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Summary

Recent advances in Focused Ion Beam-Scanning Electron Microscopy (FIB-
SEM) allows the imaging and analysis of cellular ultrastructure at nanoscale
resolution, but the collection of labels and/or noise-free data sets has several
challenges, often immutable. Reasons range from time consuming manual an-
notations, requiring highly trained specialists, to introducing imaging artifacts
from the prolonged scanning during acquisition. We propose a fully unsuper-
vised Noise Reconstruction and Removal Network for denoising scanning elec-
tron microscopy images.

The architecture, inspired by gated recurrent units, reconstructs and removes
the noise by synthesizing the sequential data. At the same time the fully un-
supervised training guides the network in distinguishing true signal from noise
and gives comparable results to supervised architectures. We demonstrate that
this new network specialized on 3D electron microscopy data sets, achieves com-
parable and even better results than supervised networks.

Keywords: Neural Network, CNN, LSTM, Unsupervised learning,
Denoising, FIB-SEM
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1 Introduction

Recent advances in Focused Ion Beam-Scanning Electron Microscopy (FIB-
SEM) have led to unprecedented biological tissue visualization and analysis,
as well as understanding of cellular ultrastructure and cell-to-cell interactions
(Xu, Hayworth, Lu, Grob, Hassan, Garcia-Cerdan, Niyogi, Nogales, Weinberg &
Hess 2017). High-resolution FIB-SEM data sets often consist of volumes sliced
into thousands of 6K×4K images with 4nm resolution per voxel, allowing a 3D
reconstruction of a fraction of tissue volume. Among others, one of the prob-
lems faced during analysis of such data is the presence of noise. Depending on
the tissue type, sample preparation, acquisition settings, detector used, etc., the
images may contain a significant quantity of noise making any further analysis
tedious or even impossible (Kubota, Sohn & Kawaguchi 2018, Liu, Sun, Gao &
Li 2018).

By definition, image denoising is the process of taking a noisy image x and
separating the noise n from the true signal s: x = s+ n. Following the typical
assumption for the noise (Foi, Trimeche, Katkovnik & Egiazarian 2008, Wu,
Gong, Kim & Li 2019) and taking the microscope’s characteristics into account,
we can assume that the noise in microscopy images is: (i) a zero-mean random
noise, that is for any pixel the noise is a discrete random number added to the
pixel ‘true value’; (ii) each pixel noise is independent, so the noise value at any
pixel does not depend on the noise at any other pixel, but it is signal dependent.
While the noise is random and independent, the signal is not and this is what,
typically, denoising methods rely on.

In recent years, deep learning methods have established themselves as pow-
erful analytical tools in machine learning (Arik, Chrzanowski, Coates, Diamos,
Gibiansky, Kang, Li, Miller, Ng, Raiman et al. 2017, Jing, Yang, Feng, Ye, Yu &
Song 2019, Karpathy & Fei-Fei 2015, Oord, Dieleman, Zen, Simonyan, Vinyals,
Graves, Kalchbrenner, Senior & Kavukcuoglu 2016). Specifically, Convolutional
Neural Networks (CNNs) have been used for various tasks including detection
(Lin, Goyal, Girshick, He & Dollár 2018, Liu, Anguelov, Erhan, Szegedy, Reed,
Fu & Berg 2016, Redmon & Farhadi 2018, Ren, He, Girshick & Sun 2016, Tan,
Pang & Le 2020), segmentation (Chen, Papandreou, Schroff & Adam 2017,
Chen, Zhu, Papandreou, Schroff & Adam 2018, Ronneberger, Fischer & Brox
2015, Tao, Sapra & Catanzaro 2020, Yuan, Chen & Wang 2019), super resolu-
tion (Sun & Chen 2020), etc. In the field of denoising, CNNs have been very
useful (Kim, Chung & Jung 2019, Liu, Wu, Wang, Xu, Zhou, Huang, Wang,
Cai, Ding, Fan & Wang 2019, Yu, Park & Jeong 2019) especially when the noise
characteristics are unknown, making any mathematical modeling difficult. In
this paper we apply a CNN technique to FIB-SEM acquired images, taking into
account the relevant specifics.

FIB-SEM allows 3D imaging of biological fine structure at nanoscale reso-
lution: a thin slice of the sample is removed with the ion beam and the newly
exposed surface is imaged with the electron beam. That results in a sequence of
images containing isotropic voxels down to 4nm. To improve the signal-to-noise
ratio the researcher may decide to image the surface several times and utilize
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frame averaging.The downside of using that technique for noise reduction is the
possibility of specimen charging and/or shrinking due to electron dose and the
impact on the general acquisition time. An alternative will be using denoising
techniques to improve the image quality. Traditionally, training neural networks
for denoising demands pairs of noisy and clean images (ground truth images):
(xj , sj). Theoretically, obtaining denoised images is possible by averaging mul-
tiple (up to hundreds) acquisitions of the same sample. As mentioned, this is
not feasible with FIB-SEM. The challenges with obtaining ground truth images,
as in many biological use cases, is motivation for developing and utilizing un-
supervised techniques, such as a Noise2Noise approach (Wu, Gong, Kim & Li
2019, Lehtinen, Munkberg, Hasselgren, Laine, Karras, Aittala & Aila 2018).

