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We report a non-clinical, mathematical method of studying genetic sequences based 
on the information theory. Our method involves calculating the information entropy 
spectrum of genomes by splitting them into “windows” containing a fixed number of 
nucleotides. The information entropy value of each window is computed using the m-
block information entropy formula. We show that the information entropy spectrum 
of genomes contains sufficient information to allow detection of genetic mutations, as 
well as possibly predicting future ones. Our study indicates that the best m-block size 
is 2 and the optimal window size should contain more than 9, and less than 33 
nucleotides. In order to implement the proposed technique, we created specialized 
software, which is freely available. Here we report the successful test of this method 
on the reference RNA sequence of the SARS-CoV-2 virus collected in Wuhan, Dec. 
2019 (MN908947) and one of its randomly selected variants from Taiwan, Feb. 2020 
(MT370518), displaying 7 mutations. 
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1. Introduction 
 
Information is a very abstract concept that comes in many forms including analogue 
information, biologically encoded DNA / RNA information, quantum information and 
digital information. Shannon developed the classical information theory in 1948 
giving the mathematical formulation of the amount of information extracted from 
observing the occurrence of an event. He is considered the father of modern 
computing and the inventor of the unit of information, the “bit” [1].  
Shannon's information theory has already underpinned fundamental progress in a 
diverse range of subjects such as computing [2], cryptography [3], 
telecommunications [4], physiology [5], linguistics [6], biology [7], geology [8], 
biochemical signalling [9], mathematics and physics [10-12]. 
In this article, we report a new methodology based on Shannon’s information theory 
that allows studying the mutation dynamics in genome sequences and offers a path to 
predicting future mutations. In fact, using the information theory to study genome 
sequences is not new. The first reports of analysis of DNA sequences through 
information theory methods appeared in 1970s. Reichert et al. developed an 
information-based methodology for determining the quality of an alignment of two 
code sequences [13]. Other relevant studies include the use of statistical methods for 
characterizing nucleotidic sequences based on maximum entropy techniques [14], the 
analysis of repetitive sequences and their effect on the entropy [15] and the study of 
long-range correlation and complexity in DNA sequences [16-19]. In spite of the 
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successful application of the information theory to the study of genetic sequences, 
there have been some critical studies, most notable published by Hariri et al., who 
concluded that the applicability of Shannon’s information theory to genetic sequences 
did not provide any useful insights into molecular biological sequences [20]. For more 
recent studies we encourage the readers to consult the review articles published by 
Vinga [21], Machado [22], as well as a few other new articles on this topic [23-25].  
Here, we propose an approach that involves the creation of information entropy (IE) 
spectra of genome sequences, in order to analyze their mutation dynamics. This 
approach is applicable to any genome sequence, of any size and it enables new 
avenues for research in the field of bioinformatics and genetics. The software required 
to implement this methodology, called GENIES (GENetic Entropy Information 
Spectrum), has been developed as part of this project and it is freely available to the 
scientific community [26].   
 
2. Information theory for genome studies 
 
Let us assume a set of n independent and distinctive events  nxxxX ,,, 21   
having a probability distribution  npppP ,,, 21   on X, so that each event xj has a 

probability of occurring )( jj xpp  , where pj ≥ 0 and 



n

j
jp

1

1 . According to 

Shannon, the average information per event, or the number of bits of information per 
event, one can extract when observing the set X once is:   
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The function H(X) resembles an information entropy function and it is maximum 
when the events xj have equal probabilities of occurring, np j /1 , so 

nxH blog)(max  . When observing N sets of events X, or equivalently observing N 
times the set of events X, the number of bits of information extracted from the 
observation is N·H(X). This approach could be used to study other forms of 
information systems, such as the biologically encoded DNA / RNA information. 
Thinking of the genome as a coding system, and given the highly complex nature of 
genome architecture, the information entropy profile of functional regions of DNA / 
RNA (e.g. exons, promoters, enhancers, etc.)  may represent distinct patterns. 
Similarly, the pattern of information entropy would show characteristic changes in 
response to specific mutations, suggesting a role for information entropy in the 
determination of genomic variation. Genetic sequences are examined here from an 
external point of view, as information storage systems, without considering the 
detailed physical or chemical mechanisms for information processing. 
A typical DNA genome sequence can be represented as a linear sequence of the four 
nucleotides adenine (A), cytosine (C), guanine (G), and thymine (T). For a complete 
genome, chromosomes represent contiguous sequences, although may contain 
unknown sequences typically represented by the character N. For simplicity, distinct 
chromosome sequences can be thought as being part of one continuous string of A, C, 
G and T letters. Many viruses (including SARS-CoV-2) have RNA genomes, where 
thymine (T) is replaced by uracil (U), but for simplicity T will be considered for both. 
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Our set of n independent and distinctive events therefore becomes  TGCAX ,,, , 
with a probability distribution  TGCA ppppP ,,, . Using digital information units (b 
= 2), for four possible distinctive events / states (n = 4) we would require 2 bits per 
nucleotide ( 24loglog)( 2max  nxH b ) to encode the message: A = 00, C = 01, 
G = 10, T = 11. Let us consider a random DNA subset, consisting of N = 34 letters:  
 
