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Abstract 
Therapeutic antibodies make up a rapidly growing segment of the biologics market.  However, rational design of 
antibodies is hindered by reliance on experimental methods for determining antibody structures.  In recent years, 
deep learning methods have driven significant advances in general protein structure prediction.  Here, we present 
DeepAb, a deep learning method for predicting accurate antibody FV structures from sequence.  We evaluate 
DeepAb on two benchmark sets – one balanced for structural diversity and the other composed of clinical-stage 
therapeutic antibodies – and find that our method consistently outperforms the leading alternatives.  Previous 

deep learning methods have operated as “black boxes” and offered few insights into their predictions.  By 
introducing a directly interpretable attention mechanism, we show that our network attends to physically important 
residue pairs. For example, in prediction of one CDR H3 residue conformation, the network attends to proximal 
aromatics and a key hydrogen bonding interaction that constrain the loop conformation.  Finally, we present a 
novel mutant scoring metric derived from network confidence and show that for a particular antibody, all ten of the 
top-ranked mutations improve binding affinity.  These results suggest that this model will be useful for a broad 
range of antibody prediction and design tasks. 
 

Significance 
Accurate structure models are critical for understanding the properties of potential therapeutic antibodies.  
Conventional methods for protein structure determination require significant investments of time and resources 
and may fail.  Although greatly improved, methods for general protein structure prediction still cannot consistently 
provide the accuracy necessary to understand or design antibodies.  We present a deep learning method for 
antibody structure prediction and demonstrate improvement over alternatives on diverse, therapeutically relevant 
benchmarks.  In addition to its improved accuracy, our method reveals interpretable outputs about specific amino 
acids and residue interactions that should facilitate design of novel therapeutic antibodies. 
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Introduction 
The adaptive immune system of vertebrates is capable of mounting robust responses to a broad range of 
potential pathogens.  Critical to this flexibility are antibodies, which are specialized to recognize a diverse set of 
molecular patterns with high affinity and specificity.  This natural role in the defense against foreign particles 
makes antibodies an increasingly popular choice for therapeutic development1,2.  Presently, the design of 
therapeutic antibodies comes with significant barriers1.  For example, the rational design of antibody-antigen 
interactions often depends upon an accurate model of antibody structure.  However, experimental methods for 
protein structure determination such as crystallography, NMR, and cryo-EM are low-throughput and time 
consuming. 

Antibody structure consists of two heavy and two light chains that assemble into a large Y-shaped 
complex.  The crystallizable fragment (FC) region is involved in immune effector function and is highly conserved 
within isotypes.  The variable fragment (FV) region is responsible for antigen binding through a set of six 
hypervariable loops that form a complementarity determining region (CDR).  Structural modeling of the FV is 
critical for understanding the mechanism of antigen binding and for rational engineering of specific antibodies.  
Most methods for antibody FV structure prediction employ some form of grafting, by which pieces of previously 
solved FV structures with similar sequences are combined to form a predicted model3–6.  Because much of the FV 
is structurally conserved, these techniques are typically able to produce models with an overall root mean 
squared deviation (RMSD) less than 1 Å from the native structure.  However, the length and conformational 
diversity of the third CDR loop of the heavy chain (CDR H3) make it difficult to identify high-quality templates.  
Further, the H3 loop’s position between the heavy and light chains makes it dependent on the chain orientation 
and multiple adjacent loops7,8. Thus the CDR H3 loop presents a longstanding challenge for FV structure 
prediction methods9. 

Machine learning methods have become increasing popular for protein structure prediction and design 
problems10.  Specific to antibodies11, machine learning has been applied to predict developability12, improve 
humanization13, generate sequence libraries14, and predict antigen interactions15,16.  In this work, we build on 
advances in general protein structure prediction17–19 to predict antibody FV structures.  Our method consists of a 
deep neural network for predicting inter-residue distances and orientations and a Rosetta-based protocol for 
generating structures from network predictions.  We show that deep learning approaches can predict more 
accurate structures than grafting-based alternatives, particularly for the challenging CDR H3 loop.  The network 
used in this work is designed to be directly interpretable, providing insights that could assist in structural 
understanding or antibody engineering efforts.  We conclude by demonstrating the ability of our network to 
distinguish mutational variants with improved binding using a prediction confidence metric.  To facilitate further 
studies, all the code for this work, as well as pre-trained models, are provided. 
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Results 
Overview of the method 
Our method for antibody structure prediction, DeepAb, consists of two main stages (Figure 1).  The first stage is a 
deep residual convolutional network that predicts FV structure, represented as relative distances and orientations 
between pairs of residues.  The network requires only heavy and light chain sequences as input and is designed 
with interpretable components to provide insight into model predictions.  The second stage is a fast Rosetta-
based protocol for structure realization using the predictions from the network. 
 