We use a triplet of images (xj−1, xj , xj+1) as input in our proposed denoising
process. The additional two images xj−1 and xj+1, that can be considered as
technical replica of the image xj because of the high resolution and the signal
redundancy, are used to boost the signal xj to denoise. We create two pairs
(xj−1, xj) and (xj+1, xj) that are fed to the same network, which is then trained
to map one noise realization to the other, using our modified Noise2Noise loss
function. We refer to the proposed architecture as Noise Reconstruction and
Removal Network (NRRN). The NRRN is applicable to the case of improving
the image quality based on two or three scans of the same slice or denoising based
on the two adjacent slices in the volume stack. Our major three contributions
discussed in this paper are:

1. a novel noise reconstruction module with soft attention and signal boost-
ing, that upon deployment on very large images (more than 24M pixels)
homogeneously removes the noise,

2. a neural network architecture design using our noise reconstruction module
with detailed performance analysis, and

3. updated noise2noise loss function (Wu, Gong, Kim & Li 2019) specifically
designed for denoising FIB-SEM data.

In what follows we give a short overview of related works.Noise-to-clean
(N2C) is the traditional supervised learning approach, where the models are
trained with pairs of noisy and clean images (xi, si) as inputs and targets re-
spectively, where xi = si + ni, so that the network learns to remove the noise.
However, when the clean (ground truth) images are not available, the supervised
N2C approach is not applicable. In 2018, Lehtinen et al. (Lehtinen, Munkberg,
Hasselgren, Laine, Karras, Aittala & Aila 2018) introduced a new approach:
the Noise2Noise (N2N). Instead of training a network to map noisy inputs to
clean images, their N2N approach trains on pairs of independently degraded
versions of the same training sample: (si + ni, si + n′i). Authors demonstrate
that predictions from networks trained with such N2N approach converge to the
same predictions as traditionally N2C trained networks.

(Wu, Gong, Kim & Li 2019) further developed the N2N idea with a novel
loss function applied to medical images with available pairs of noise realizations.
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The network was then trained to map one noise realization to the other, with a
loss function that efficiently combined the outputs from both training subsets.
A mathematical proof was provided to demonstrate that the proposed training
scheme was equivalent to training with noisy and clean samples, empirically
proving that the noise in the two subsets was random and spatially independent.

Noise2Void (N2V)(Krull, Buchholz & Jug 2019) and the follow up Noise2Self
(N2S) (Batson & Royer 2019) training schemes fill the gap when no clean target
images or technical replica are available. If these architectures training are less
restrictive, N2V authors mentioned that they do not outperform the N2N or
N2C methods since they have less information available during training. In our
case we take advantage of the volumetric structure of the data that lead to
information redundancy, and we chose a N2N training style.

Independent of the training scheme, a lot of work has been done on the
neural network architectures design. A very popular choice is the U-Net archi-
tecture (Ronneberger, Fischer & Brox 2015) and its variations. U-Net was first
introduced for segmentation purposes and since has been widely extended in
terms of applications as well as architectures. Alternatively, Remez et al. (Re-
mez, Litany, Giryes & Bronstein 2017, 2018) used a fully-convolutional neural
network architecture that exploits the gradual nature of the denoising process.
Their DenoiseNet architecture calculates a “noise estimate” that is fine-tuned
at each layer based on the previous layer output, and the results are then added
to the input image. They have shown that the shallow layers handle local noise
statistics, while deeper layers recover edges and enhance textures. Recurrent
neural networks (RNN) have been widely developed and used in many appli-
cations, such as natural language processing and video analysis. RNNs handle
temporal sequences of input, and perform the same processing at each element
of the sequence while keeping memory of the previous computation.

Influenced by RNN principles, and more specifically its two most famous
derivatives, GRU (Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk
& Bengio 2014, Yao, Cohn, Vylomova, Duh & Dyer 2015) and ConvLSTM (Shi,
Chen, Wang, Yeung, Wong & Woo 2015, Yang, Xiong, Xu, Zhou, Xu, Chen,
Park, Grbic, Tran, Chin, Metaxas & Comaniciu 2017), as well as DenoiseNet
architecture, we propose a new denoising architecture that models the noise
using information from two or three images. At each layer we accumulate the
information from the additional images and calculate a noise component. Dur-
ing network training, we use an unsupervised noise2noise loss function adapted
to the multi-image architecture - more details in subsection 2.1.2.

2 Results

2.1 Noise Reconstructing & Removal Network

The proposed Noise Reconstruction and Removal Network (NRRN) architecture
and the training framework are designed to take advantage of the sequential na-
ture of FIB-SEM data. NRRN uses specific units to fuse the additional informa-
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tion as well as fully unsupervised training to guide the network in distinguishing
true signal from noise.

2.1.1 Denoising module architecture

Typically, a FIB-SEM data set consists of N images representing N consecutive
imaged slices (x0, ..., xN ). Our approach is to obtain a denoised image x̂j from
three adjacent noisy images (or if available, three scans of the same slice). To
do so, we consider the initial tissue sample into a data set of N −2 independent
triplets of images (xj−1, xj , xj+1). We split each triplet into two pairs (xj−1, xj)
and (xj , xj+1) that are passed through two parallel identical branches of the
proposed network NRRN, see Fig.1 A. For a pair of images (xj , xj±1), each
branch (Fig. 1 B) consists of:

• one convolution layer (3 × 3 kernel, 64 channels, and ReLU activation
(see the Supplemental Material for definition)) applied to each of the two
images

• L + 1 stacked layers made of a building unit (BU) coupled with noise
attention (NAtt) and feedback blocks

• a final convolution layer (3× 3 kernel, 64 channels, and ReLU activation).

