 7]. For these reasons, variants in RVAS are typically grouped into sets12

that correspond to functional units such as genes prior to association testing [6, 8, 9, 7]. Not only does this13

strategy aggregate signal and thereby increase statistical power, but it also lessens the burden of multiple testing.14

Burden tests, for example, collapse variants within genes into a single variable prior to association testing, i.e.15

perform gene-based variant collapsing [6, 10]. Alternatively, kernel-based tests aggregate groups of variants into16

a so-called kernel matrix that is tested using a score test [8] or the likelihood ratio test (LRT) [9] without the17

need for collapsing. Among these, the LRT has higher statistical power but is computationally more expensive18

[11].19

While gene-based variant collapsing performs best in the presence of many causal variants with effect sizes20

that point in the same direction (e.g. increasing risk for disease), kernel-based tests have advantages in cases21

of opposing effects and fewer causal variants [7]. To increase the fraction of causal variants, exome-wide RVAS22

that use variant collapsing have defined qualifying variants based on annotations such as allele frequencies or23

variant effect predictions, and excluded all other observed variants from the association tests [6, 12, 13, 14].24

These studies have mostly focused on non-synonymous variants, where software tools identify protein truncating25

variants and distinguish between benign and potentially deleterious missense variants [15, 16, 17, 18].26

Here, we perform an extensive RVAS using exome sequencing data from the UK Biobank [19]. For approx-27

imately 190,000 individuals, 30 quantitative biomarkers provide objectively quantifiable measures related to28

the health status of individuals [20], making them attractive phenotypes for genome-wide association studies29

[21]. We go beyond the collapsing tests for coding variants described above and explore the use of kernel-based30

association tests and deep-learning-derived effect predictions for gene regulatory variants, namely for splicing31

[22] and the binding of RNA-binding proteins (RBPs)[23].32

Specifically, we use quantitative functional variant effect predictions to group and weigh variants in gene-33

based association tests and increase interpretability. The greater flexibility of kernel-based tests allowed us to34

design variant-category-specific tests and combine collapsing and non-collapsing approaches in the same test.35

For kernel-based tests, we show that a computationally efficient combination of the score test and the LRT36

identifies 32% more significant associations on average compared to the score test alone. We find 201 significant37

gene-biomarker associations in total, of which 40% have not been previously reported to GWAS databases38

[24, 25]. Finally, we interpret associations that were only found for specific variant categories, or associations39

for which gene-based variant collapsing and kernel-based tests gave vastly different results.40
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2 Results41

2.1 Data description and workflow42

We performed an RVAS of 30 quantitative serum biomarkers in UK Biobank 200k WES release [19]. These43

biomarkers contain established disease risk factors, diagnostic markers, and markers for phenotypes otherwise44

not well assessed in the UK Biobank cohort. We roughly categorized these markers into cardiovascular, bone and45

joint, liver, renal, hormonal and diabetes markers (Supplementary Table S1). After removing related individuals46

and restricting the analysis to those with no missing covariates 192,352 participants remained. 16,737,187 rare47

(MAF < 0.1%) variants were observed in this subset and passed basic quality criteria (Methods). The median48

sample size for the biomarkers was 182,144 and ranged from 16,022 (Rheumatoid factor) to 183,105 (Alkaline49

phosphatase) (Supplementary Table S1). 191,640 participants had at least one measured biomarker.50

We used functional variant effect predictions to group variants into categories and perform functionally51

informed gene-based association tests. Specifically we chose to investigate strict protein loss of function (pLOF,52

e.g. frame shift or protein truncating variants) variants, missense variants, splice-altering variants, and variants53

predicted to change the binding of RNA-binding proteins (Figure 1, Methods). We treated these categories54

separately during association testing to increase interpretability, resulting in multiple tests per gene, which we55

refer to as separate models. Specifically, we adapted either kernel-based tests, gene-based variant collapsing,56

or both types of association test depending on the variant effect category (Methods). We make variant effect57

predictions for all variants in the UK Biobank 200k exome release available1, as well as our analysis pipeline258

and software used to perform association tests3.59

2.2 Functionally informed association tests60

Protein loss of function We predicted the effects of genetic variants on protein coding genes using the61

Ensembl variant effect predictor [15] and found 475,732 pLOF variants with a median of 20 pLOF variants62

per gene (Figure 2, Methods). For pLOF variants, we assumed a large fraction of potentially causal variants,63

and that variants within the same gene should by and large affect the phenotype in the same direction. For64

these reasons, we performed tests using gene-based variant collapsing tests (Methods), and found 92 significant65

associations originating from 53 distinct genes across the genome.66

Missense We defined 1,836,348 high-impact missense variants based on PolyPhen-2 [16] and SIFT [17] (Meth-67

ods). 18,420 genes contained at least one high-impact missense variant, with a median of 73 high-impact missense68

variants observed per gene.69

We hypothesized that missense variants in the same gene might have both trait-increasing and trait-70

decreasing effects, and that there might be fewer causal variants. For these reasons we performed not only71

a gene-based variant collapsing test, but also a kernel-based association test. We designed a missense-specific72

1https://github.com/HealthML/ukb-200k-wes-vep
2https://github.com/HealthML/faatpipe
3https://github.com/HealthML/seak
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kernel that collapses variants locally by amino acid position, which affected 20% of variants (Methods). We73

identified 101 significant associations using gene-based variant collapsing, and 128 using kernel-based association74

tests, with an overlap of 88. The total of 141 associations identified by either model originated from 78 distinct75

genes.76

Combining pLOF and missense As we expected many missense variants to effectively lead to a loss of77

function, we combined pLOF and missense variants in additional models. We performed both a joint variant78

collapsing test, and a kernel-based test combining gene-based collapsing of pLOF variants and local collapsing of79

missense variants (Supplementary Methods). We identified 148 significant associations with gene-based variant80

collapsing, and 167 with kernel-based association tests, with an overlap of 125 in 102 genes. Combining missense81

variants and protein LOF variants provided 23 unique associations which were not found when testing variants82

in either category alone, and which where also not found by other models.83

Splicing We located 775,349 potentially splice-altering rare single nucleotide variants in 17,168 genes by cross84

referencing against published SpliceAI variant effect predictions ([22]; Methods). The median number of variants85

per gene was 32. We hypothesized that these splice variants could have complex downstream consequences and86

decided to compare both gene-based variant collapsing and kernel-based association tests. For kernel-based87

tests, we used the weighted linear kernel [8].88

We identified 38 significant associations with gene-based variant collapsing in 29 distinct genes. As our89

definition of pLOF variants included variants that directly hit annotated splice donor/acceptor sites, there was90

a considerable overlap of 98,017 variants between these annotations (21% of all pLOF variants). We therefore91

expected (and found) large overlaps (32, 84%) in the significant associations for pLOF and splice variants92

using gene-based variant collapsing. Kernel-based tests identified 50 significant associations in 35 genes. These93

included 32 hits already identified by pLOF gene-based collapsing, but a larger number of hits not identified by94

other models.95

Combining pLOF and splicing We expected many predicted splice variants to lead to a loss of function,96

and therefore explored joint tests with pLOF variants. We applied both a joint variant collapsing test, and a97

kernel-based test that only collapses pLOF variants (Supplementary Methods). Joint gene-based collapsing of98

splice variants with pLOF variants identified 78 associations, of which 68 (87%) had already been identified by99

our protein LOF analysis. On the other hand, kernel-based association tests identified 94 significant associations100

of which 74 (79%) had already been found using pLOF variants. While combining splice and pLOF variants did101

yield the lowest p-values across all models for 14 significant associations, it did not uniquely identify additional102

associations which hadn’t been found by other models already.103

RBP-binding Splicing is only one of several eukaryotic post-transcriptional regulatory mechanisms medi-104

ated by interactions of RNA-binding proteins (RBPs) with their target RNAs. As the UK Biobank WES data105

also contain variants in non-protein-coding parts of mRNAs, namely in introns (41.4%) and UTRs (5.2%), we106
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reasoned that we may be able to identify variants with effects on gene regulation such as those mediated by dif-107

ferential binding of RBPs. Specifically, we investigated if changes in the binding of RBPs predicted by DeepRiPe108

[23] could be associated with biomarker levels. The six RBPs QKI, MBNL1, TARDBP, ELAVL1, KHDRBS1109

and HNRNPD were selected based on their binding preferences (introns, exons)[26], the high performance of110

the model to predict genuine target sites for these RBPs, and the reported presence of clear binding sequence111

motifs. We predicted variant effects for these RBPs and identified 395,462 variants with large predicted effects112

in 17,459 genes, with a median of 13 variants per gene (Methods).113

As we expected a low number of causal variants and potentially opposing effect sizes, we only performed114

kernel-based association tests and identified 10 significant associations in 9 distinct genes.115

gene annotation,
observed variants

qualifying variants,
effect predictions

gene-based variant collapsing

kernel-based tests

functional VEP
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ke
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exome sequencing

functionally informed
association tests
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Figure 1: Rare-variant association testing pipeline. Exome sequencing measures exon-proximal genetic
variants. All variants are subjected to functional variant effect prediction (VEP). Qualifying variants are
determined based on the variant effect predictions and minor allele frequencies (MAF<0.1%) and categorized
based on their predicted functional impacts (protein loss of function, missense, splicing, RBP-binding). Finally,
we test the different categories of qualifying variants in gene-based association tests against 30 biomarkers using
gene-based variant collapsing and kernel-based tests.