CACTTATCATTCTGACTGCTACGGGCAATATGTG 
 
The above subset is randomly generated and the grouping rule of the bases A and T 
(or U in RNA) and C and G is not respected. If the letters within this DNA subset 
would have equal probabilities to occur (1/4), then the subset would have H(X) 
Hmax(X) = 2, and a total entropy of NH(X) = 68 bits of information. However, the 
above subset has the following probability distribution:  
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Therefore, instead of 68 bits to encode the sequence we can get by with only 67.25 
bits, or the entropy of the subset is 67.25.  
Equation (1) and the above approach give information only about the distribution of 
the individual symbols within the DNA subset and their entropy values, but it doesn’t 
reflect the correlations between the symbols. In order to incorporate these possible 
correlations, equation (1) must be generalized to the so-called block information 
entropies [27]:  
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where p(m) are the probabilities of the combinations of m symbols, where 1  m  n. 
The index now extends over all possible combinations of m symbols, which are called 
m-blocks. The block information entropies have been used in numerous studies of the 
information content of genomic sequences, without targeting mutations [28,29]. In 
our case m can be any positive integer value larger or equal to 1 and less than or equal 
to 4. The choice of the number of symbols or m-blocks can be based on the 
observation that coding sequences for peptides and proteins are encoded via codons, 
i.e. sequences of blocks of three nucleotides. Hence, choosing m = 3, we will consider 
each three-nucleotide codon to be a distinct symbol in Shannon’s information theory 
framework. We can then take a subset of the genome and estimate the probability of 
occurrence of each codon by simply counting and dividing by the length. Let us 
consider again the case of our DNA subset, consisting of N = 34 letters:   
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CACTTATCATTCTGACTGCTACGGGCAATATGTG 
 
Assuming the readout could start at any nucleotide, counting from left to right each 
three adjacent nucleotides, a set of 32 three letters combinations with 29 distinct 
combinations is obtained: 
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CTA, GCT, TGC, GAC, TGA, CTG, TCT, TTC, ATT, CAT, TCA, ATC, TAT, TTA, CTT, ACT, CAC,
originalX  (5) 

 
and their probability distribution:  
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The maximum possible entropy of the DNA subset is log2 29 = 4.858 bits. Using the 
equation (4) and the probability distribution (6), the actual entropy of the original 
subset is Horiginal = 4.813 bits.  
To demonstrate the principle proposed here for studying genome mutations, let us 
now assume that the same 34 letters genome subset suffers a random mutation at base 
point 11, as represented in the figure below:  
 
 
 
 
 
 
 
 
 
The mutated genome subset has again 32 three letters combinations, but 26 distinct 
instead of 29, as the original subset:   
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mutatedX (7) 

 
and their probability distribution:  
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The maximum entropy of the mutated genome subset is log2 26 = 4.7 bits and using 
equation (4) and the probability distribution (8), the actual entropy of the mutated 
subset is Hmutated = 4.601 bits. This is different to the entropy of the original subset, 
demonstrating the concept of using the information theory to detect and study 
mutations. To quantify the difference between the original and the mutated subsets 
one could use either the difference between the two information entropies, H = 
Horiginal - Hmutated = 0.212 bits, or the Information Entropies Ratio, IER = Horiginal / 
Hmutated = 1.046. Using the difference, any non-zero value would indicate the presence 
of a mutation within the subset. However, using the ratio, any value not equal to 1 
would indicate the occurrence of at least one mutation. From a convenience point of 

CACTTATCATTCTGACTGCTACGGGCAATATGTG - Original subset 
 
 
CACTTATCATACTGACTGCTACGGGCAATATGTG - Mutated subset 
 
Figure 1. Example of 1 base genome mutation at index 11 (T mutates into A).  
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view, the Information Entropy Ratio (IER) is a better representation since the IER 
parameter has no units, while H has units of bits.   
  