By stacking BUs, the network architecture is an iterative denoising process
comparable to DenoiseNet. Each BU models noise components (see Fig. 1 C) by
accumulating noise characteristics from previous units and from updated input
image after each stage. Within the BU l, the information flows through two
major paths which have been highlighted by an upper and a lower block. While

the path through the lower block ĥj
l

learns noise features from previous BU

(l− 1) and cleaner input x′
l−1
j , the upper block h̃lj±1 mostly learns information

coming from the adjacent image xj±1 by performing bulk of operation and we
call it synthesizer. Motivated by LSTM and GRU cells, but with a reduced
computational overhead, a BU l contains two gates: an update gate ul that
decides how much of the previous/adjacent information (coming from h̃l+1

j±1) and

the new one (1− ul) needs to be kept; a reset gate rl that regulates how much
needs to be forgotten. This allows the synthesizer at every level to accept useful
information coming from the xj±1 while simultaneously being aware about the

updated image x′
l
j .

After the synthesizer has learned the noise components, the new features
are then passed to the NAtt block that filters the BU output and generates the
noise component which is removed from the corresponding input image to give
a new updated image x

′l
j to the next BU. The key equations for every pair of

images (xj±1, xj) are given in eq.1, where ◦ denotes the Hadamard product and
∗ denotes the the convolution operator:
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Figure 1: Noise Reconstructing & Removal Network Architecture
(A) Training Process;
(B) Single Branch Architecture;
(C) Building Unit;
(D) The Feedback Block after the lth BU;
(E) The Noise Attention Block (NAtt)

h̃l+1
j±1 = tanh(W1 ∗ h̃lj±1)

ul = σ(Wu ∗ ĥlj + Vu ∗ h̃l+1
j±1)

rl = σ(Wr ∗ ĥlj + Vr ∗ h̃l+1
j±1)

cl = tanh(Wc ∗ ĥlj + rl ◦ h̃l+1
j±1 ∗ Vc)

ĥl+1
j = (1− ul) ◦ h̃l+1

j±1 + ul ◦ cl

(1)

for l ∈ {0, ..., L}, j ∈ {1, ..., N ×M} and h̃0j±1 = ReLU(W0 ∗ xj±1) and ĥ0j =
ReLU(W0 ∗ xj) and W1 is with shared parameters across all BUs. The noise

attention block (see Fig. 1E) receives a feature vector with 64 channels ĥl+1
j as

input. It max pools through all channels to create an attention map that gets
element-wise multiplied to the first channel of ĥl+1

j . We observe that the output
of the NAtt block represents component of the noise present in previous noisy
image x′

l−1
j .
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Presumably, we have a less noisy image x′
l
j after each layer and we want to

feed it back to the network. That is achieved in the feedback block (see Fig.
1 D) that works as a buffer by gathering information from both the updated

image x′
l
j as well as the newly learned features ĥl+1

j from the previous building

unit. Thus the first channel of the synthesizer output ĥl+1
j is updated by the

Feedback block giving the input for next BU. For simplicity we use the same
notation ĥl+1

j , for both: synthesizer output and input of the next BU.

2.1.2 Loss Function

In (Wu, Gong, Kim & Li 2019), showed that for a clean image sk and two noisy
realizations of it x(k,1) = sk + n(k,1) and x(k,2) = sk + n(k,2) the function

g(x(k,1), x(k,2), θ) =
f(x(k,1), θ) + f(x(k,2), θ)

2
−−−→
θ→θ*

sk

approaches the real signal sk for, θ* = argminLn2n(θ) where

Ln2n =
1

N

N∑
k=1

{1

2
||f(x(k,1), θ)− x(k,2)||22

+
1

2
||f(x(k,2), θ)− x(k,1)||22

− 1

4
||f(x(k,1), θ)− f(x(k,2), θ)||22}, (2)

The only requirements for such loss function are that the noise n(k,1) and n(k,2)
are with zero means and spatially independent.

In our case, we consider N−2 triplets of images split into two pairs (xj−1, xj)
and (xj+1, xj). The NRRN network maps each of these pairs to two outputs
x′j = f(xj−1, xj , θ) and x′′j = f(xj+1, xj , θ), see Fig.1A. The two input pairs
having independent and zero means noise, generate two denoised versions of the
same jth image. Then, the final denoised solution x̂j of the jth image is given
by:

x̂j =
1

2
(x′j + x′′j ).

One can view, for every slice xj , the adjacent images xj−1 and xj+1 as discrete
versions of the signal along the third direction of the volume. In addition,
xj−1 and xj+1 have their own noise that is spatially independent. Due to the
FIB-SEM way of imaging (extremely high isotropic resolution along all three
dimensions), we consider that the signal between two slices has good enough
properties that we can use a Taylor expansion along the third-axis. Thus for
every image xj one can view xj−1 = sj +noise+ e0, where sj is the real signal,
e0 = O(sj−1−sj), and similarly for xj+1. In such case the eq. 2 can be rewritten
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as

Ln2n =
1

N ×M

N×M∑
j=1

{
1

2
||x′j − xj+1||22 +

1

2
||x′′j − xj−1||22

− 1

4
||x′j − x′′j ||22

}
(3)

2.2 Experiments

The NRRN architecture has been specifically designed for FIB-SEM images
denoising, and trained and tested on images acquired with a FEI Helios NanoLab
660 DualBeam using an In-Column Detector (ICD) at Oregon Health & Science
University (OHSU) Multi-scale Microscopy Core (MMC). In this section we
present the denoising results with the newly proposed NRRN and we also discuss
different ways to assess the denoising quality. Furthermore, we compare NRRN
outcomes to alternative approaches, we discuss the denoising process and more
practical issues like efficiency and transfer learning.