2.3 Integrative analysis overview116

Merging the results from all models yielded a total of 201 gene-biomarker associations originating from 120117

distinct genes (Supplementary Table 2). We found at least one significant association for all but three biomark-118

ers (urea, oestradiol and rheumatoid factor) (Figure 2, Supplementary Figures S1-S3). For the majority of119

associations (119, 60%), combining missense and protein LOF variants produced the smallest p-values. We120

calculated the genomic inflation factor λ across all tests that were performed genome-wide, and did not find121

evidence of inflated type I error levels (Figure S7, Supplementary Data). Of the 120 distinct loci, 46 (38%) were122

associated with more than one biomarker, and a few genes had five or more significant associations: ANGPTL3,123

APOB, JAK2, GIGYF1 and G6PC. Many of the genes we found to be associated with specific biomarkers124

had either been implicated in diseases related to these biomarkers (e.g. LRP2 with renal markers [27]) or are125

mechanistically related to the biomarkers themselves (e.g. cystatin C with its own gene, CST ). According to126
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the NHGRI-EBI GWAS Catalog [2, 28] and PhenoScanner (p < 10−7) [24, 25] the majority of significant loci127

(60%) contained (primarily common, modest effect-size) variants already reported to be associated with the128

respective biomarkers, as shown for the most significant associations in Table 1.129

We recovered 136 (83%) of the 163 significant associations reported by [14] for the same phenotypes in130

their gene-based variant collapsing analysis on the UK Biobank 200k WES release (Supplementary Table 3),131

although the sets of participants, preprocessing, covariates, selection criteria for qualifying variants, thresholds132

for genome-wide significance, and statistical tests differed. 4 (4.8%) out of the 83 associations only found133

by our analysis could be explained by the significance cutoff, which was lower in their study (5 × 10−9). Of134

the 79 remaining associations, 19 (24%) could be explained by the use of DeepRiPe- and SpliceAI predictions135

(their collapsing models considered only non-synonymous variants). We further found associations for which136

the kernel-based missense model produced the lowest p-values to be overrepresented in this set (20, 25%, 1.7137

fold). 52 out of 79 (65%) were detectable by the single-variant tests reported in the same study [14] which138

included both rare and common variants.139

Separating variant effect categories during association testing and comparing kernel-based to gene-based140

collapsing tests allowed us to further interpret our results, as illustrated with several examples below.141

cardiovascular liver renal hormonal bone and joint diabetes

H
D
L 

ch
ol
es

te
ro

l

Apo
lip

op
ro

te
in
 A

Tr
ig
ly
ce

rid
es

Li
po

pr
ot

ei
n 

A

C
ho

le
st
er

ol

LD
L 

di
re

ct

Apo
lip

op
ro

te
in
 B

C
−r

ea
ct
ive

 p
ro

te
in

To
ta

l b
ilir

ub
in

D
ire

ct
 b

ilir
ub

in
G
G
T

ALT

Alb
um

in
AST

U
ra

te

C
re

at
in
in
e

C
ys

ta
tin

 C

To
ta

l p
ro

te
in

Pho
sp

ha
te

SH
BG

IG
F−

1

Te
st
os

te
ro

ne
ALP

Vita
m

in
 D

C
al
ci
um

H
bA

1c

G
lu
co

se

0

5

10

15

20

lo
c
i

miss
miss + pLOF

splice
splice + pLOF

pLOF
rbp

tie

single combined

m
is
s

sp
lic

e

pL
O
F

rb
p

m
is
s 
+ 

pL
O
F

sp
lic

e 
+ 

pL
O
F

0

50

100

150

variant effect

s
ig

n
ifi

c
a

n
t 

h
its

lead annotation

a b

c

missense splice pLOF rbp

0
15

0
30

0 0
15

0
30

0 0
15

0
30

0 0
15

0
30

0

0

2000

4000

6000

8000

number of variants / gene

c
o

u
n

t

Figure 2: Association tests overview. (a) Histograms of the number of qualifying variants per tested gene
for the different variant categories. Ranges are truncated at 300 variants, which affected 731 genes for missene,
84 for splice, 7 for pLOF and 15 for rbp (b) Bar plot of the number of significant loci found by testing qualifying
variants in the different categories separately (single) or in combination (combined). (c) Bar plot showing 201
significant gene-biomarker associations for 27 biomarkers (x-axis), colored by the variant effect which gave the
lowest p-value (lead annotation). ALP: alkaline phosphatase; ALT: alanine aminotransferase; AST: Aspartate
aminotransferase; GGT: Gamma glutamyltransferase

.
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category lead gene phenotype p-value variant effect test Nvar Ncarrier prev. reported
bone and joint GPLD1 Alkaline phosphatase 2.7 × 10−191 miss + pLOF gbvc 222 1645 yes
bone and joint ASGR1 Alkaline phosphatase 7.1 × 10−106 miss + pLOF K 97 517 yes
bone and joint CASR Calcium 6.3 × 10−50 miss + pLOF K 140 400 yes
bone and joint ALB Calcium 3.6 × 10−28 miss + pLOF K 117 995 no
bone and joint APOB Vitamin D 5 × 10−21 splice + pLOF gbvc 171 999 yes
bone and joint HSPG2 Alkaline phosphatase 9.5 × 10−21 miss K 1363 12120 no
cardiovascular ABCA1 Apolipoprotein A (+3) 3.7 × 10−202 miss + pLOF K 396 2184 yes
cardiovascular APOB LDL direct (+3) 3.7 × 10−161 miss + pLOF K 893 5041 yes
cardiovascular PCSK9 LDL direct (+2) 3.3 × 10−110 miss + pLOF K 203 1405 yes
cardiovascular LCAT HDL cholesterol (+1) 1.7 × 10−84 miss + pLOF gbvc 107 345 yes
cardiovascular CETP HDL cholesterol (+1) 2.2 × 10−84 miss + pLOF K 101 795 yes
cardiovascular APOC3 Triglycerides (+2) 7.1 × 10−75 miss + pLOF gbvc 28 297 yes
diabetes PIEZO1 HbA1c 7.3 × 10−150 miss K 908 9087 yes
diabetes GCK HbA1c (+1) 3 × 10−41 miss + pLOF K 61 175 yes
diabetes RHAG HbA1c 1.6 × 10−35 miss + pLOF K 87 793 no
diabetes SPTA1 HbA1c 1.1 × 10−28 miss + pLOF K 679 5499 yes
diabetes PFKM HbA1c 4.4 × 10−23 miss + pLOF gbvc 190 947 yes
diabetes JAK2 HbA1c 7.3 × 10−18 miss K 223 1053 no
hormonal IGFALS IGF-1 1.6 × 10−72 miss + pLOF gbvc 252 2135 no
hormonal HNF4A SHBG 3.3 × 10−25 miss K 72 582 yes
hormonal CLEC10A SHBG 6.4 × 10−23 miss K 39 682 no
hormonal IGFBP3 IGF-1 8 × 10−21 miss K 51 566 no
hormonal DNAH2 SHBG 4.5 × 10−16 miss K 875 6926 no
hormonal KDM6B SHBG 2.7 × 10−12 splice K 65 255 no
liver UGT1A10 Total bilirubin (+1) 8.6 × 10−74 miss + pLOF K 169 2162 yes
liver MROH2A Total bilirubin (+1) 1.2 × 10−44 miss K 369 3420 yes
liver SLCO1B3 Direct bilirubin (+1) 7.5 × 10−31 miss + pLOF gbvc 194 1734 yes
liver FCGRT Albumin 2.5 × 10−30 miss + pLOF K 90 480 yes
liver SLCO1B1 Total bilirubin (+1) 7.9 × 10−28 miss + pLOF gbvc 197 1868 yes
liver PLEC ALT 3.3 × 10−24 miss K 1721 16444 no
renal SLC22A12 Urate 0 miss gbvc 124 1109 yes
renal SLC2A9 Urate 9 × 10−83 miss + pLOF K 156 722 yes
renal ALPL Phosphate 1.7 × 10−81 miss gbvc 129 1071 .
renal FCGRT Total protein 7.2 × 10−26 miss + pLOF K 90 479 no
renal PDZK1 Urate 2.9 × 10−22 pLOF gbvc 23 180 yes
renal SLC22A2 Creatinine 5.5 × 10−19 miss + pLOF gbvc 171 1192 yes

Table 1: Top hits for every biomarker category. The six most significant associations for each category are
shown, excluding associations of biomarker genes with themselves, and collapsing repeated genes. The number
in brackets denotes the number of other biomarkers in the same category the lead gene was also associated
with. p-value: smallest p-value over all variant effect categories (column: variant effect) and tests for the lead
gene. All p-values shown are derived from the LRT except PDZK1 -Urate which comes from the score test.
test: kernel-based (K) or gene-based variant collapsing (gbvc); Nvar: number of variants; Ncarrier: number of
carriers; prev. reported: whether a GWAS hit for the same biomarker was previously reported within the lead
gene (GWAS catalog or PhenoScanner).