Predicting inter-residue geometries from sequence. Due to the limited number of FV crystal structures available for 
supervised learning, we sought to make use of the abundant immunoglobin sequences from repertoire 
sequencing studies20.  We leveraged the power of unsupervised representation learning to extract general 
patterns from immunoglobin sequences that are not evident in the small subset with known structures.  Although 
transformer models have become increasingly popular for unsupervised learning on protein sequences21–24, we 
chose a recurrent neural network (RNN) model for its relative simplicity and ease of training.  The fixed-size 
hidden state of RNNs forms an explicit information bottleneck ideal for representation learning.  In the recent 
UniRep method, RNNs were demonstrated to learn rich feature representations from protein sequences when 
trained on next-amino-acid prediction25.  For our purposes, we developed an RNN encoder-decoder model26; the 
encoder is a bi-LSTM and the decoder is an LSTM27.  Briefly, the encoder learns to summarize an input sequence 
residue-by-residue into a fixed-size hidden state.  This hidden state is transformed into a summary vector and 
passed to the decoder, which learns to reconstruct the original sequence one residue at a time.  The model is 
trained using cross-entropy loss on a set of 118,386 paired heavy and light chain sequences from the Observed 
Antibody Space (OAS) database28.  After training the network, we generated embeddings for antibody sequences 
by concatenating the encoder hidden states for each residue.  These embeddings are used as features for the 
structure prediction model described below. 
 The choice of protein structure representation is critical for structure prediction methods10.  We represent 
the FV structure as a set of inter-residue distances and orientations, similar to previous methods for general 
protein structure prediction18,19.  Specifically, we predict inter-residue distances between three pairs of atoms 

(Ca—Ca, Cb—Cb, N—O) and the set of inter-residue dihedral and planar angles (!, #, $) first described by Yang et 
al18.  Each output geometry is discretized into 36 bins, with an additional bin indicating distant residue pairs (%!! >

18	Å).  All distances are predicted in the range of [0-18 Å], with a bin width of 0.5 Å.  Dihedral and planar angles 
are discretized uniformly into bins of 10° and 5°, respectively. 
 The general architecture of the structure prediction network is similar to our previous method for CDR H3 
loop structure prediction29, with two notable additions: embeddings from the pre-trained language model and 
interpretable attention layers (Figure 1).  The network takes as input the concatenated heavy and light chain 
sequences.  The concatenated sequence is one-hot encoded and passed through two parallel branches: a 1D 
ResNet and the pre-trained language model.  The outputs of the branches are combined and transformed into 
pairwise data.  The pairwise data pass through a deep 2D ResNet that constitutes the main component of the 
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Figure 1. Diagram of DeepAb method for antibody structure prediction.  Starting from heavy and light chain 
sequences, the network predicts a set of inter-residue geometries describing the FV structure.  Predictions are 
used for guided structure realization with Rosetta.  Two interpretable components of the network are highlighted: 
a pre-trained antibody sequence model and output attention mechanisms. 
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predictive network.  Following the 2D ResNet, the network separates into six output branches, corresponding to 
each type of geometric measurement.  Each output branch includes a recurrent criss-cross attention module, 
allowing each residue pair in the output to aggregate information from all other residue pairs.  The attention layers 
provide interpretability that is often missing from protein structure prediction models. 
 We opted to train with focal loss30 rather than cross-entropy loss to improve the calibration of model 
predictions, as models trained with cross-entropy loss have been demonstrated to overestimate the likelihood of 
their predicted labels31.  Model calibration may be of limited importance for the structure prediction task.  
However, later in this work we attempt to distinguish between potential antibody variants on the basis of prediction 
confidence, which requires greater calibration.  The model is trained on a nonredundant (at 99% sequence 
identity) set of 1,692 FV structures from the Structural Antibody Database (SAbDab)32.  The pretrained language 
model, used as a feature extractor, is not updated while training the predictor network. 
 
Structure realization. Similar to previous methods for general protein structure prediction17–19, we used 
constrained minimization to generate full 3D structures from network predictions.  Unlike previous methods, which 
typically begin with some form of $ − , torsion sampling, we created initial models via multi-dimensional scaling 
(MDS).  As a reminder, the relative positions of all backbone atoms are fully specified by the predicted - × - inter-
residue %"", !, #, and $ geometries.  Using the modal-predicted output bins for these four geometries, we 

construct a distance matrix between backbone atoms.  From this distance matrix, MDS produces an initial set of 
3D coordinates that are subsequently refined through constrained minimization. 
 Network predictions for each output geometry were converted to energetic potentials by negating the raw 
model logits (i.e., without softmax activation).  These discrete potentials were converted to continuous constraints 
using a cubic spline function.  Starting from the MDS model, the constraints are used to guide quasi-Newton 
minimization (L-BFGS) within Rosetta33,34.  First, the constraints are jointly optimized with the Rosetta centroid 
energy function to produce a coarse-grained FV structure with the sidechains represented as a single atom.  Next, 
constrained full-atom relaxation was used to introduce sidechains and remove clashes.  After relaxation, the 
structure was minimized again with constraints and the Rosetta full-atom energy function (ref2015).  This 
optimization procedure was repeated to produce 50 structures, and the lowest-energy structure was selected as 
the final model.  Although we opted to produce 50 candidate structures, 5-10 should be sufficient in practice due 
to the high convergence of the protocol (Figure S1). 
 