2.2.1 Data and Techniques for Analysis

The OHSU data set is composed of cancer tissue images of dimensions 4K×6K
pixels with 4nm resolution. The way it was acquired allowed the creation of
“ground truth” images: the tissue sample surface was scanned 10 times before
slicing (the number of scans being limited because of the artifacts produced by
the electron beam during scanning), so producing 10 images of the exact same
area, and this process was repeated 5 times. The 10 images of the same surface
can be considered as technical replicates in which only the noise is different.
These images were first registered together using an affine transformation from
an in-house stochastic version of TurboReg (Thevenaz, Ruttimann & Unser
1998). Then a ground truth image was generated as follows: for each pixel,
the 10 values from the 10 images were sorted, then the 2 most extreme values
on each side where removed to avoid outliers, and the remaining 6 values were
averaged. The nature of the OHSU data set, with its multiple scans per slice,
allows us to examine and compare the way NRRN learns the specific electron
microscopy noise and distinguishes it from the true signal.

To analyze the way NRRN deals with volume data and to test on images
acquired at a different institution and microscope, we experimented with the
publicly available data set from (EPFL Electron Microscopy Dataset n.d.). This
data set represents a section taken from the CA1 hippocampal region of the
brain, corresponding to a 1065× 2048× 1536 pixel volume at 5× 5× 5nm voxel
resolution, where the top 165 slices are used for training and the bottom 165 for
validation. Since ground truth image are not available, we employed the data
set to examine the efficiency of the proposed algorithm in removing artificially
added Gaussian and/or Poisson noise.

To evaluate denoising efficiency, we use two classical measures: the Peak
Signal-to-Noise Ratio (PSNR) (Hore & Ziou 2010), and the Structural Simi-
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larity Index Measure (SSIM) (Wang, Bovik, Sheikh & Simoncelli 2004). Both
measures compare the denoised image to a ground truth image, and in the case
of the OHSU data set we are fortunate to have access to acceptable approxima-
tions. In addition, we look at the interquartile range (IQR) of the signal across
a straight line in an area with flat signal. In the FIB-SEM case, the entire work-
flow from tissue collection to final image harvesting takes roughly two weeks for
1500 images (Riesterer, López, Stempinski, Williams, Loftis, Stoltz, Thibault,
Lanicault, Williams & Gray 2020). During this process the clinical specimen
undertakes several epoxy resin infiltration steps to fill the space between the
cellular structures. In our analysis we look at the noise presence in the resin be-
cause it is a homogeneous material, and as a consequence an “efficient” denoiser
should produce a flat signal.

2.2.2 Implementation details, Results and Inference

The OHSU data set was separated into 3 slices for training, 1 for validation and
1 for testing, and the initial large images were cropped into 13650 smaller images
of size 256 × 256 pixels, distributed as follow: 8190 images for training (three
slices), 2730 for testing and validation (one slice each). The NRRN architecture
was implemented in PyTorch, with 4 BUs, the images triplets in the training are
taken from the same slice, and the training performed with ADAM optimizer
for initial learning rate 10−4, β1 = 0.9, β2 = 0.999, ε = 10−8, and a batch size
of 16.

On the test slice, NRRN achieves a PSNR of 31.0197 ± 0.1905 dB and a
SSIM of 0.9705 ± 0.0006. Fig. 2 shows an image from the test slice with a
PSNR of 31.11dB, significant reduction of the noise on the resin (the IQR is
reduced to 0.94 - Fig.2D), while still keeping sharp edges on the cell organelles
with reduced noise (see Fig. 2E).

Remark: one might argue that using a model taking a triple input is a
burden, but double or even single inputs are also possible during inference.
However our experiments shows (see Fig. S1, the higher the number of input
images, the higher the PSNR and SSIM. Nevertheless, an inference with a double
input architecture gives very satisfactory quality results in comparison to the
triple input by degrading the overall results (measured in PSNR and SSIM) by
only 2%. The signal variation in the flat resin area or across the organelle for
two images is almost indistinguishable from the three images. Using a single
image or two images would, in addition, reduce the computational burden since
we would pass the input through the single branch of the architecture.

2.2.3 Comparisons

We compare NRRN denoising approach on the OHSU data set to the follow-
ing traditional supervised Noise2Clean training as well as classical training-free
methods:

• Training-free methods: BM3D, non-local means (NLM), median and Gaus-
sian filters. We applied the NLM to a single image (here refereed as ‘NLM
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Figure 2: NRRN denoising results, where the yellow doted line shows
where image signal is measured.
(A) validation image;
(B) zoom in of the noisy input image;
(C) zoom in of the denoised image;
(D) box plot of the signal across the resin (from subfig. B - showing the signif-
icant reduction in the signal/noise variation;
(E) the signal variation across the mitochondria (from subfig. C)) - the NRRN
denoising keeps sharp edges.

sngl’) and to an average of 3 images (here refereed as ‘NLM avg’).