2.4 GIGYF1 is associated with diabetes markers142

Overall, we identified 31 significant associations in 22 loci exclusively in association tests incorporating pLOF143

variants alone, or pLOF combined with missense or splice variants. For the majority of these associations,144

combined testing with other variant categories led to smaller p-values. A notable exception were the five145

significant associations of GIGYF1 with biomarkers for diabetes [29] and cardiovascular disease risk, which were146

only significant for gene-based variant collapsing with pLOF variants. Specifically, we found positive associations147

with glucose (p = 3 × 10−9) and and glycated haemoglobin (HbA1c, p = 2 × 10−10), and negative associations148

with LDL direct (p = 1.6×10−9), Cholesterol (p = 6.5×10−10) and Apolipoprotein B (p = 3.8×10−9), making149

it one of the genes with the most associations in the data set. In total we found 69 carriers of GIGYF1 pLOF150

variants. Given its role in IGF-1 signalling together with GRB10 [30, 31], GIGYF1 pLOF variants could be a151

plausible albeit rare mechanism for diabetes. At the time of writing, two studies using either the UK Biobank152

200k exome sequencing release [32], or a larger tranche of UK Biobank exome sequencing data yet unreleased to153

the public [33], have confirmed the association of GIGYF1 with Type II diabetes (T2D). The association with154

T2D was not reported in in [14], however, associations with HbA1c and Cholesterol also reached genome-wide155

significance in their analysis (Supplementary Table 3).156
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2.5 Combining variant annotations yields six associations for G6PC157

We found six associations for G6PC, four of which were only found when combining protein LOF and missense158

annotations with gene-based variant collapsing tests (alkaline phosphatase, triglycerides, SHBG, urate). Vari-159

ants in G6PC cause Glucose-6-phosphatase deficiency type Ia (also called glycogen storage disease Ia) [34, 35],160

an autosomal recessive disease categorized by growth retardation, enlarged kidneys and liver, low blood glucose,161

and high blood lipid and uric acid levels. Consistent with signs of inflammation and impaired kidney and162

liver function, we found elevated levels of alkaline phosphatase (p = 8.4 × 10−9), gamma glutamyltransferase163

(p = 1.7×10−11), urate (p = 2.6×10−9), triglycerides (p = 8.9×10−9), and C-reactive protein (p = 1.96×10−13)164

in individuals with predicted high-impact missense or pLOF mutations in G6PC. We further identified a sig-165

nificant association with decreased levels of sex hormone-binding globulin (SHBG, p = 6.1 × 10−10), which is166

primarily produced in the liver [36]. All p-values above are those given by gene-based variant collapsing tests167

combining missense and pLOF variants, the model that gave the lowest p-values for all these associations. While168

Glucose-6-phosphatase deficiency type Ia is a rare recessive disease, our findings show that altered biomarker169

levels indicative of mild symptoms are detectable in heterozygous carriers of missense and LOF variants in the170

G6PC gene.171

2.6 Novel potential gain of function variants in PIEZO1172

Our testing strategy allowed us to identify genes in which specific variant categories might play an important173

role. One such example was PIEZO1, a mechanosensitive cation channel [37], which we found associated with174

diabetes marker HbA1c.175

For gene-based variant collapsing tests, we found a significant negative association of missense variants with176

HbA1c (p = 2.8 × 10−39), while the test for pLOF variants was not significant (p = 0.862, 623 carriers). By far177

the lowest p-value for this gene was given by the kernel-based test for missense variants (p = 7.296 × 10−150).178

Combining pLOF variants and missense variants did not lead to smaller p-values, but was still highly significant179

(p = 3.5 × 10−148, kernel-based LRT). The large differences between variant categories and type of association180

tests lead us to closer investigate the 908 predicted high-impact missense variants in 9,352 individuals for this181

gene.182

We performed single-variant score tests and identified multiple missense variants with strong negative as-183

sociations with HbA1c (Table 2). One these variants, 16:88719665:G:A or T2127M (rs587776991) is a gain184

of function variant that slows down inactivation kinetics of PIEZO1 in patients with dehydrated hereditary185

stomatocytosis (a disorder of red blood cells), together with other gain of function variants [38, 39]. Decreased186

levels of HbA1c had previously been observed in individuals with red blood cell disorders [40, 41, 42].187

We therefore hypothesised that the other highly significant variants could also potentially be gain of function188

variants. We grouped the missense variants within PIEZO1 by the amino acid positions they affected and189

performed local variant collapsing. This allowed us to identify other positions in PIEZO1 (e.g. 2110R or190

2474V) that are potentially sensitive to gain of function mutations (Table 2, Figure 3).191
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Consistent with a role of red blood cell disorders, we also found associations of RHAG (Rh Associated192

Glycoprotein) and SPTA1 with decreased levels of HbA1c. Mutations in RHAG cause overhydrated heriditary193

stomatocytosis [43], while SPTA1 mutations cause hereditary elliptocytosis [44].194

While it has been suggested that PIEZO1 stimulates insulin release [45], the decreased levels of HbA1c195

we observed in individuals with PIEZO1 -variants are more likely explained by (perhaps subclinical) forms of196

stomatocytosis or other abnormalities in red blood cells resulting from increased membrane permeability, i.e. a197

gain of function [46].198

variant id position weight variant Ncarrier variant p-val. βvariant ± position p-value βposition ±
16:88736318:C:T 463 0.983 A/T 109 1.9 × 10−10 -0.5591 0.088 2.5 × 10−10 -0.56 0.088
16:88736317:G:A 463 0.998 A/V 1 0.92 0.0938 0.92 2.5 × 10−10 -0.56 0.088
16:88731880:C:G 1008 0.99 G/R 65 7.9 × 10−14 -0.8494 0.11 5 × 10−15 -0.87 0.11
16:88731880:C:T 1008 0.99 G/R 3 0.013 -1.3151 0.53 5 × 10−15 -0.87 0.11
16:88726891:A:C 1175 0.998 F/V 4 4.5 × 10−8 -2.5068 0.46 4.5 × 10−8 -2.5 0.46
16:88726565:C:T 1260 0.706 V/I 78 6.2 × 10−8 -0.5619 0.1 2 × 10−8 -0.69 0.12
16:88726565:C:A 1260 1 V/F 1 0.062 -1.7112 0.92 2 × 10−8 -0.69 0.12
16:88721626:C:G 1772 0.988 R/P 13 4.5 × 10−6 -1.1661 0.25 2.4 × 10−9 -1.1 0.18
16:88721627:G:C 1772 0.976 R/G 10 0.0008 -0.9712 0.29 2.4 × 10−9 -1.1 0.18
16:88721626:C:A 1772 0.982 R/L 1 0.042 -1.8650 0.92 2.4 × 10−9 -1.1 0.18
16:88721627:G:A 1772 0.998 R/C 1 0.5 -0.6168 0.92 2.4 × 10−9 -1.1 0.18
16:88721423:C:G 1804 0.867 G/A 31 8.1 × 10−11 -1.0700 0.16 8.1 × 10−11 -1.1 0.18
16:88719717:G:A 2110 0.998 R/W 9 5.5 × 10−18 -2.6395 0.31 6 × 10−33 -2.7 0.22
16:88719716:C:T 2110 0.894 R/Q 9 1.4 × 10−16 -2.5241 0.31 6 × 10−33 -2.7 0.22
16:88719665:G:A 2127 1 T/M 22 1 × 10−31 -2.2895 0.2 1 × 10−31 -2.3 0.2
16:88716656:G:T 2277 0.956 L/M 314 2.9 × 10−39 -0.6885 0.052 2.9 × 10−39 -0.7 0.054
16:88716649:C:T 2279 0.829 R/H 16 9.8 × 10−9 -1.3146 0.23 3.5 × 10−9 -0.99 0.17
16:88716650:G:A 2279 0.976 R/C 16 0.0063 -0.6260 0.23 3.5 × 10−9 -0.99 0.17
16:88716649:C:G 2279 0.763 R/P 1 0.58 -0.5004 0.92 3.5 × 10−9 -0.99 0.17
16:88716234:C:T 2365 0.812 G/R 9 3.3 × 10−16 -2.4926 0.31 3.3 × 10−16 -2.8 0.34
16:88715751:C:T 2474 0.987 V/M 101 4.7 × 10−8 -0.4983 0.091 1.2 × 10−8 -0.52 0.091
16:88715751:C:G 2474 0.879 V/L 2 0.029 -1.4117 0.65 1.2 × 10−8 -0.52 0.091
16:88715751:C:A 2474 0.879 V/L 1 0.82 -0.2111 0.92 1.2 × 10−8 -0.52 0.091