Benchmarking methods for FV structure prediction 
To evaluate the performance of our method, we chose two independent test sets.  The first is the RosettaAntibody 
benchmark set, which has previously been used to evaluate antibody structure prediction methods8,29,35.  The 
second is a set of clinical-stage therapeutic antibodies, which was previously assembled to study antibody 
developability36.  Taken together, these sets represent a structurally diverse, therapeutically relevant benchmark 
for comparing antibody FV structure prediction methods. 
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Table 1. Performance of FV structure prediction methods on benchmarks. 
Method OCD H Fr (Å) H1 (Å) H2 (Å) H3 (Å) L Fr (Å) L1 (Å) L2 (Å) L3 (Å) 

RosettaAntibody Benchmark 

RosettaAntibody-G 5.19 0.57 1.22 1.14 3.48 0.67 0.80 0.87 1.06 

RepertoireBuilder 5.26 0.58 0.86 1.00 2.94 0.51 0.63 0.52 1.03 

ABodyBuilder 4.69 0.50 0.99 0.88 2.94 0.49 0.72 0.52 1.09 

DeepAb 3.67 0.43 0.72 0.85 2.33 0.42 0.55 0.45 0.86 

Therapeutic Benchmark 

RosettaAntibody-G 5.43 0.63 1.42 1.05 3.77 0.55 0.89 0.83 1.48 

RepertoireBuilder 4.37 0.62 0.91 0.96 3.13 0.47 0.71 0.52 1.08 

ABodyBuilder 4.37 0.49 1.05 1.02 3.00 0.45 1.04 0.50 1.35 

DeepAb 3.52 0.40 0.77 0.68 2.52 0.37 0.60 0.42 1.02 

Orientational coordinate distance (OCD) is unitless quantity calculated by measuring the deviation from native of 
four heavy-light chain coordinates1.  Heavy chain framework (H Fr) and light chain framework (L Fr) RMSDs are 
measured after superimposing the heavy and light chains, respectively.  CDR loop RMSDs are measured using 
the Chothia loop definitions after superimposing the framework region of the corresponding chain.  All RMSDs are 
measured over backbone heavy atoms. 
  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.27.445982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.445982
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

Deep learning outperforms grafting methods. We compared the performance of our method on the 
RosettaAntibody benchmark and therapeutic benchmark to three alternative methods: RosettaAntibody-G4,6, 
RepertoireBuilder5, and ABodyBuilder3.  Each of these methods is based on a grafting approach, by which 
complete FV structures are assembled from sequence-similar fragments of previously solved structures.  To 
produce the fairest comparison, we excluded structures with greater than 99% sequence identity for the whole FV 
from use for grafting (similar to our training dataset).  We evaluated each method according to the backbone 
heavy-atom RMSD of the CDR loops and the framework regions of both chains.  We also measured the 
orientational coordinate distance (OCD)8, a metric for heavy-light chain orientation accuracy.  OCD is calculated 
as the sum of the deviations from native of four orientation coordinates (packing angle, interdomain distance, 
heavy-opening angle, light-opening angle) divided by the standard deviation of each coordinate8.  The results of 
the benchmark are summarized in Table 1 and fully detailed in Tables S1-8. 
 Our deep learning method showed improvement over all grafting-based methods on every metric 
considered.  On both benchmarks, the structures predicted by our method achieved an average OCD less than 4, 
indicating that predicted structures were typically within one standard deviation of the native structure for each of 
the orientational coordinates.  All of the methods predicted with sub-Angstrom accuracy on the heavy and light 
chain framework regions, which are highly conserved.  Still, our method achieved average RMSD improvements 
of 14-18% for the heavy chain framework and 16-17% for light chain framework over the next best methods on 
the benchmarks.  We also observed consistent improvement over grafting methods for CDR loop structure 
prediction. 
 