• Training methods: U-Net and DenoiseNet. We experimented with the
classical DenoiseNet (using ground truth images in the training) as pre-
sented in (Remez, Litany, Giryes & Bronstein 2017) (here referred as ‘N2C
DenoiseNet- sngl’), but also a version of DenoiseNet that is applicable to a
sequence of (three) images (Remez, Litany, Giryes & Bronstein 2018) (here
referred as ‘DenoiseNet’ or ‘N2C DenoiseNet’). The U-Net is a classical
network with a depth of 4 and batch normalization. Again, we trained on
a single image and on an average of three consecutive images (as input)
and the corresponding ground truth image - here referred as ‘N2C U-Net
sngl’ and ‘N2C U-Net avg’ (or simply U-Net) respectively.

The OHSU FIB-SEM input images of size 4K × 6K are rather large to
be fit into the GPU memory. Since the noise is random at the pixel level
(no spatial dependencies), during inference we crop the large images into 345
smaller patches of size 256×256, denoise them and stitch them back together to
reconstruct the large image, allowing a 20 pixels overlap to avoid the edge effect
introduced by convolution layers. In contrast to (Wu, Silversmith & Seung 2019)
where authors weighted the overlapping values, we cut them out. This does
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result in additional patches that need to be denoised, but it overcomes border
artifacts. On Fig. 3A, we plotted the patches PSNR distribution for each of the
compared architectures. One advantage of NRRN is that the noise is removed
homogeneously across all patches, with a consistent PSNR of 31.21±0.52, which
is marginally better than DenoiseNet 0.58 standard deviation, but significantly
outperforms the U-Net deviation of 1.26 .
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Method   

PSNR 

(dB)   SSIM    

Input 22.968 0.8577

NLM -avg. input 31.3589 0.9725

DenoisedNet 32.2029 0.9779

U-Net avg 31.4677 0.976

NRRN   31.106 0.9708

U-Net DenoiseNet NRRN-4BU
A

B C

D

Figure 3: Comparison of NRRN to other alternative denoisers
(A) PSNR Histogram for the patches constructing a FIB-EM image, from left
to right U-Net, DenoiseNet, NRRN;
(B) Comparison of the PSNR and SSIM;
(C) Comparison of the signal across the resin for U-Net, DenoiseNet, NRRN
and the Ground Truth image. The IQR of NRRN outperform the rest of the
networks;
(D) Variation of the signal across a cell organelle and edge sharpness: Input
image, NLM, U-Net, DenoiseNet and NRRN (from left to right).

In this paper we argue that the loss function as defined in eq. (3) results in
better denoising. The ground truth images have better signal than the input
images, but they are not noise free. Using per-pixel loss with a ground truth
in the training (in the face of L1 or L2 norm) would maximize the PSNR but
results in an image that inherits the noise present in the “ground truth”. This
is not the case of NRRN with the loss function defined as in eq.(3), we are
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able to better remove the random pixel noise. On Fig. 3C, we compared the
noise in the signal flat resin region for U-Net, DenoiseNet and NRRN. Even
though DenoiseNet and U-Net significant improvement in comparison to the
input image and the ground truth, NRRN significantly outperform them all.

Comparisons on the final whole image based on PSNR and SSIM are shown in
table 1. The non-local mean (NLM-avg), DenoiseNet and U-Net all outperform
NRRN, in terms of PSNR and SSIM. That is expected since DenoiseNet and
U-Net were trained to minimize the MSE loss (equivalent to maximizing the
PSNR). In the case of non-local mean the high PSNR is achieved by aggressively
flattening the signal even on biological structures of interest. NRRN does a
better job in removing noise across the resin while sharpening the biological
structures - visible on Fig. 3C-D.

Method PSNR
(dB)

SSIM

Input 22.9680 0.8577

NLM -avg. input 31.3589 0.9725
BM3D 28.2515 0.8747
Median Filter-avg. input 28.0214 0.9495
Gauss Filter-avg. input 27.0649 0.9195
NLM -sngl 24.0703 0.6195

N2C DenoiseNet 32.2029 0.9779
N2C U-Net avg 31.4677 0.9760
NRRN 31.1060 0.9708
NRRN -2 img 30.4194 0.9666
N2C U-Net sngl 29.1844 0.9571
N2C DenoiseNet -sngl 28.3436 0.9559

Table 1: Denoising performance of NRRN vs other denoisers in terms of PSNR
and SSIM on the OHSU data set. The comparison is carried out for BM3D,
Non-Local Means Denoising (NLM) for a single and sequence of 3 images (NLM
- avg input), and Gaussian Filter, Median Filter, U-Net DenoiseNet and NRRN
(the best results are highlighted in bold font).

Besides the OHSU data, we synthesized additional noise to the EPFL data
set. We fine tuned the OHSU pre-trained models by continuing the training on
the small EPFL volume data set. During training, we corrupt the EPFL images
with Poisson noise for random peak values ranging in [1, 50] and also added
Gaussian noise with random σ between 10 and 75. The results of denoising
images from the validation data set with added Poisson and Gaussian noise re-
spectively are in Tables 4A and 4B. In terms of the quantitative measure PSNR,
NRRN with its unsupervised training shows very comparable performance to
the supervised training - marginal improvement in some of the cases and a slight
under-performance in others. A closer visual inspection (see Fig. 4C) reveals
that: U-Net tends to over smooth the details; DenoiseNet adds white speckles
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for low peak values and high σ, indicating that the network struggles to extract
enough information from the significantly damaged images; while NRRN does
not display any of these issues because the Building Units are able to synthesize
the information from the adjacent slices and reconstruct and remove the noise
without over smoothing or adding artifacts.
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POISSON NOISE