3. Information entropy spectrum 
 
Using the concept of information entropy to study genome mutations has been briefly 
demonstrated in the previous section, for a small genome subset of 34 characters. The 
main objective is to implement this technique for studying full size genomes. The 
method proposed here involves computing a so-called Information Entropy (IE) 
Spectrum of the genome. This is achieved by splitting a large genome into subsets, 
called “windows”.  A “window” has a given number of base points (characters) called 
“window size”, WS, which is the equivalent of the random genome subset discussed 
in the previous section, where WS = 34. Starting from left to right, one slides the 
“window” across the whole genome, where each position of the window is obtained 
by sliding it for a fixed number of characters, called “step size”, SS. In order to ensure 
that all sections of the genome are captured by this process, the SS must be at least 1 
and maximum WS, so 1< SS  WS. By doing this, a given genome of N characters 
(number of base points), will result in a total of Nw windows, given by the formula:  
 

 SSWS
SS
NNw          (9) 

 
The ratio N/SS is rounded down to the nearest integer value. Since this may result in 
the last window being incomplete, this incomplete window is ignored. The link 
between the index of a given ith window and the nucleotide index in the genome 
sequence corresponding to the first character of the ith window is given by the 
formula:  
 

1 SSNSSN w
ii        (10) 

 
where, Ni = 1,2,3…N and Ni

w   = 1,2,3,…Nw, with Nw ≤ N given by relation (9).  
To study the whole genome, one needs to compute the IE spectrum of the genome, 
which is obtained by calculating the IE value of each window and plotting the IE 
values obtained as a function of the window index location within the genome. The 
window index location in the IE spectrum takes values from 1 to Nw, depending on 
the values of N, WS and SS, according to (9). In fact the procedure of window sliding 
across the whole genome is exactly the same process used to generate the set of 32 
three letters combinations of the random 34 bases genome subset in the above 
example (see relation (5)), where the SS =1 and WS = 3, so Nw = 34/1 – 3 + 1 = 32. 
To clarify this procedure, we present a graphical example in figure 2, by 
reconsidering a random genome sequence example. In this example, the window size 
is WS = 12 and the step size is SS = 4. For these WS and SS parameters, assuming a 
fictitious genome size of N = 210000 bases, according to (9) we will generate a set of 
52492 windows, i.e. Nw = 52492. The IE of each window is then computed by 
counting the distinct m-blocks within each window and their occurrence probabilities. 
As already mentioned, this was done in the previous example by setting m = 3, so WS 
= 3 and SS = 1, while N becomes the size of the window itself. According to (9), for 
each window in this example we get Nw = 12/1 – 3 + 1 = 10 in each window 
containing 3-letter elements. For Window 1, the distinct 3-letter occurrences are: 
CAC, ACT, CTT, TTA, TAT, ATC, TCA, CAT, ATT, TTC and using equation (4) 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.27.445958doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.445958
http://creativecommons.org/licenses/by-nc/4.0/


 6

we get the IE of Window 1, IEW1 = 3.322 bits, which is also the maximum possible 
value as all occurrences have the same probability, 1/10.  
 

Repeating this process for all 52492 windows, a numerical value for each window is 
obtained converting the biological information contained within a window to a single 
numerical value. Plotting these values against their index location within the genome, 
results in what we call the Information Entropy (IE) Spectrum. The IE spectrum is a 
numerical representation of the genetically encoded information within a given 
genome. This is a very convenient algorithm as it allows further processing of the 
information contained in the spectrum. The correct choice of the m-block size, 
window size (WS) and step size (SS) is a matter of investigation and it depends on the 
information that one seeks to extract form the study. In any case, the proposed 
methodology can only work using fully automated computer software, and we 
developed LabView software called Genome Information Entropy Spectrum 
(GENIES) to do this. The program is available free of charge by contacting the 
corresponding author, or via direct download from the repository [26]. The GENIES 
user manual can also be downloaded freely [30]. All the operational details of the 
GENIES software are available in these references [26,30].   
 