Comparison of CDR H3 loop modeling accuracy. The most significant improvements by our method were 
observed for the CDR H3 loop (Figure 2A).  On the RosettaAntibody benchmark, our method predicted H3 loop 
structures with an average RMSD of 2.33 Å (± 1.32 Å), a 22% improvement over the next best method.  On the 
therapeutic benchmark, our method had an average H3 loop RMSD of 2.52 Å (± 1.50 Å), a 16% improvement 
over the next best method.  The difficulty of predicting CDR H3 loop structures is due in part to the wide range of 
observed loop lengths.  To understand the impact of H3 loop length on our method’s performance, we compared 
the average RMSD for each loop length across both benchmarks (Figure 2B).  In general, all of the methods 
displayed degraded performance with increasing H3 loop length.  However, DeepAb typically produced the most 
accurate models for each loop length. 
 We also examined the performance of each method on individual benchmark targets.  In Figure 2C, we 
plot the CDR H3 loop RMSD of our method versus that of the alternative methods.  Predictions with an RMSD 
difference less than 0.25 Å (indicated by diagonal bands) were considered equivalent in quality.  When compared 
to RosettaAntibody-G, RepertoireBuilder, and ABodyBuilder, our method predicted more/less accurate H3 loop 
structures for 64/17, 59/16, and 53/22 out of 92 targets, respectively.  Remarkably, our method was able to 
predict nearly half of the H3 loop structures (42 out of 92) to within 2 Å RMSD.  RosettaAntibody-G, 
RepertoireBuilder, and ABodyBuilder achieved RMSDs of 2 Å or better on 26, 23, and 26 targets, respectively. 
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Figure 2. Comparison of CDR H3 loop structure prediction accuracy. (A) Average RMSD of H3 loops 
predicted by RosettaAntibody-G (RAb), RepertoireBuilder (RB), ABodyBuilder (ABB), and DeepAb on the two 
benchmarks.  Error bars show standard deviations for each method on each benchmark. (B) Average RMSD of 
H3 loops by length for all benchmark targets.  Error bars show standard deviations for loop lengths corresponding 
to more than one target. (C) Direct comparison of DeepAb and alternative methods H3 loop RMSDs, with 

diagonal band indicating predictions that were within ±0.25	Å. (D) Comparison of native rituximab H3 loop 
structure (white, PDB ID 3PP3) to predictions from DeepAb (green, 2.1 Å RMSD) and alternative methods (blue, 
3.3-4.1 Å RMSD). (E) Comparison of native sonepcizumab H3 loop structure (white, PDB ID 3I9G) to predictions 
from DeepAb (green, 1.8 Å RMSD) and alternative methods (blue, 2.9-3.9 Å RMSD). 
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Accurate prediction of challenging, therapeutically relevant targets. To underscore and illustrate the improvements 
achieved by our method, we highlight two examples from the benchmark sets.  The first is rituximab, an anti-
CD20 antibody from the therapeutic benchmark (PDB ID 3PP3)37.  In Figure 2D, the native structure of the 12-
residue rituximab H3 loop (white) is compared to our method’s prediction (green, 2.1 Å RMSD) and the 
predictions from the grafting methods (blue, 3.3-4.1 Å RMSD).  The prediction from our method captures the 
general topology of the loop well, even placing many of the side chains near the native.  The second example is 
sonepcizumab, an anti-sphingosine-1-phosphate antibody from the RosettaAntibody benchmark (PDB ID 3I9G)38.  
In Figure 2E, the native structure of the 12-residue H3 loop (white) is compared to our method’s prediction (green, 
1.8 Å) and the predictions from the grafting methods (blue, 2.9-3.9 Å).  Again, our method captures the overall 
shape of the loop well, enabling accurate placement of several side chains.  Interestingly, the primary source of 
error by our method in both cases is a tryptophan residue (around position H100) facing in the incorrect direction. 
 

Interpretability of model predictions 
Despite the popularity of deep learning approaches for protein structure prediction, little attention has been paid to 
model interpretability.  Interpretable models offer utility beyond their primary predictive task.  The network used in 
this work was designed to be directly interpretable and should be useful for structural understanding and antibody 
engineering. 
 
Output attention tracks model focus. Each output branch in the network includes a criss-cross attention module39.  
The criss-cross attention operation allows the network to attend across output rows and columns when predicting 
for each residue pair (as illustrated in Figure 3A).  Through the attention layer, we create a matrix /0ℝ#×# (where 
- is the total number of residues in the heavy and light chain Fv domains) containing the total attention between 
each pair of residues (see Methods).  To illustrate the interpretative power of network attention, we considered an 
anti-peptide antibody (PDB ID 4H0H) from the RosettaAntibody benchmark set.  Our method performed well on 
this example (H3 RMSD = 1.2 Å), so we expected it would provide insights into the types of interactions that the 
network captures well.  We collected the attention matrix for %!" predictions and averaged over the residues 