Table 2: Potential PIEZO1 gain of function variants Variants are grouped and ordered by the amino acid
position and single-variant p-values. All variants with position p-values below 10−7 are shown. weight: impact
score; Ncarrier: number of carriers; variant p-val.: single-variant p-value (score test); βvariant: variant effect
size (± standard error); position p-value: p-value when collapsing variants by position (score test); βposition:
position effect size (± standard error). Positions relate to the ENST00000301015 transcript

2.7 Position-specific association of ABCA1 variants with inflammation marker199

CRP200

We found four significant associations of ABCA1 with biomarker levels. Three of these, namely the associations201

with Apolipoprotein A, HDL cholesterol, and cholesterol, are directly related to its role as an ATP-dependent202

transporter of cholesterol [47]. In line with previous findings, in our gene-based variant collapsing analysis we203

found both pLOF and high-impact missense variants to be strongly associated with decreased serum levels of204

these biomarkers [48].205

Yet, one additional association with inflammation marker C-reactive protein (CRP) was only identified by the206

kernel-based association test (p = 3.997 × 10−27). This prompted us to further investigate the 344 high-impact207

missense variants observed in ABCA1. Single-variant score tests and collapsing by amino-acid position identified208

two missense variants (9:104831048:C:A, 9:104831048:C:G) in one of the extracellular domains affecting the same209

amino acid (W590) which were associated with strongly decreased levels of CRP (Figure 3). The two variants210
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carried most of the signal in this gene with single-variant p-values of 2.08 × 10−31 for W590L (A allele, 54211

carriers) and 8.41 × 10−8 for W590S (G allele, 12 carriers, score test).212

The W590S-variant leads to reduced cholesterol and phospholipid efflux, while retaining expression and213

ability to bind APOA1[49, 50]. The other and more common variant, W590L, has been observed [51, 52], but214

to our knowledge not experimentally evaluated.215

The binding of APOA1 to ABCA1 activates anti-inflammatory pathways via JAK2 and STAT3 in macrophages216

[53]. Because W590S has been shown to slow dissociation of bound APOA1[50], this provides a plausible causal217

mechanism for the reduced levels of CRP we observe in carriers of the W590S-variant. We hypothesize that218

W590L might act through the same mechanism. This property could set these variants apart from other missense219

variants in ABCA1, which have been reported to abolish binding of APOA1[49].220

ABCA1 could therefore be a gene in which some variants elicit both a gain of function (slower dissociation221

of APOA1) and a loss of function (decreased cholesterol efflux) with distinct effects on different biomarkers.222
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Figure 3: Local collapsing of missense variants. Dosage box plots showing the alternative amino acid
counts (x-axis) against the covariate-adjusted quantile transformed phenotypes (y-axis). Collapsing variants by
amino acid position identified negative associations of PIEZO1 R1772 with HbA1c (p = 2.36 × 10−9), ABCA1
W590 with C-reactive protein (p = 1.13× 10−37), SLC2A9 R380 with Urate (p = 6× 10−10) and HNF4A R136
with Apolipoprotein A (p = 1.3 × 10−10, score test). Collapsing together with ClinVar variants with reported
conditions (*) helps place novel variants into disease context. For all 4 associations, collapsed p-values were
lower than those of the single variants.

2.8 A pathogenic JAK2 gain of function variant is associated with multiple biomark-223

ers224

We found seven significant associations of variants in JAK2 with biomarker levels, making it the gene with225

the highest number of significant associations. While its negative association with IGF-1 was only significant226

for protein LOF variants, six additional associations were found exclusively with kernel-based association tests227

incorporating missense variants. Upon closer investigation, we found a single missense variant (9:5073770:G:T)228

which was largely responsible for the significant associations with biomarkers for lipid metabolism (Apolipopro-229

tein A, HDL cholesterol, cholesterol, LDL direct; all negative), kidney function (Cystatin C; postive) and230

diabetes (HbA1c; negative). This variant, also known as V617F or rs77375493 leads to constitutive phospho-231

rylation activity and is a known prognostic marker in myeloproliferative neoplasms [54, 55]. JAK2 is therefore232

an example of a gene in which we observe a single gain of function variant with potential effects on multiple233

biomarkers.234
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2.9 Unique associations identified by splice-predictions235

In total, we identified 7 associations exclusively when incorporating SpliceAI variant effect predictions of which236

6 were only found using kernel-based association tests. Specifically, we found associations of variants in SLC9A5237

with Apolipoprotein A and HDL cholesterol, NDUFB8 with Aspartate aminotransferase, ATL3 with Urate,238

GH1 with IGF-1, ECE1 with with Alkaline phosphatase, and KDM6B with SHBG.239

Most of these associations were mainly caused by single variants. An exception was the known association240

of GH1 (Growth Hormone 1) with IGF-1 [56], the only hit in this subset also found by gene-based variant241

collapsing. The interpretation of single highly significant variants driving associations could not necessarily be242

narrowed down to a single mechanism. For example, the predicted splice variant in the last exon responsible243

for the two significant associations of SLC9A5 (16:67270978:G:A, 29 carriers, Figure 4a), was also a missense244

variant (with low to moderate predicted impact [52]). ECE1 and KDM6B lie in proximity to the genes coding for245

the biomarkers they were found associated with (ALPL, SHBG), therefore we couldn’t exclude transcriptional246

cis-regulatory effects as the cause of these associations.247

2.10 Associations identified by RBP-binding predictions248

Out of the 10 significant associations we identified using DeepRiPe variant effect predictions, the associations249

of ANGPTL3 with Triglycerides, and AGPAT4, PLG and LPA with Lipoprotein A had also been found using250

other models. The extreme heritability of Lipoprotein A, which is largely due to variation in the LPA gene251

[57, 58], makes it hard to interpret the associations for the lead genes LPA, AGPAT4 and PLG, that all lie252

within a megabase distance to LPA. The association we observed for ANGPTL3 was largely driven by a single253

intronic variant (1:62598067:T:C, Figure 4), which was predicted to increase the binding probability of QKI.254

The same variant on the opposite strand was also responsible for the association of DOCK7 with triglycerides.255

However, we determined that ANGPTL3 was more likely the causal gene, given the associations of ANGPTL3256

with triglycerides we had independently found with other variant categories and the close proximity of an257

ANGPTL3 exon.258

We further investigated this variant by assessing binding probabilities of RBPs beyond the six RBPs in focus259

here that are represented in DeepRiPe. We found that the variant was also predicted to decrease the binding260

probability of BCLAF1, a factor related to mRNA processing [59] and increase binding of HNRNPL (Figure 4).261

Using attribution maps [23], we found that instead of strengthening or inserting a new QKI binding motif, this262

variant weakens a splice donor signal in the presence of upstream binding motifs for the splicing regulators QKI263

and HNRNPL (Supplementary Figure S4). SpliceAI predicted only a weak upstream donor loss (0.02) for this264

variant, which was well below the threshold of 0.1 we used to identify splice-altering variants, but indicative of265

the same trend.266

The remaining five associations exclusively identified by association tests incorporating RBP-binding predic-267

tions were those of ATG16L1 with Total bilirubin and direct bilirubin, UPB1 with Gamma glutamyltransferase,268

SLC39A4 with Alanine aminotransferase and SHARPIN with Alanine aminotransferase.269
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Both SHARPIN and SLC39A4 lie within half a megabase of the Alanine aminotranferase gene (GPT ), there-270

fore we could not exclude potential transcriptional cis-regulatory effects as the true cause for these associations.271

Furthermore, single variants carried most of the signal for both genes.272

Common intronic variants of ATG16L1 were previously found to be associated with Crohn’s disease and273

inflammatory bowel disease [60, 61] and increased bilirubin levels [62, 63]. To our knowledge, rare variants274

with associations to bilirubin levels within AT16L1, especially those potentially affecting RBP-binding, have275

not been identified by previous studies.276
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Figure 4: Variants identified by deep learning (a) Dosage box plots showing covariate-adjusted quantile
transformed phenotypes against minor allele counts for variants in SLC9A5 and ANGPTL3 /DOCK7. A pre-
dicted splice-variant 16:67270978:G:A is negatively associated with HDL cholesterol (p = 8.36 × 10−12, score
test), whereas intronic 1:62598067:T:C is negatively associated with Triglycerides (p = 1.25 × 10−25, score
test). (b) DeepRiPe binding probabilities for 1:62598067:T:C for three RBPs in HepG2 cells. While predicted
probabilities for the reference sequence are ambiguous, the alternative allele shifts binding probabilities in favor
of QKI and HNRNPL. All RBPs with absolute predicted variant effects above 0.2 and binding probabilities
greater than 0.5 for either reference or alternative alleles are shown.