4. Experimental results 
 
To demonstrate this methodology, we analyzed the reference RNA sequence of the 
SARS-CoV-2 collected in December 2019 in Wuhan (MN908947) [31], which is 
currently used as the index reference genome in genomic analyses of the current 
COVID-19 pandemic. The reference MN908947 sequence contains 29903 nucleotides 
and is available to download freely from NCBI GenBank database [32]. Figure 3 
shows a collection of IE spectra of the reference SARS-CoV-2 sequence MN908947, 
calculated using GENIES for fixed step size, SS = 3, and variable window size, WS. 
The IE value of each window was determined using m-block size = 3, with step size = 
1 within each window. The data clearly show the WS effect on the IE spectra 
characteristics. Larger WS values promote larger average IE value of each spectrum, 
as shown in figures 3 and 4. The maximum IE value per spectrum corresponding to 
each window size and extracted from the data follows closely the maximum 
theoretical value expected,  2loglog 22  WSn , where n is the maximum number of 
distinct events in a given window, which in our case is n = WS/1 – 3 + 1 = WS – 2.  
Interestingly, the experimental and the theoretical maximum IE values diverge from 
each other when WS > 33 (see figure 4). The inflection point at WS = 33 is an 

Figure 2. Example of computing the Information Entropy Spectrum of a genome by sliding a 
window across it, with window size is WS = 12 and step size is SS = 4.  
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important parameter as it gives us a selection criterion of the optimal window size. 
This is because the ability to extract useful information from the IE spectra requires 
large changes of information entropy. As data in figure 4 suggests, larger WS values 
work well, but the maximum IE values are obtained for WS  33.  

 
It is important to mention that Thanos, Li and Provata have already reported a similar 
method to that described here [33]. The key difference between this work and that 
published in reference [33] is that they 
divided the sequence into non-
overlapping windows called blocks, and 
they calculated the blocks information 
entropies by counting the individual 
nucleotides rather than 3-codon blocks as 
in our formalism. For a genome size N, 
the number of windows was Nw = N / 
WS, essentially meaning that the step 
size was equal to the window size in our 
formalism, SS = WS in relation (9). For 
example, taking a random 10000 
characters sequence, setting the SS = WS 
= 100, the approach presented in [33] 
produces an IE spectrum of Nw = 100 
size, while our approach with SS = 2, 
WS = 100 and N = 10000 generates a far 
more detailed spectrum, capturing possible hidden correlations and having a size 49 
times larger, i.e. Nw = 4902. Despite this reduction of information, the approach taken 

Figure 3. IE spectra of SARS-CoV-2 reference sequence (MN908947) produced using the GENIES 
software for different window sizes, WS, with fixed step size, SS = 3.  

Figure 4. Average IE values, maximum 
theoretical and experimental IE values per 
spectrum as a function of WS.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.27.445958doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.445958
http://creativecommons.org/licenses/by-nc/4.0/


 8

by Thanos et al. [33] allowed the extraction of meaningful information related to the 
detection of repetitive sequences and it was proven very useful in finding evolutionary 
differences between organisms. Hence, it is expected that the enhanced method 
proposed here would facilitate additional tools for studying genome sequences, 
including their mutation dynamics, as demonstrated in the next section.  
 
5. Detecting genetic mutations from IER spectra  
 
In section 2 we explained theoretically how the information entropy could facilitate 
the detection of genetic mutations. In this section we apply this concept to a real 
genome, by studying the IE spectra of the SARS-CoV-2 reference sequence 
(MN908947) and one of its randomly selected variants collected in Taiwan on the 27th 
of February 2020 (MT370518) [34]. If mutations occurred, the IER spectrum obtained 
should contain values not equal to 1, each indicating a mutation. This technique is a 
rapid and time effective method of detecting genetic mutations without a full single 
base point nucleotide comparison between the two genomes. However, for the 
purpose of testing this method, we first performed a direct comparison of the two 
genomes and 7 mutations were identified in the MT370518 sequence, as following:  
C1059T, G1397A, G11083T, C23934T, T28648C, T28688C, G29742T. The first 
character is the base point that underwent the mutation in the reference genome, the 
number is its location in the sequence and the second character is what it mutated into 
in the new sequence.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We computed the IE spectra using the GENIES program under the same conditions 
described in section 3: m-block size of 3, m-block slide step of 1, window step size SS 

Figure 5. Information entropy ratio (IER) spectra of SARS-CoV-2 reference sequence (MN908947) 
to its variant (MT370518), produced using the GENIES software for different window sizes, WS, 
with fixed step size, SS = 3.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.27.445958doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.445958
http://creativecommons.org/licenses/by-nc/4.0/