Method Peak=1 Peak=2 Peak=4 Peak=8 Peak=30

Input 5.98 8.04 10.19 12.52 17.66

NLM-avg 10.16 12.44 14.72 17.03 22.05

Gauss-avg 16.86 20.71 23.89 25.77 26.89

Median-avg 13.54 16.25 18.26 20.14 23.71

NRRN 17.33 20.87 23.77 25.68 27.52

DenoiseNet 15.02 18.85 22.39 25.19 27.53

U-net 16.93 20.65 23.92 25.86 27.49

GAUSSIAN NOISE

Method =10 =15 =25 =35 =75

Input 28.13 24.59 20.17 17.29 11.54

NLM-avg 27.98 28.08 25.78 21.55 16.11

Gauss-avg 27.13 27.11 27.01 26.88 25.57

Median-avg 27.17 26.58 25.09 23.53 19.11

NRRN 28.57 28.42 27.97 27.42 25.38

DenoiseNet 28.55 28.35 27.93 27.43 24.52

U-net 27.97 27.94 27.77 27.47 25.58

A

C

B

Figure 4: Denoising EPFL images
(A) PSNR in dB for EPFL image with added Poisson noise with peak=1, 2, 4,
8, 30;
(B) PSNR in dB for EPFL image with added Gaussian noise with σ =
10, 15, 25, 35, 75;
(C) Comparison of the denoising performance. Top to bottom: Input im-
age, DenoiseNet, NRRN and U-Net. Left to right: added Poisson noise with
peak = 1, 8, 30 and Gaussian noise with σ = 10, 75.

2.2.4 Exploring the denoising process

Similar to DenoiseNet, our algorithm allows intermediate noise estimates after
each Building Unit. Our exploration of the denoising process is carried out
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for NRRN with 5 BUs on both data sets: OHSU and EPFL. Each BU SSIM
shows that the majority of the denoising happens in the first 1-3 layers where
we observe a more significant and gradual improvement (see Fig. 5A, when
the last two BUs become important for highly corrupted images (Poisson noise
with peak=1 and Gaussian noise σ = 75). On Fig. 5B we looked at the signal
across the resin. We scaled the signal with the signal mean value and plotted
the scaled input image signal (x-axis) versus the scaled BUs signal (y-axis). We
see that the signal (which on the resin area is mostly noise) gradually fattens.
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L5, 0.4163

L5, 0.90493
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L5 Linear (L1) Linear (L2) Linear (L3)

Linear (L4) Linear (L5)

A B

Method PSNR SSIM IQR   

NRRN 1BU 31.058 0.97 1.716

NRRN 2BU 31.135 0.971 1.643

NRRN 3BU 31.054 0.971 1.000

NRRN 4BU 31.106 0.971 0.941

NRRN 5BU 31.063 0.971 1.000

C

Figure 5: Iterative denoising process
(A) SSIM at each layer for OHSU data set and EPFL with added Poisson
noise with peak 1 and 30 (P1, P30) and added Gaussian Noise with σ = 15, 75
(G15,G75);
(B) Input signal scatter plot across the resin vs layers signal;
(C) PSNR, SSIM and IQR for the NRRN family

The ability to look at the intermediate denoising results and the modular
architecture helps with the network fine tuning: the higher the level of noise,
the higher the number of BUs. To investigate such behavior, we trained a
whole family of NRRN networks ranging the number of BUs from 1 to 5 on the
OHSU data set. We measured the signal variation on the resin in terms of IQR,
PSNR, and SSIM. Table 5C indicates that while the SSIM and PSNR seems to
not improve with more BUs, the signal on the resin flattens (smaller IQR) until
the 4th BU.

2.2.5 Transfer learning and efficiency

In the case of biomedical images the data sets available for training are rather
small. Transfer learning with pre-training on a bigger data set works well: to
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denoise the EPFL data set, we pre-trained on the OHSU data set and then
fine-tuned it on a small portion made of 165 images of the EPFL data set. We
also experimented with directly training on the EPFL data set. The NRRN
networks (even with just a single BU) are significantly better in extracting the
information of interest than DenoiseNet and U-Net - see Table 2 (as we have
seen in Tables 4A-B the three architectures achieve similar results on bigger
data set).

Method Poisson
peak=1

Poisson
peak=30

Gaussian
σ = 75

Gaussian
σ = 10

NRRN 1BU 17.8976 27.5081 25.1841 28.4803
DenoiseNet 9.4712 19.6979 14.3589 25.2942
U-Net 9.4189 20.9759 15.0638 27.1999

Table 2: Denoiser performance without transfer learning on the small EPFL
data set. Quantification in terms of PSNR (in dB) shows that NRRN outper-
forms the other networks (the best results are highlighted in bold font).

Furthermore, we studied the giga operations per second (GOPs) and num-
ber of parameters vs one of the quality measures for the NRRN family (single
branch), (N2C) U-Net and (N2C) DenoiseNet ( see Fig. S2). If we are to find
the best trade off denoising quality versus efficiency, then the NRRN with 3
Building Units gives, in our opinion, the best trade off from the whole NRRN
family, DenoiseNet, and U-Net for the OHSU data set. For more noise corrupted
images (as it was for EPFL with Poisson noise with peak 1-8 or Gaussian Noise
with σ = 75) the 5 BUs with their bigger receptive field would be required.