belonging to each CDR loop to determine which residues the network focuses on while predicting each loop’s 
structure (Figure 3B).  As expected, the network primarily attends to residues surrounding each loop of interest.  
For the CDR1-2 loops, the network attends to the residues in the neighborhood of the loop, with little attention 
paid to the opposite chain.  For the CDR3 loops, the network attends more broadly across the heavy-light chain 
interface, reflecting the interdependence between the loop conformations and the overall orientation of the chains. 
 To better understand what types of interactions the network considers, we examined the residues 
assigned high attention while predicting the H3 loop structure (Figure 3C).  Within the H3 loop, we found that the 
highest attention was on the residues forming the C-terminal kink.  This structural feature has previously been 
hypothesized to contribute to H3 loop conformational diversity40, and it is likely critical for correctly predicting the 
overall loop structure.  Of the five non-H3 residues with the highest attention, we found that one was a 
phenylalanine and three were tyrosines.  The coordination of these bulky side chains appears to play a significant 
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Figure 3. Interpretability of model components. (A) Diagram of attention mechanism (with attention matrix A 
and value matrix V) and example H3 loop attention matrix, with attention on other loops indicated.  Attention 
values increase from blue to red. (B) Model attention over FV structure while predicting each CDR loop for an anti-
peptide antibody (PDB ID 4H0H). (C) Key interactions for H3 loop structure prediction identified by attention.  The 
top five non-H3 attended residues (H32-Y, L32-Y, L49-Y, L55-F, and L91-S) are labeled, as well as an H3 residue 
participating in a hydrogen bond (H100-S). (D) Two-dimensional t-SNE projection of sequence-averaged LSTM 
embeddings labeled by source species. (E) Two-dimensional t-SNE projects of LSTM embeddings averaged over 
CDR1 loop residues labeled by loop structural clusters. 
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role in the predicted H3 loop conformation.  The fifth residue was a serine from the L3 loop (residue L91) that 
forms a hydrogen bond with a serine of the H3 loop (residue H100), suggesting some consideration by the model 
of biophysical interactions between neighboring residues.  To understand how the model attention varies across 
different H3 loops and neighboring residues, we performed a similar analysis for the 47 targets of the 
RosettaAntibody benchmark (Figure S2).  Although some neighboring residues were consistently attended to, we 
observed noticeable changes in attention patterns across the targets (Figure S3), demonstrating the sensitivity of 
the attention mechanism for identifying key interactions for a broad range of structures. 
 
Repertoire sequence model learns evolutionary and structural representations. To better understand what 
properties of antibodies are accessible through unsupervised learning, we interrogated the representation learned 
by the LSTM encoder, which was trained only on sequences.  First, we passed the entire set of paired heavy and 
light chain sequences from the OAS database through the network to generate embeddings like those used for 
the structure prediction model.  The variable-length embedding for each sequence was averaged over its length 
to generate a fixed-size vector describing the entire sequence.  We projected the vector embedding for each 
sequence into two dimensions via t-distributed stochastic neighbor embedding (t-SNE)41 and found that the 
sequences were naturally clustered by species (Figure 3D).  Because the structural dataset is predominately 
composed of human and murine antibodies, the unsupervised features are likely providing evolutionary context 
that is otherwise unavailable. 

The five non-H3 CDR loops typically adopt one of several canonical conformations42,43.  Previous studies 
have identified distinct structural clusters for these loops and described each cluster by a characteristic sequence 
signature44.  We hypothesized that our unsupervised learning model should detect these sequence signatures 
and thus encode information about the corresponding structural clusters.  Similar to before, we created fixed-size 
embedding vectors for the five non-H3 loops by averaging the whole-sequence embedding over the residues of 
each loop (according to Chothia definitions42).  In Figure 3E, we show t-SNE embeddings for the CDR1 loops 
labeled by their structural clusters from PyIgClassify44.  These loops are highlighted because they have the most 
uniform class balance among structural clusters; similar plots for the remaining loops are provided in Figure S4.  
We observed clustering of labels for both CDR1 loops, indicating that the unsupervised model has captured some 
structural features of antibodies through sequence alone. 
 

Applicability to antibody design 
Moving towards the goal of antibody design, we sought to test our method’s ability to distinguish between 
beneficial and disruptive mutations.  First, we gathered a previously published deep mutational scanning (DMS) 
dataset for an anti-lysozyme antibody45.  Anti-lysozyme was an ideal subject for evaluating our network’s design 
capabilities, as it was part of the benchmark set and thus already excluded from training.  In the DMS dataset, 
anti-lysozyme was subjected to mutational scanning at 135 positions across the FV, including the CDR loops and 
the heavy-light chain interface.  Each variant was transformed into yeast and measured for binding enrichment 
over the wild type. 
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Prediction confidence is indicative of mutation tolerability. We explored two strategies for evaluating mutations 
with our network.  First, we measured the change in the network’s structure prediction confidence for a variant 
sequence relative to the wild type (visualized in Figure 4A) as a change in categorical cross entropy: 

ΔCCE(seq%&, seq'()) = 	 ; ; log
max
*#$

B(C+,|seq%&)

max
*#$

B(C+,|seq'())*	.	/0&10&2+,	.	345678/)2
 

where seq%& and seq'() are the wild type and variant sequences, respectively, and the conditional probability term 
describes the probability of a particular geometric output C+, ∈ {%!!,+, , %!%,+, , %:;<,+, , !+, , #+, , $+,} given seq%& or 

seq'().  Only residue pairs GH with predicted %!= < 10	Å were used in the	calculation.  Second, we used the LSTM 
decoder described previously to calculate the negative log likelihood of a particular point mutation given the wild 
type sequence, termed dLSTM: 