2.11 Combined likelihood ratio and score tests (sLRT)277

In order to benefit from both the speed of the score tes [8] and higher power of the LRT [11] we investigated278

the use of a combination of these tests, which we call the sLRT (score-LRT). The sLRT is a likelihood ratio test279

that is performed only when initial score tests reach nominal significance at a given cutoff t. If this threshold is280

not reached, it returns the score test p-value. Throughout our analysis, we used t = 0.1, and found that it was281

unlikely that a larger threshold would have identified many more associations (Supplementary Figure S5). As282

the run time is dominated by the cost of computing the LRT, this test can achieve a computational speedup283

factor of roughly 1/t = 10 over the LRT under the null hypothesis.284

The sLRT identified more significant associations than the score test particularly when performing kernel-285

based association tests (Supplementary Figure S6). For missense and splice variants, the kernel-based sLRT286

captured all associations that would have been identified by the kernel-based score test alone. In both cases,287

the sLRT identified additional associations. However, a large fraction of these additional associations (40% for288

splice variants, and 61% for missense variants) were also identified by gene-based variant collapsing for which289
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the sLRT and score test gave almost identical results. Nevertheless, we found the majority of the remaining290

additional associations to be plausible and/or previously reported in other association studies and therefore291

used the sLRT throughout our analysis, except for pLOF variants, where we only performed only a gene-based292

variant collapsing test.293

3 Discussion294

In our analysis, we combined gene-based variant collapsing and kernel-based tests under a common framework295

and performed functionally informed gene-based tests for rare variants with 30 biomarkers.296

Overall, our approach was successful at identifying disease genes without explicitly using disease diagnoses297

themselves, even for recessive diseases (G6PC, glycogen storage disease Ia [34]), or diseases with mixed inheri-298

tance patterns (LRP2, Fanconi syndrom [27]), while keeping the number of tests low compared to phenome-wide299

association studies.300

While some of the changes in biomarker levels we detected might be be sub-clinical, they could interfere with301

the diagnosis of common conditions which rely on biomarkers. To prevent misdiagnoses and enable preventative302

care, our results could aid the design of targeted sequencing panels that focus on the genes with the highest303

impacts. For example, we found 8% of participants to harbor at least one protein LOF variant in any of the304

significant loci for that variant category. In other words, it’s fairly common to have at least one uncommon305

LOF variant with potential effects on biomarker levels.306

One major contribution of our study was the design and successful application of kernel-based tests that307

incorporate quantitative functional variant effect predictions for large exome sequencing data. A previous308

study had tried to apply kernel-based score tests using SKAT [8] on the 50k WES release, but found mostly309

unreliable results [12]. In contrast to their approach we did not re-weigh variants according to allele frequencies.310

Furthermore, we showed that a computationally efficient combination of the LRT and score test has potentially311

higher power than the score test alone, and identified more associations than gene-based variant collapsing.312

When comparing gene-based collapsing and kernel-based tests for missense variants, we found kernel-based313

tests to have advantages in the presence of gain of function variants (PIEZO1, ABCA1, JAK2 ), where they314

identified plausible causal associations missed by gene-based collapsing tests. These genes likely are examples315

of a low fraction of causal variants, a regime in which kernel-based tests are statistically more powerful than316

gene-based collapsing [7].317

Although kernel-based tests should also provide benefits if genes contain variants with strong opposing318

effect sizes, we did not find this to be a widespread phenomenon for the associations we identified (with some319

exceptions such as APOB). More such cases could appear for non-coding regions in whole-genome sequencing320

studies.321

While we found a large overlap between our associations and those found in the variant collapsing analysis322

presented in [14], the differences highlight the sensitivity of gene-based tests to qualifying criteria for rare323

variants, which can make them harder to reproduce. By making our analysis pipeline public, we hope to324

13

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.27.444972doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.444972
http://creativecommons.org/licenses/by-nc-nd/4.0/


increase reproducibility and enable others to explore different qualifying criteria more easily. By performing325

kernel-based tests and including variants potentially acting through splicing and the binding of RBPs, we326

identified additional associations without the need for single-variant tests.327

We demonstrated how local collapsing of missense variants by amino acid position aids interpretation and328

causal reasoning in the presence of previously validated variants. Local collapsing was directly built into the329

kernel-based tests we performed for missense variants, where it affected 20% of variants, a number which will330

further grow with larger and datasets.331

We explored the use of deep-learning-derived variant effect predictions for splicing and the binding of RBPs.332

The restriction to exon-proximal regions meant we only observed a fraction of the variants potentially acting333

through these mechanisms. Associations found by incorporating splice-predictions largely overlapped with those334

identified with pLOF variants (which included simple splice donor/acceptor variants). While we found some335

associations exclusively with splice-predictions, these were mostly due to single variants and would need further336

validation (e.g. SLC9A5 ). Similar reasoning holds for the associations found with predictions for RBP-binding.337

We anticipate that deep-learning-based predictions will become more valuable for non-coding regions in whole-338

genome sequencing studies, for which the approaches we developed will also be applicable.339

Deep-learning-derived functional annotations have been considered in other studies in the context of asso-340

ciation testing. Proposed methods include signed LD-score regression [64], or the association tests presented in341

DeepWAS [65]. However, these methods have not been designed for rare variants. Other statistical methods342

that combine multiple functional annotations could potentially further reduce the number of tests [66].343

In future studies, methods like AlphaFold [67] could allow specific testing of effects on protein folding.344

Methods that allow predicting residue-residue interactions within proteins could enable the mostly unsupervised345

identification of protein domains and their separate testing [68].346

The methodological advances and practices we applied in this association study also apply to those situations,347

and serve as potential baselines for functionally informed kernel-based association tests with rare variants.348

4 Methods349

4.1 UK Biobank Data processing350

All 30 blood biochemistry biomarkers (category 17518) from the UK Biobank were quantile-transformed to351

match a normal distribution with mean 0 and unit standard deviation using scikit-learn (v0.22.2) [69]. For352

testosterone, which showed a clear bimodal distribution based on sex, quantile transformation was performed353

separately for both sexes. Sex, BMI, age at recruitment, smoking status and the first 10 genetic principal354

components were used as covariates (Supplementary Table S1). Smoking status (never, previous, current)355

was encoded in three separate binary variables. Participants with any missing covariates were excluded. We356

used the ukb gen samples to remove function of the ukbtools package (v0.11.3) [70] together with pre-computed357

relatedness scores (ukbA rel sP.txt, see UK Biobank Resource 531) to remove closely related individuals, keeping358
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only one representative of groups that are related to the 3rd degree or less. After removing 6,293 related359

individuals and restricting to those with no missing covariates, 192,352 participants remained. This sample360

was 55% female (45% male) and the average age at recruitment was 56.46 years (σ = 8.08). Furthermore, the361

average BMI was 27.37 (σ = 4.77) and our subset contained 18,562 current and 67,109 previous smokers.362

In our analysis we made use of the PLINK-formatted exome sequencing genotype data. The final results363

presented in this manuscript were derived from the 200k WES release produced by the OQFE pipeline [19].364

The UK Biobank pipeline already implements quality filters [19, 71]. Additionally, we removed all variants that365

violated the Hardy-Weinberg equilibrium (HWE) assumption (HWE exact test p-value below the threshold366

of 10−5) and variants genotyped in less than 90% of participants. Furthermore, we calculated minor allele367

frequencies within all unrelated participants with complete covariates (see above), and excluded variants with368

minor allele frequencies above 0.1% from the rare-variant association tests. We did not analyze variants on sex369

chromosomes. 16,737,187 variants passed these filters, of which 43.64% were singletons. We directly use UK370