2.3 Denoising advantages and new possibilities

Thanks to the noise2noise approach adopted by the NRRN architecture, one can
train a denoising model that would be specific to each data set. Such possibility
provides a solution to efficiently denoise every data set in a unique and dedi-
cated manner. The efficiency reached by NRRN highly reduces the noise while
preserving edges and improving the contrast of shallow structures of interest like
mitochondria texture or macropinosomes (see figure 3 D). Such improvements
allow for a better visualization and as a consequence understanding of biological
structures, as well as an easier manual or automatic segmentation. Moreover,
denoising improves texture characterization and then classification, for example
the nuclei chromatin, by reducing the texture features instability which is often
introduced by noise and artifacts as it is the case for statistical matrices like
Haralick features or size zone matrix (Thibault & Shafran 2016).
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3 Discussion

The advances in the focused ion beam-scanning electron microscopy provide
high resolution cell images, which unfortunately contain a significant quantity
of noise. In this paper, we discussed the advantage and further developed the
idea of using a sequence of images with a noise2noise approach for removing
the noise. This approach has the benefit of not requiring ground truth images
for training, which is typically the case for biomedical deep learning tackled
problems. We suggested a novel modular architecture (NRRN) that is able to
exploits the sequential nature of the images to reconstructs and remove the noise
from the original image. We demonstrated that this unsupervised approach
leads to consistent noise removal across the entire image without regard to the
structures present. Besides, we showed that the architecture allows a glimpse
into the denoising process that can be used to adjust the depth of the network
to the available computational resources and/or presence of noise.

4 Acknowledgments

FIB-SEM data included in this manuscript was generated at the Multiscale
Microscopy Core (MMC), an OHSU University Shared Resource, with techni-
cal support from the OHSU Center for Spatial Systems Biomedicine (OCSSB).
Specimen acquisition support from the SMMART clinical coordination team
was invaluable. This manuscript was supported by Prospect Creek Founda-
tion, the Brenden-Colson Center for Pancreatic Care, the NCI Cancer Systems
Biology Measuring, Modeling, and Controlling Heterogeneity (M2CH) Center
Grant (5U54CA209988), the NCI Human Tumor Atlas Network (HTAN) Omic
and Multidimensional Spatial (OMS) Atlas Center Grant (5U2CCA233280), the
OHSU Knight Cancer Institute NCI Cancer Center Support Grant (P30CA069533),
and the OCSSB.

This study was approved by the Oregon Health & Science University Insti-
tutional Review Board (IRB # 16113). Participant eligibility was determined
by the enrolling physician and informed consent was obtained prior to all study
protocol related procedures.

We thank Eugenio Culurciello and the rest of the Micron ML team for their
useful comments and discussions.

5 Author Contributions

K.G., A.Ch., B.DeLaR. designed the architecture; J.R. and E.S. prepared the
tissue samples and collected the data images; K.G., A.Ch., B.DeLaR., G.Th.,
T.Lo designed the experiments and analyzed the results; J.W.G. conceived
the project. All authors have read, edited, and approved the content of the
manuscript.

16

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.446051doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446051
http://creativecommons.org/licenses/by-nc/4.0/


6 Declaration of Interests

JWG has licensed technologies to Abbott Diagnostics; has ownership positions
in Convergent Genomics, Health Technology Innovations, Zorro Bio and PDX
Pharmaceuticals; serves as a paid consultant to New Leaf Ventures; has re-
ceived research support from Thermo Fisher Scientific (formerly FEI), Zeiss,
Miltenyi Biotech, Quantitative Imaging, Health Technology Innovations and
Micron Technologies; and owns stock in Abbott Diagnostics, AbbVie, Alpha-
bet, Amazon, Amgen, Apple, General Electric, Gilead, Intel, Microsoft, Nvidia,
and Zimmer Biomet. The rest of the authors declare no competing interests.

References

Arik, S. O., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y.,
Li, X., Miller, J., Ng, A., Raiman, J. et al. (2017), ‘Deep voice: Real-time
neural text-to-speech’, arXiv preprint arXiv:1702.07825 .

Batson, J. & Royer, L. (2019), Noise2self: Blind denoising by self-supervision,
in ‘International Conference on Machine Learning’, PMLR, pp. 524–533.

Chen, L.-C., Papandreou, G., Schroff, F. & Adam, H. (2017), ‘Rethinking atrous
convolution for semantic image segmentation’.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. (2018), Encoder-
decoder with atrous separable convolution for semantic image segmentation,
in ‘Proceedings of the European conference on computer vision (ECCV)’,
pp. 801–818.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H. & Bengio, Y. (2014), ‘Learning phrase representations using
rnn encoder-decoder for statistical machine translation’.

EPFL Electron Microscopy Dataset (n.d.), https://www.epfl.ch/labs/

cvlab/data/data-em/.

Foi, A., Trimeche, M., Katkovnik, V. & Egiazarian, K. (2008), ‘Practical
poissonian-gaussian noise modeling and fitting for single-image raw-data’,
IEEE Transactions on Image Processing 17(10), 1737–1754.

Glorot, X., Bordes, A. & Bengio, Y. (2011), Deep sparse rectifier neural net-
works, in ‘Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics’, JMLR Workshop and Conference Proceedings,
pp. 315–323.

Hore, A. & Ziou, D. (2010), Image quality metrics: Psnr vs. ssim, in ‘2010 20th
international conference on pattern recognition’, IEEE, pp. 2366–2369.