dLSTM(seq'()|P%&) = − logB(seq'(),+ = aa|P%&, seq'(),+;>) 
where seq'() is a variant sequence with a point mutation to aa at position G, and P%& is the bi-LSTM encoder 
summary vector for the wild type sequence.  To evaluate the discriminative power of the two metrics, we 
calculated ΔCCE	and dLSTM for each variant in the anti-lysozyme dataset.  We additionally calculated a combined 
metric as ΔCCE + 0.01 × dLSTM, roughly equating the magnitudes of both terms, and compared to the 
experimental binding data (Figure 4B).  Despite having no explicit knowledge of the antigen, the network was 
moderately predictive of experimental binding enrichment (Figure 4C).  The most successful predictions (true 
positives in Figure 4B) were primarily for mutations in CDR loop residues (Figure 4D).  This is not surprising, 
given that our network has observed the most diversity in these hypervariable regions and is likely less calibrated 
to variance among framework residues. Nevertheless, if the ΔCCE + 0.01 × dLSTM were for ranking, all the top-10 
and 22 of the top-100 single-point mutants identified would have experimental binding enrichments above the wild 
type (Figure 4E). 
 
Network distinguishes stability-enhanced designs. The anti-lysozyme DMS dataset was originally assembled to 
identify residues for design of multi-point variants45.  The authors designed an anti-lysozyme variant with eight 
mutations, called D44.1des, that displayed improved thermal stability and nearly tenfold increase in affinity.  To 
determine whether our network could recognize the cumulative benefits of multiple mutations, we created a set of 
variants with random mutations at the same positions.  We calculated ΔCCE for D44.1des and the random variants 
and found that the model successfully distinguished the design (Figure 4F).  We found similar success at 
distinguishing additional designs from the same publication (Figure S5).  Despite being trained only for structure 
prediction, these results suggest that our model may be a useful tool for screening or ranking candidates in 
antibody design pipelines. 
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Figure 4. Prediction of mutational effects with DeepAb model. (A) Diagram of ΔCCE calculation for model 
output predictions for an arbitrary residue pair.  Plots show the change in probability density of the predicted 
geometries for the residue pair after making a mutation. (B) Plot of the combined network metric against 
experimental binding enrichment over wild type, with negative values corresponding to beneficial mutations for 

both axes.  True positive predictions (red) and mutations to wild type cysteines (yellow) are highlighted. (C) 
Receiver operating characteristic for predicting experimental binding enrichment over wild type with the combined 
network metric and each component metric. Area under the curve (AUC) values are provided for each metric. (D) 
Position of true positive predictions on anti-lysozyme FV structure. (E) Positive predictive value for mutants ranked 
by the combined metric. (F) Comparison of ΔCCE for a designed eight-point variant (D44.1des, red) to sequences 
with random mutations at the same positions. 
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Discussion 
The results presented in this work build on advances in general protein structure prediction to effectively predict 
antibody FV structures.  We found that our deep learning method consistently produced more accurate structures 
than grafting-based alternatives on benchmarks of challenging, therapeutically relevant targets.  As deep learning 
methods continue to improve, model interpretability will become increasingly important to ensure practitioners can 
gain insights beyond the primary predictive results.  In addition to producing accurate structures, our method also 
provides interpretable insights into its predictions.  Through the attention mechanism, we can track the network’s 
focus while predicting FV structures.  We demonstrated interpretation of predictions for a CDR H3 loop and 
identified several interactions with neighboring residues that the model deemed important for structure.  In the 
future, similar insights could be used to guide antibody engineering efforts. 

As part of this work, we developed an unsupervised representation model for antibody sequences.  We 
found that critical features of antibody structure, including non-H3 loop clusters, were accessible through a simple 
LSTM encoder-decoder model.  While we limited training to known pairs of heavy and light chains, several orders 
of magnitude more unpaired immunoglobins have been identified through next-generation repertoire sequencing 
experiments28.  We anticipate that a more advanced language model trained on this larger sequence space will 
enable further advances across all areas of antibody bioinformatics research. 

Deep learning models for antibody structure prediction present several promising avenues towards 
antibody design.  In this work, we demonstrated how our network could be used to suggest or screen point 
mutations.  Even with no explicit knowledge of the antigen, this approach was already moderately predictive of 
mutational tolerability.  Inclusion of antigen structural context through extended deep learning models or 
traditional approaches like Rosetta should only improve these results.  Other quantities of interest such as stability 
or developability metrics could be predicted by using the DeepAb network for transfer learning or feature 
engineering12.  Furthermore, comparable networks for general protein structure prediction have recently been re-
purposed for design through direct sequence optimization46–48.  With minimal modification, our network should 
enable similar methods for antibody design. 
 