Biobank variant identifiers (which include chromosome and 1-based hg38 positions) to name variants in order371

to facilitate comparisons.372

4.2 Variant effect prediction and annotation373

Protein loss of function and missense We predicted effects for all genetic variants that passed basic fil-374

tering using the Ensembl Variant Effect Predictor [15] (VEP, v101; cache version 97), including scores from375

Polyphen-2 [16] (v2.2.2) and SIFT [17] (v5.2.2). All variants marked as splice acceptor variant, splice donor variant,376

frameshift variant, stop gained, stop lost or start lost were considered protein loss of function (pLOF) variants377

as in [12]. We further annotated missense variants by calculating impact scores (averages between deleterious-378

probabilities given by PolyPhen-2 and SIFT), which were used to filter and weigh variants in the association379

tests. Specifically, Missense variants were included if their impact score was at least 0.8, or if they affected380

amino acid positions for which another variant with impact score of at least 0.8 was observed.381

Splicing We retrieved published pre-computed variant effect predictions produced by the SpliceAI deep learn-382

ing model [22] for single nucleotide variants. SpliceAI predicts consequences of genetic variants for nearby splice383

sites, specifically splice donor loss/gain or splice acceptor loss/gain. We used the splice-site-proximal masked384

delta scores (v1.3). In the masked files, scores corresponding to the strengthening of annotated splice sites385

and weakening of non-annotated splice sites are set to 0, as these are generally less pathogenic. We included386

splice-variants in the association tests if at least one of the four SpliceAI delta scores was greater or equal to387

0.1. The maxima over the different delta scores for every variant were used to weigh variants in the association388

tests (Supplementary Methods).389

RBP-binding We predicted the effects of all genetic variants on the binding of 6 RNA-binding proteins390

(RBPs) using a modified version of the DeepRiPe deep neural network [23], in which predictions are purely391

sequence-based. We predicted the differences in binding by subtracting the predictions for the reference alleles392
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from those for the alternative allele [72], and used these variant effect predictions to filter and weigh variants393

during the association tests (Supplementary Methods). Variants were included into the association tests if at394

least one predicted effect on any of the RBPs had an absolute value greater or equal to 0.25.395

4.3 Statistical models and tests396

Let N(µ; Σ) denote a multivariate Normal distribution with means µ and a variance-covariance matrix Σ.397

We wish to jointly test the association of m genetic variants with a quantitative trait y for a sample of N398

observations (i.e. participants), while controlling for q covariates. Within the linear mixed model framework, y399

can be modelled as follows [8, 9]:400

y ∼ N(Xα;σ2
eIN + σ2

gKg), (1)

where X is the N × q covariate design matrix (fixed effect) and α is the vector of fixed-effect parameters,401

which together determine the mean values of y. The variance-covariance matrix of y is composed of the402

independently distributed residual variance (IN scaled by σ2
e) and the kernel-matrix Kg (scaled by σ2

g), which403

captures the genetic similarity between individuals. Kg is a function of the N ×m matrix of mean-centered404

minor allele counts G (random effect) of the genetic variants we wish to test.405

Any valid variance-covariance matrix can be substituted for Kg. In order to use efficient algorithms for406

estimating the parameters σ2
e and σ2

g and performing association tests, we require Kg to be factored as a407

quadratic form [9, 11]:408

Kg = φ(G)φ(G)T , (2)

where the function φ transforms G into intermediate variables before performing the test. Finding an409

appropriate function φ depends on the underlying biological assumptions, and the available prior information.410

Gene-based variant collapsing approaches are a special case, in which the function φ returns an N × 1 vector (a411

single variable) as output. Therefore kernel-based tests and variant collapsing methods can be treated under the412

same statistical framework. In our analysis, φ is a function that transforms G taking variant effect predictions413

and, for missense and RBP-variants, variant positions into account (Supplementary Methods).414

Regardless of the choice of kernel (and hence φ) the statistical test is defined by the null hypothesis H0 :415

σ2
g = 0, and the alternative hypothesis H1 : σ2

g ≥ 0. Both a score test and likelihood ratio test (LRT) have been416

described for this application. While the score test is often chosen in statistical genetics applications due to417

its speed and software availability, the LRT has been shown to have higher power but is computationally more418

demanding [8, 11, 73].419

In order to avoid computing the LRT for all genes but still profit from potentially higher power, we performed420

score tests genome-wide and only performed the LRT if score tests (within the specific variant category) reached421

nominal significance, an approach which we call the score-LRT (sLRT, Supplementary Methods). The sLRT422

16

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.27.444972doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.444972
http://creativecommons.org/licenses/by-nc-nd/4.0/


returns the p-value for the score test if nominal significance was not reached, otherwise it returns the p-value423

for the likelihood ratio test.424

We applied the statistical framework above to perform both gene-based variant collapsing tests and kernel-425

based association tests, corresponding to different functions φ (Supplementary Methods). We adjust p-values426

for the total number of tests performed using Bonferroni correction (FWER = 0.05), which lead to a cutoff of427

1.4435 × 10−8.428

4.4 Gene-based testing procedure429

We performed gene-based tests for all protein coding genes in the Ensembl 97 release. For all pLOF variants430

we performed gene-based variant collapsing using the score test genome-wide.431

For missense variants, we performed both gene-based variant collapsing and kernel-based association tests432

using the sLRT. For the kernel-based tests with missense variants, we designed a kernel that collapses variants433

by amino acid position (local collapsing), and weighs them by their impact score. Additionally, in cases where434

either missense-variant score test used in the sLRT was nominally significant (p < 0.1), we combined missense435

and protein LOF variants for joint tests. For these joint tests, we investigated both the use of joint gene-436

based collapsing test and a kernel-based test that combines collapsing of pLOF variants with local collapsing of437

missense variants by concatenation (Supplementary Methods).438

For predicted splice-variants we followed a similar strategy as for missense variants, however, we used the439

weighted linear kernel [8] without local collapsing instead. Finally, in the association tests including variants440

predicted to change the binding of RBPs, we only performed kernel-based association tests using the sLRT. For441

this purpose we designed a kernel that can take into account both variant positions and directionality of variant442

effects (Supplementary Methods).443

Because some of the genes in the Ensembl 97 release share exons, we encountered cases in which these genes444

shared associations caused by the same variants. We do not report these as distinct gene-biomaker associations445

in the main text (except when comparing to [14], who reported all such associations), but include the full list446

in Supplementary Table 2.447

4.5 Data availability448

Variant effect predictions for all variants in the 200k exome sequencing release are made available on github449