17

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.446051doi: bioRxiv preprint 

https://www.epfl.ch/labs/cvlab/data/data-em/
https://www.epfl.ch/labs/cvlab/data/data-em/
https://doi.org/10.1101/2021.05.27.446051
http://creativecommons.org/licenses/by-nc/4.0/


Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y. & Song, M. (2019), ‘Neural style
transfer: A review’, IEEE transactions on visualization and computer graphics
.

Karpathy, A. & Fei-Fei, L. (2015), Deep visual-semantic alignments for generat-
ing image descriptions, in ‘Proceedings of the IEEE conference on computer
vision and pattern recognition’, pp. 3128–3137.

Kim, D.-W., Chung, J. R. & Jung, S.-W. (2019), ‘Grdn:grouped residual dense
network for real image denoising and gan-based real-world noise modeling’.

Krull, A., Buchholz, T.-O. & Jug, F. (2019), Noise2void-learning denoising from
single noisy images, in ‘Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition’, pp. 2129–2137.

Kubota, Y., Sohn, J. & Kawaguchi, Y. (2018), ‘Large volume electron mi-
croscopy and neural microcircuit analysis’, Frontiers in neural circuits 12, 98.

Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M.
& Aila, T. (2018), ‘Noise2Noise: Learning Image Restoration without Clean
Data’, arXiv e-prints p. arXiv:1803.04189.

Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollár, P. (2018), ‘Focal loss for
dense object detection’.

Liu, J., Wu, C.-H., Wang, Y., Xu, Q., Zhou, Y., Huang, H., Wang, C., Cai,
S., Ding, Y., Fan, H. & Wang, J. (2019), ‘Learning raw image denoising with
bayer pattern unification and bayer preserving augmentation’.

Liu, S., Sun, L., Gao, J. & Li, K. (2018), ‘A fast curtain-removal method for 3d
fib-sem images of heterogeneous minerals’, Journal of microscopy 272(1), 3–
11.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y. & Berg,
A. C. (2016), Ssd: Single shot multibox detector, in ‘European conference on
computer vision’, Springer, pp. 21–37.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves,
A., Kalchbrenner, N., Senior, A. & Kavukcuoglu, K. (2016), ‘Wavenet: A
generative model for raw audio’, arXiv preprint arXiv:1609.03499 .

Redmon, J. & Farhadi, A. (2018), ‘Yolov3: An incremental improvement’.

Remez, T., Litany, O., Giryes, R. & Bronstein, A. M. (2017), ‘Deep Class Aware
Denoising’, arXiv e-prints p. arXiv:1701.01698.

Remez, T., Litany, O., Giryes, R. & Bronstein, A. M. (2018), ‘Class-Aware
Fully Convolutional Gaussian and Poisson Denoising’, IEEE Transactions on
Image Processing 27(11), 5707–5722.

18

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.446051doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446051
http://creativecommons.org/licenses/by-nc/4.0/


Ren, S., He, K., Girshick, R. & Sun, J. (2016), ‘Faster r-cnn: Towards real-time
object detection with region proposal networks’.
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Figure S1: Related to Section 2.2.2 and the remark on inference with
less than three images. Quantitative analysis for inference with 1, 2
and 3 input images
(A) PSNR and SSIM for inference with 1, 2 and 3 input images.
(B) The signal across the resin for inference with one, two and three images.
(C) The signal across an organelle.

Peak Signal to Noise Ratio - PSNR

PSNR measures the pixel distance between two images. Given a reference image
f and a test image g, both of size M ×N , the PSNR between f and g is defined
by:

PSNR(f, g) = 10log10
2552

MSE(f, g)
,

where

MSE(f, g) =
1

MN

M∑
i=1

N∑
j=1

(fij − gij)2

Structural Similarity Index Measure - SSIM

SSIM measures the perceptional difference between two images. Let’s consider
a reference image f and a test image g, both of size M × N and denote with
µf the mean value of the images f , σf the standard deviation of f, σfg the
covariance between f and g. The SSIM between f and g is defined by:

SSIM(f, g) = l(f, g)c(f, g)s(f, g)
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Figure S2: Related to Section 2.2.5 and more specifically the efficiency
of the NRRN. Comparison of the GOPs and number of Parameters
(Million) vs IQR for NRRN family, DenoiseNet, and U-Net.
(A) Number of parameters vs. IQR across the resin.
(B) Number of giga operations (GOPs) vs. IQR. For the NRRN Family the
GOPs are for only one (of the two) branches, the noise2noise training requires
two branches which will double the GOPs but avoids the need of ground truth
images.

where

l(f, g) =
2µfµg + C1

µ2
f + µ2

g + C1

is the luminance function which compares the closeness of the two images’ mean
luminance (µf and µg);

c(f, g) =
2σfσg + C2

σ2
f + σ2

g + C2

is the contrast comparison function which measures the closeness of the contrast
(σf and σg) of the two images;

s(f, g) =
σfg + C3

σfσg + C3

is the structure comparison function which measures the correlation coefficient
(σfg) between the two images f and g.

SSIM takes values between 0 and 1, where a value of 0 means no correlation
between the two images, and 1 means that f = g.

Rectified Linear Unit - ReLU

ReLU is a non-linear activation function that is used in multi-layer neural net-
works or deep neural networks (Glorot, Bordes & Bengio 2011). This function
is defined as:

ReLU(x) = max(0, x).
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