 9

= 3, and variable window size, WS. Figure 5 shows a collection of IER spectra of the 
reference sequence (MN908947) divided by one of its variants (MT370518). As 
expected, for WS  33 the variations in the IE spectra are more pronounced, resulting 
in distinctive features in the IER spectra. Unfortunately, the IER spectra failed to 
reproduce the full set of 7 genetic mutations detected using the direct comparison of 
the two sequences. Although spectra acquired for different WS values failed to 
capture all 7 mutations, with best results being 5 - 6 correctly identified mutations, the 
spectra acquired using smaller WS values captured even fewer mutations. Most 
notably when WS = 9, only 3 out of 7 mutations were identified. These results 
correspond to window step size SS = 3. Although not shown here, the same results 
have been obtained when testing the same procedure for smallest step size, SS = 1, 
and the largest allowed step size, SS = WS.  
Since the IER spectra computed using a range of WS and SS values failed to fully 
reproduce the genetic mutations, we next turned our attention to investigating the 
effect of the m-block size. The m-block size can take values from m = 1 to n, where n 
is the number of distinct events, which in our case is n = 4 corresponding to the set 
{A, C, G, T}. All our computations so far have been performed for m = 3, but m =1, 
2, 4 values are allowed. To investigate the effect of the m size, we fixed the window 
size to WS = 15 (i.e. following the rule WS  33) and we chose the step size equal to 
the window size, SS = WS = 15. A more detailed IE scan of the genome is obtained 
using SS < WS, but because the 
windows overlapping, a single 
mutation could show up as 
multiple mutations in the IER 
spectra and further data 
processing or decomposition is 
required. When the windows do 
not overlap, i.e. SS = WS, there 
is a loss of possible information 
about correlations between the 
nucleotides, but the IER 
spectrum returns the correct 
number of mutations.  
Figure 6 shows the results for all 
possible m-block values, 
indicating that the larger m-block 
size reduces the ability to capture 
the mutations. When m = 4 we 
obtained 2 mutations out of 7, m 
= 3 captured 3 mutations, and m 
= 2 and 1 captured 7 out of 7 
mutations. The m = 1 case 
corresponds to the standard 
information entropy case as given 
by relation (1) and it is not a true 
m-block. However, m = 2 is a 
more convenient choice as it 
captures not only all the mutations, but also possible nucleotide-to-nucleotide 
correlations. The IER spectra in figure 6 are plotted using identical scales to allow 
direct visual comparison, indicating that m = 2 produces larger, more distinctive 

Figure 6. Information entropy ratio (IER) spectra of 
SARS-CoV-2 reference sequence (MN908947) to its 
variant (MT370518), produced using the GENIES 
software for WS = SS = 15, with variable m-block size. 
Top spectrum that shows no mutations is a control 
spectrum obtained by running the same reference 
genome on the software, while the rest show the IE ratio 
of the Wuhan reference sequence to its Taiwan variant.  
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features in the IER spectrum than m = 1. The m = 2 appears to be universally valid 
regardless of the choice of other parameters such as WS and SS.  
 
5. Conclusions 
 

We proposed to use the information theory to study genome sequences by creating the 
information entropy (IE) spectra of the genomes. When two or more genomes of the 
same family are analyzed in this way, one of them being considered as a reference 
sequence and the others as mutated versions, we showed that the ratio of the IE 
spectra, called the information entropy ratio (IER) spectra can be used to successfully 
identify genetic mutations in the analyzed sequences. This methodology requires 
computer automation and we produced GENIES, a stand-alone computer program, 
which is freely available to the scientific community [26]. GENIES is a fully 
functional code, that has an easy to use graphical interface and allows maximum 
versatility in choosing the computational parameters such as SS, WS and m-block 
size. However, the program needs further improvements, as presently it can only 
compare same size sequences, detecting single base point mutations, but excluding 
insertions and deletions.  
The proposed methodology and the program’s functionality have been demonstrated 
on the SARS-CoV-2 reference sequence from Wuhan (MN908947) and one of its 
variants collected in Taiwan (MT370518). Both sequences have 29903 base points, 
but the program can analyze any kind of DNA / RNA genome sequence, of any size. 
Our results indicate that the best choice of the window size is 9 < WS  33, and the 
most optimal m-block size is m = 2, as this successfully captured all known mutations 
in our SARS-CoV-2 test sequences. While m = 2 is a generally applicable rule to the 
study of any sequence, the optimal WS values determined here for SARS-CoV-2 
might be different for other sequences of different sizes. Besides block entropy 
approach, other complex indices [21, 35] have been proposed for detection or study of 
mutations, and these could be incorporated in the future versions of the GENIES tool. 
However, the true potential of this proposed methodology is achieved when using it in 
reverse, as a potential predictor of future genetic mutations. The idea is to analyze the 
inflection points where known mutations occurred, allowing to corroborate special 
features in the IE spectrum to the index location of the mutations, that in turn would 
work as a predictor of future genetic mutations. This is beyond the scope of this 
article, but we hope that this work will stimulate future studies based on GENIES and 
the proposed information entropy spectrum methodology.  
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