Methods 
Independent test sets 
To evaluate the performance of our method, we considered two independent test sets.  The first is the 
RosettaAntibody benchmark set of 49 structures, which was previously assembled to evaluate methods over a 
broad range of CDR H3 loop lengths (ranging 7-17 residues)8,35.  Each structure in this set has greater than 2.5 Å 
resolution, a maximum R value of 0.2, and a maximum B factor of 80 Å2.  The second comes from a set of 56 
clinical-stage antibody therapeutics with solved crystal structures, which was previously assembled to study 
antibody developability36.  We removed five of the therapeutic antibodies that were missing one or more CDR 
loops (PDB IDs: 3B2U, 3C08, 3HMW, 3S34, and 4EDW) to create a therapeutic benchmark set.  The two sets 
shared two common antibodies (PDB IDs: 3EO9 and 3GIZ) that we removed from the therapeutic benchmark set. 
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While benchmarking alternative methods, we found that some methods were unable to produce 
structures for every target.  To compare consistently across all methods, we report values for only the targets that 
all methods succeeded in modeling.  However, we note that DeepAb was capable of producing structures for all 
of the targets attempted.  From the RosettaAntibody benchmark set we omit PDB IDs 1X9Q and 3IFL.  From the 
therapeutic benchmark set we omit PDB IDs 4D9Q, 4K3J, 4O02, and 5VKK.  We additionally omit the long L3 
loop of target 3MLR, which not all alternative methods were able to model.  In total, metrics are reported for 92 
targets: 47 from the RosettaAntibody benchmark and 45 from the therapeutic benchmark.  We use the Chothia 
CDR loop definitions to measure RMSD throughout this work42. 
 

Representation learning on repertoire sequences 
 
Training dataset. To train the sequence model, paired FV heavy and light chain sequences were collected from 
the Observed Antibody Space (OAS) database28, a set of immunoglobin sequences from next-generation 
sequencing experiments of immune repertoires.  Each sequence in the database had previously been parsed with 
ANARCI49 to annotate sequences and detect potentially erroneous entries.  Sequences indicated to have failed 
ANARCI parsing were discarded from the training dataset.  We additionally remove any redundant sequences.  
These steps resulted in a set of 118,386 sequences for model training. 
 
Model and training details. To learn representations of immunoglobin sequences, we adopted an RNN encoder-
decoder model26 consisting of two LSTMs27.  In an encoder-decoder model, the encoder learns to summarize the 
input sequence into a fixed-dimension summary vector, from which the decoder learns to reconstruct the original 
sequence.  For the encoder model, we used a bidirectional two-layer stacked LSTM with a hidden state size of 
64.  The model input was created by concatenation of paired heavy and light chain sequences to form a single 
sequence.  Three additional tokens were added to the sequence to mark the beginning of the heavy chain, the 
end of the heavy chain, and the end of the light chain.  The concatenated sequence was one-hot encoded, 
resulting in an input of dimension (- + 3) × 23, where - is the combined heavy and light chain length.  The 
summary vector is generated by stacking the final hidden states from the forward and backward encoder LSTMs, 
followed by a linear transformation from 128 to 64 dimensions and tanh activation.  For the decoder model, we 
used a two-layer stacked LSTM with a hidden state size of 64.  The decoder takes as input the summary vector 
and the previously decoded amino acid to sequentially predict the original amino acid sequence. 

The model was trained using cross-entropy loss and the Adam optimizer50 with a learning rate of 0.01.  A 
teacher forcing rate of 0.5 was used to stabilize training.  The model was trained on one NVIDIA K80 GPU, 
requiring ~4 hours for 5 epochs over the entire dataset.  We used a batch size of 128, maximized to fit into GPU 
memory.  
 

Predicting inter-residue geometries from antibody sequence 
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Training dataset. To train the structure prediction model, we collected a set of FV structures from the Structural 
Antibody Database (SAbDab)32, a curated set of antibody structures from the PDB51.  We removed structures with 
less than 4 Å resolution and applied a 99% sequence identity threshold to remove redundant sequences.  We 
chose this high sequence similarity due to the high conservation characteristic of antibody sequences.  Finally, 
any targets from the benchmark sets, or structures with 99% sequence similarity to a target, were removed from 
the training dataset.  These steps resulted in a set of 1,692 Fv structures for model training. 
 
Model and training details. The structure prediction model takes as input concatenated heavy and light chain 
sequences.  The sequences are one-hot encoded and passed through two parallel branches: a 1D ResNet and 
the bi-LSTM encoder described above.  For the 1D ResNet, we add an additional delimiter channel to mark the 
end of the heavy chain, resulting in a dimension of - × 21, where - is the combined heavy and light chain length.  
The 1D ResNet begins with a 1D convolution that projects the input features up to dimension - × 64, followed by 
three 1D ResNet blocks (two 1D convolutions with kernel size 17) that maintain dimensionality.  The second 
branch consists of the pre-trained bi-LSTM encoder.  Before passing the one-hot encoded sequence to the bi-
LSTM, we add the three delimiters described previously, resulting in dimension (- + 3) × 23.  From the bi-LSTM, 
we concatenate the hidden states from the forward and backward LSTMs after encoding each residue, resulting 
in dimension - × 128.  The outputs of the 1D ResNet and the bi-LSTM are stacked to form a final sequential 
tensor of dimension - × 160.  We transform the sequential tensor to pairwise data by concatenating row- and 
column-wise expansions.  The pairwise data, dimension - × - × 320, is passed to the 2D ResNet.  The 2D 
ResNet begins with a 2D convolution that reduces dimensionality to - × - × 64, followed by 25 2D ResNet blocks 
(two 2D convolutions with kernel size 5 × 5) that maintain dimensionality.  The 2D ResNet blocks cycle through 
convolution dilation values of 1, 2, 4, 8, and 16 (five cycles in total).  After the 2D ResNet, the network branches 
into six separate paths.  Each output branch consists of a 2D convolution that projects down to dimension 
- × - × 37, followed by a recurrent criss-cross attention (RCCA) module39.  The RCCA modules use two criss-
cross attention operations that share weights, allowing each residue pair to gather information across the entire 
spatial dimension.  Attention queries and keys are projected to dimension - × - × 1 (one attention head).  
Symmetry is enforced for %"", %"&, and ! predictions by averaging the final outputs with their transposes.  All 