(https://github.com/HealthML/ukb-200k-wes-vep).450

4.6 Code availability451

Code that allows reproducing results from this study is available on github (https://github.com/HealthML/faatpipe).452
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Supplementary Figure S1: Biomarker correlation and number of hits. Heatmap showing Pearson correla-
tion between pre-processed biomarkers (upper triangle) and number of significant associations (cell notes). Rows
and columns are clustered using complete linkage on the Euclidean distances of the correlation matrix between
phenotypes (dendrogram). While some even weakly (anti-)correlated biomarkers share significant associations
(e.g. Cholesterol and Glucose, gene: GIGYF1 ), other highly correlated markers do not share significant asso-
ciations (e.g. GGT, ALT, AST). ALP: alkaline phosphatase; ALT: alanine aminotransferase; AST: Aspartate
aminotransferase; GGT: Gamma glutamyltransferase.
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Supplementary Figure S2: Gene-based variant collapsing results overview. Collapsing variants allows
defining gene effect sizes. Bubble plots showing the gene effect sizes (y-axis) of significant associations for each
biomarker (x-axis). The four genes with largest absolute effect sizes are labeled for each biomarker. Larger
bubble size indicates higher significance. P-values and effect sizes are those given by the most significant variant
effect category (lead annotation). In case of ties (p = 0, gray) the average effect size across annotations is shown.
Effect sizes are calculated on covariate-corrected quantile transformed phenotypes. ALP: alkaline phosphatase;
ALT: alanine aminotransferase; AST: Aspartate aminotransferase; GGT: Gamma glutamyltransferase.
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Supplementary Figure S3: Kernel-based tests results overview. We calculated the average effect size for
*variants with single-variant p-values below 10−5 (score test) within significant genes found by kernel-based tests
if the cumulative minor allele count across these variants was at least 5. Bubble plots showing these average
effect sizes (y-axis) for each biomaker (x-axis). The four genes with largest average effect sizes are labeled for
each biomaker. Larger bubble size indicates higher significance of the gene-based test. P-values and average
effect sizes are those given by the most significant variant effect category (lead annotation). Effect sizes are
calculated on covariate-corrected quantile transformed phenotypes. ALP: alkaline phosphatase; ALT: alanine
aminotransferase; AST: Aspartate aminotransferase; GGT: Gamma glutamyltransferase.
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Supplementary Figure S4: Attribution maps. The variant 1:62598067:T:C at one-based position
chr1:62598067 makes DeepRiPe predict increased binding probabilities for HNRNPL and QKI, and decreased
probability for BCLAF1. Attribution maps for reference (ref) and alternative (alt) sequences as described
in [23] highlight important nucleotides proximal to an ANGPTL3 exon boundary. The predictions for QKI
depend positively on an upstream QKI binding motif (ACUAAC), and negatively on the splice donor signal
(GUAAGU). The pattern is inverted for BCLAF1. Weakening of the splice signal by the alternative variant
increases predicted binding probabilities for QKI and HNRNPL.
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Supplementary Figure S5: sLRT number of significant gene-biomarker associations vs score test
cutoff for different variant effect categories. Plots showing the number of significant associations found
by the LRT depending on the nominal significance cutoff chosen for the score test (which determines whether
the LRT is performed). We used the cutoff of 0.1 in our analysis. We found that a smaller nominal significance
cutoff of 0.033 would still have recovered all genome-wide significant associations we reported, and a cutoff of
0.001 would have still recovered all but four (97.9%). Of those four associations, three would still have been
found by association tests for other variant effect categories.
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Supplementary Figure S6: Kernel-based sLRT vs score test comparison. Venn diagrams showing the
significant locus-biomarker associations identified by the kernel-based score test (K-score), kernel-based sLRT
(K-sLRT) and gene-based variant collapsing (gbvc, where performed, sLRT). For missense and splice variants,
the hits identified by the kernel-based score test (dashed circle) were a subset of those identified by the kernel-
based sLRT. The sLRT identified additional associations, of which a large fraction was also found by gbvc.
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Supplementary Figure S7: Genomic inflation factor across models. We calculated λ for all tests that
were performed exome-wide. Boxplots showing λ across all 30 phenotypes (y-axis) against the different variant
categories and types of association tests. All values refer to the sLRT, except for gbvc-pLOF, where we only
performed the score test. Left: gene based variant collapsing (gbvc); Right: kernel-based tests (K). QQ-plots
for all models that resulted in at least one significant association are given in the Supplementary Data.

variable type variable name biomarker category UKB datafield N GWAS catalog EFO PhenoScanner EFO comment
phenotype Alanine aminotransferase liver 30620 183037 EFO 0004735 EFO 0004735 abbreviation: ALT
phenotype Albumin liver 30600 168467 EFO 0004535 EFO 0004535
phenotype Alkaline phosphatase bone and joint 30610 183105 EFO 0004533 EFO 0004533 abbreviation: ALP
phenotype Apolipoprotein A cardiovascular 30630 167375 EFO 0004614 EFO 0004614
phenotype Apolipoprotein B cardiovascular 30640 182168 EFO 0004615 - PhenoScanner queried by trait names
phenotype Aspartate aminotransferase liver 30650 182456 EFO 0004736 EFO 0004736 abbreviation: AST
phenotype C-reactive protein cardiovascular 30710 182681 EFO 0004458 EFO 0004458 abbreviation: CRP
phenotype Calcium bone and joint 30680 168380 EFO 0004838 EFO 0004838
phenotype Cholesterol cardiovascular 30690 183098 EFO 0004574 EFO 0004574
phenotype Creatinine renal 30700 183001 EFO 0004518 EFO 0004518
phenotype Cystatin C renal 30720 183083 EFO 0004617 - PhenoScanner queried by trait names
phenotype Direct bilirubin liver 30660 155280 EFO 0004570 EFO 0004570
phenotype Gamma glutamyltransferase liver 30730 183018 EFO 0004532 EFO 0004532 abbreviation: GGT
phenotype Glucose diabetes 30740 168244 EFO 0004468 EFO 0004465
phenotype Glycated haemoglobin (HbA1c) diabetes 30750 182851 EFO 0004541 EFO 0004541
phenotype HDL cholesterol cardiovascular 30760 168371 EFO 0004612 EFO 0004612
phenotype IGF-1 hormonal 30770 182119 EFO 0004627 EFO 0004627 Insulin-like Growth Factor 1
phenotype LDL direct cardiovascular 30780 182783 EFO 0004611 EFO 0004611
phenotype Lipoprotein A cardiovascular 30790 146534 EFO 0006925 EFO 0006925
phenotype Oestradiol hormonal 30800 30409 - - no sign. associations
phenotype Phosphate renal 30810 168136 - -
phenotype Rheumatoid factor bone and joint 30820 16022 - - no sign. associations
phenotype SHBG hormonal 30830 166849 EFO 0004696 EFO 0004696 Sex Hormone Binding Globulin
phenotype Testosterone hormonal 30850 165537 EFO 0004908 EFO 0004908
phenotype Total bilirubin liver 30840 182357 EFO 0004570 EFO 0004570
phenotype Total protein renal 30860 168259 EFO 0004536 EFO 0004536
phenotype Triglycerides cardiovascular 30870 182948 EFO 0004530 EFO 0004530
phenotype Urate renal 30880 182900 EFO 0004531 EFO 0004531
phenotype Urea renal 30670 182974 - - no sign. associations
phenotype Vitamin D bone and joint 30890 174820 EFO 0004631 EFO 0004631
covariate Age at recruitment - 21022 192352 - -
covariate BMI - 21001 192352 - - Body Mass Index
covariate Genetic principal components - 22009 192352 - - PC1 - PC10
covariate Sex - 31 192352 - - female, male
covariate Smoking status - 20116 192352 - - never, previous, current
genotype Exome OQFE variants, PLINK format - 23155 192352 - -

Supplementary Table S1: UK Biobank data Variables, UK Biobank datafields and samples sizes (N). EFO
terms were used to match result with those reported in the NHGRI-EBI Catalog of human genome-wide asso-
ciation studies (GWAS catalog) and PhenoScanner.
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5 Supplementary Methods624

5.1 Variant weight calculation625

All association tests we performed incorporated variant weights, which were derived from the variant effect626

predictions. All variant weights we used are numbers between 0 and 1. For protein LOF variants all weights627

were set to 1. For missense variants, we calculated the weights as follows:628

wi =
(1 − si,SIFT ) + si,Polyphen

2
(3)

where wi is the weight for variant i. si,SIFT and si,Polyphen denote the SIFT and Polyphen scores for variant629

i, respectively (potentially averaged across different transcript variants). This score can be interpreted as the630

average of the predicted probability of the variant being deleterious predicted by the two methods.631

For splice variants, the weight wi for a specific variant i, was set to the maximum of its four SpliceAI delta632

scores.633

Regarding the predictions for the binding of RBPs, we proceeded as follows: While the experiments for the634

RBP QKI had been replicated in three cell lines, those for the other 5 RBPs had only been performed in a single635

cell line. As every replicate is a separate model output, this resulted in a total of 8 predictions for every genetic636

variant. We predicted the binding probability of each RBP to sequences centered on the major and minor637

alleles, while applying 4bp shifts around the center. We averaged four predictions across these small shifts to638

reduce variability. Finally, we calculated variant effect predictions vij for each variant i and RBP-replicate j by639

subtracting the prediction for the reference allele (pij,ref ) from the prediction for the alternative allele (pij,alt)640

[72]:641

vij = pij,alt − pij,ref (4)

These variant effect predictions are numbers between −1 and 1, where the sign denotes a gain of binding (+)642

or a loss of binding (−). They were used to determine variant weights and variant similarities during association643

testing (see below), where we set the weight wi of variant i to the largest absolute value of vi.644

5.2 Score- and likelihood ratio test implementation645

As stated in the main text, let N(µ; Σ) denote a multivariate Normal distribution with means µ and a variance-646

covariance matrix Σ. We wish to jointly test the association of m genetic variants with a quantitative trait y647

for a sample of N observations (i.e. participants), while controlling for q covariates. Within the linear mixed648

model framework, y can be modelled as follows [8, 9]:649

y ∼ N(Xα;σ2
eIN + σ2

gKg) (5)

Where X is the N × q covariate design matrix (fixed effect) and α is the vector of fixed-effect parameters.650
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The variance-covariance matrix of y is composed of the independently distributed residual variance (IN scaled651

by σ2
e) and the kernel-matrix Kg (scaled by σ2

g), which captures the genetic similarity between individuals. Kg652

is a function of the N×m matrix of mean-centered minor allele counts G (random effect) of the genetic variants653

we wish to test.654

In order to use efficient algorithms for estimating the parameters σ2
e and σ2

g and performing association tests,655

we require Kg to be factored as a quadratic form [9, 11]:656

Kg = φ(G)φ(G)T (6)