convolutions in the network are followed by ReLU activation. 
 We trained five models on random 90/10% training/validation splits and averaged over model logits to 
make predictions, following previous methods8,19.  Models were trained using focal loss30 and the Adam 
optimizer50 with a learning rate of 0.01.  Learning rate was reduced upon plateauing of the validation loss.  Each 
model was trained on one NVIDIA K80 GPU, requiring ~60 hours for 60 epochs over the entire dataset. 
 

Structure realization 
 
Multi-dimensional scaling. From the network predictions, we create real-value matrices for the %"%, !, #, and $ 

outputs by taking the midpoint value of the modal probability bin for each residue pair.  From these real-valued 
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distances and orientations, we create an initial backbone atom (N, Cα, and C) distance matrix.  For residue pairs 

predicted to have %"&	 > 18	Å, we approximate the distances between atoms using the Floyd-Warshall shortest 

path algorithm52.  From this distance matrix, we use multi-dimensional scaling (MDS)53 to produce an initial set of 
3D coordinates.  The initial structures from MDS typically contained atom clashes and non-ideal geometries that 
required further refinement. 
 
Energy minimization refinement. Initial structures from MDS were refined by constrained energy minimization in 
Rosetta.  For each pair of residues, the predicted distributions for each output were converted to energy potentials 
by negating the raw model logits (i.e. without softmax activation) and dividing by the squared %"" prediction.   

The discrete potentials were converted to continuous functions using the built-in Rosetta spline function.  We 

disregarded potentials for residue pairs with predicted %"" > 18	Å, as well as those with a modal bin probability 

below 10%.  For %?;@ potentials, we also discarded with predicted %?;@ > 5	Å or modal bin probability below 30% 
to create a local backbone hydrogen-bonding potential.  The remaining potentials are applied to the MDS 
structure as inter-residue constraints in Rosetta. 
 Modeling in Rosetta begins with a coarse-grained representation, in which the side-chain atoms are 
represented as a single artificial atom (centroid).  The centroid model is optimized by gradient-based energy 
minimization (MinMover) using the L-BFGS algorithm33,34.  After centroid optimization, we add side-chain atoms 
and relax the structure to reduce steric clashes (FastRelax).  Finally, we repeat the gradient-based energy 
minimization step in the full-atom representation to produce a final model.  We repeat this procedure to produce 
50 decoy models and select the structure with the lowest energy as the final prediction.  Only the relaxation step 
in the protocol is non-deterministic, leading to high convergence among decoys.  In practice, we expect 5-10 
decoys will be sufficient for most applications. 
 

Predicting structures with other recent methods 
To contextualize the performance of our method, we benchmarked three recent methods for antibody FV structure 
prediction: RosettaAntibody-G6, RepertoireBuilder5, and ABodyBuilder3.  RosettaAntibody-G predictions were 
generated using the command-line arguments recommended by Jeliazkov et al6 (Appendix S1).  We note that we 
only used the RosettaAntibody grafting protocol (antibody), omitting the extensive but time-consuming H3 loop 
sampling (antibody_H3)4,6.  RepertoireBuilder and ABodyBuilder predictions were generated using their 
respective web servers.  For each target in the benchmarks, we excluded structures with sequence similarity 
greater than 99% from use for predictions, to mirror the conditions of our training set.  We note that this sequence 
cutoff does not prevent methods from grafting identical loops from slightly different sequences. 
 

Attention matrix calculation 

During the criss-cross attention operation39, we create an attention matrix /0ℝ#×#×(B#;>), where for each residue 
pair in the - × - spatial dimension we have 2- − 1 entries corresponding to the attention values over other residue 
pairs in the same row and column (including the residue pair itself).  To interpret the total attention between pairs 
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of residues, we simplify the attention matrix to /D0ℝ#×(B#;>), where for each residue i in the sequence we only 
consider the attention values in the i-th row and column.  In /′, for each residue i there are two attention values for 
each other residue j, corresponding to the row- and column-wise attention between i and j.  We further simplify by 
summing these row- and column-wise attention values, resulting in an attention matrix /DD0ℝ#×#, containing the 
total attention between pairs of residues.  In the main text, we refer to /′′ as / for simplicity. 
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