Where the function φ transforms G into intermediate variables before performing the test.657

The test statistic of the score test approximates the change of the log likelihood of a model when includingKg658

over the null model, which does not include Kg (σ2
g = 0)[8]. We calculated test statistics using fast algorithms659

described in [11] and applied Davies’s method for the calculation of p-values [74] with accuracy of 10−7 and 106660

iterations. Where Davie’s method returned p-values of 0, or in the rare cases where Davies method returned661

invalid (negative) p-values, we used saddle point approximation instead [75].662

The test statistic of the likelihood ratio test is twice the difference of the log restricted likelihood of the663

alternative model and the null mode [9]. We used FaST-LMM’s LMM class [76] to fit the null and alternative664

models using restricted maximum likelihood and then calculated test statistics. To generate a null distribution665

we sampled 100 test statistics for every LR test, using our own port of RLRsim [77] in Python. Finally, we666

fit a parametric null distribution πχ2
0 + (1 − π)aχ2

d with free parameters π, a and d to the pooled simulated667

test statistics using log-quantile regression on the 10% of largest test statistics, and used this distribution to668

calculate p-values as described in [9].669

5.3 Gene-based variant collapsing tests670

In gene-based variant collapsing, all qualifying variants overlapping a specific gene are collapsed into a single671

variable prior to association testing, i.e. φ(G) in Equation 6 returns an N × 1-vector. We modified the672

approach in [12] by incorporating variant effect predictions as weights. Within a specific gene, any participant673

could carry 0 or more qualifying variants, where each variant i has a weight wi (derived from variant effect674

prediction, see above). Specifically, the collapsed score is the largest weight of any of the variants observed for675

a specific participant, or 0 if no qualifying variants were observed for that participant. This score makes three676

assumptions: additive effects are negligible (or unrealistic), variants with larger weights dominate over those677

with smaller weights and all variants affect the quantitative trait in the same direction.678

5.4 Functionally informed kernel-based tests679

The kernels we used in this analysis follow the general form:680

Kg = GWSWGT , (7)
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where W is an m ×m diagonal matrix containing the square roots of variant weights on the diagonal and681

the m×m matrix S captures similarities between the genetic variants. G is the n×m matrix of mean-centered682

minor allele counts of the qualifying variants within the gene to be tested. S can be interpreted as the variance-683

covariance matrix of regression coefficients of intermediate variables GW . We use W and S to incorporate684

variant effect predictions (and other variant annotations) into the association tests.685

While a shared regression coefficient (S = 1m1T
m) might be a poor assumption in some cases, so can686

completely independent regression coefficients (S = Im). The former, when substituted into (7), has been687

referred to as the weighted counting burden test, whereas the latter is commonly called the weighted linear688

kernel [78]. In our analysis, we define S based on available prior knowledge and type of variant effect prediction.689

Missense For the analysis of missense variants, we introduce the locally collapsing kernel. Local collapsing690

aggregates groups of variants into single variables before performing the association test. “Local” refers to the691

fact that the groups are defined by the proximity of variants in the DNA-, RNA- or amino acid sequence. We692

grouped variants if they affect the same exact amino acid position of a specific gene. Once the groups are693

defined, local collapsing can be expressed as a matrix multiplication: S = CCT and the kernel (7) becomes:694

Kg = GWCCTWGT (8)

Here C is the m-variants by g-groups collapsing matrix. Therefore GWC is the n × g weighted locally695

collapsed genotype matrix (where the columns now represent amino-acid positions instead of single genetic696

variants). The columns of C define the group assignments and directionality of variant effects. For every697

variant i from 1 to m with (potentially signed) variant effect vi and group j from 1 to g, cig = sgn vi if698

variant i belongs to group j, else cig = 0. In our case, variant effect predictions were unsigned (all positive).699

The assumptions of the locally collapsing kernel are that variants within groups share a common regression700

coefficient once they have been scaled by and aligned with the direction of their variant effect predictions.701

RBP-binding Sometimes there are no clearly defined groups of variants or multiple (potentially directional)702

variant effect predictions need to be accounted for at once and therefore variants can’t easily be collapsed. Given703

what we know about the location of variants and their predicted effects, we might still make assumptions about704

S. As long as S is positive definite, we can find a suitable square root L so that LLT = S using the Cholesky705

decomposition. In the association tests involving directional predictions for the binding of RNA-binding proteins706

we calculated S by forming the element-wise product of two m×m matrices:707

S = LLT = Q ◦R (9)

Where Q captures the similarity of variants based on their variant effect predictions and R captures the708

similarity of variants based on their positions. Specifically, let vi be the vector of variant effect predictions709

for variant i. Then the element qij of Q is the cosine similarity between vi and vj . We chose to model710
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the position-dependent similarity with a Gaussian kernel. If xi is the chromosomal position of variant i,711

ri,j = exp(−γ(xi − xj)
2), where we set γ = − log(0.5)

502 . At this value of γ two variants that are 50bp apart712

have a similarity of 0.5, which decays rapidly as the distance increases. As both Q and R are positive definite713

matrices, so is Q ◦ R. This kernel makes the assumption that variants that are in close proximity and have714

aligned variant effect predictions should affect the phenotype in the same direction.715

5.5 sLRT detailed description716

Missense For missense variants, we iterated over all genes and performed score tests using gene-based variant717

collapsing and kernel-based tests (locally collapsing kernel), i.e. the diagonal elements wii of W in Equation 7718

contained the square roots of the impact scores of variants. If either score test p-value was nominally significant719

(p < 0.1) we also performed the following steps: 1. Calculation of likelihood ratio test statistics (sLRT), 2. gene-720

based variant collapsing combining both missense and loss of function variants in a joint test, 3. concatenation721

of the collapsed pLOF variable to the locally collapsed weighted matrix of missense variant minor allele counts722

(GWC, Equation 8) and a joint kernel-based LRT.723

We used the locally collapsing kernel in the kernel-based association tests for missense variants, as it had given724

more unique associations and overall slightly lower p-values for the most significant genes in initial experiments725

on the 50k WES release, and was more interpretable compared to other possible approaches.726

Splicing For splice-variants we performed score tests using gene-based variant collapsing and the linear727

weighted kernel for all genes. Again, if either of the two score tests were nominally significant (p < 0.1),728

we performed likelihood ratio tests (sLRT). As we did for missense variants, we then also performed combined729

association tests with protein loss of function variants using both gene-based variant collapsing and a kernel-730

based LRT. For the kernel-based test, we concatenated the protein LOF indicator variable to the matrix of731

weighted minor allele counts GW (Equation 7, where S = Im). In the cases where a variant was annotated732

both as a splice-variant and pLOF variant, we treated it as a pLOF variant in the joint tests.733

RBP-binding For variants predicted to alter the binding of RBPs we only performed kernel-based association734

tests using the kernel in Equation 7, where we used the largest absolute value of the variant effect predictions as735

the weights, and calculated S as described above in Equation 9. We iterated over all genes and performed gene-736

based score tests. Because the DeepRiPe variant effect predictions are strand-specific, we did this independently737

for genes on the forward or reverse strands. If the score test for a specific gene was nominally significant738

(p < 0.1), we performed the likelihood ratio test for that gene (sLRT). If the variants tested also included739

variants annotated as protein loss of function variants, we removed them and repeated the tests to avoid false740

positives.741
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5.6 Cross-referencing against GWAS databases742

We queried the NHGRI-EBI GWAS Catalog [2] and PhenoScanner [24, 25] in order to see if single variants within743

the genes we found significantly associated with a specific biomarker had already been reported to be associated744

with that biomarker. For each gene, we submitted region queries using the gene boundaries with the gwasrapidd745

[28] and phenoscanner R-packages. For PhenoScanner, we set the p-value threshold to 10−7. Matching our746

results to those contained in these databases required us to define a mapping of UK Biobank biomarkers747

to the Experimental Factor Ontology (EFO) terms used in those databases. This mapping is provided in748

Supplementary Table S1. Additionally, as EFO terms for PhenoScanner were not always defined, we performed749

the following matching: ”Apolipoprotein B” (UKB phenotype) to ”APOB apolipoprotein B” (PhenoScanner750

trait) and ”Cystatin C” to PhenoScanner traits ”log eGFR cystatin C”, ”Serum cystatin c estimated glomerular751

filtration rate eGFR” and ”Cystatin C in serum”. The UK Biobank biomarker ”Phosphate” was not defined in752

either database and could therefore not be queried.753
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