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Abstract

The expansion of deleted mitochondrial DNA molecules has been associated with ageing1,2,
particularly in skeletal muscle fibres3–5; its mechanism has remained unclear for three decades.
Previous accounts have assigned a replicative advantage to the deletions6–8, but there is evidence
that cells can, instead, selectively remove defective mitochondrial DNA9. Here we present a spa-
tial model that, without a replicative advantage, but instead through a combination of enhanced
density for mutants and noise, produces a wave of expanding mutations with speeds consistent
with experimental data10. A standard model based on replicative advantage yields waves that are
too fast. We provide a formula that predicts that wave-speed drops with copy number, consonant
with experimental data. Crucially, our model yields travelling waves of mutants even if mutants
are preferentially eliminated. Additionally, we predict that experimentally observed mutant loads
can be produced by de novo mutation rates that are drastically lower than previously thought for
neutral models11. Given this exemplar of how noise, density and spatial structure affect muscle age-
ing, we introduce the mechanism of stochastic survival of the densest, an alternative to replicative
advantage, that may underpin other evolutionary phenomena.

Introduction

The accumulation of mitochondrial DNA (mtDNA) mutations to high levels has been repeatedly
linked to ageing1,2, especially in postmitotic tissues such as neurons or muscles12. In these tissues,
a bioenergetic defect can be triggered when the proportion of mutant mtDNA in a region exceeds a
threshold value13,14. Sarcopenia, the loss of skeletal muscle mass and strength with age, is widely
associated with high levels of mtDNA deletions (Fig. 1A)3–5. A defining feature of the expansion of
mtDNA deletions in muscle fibres is clonality: damaged regions of the muscles are taken over by a single
deletion. The mechanism behind this phenomenon has remained unclear despite numerous authors
using mathematical modelling to probe it6–8,11,15–18. Some models reproduce the clonal expansion
by assigning a replicative advantage to mtDNA deletions6–8,17,18. However, there is no definitive
biological mechanism to justify the supposed replicative advantage of deletions; by contrast, there is
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evidence that deleted mtDNA is preferentially eliminated9,19. Neutral stochastic models have also
been proposed11,15,16, describing the clonal expansion in terms of neutral stochastic drift, but they
require excessively high de novo mutation rates to reproduce observed mutant loads in short-lived
animals17,20. Moreover, most existing models neglect the spatial structure of muscle fibres. Another
widely reported feature of the clonal expansion is the higher density of deletions: regions of the
muscle fibre taken over by the mutations present an approximate fivefold increase3,4,21–23 in absolute
mtDNA copy number. Molecular mechanisms to account for increased mitochondrial density have
been previously proposed, including the ”maintenance of wildtype” hypothesis15,24, and homeostasis
on ATP production25,26, proteome status16,27,28 or mtDNA copy number28.

Here we introduce a stochastic model of the evolution of mtDNA in skeletal muscle fibres that,
consonant with data, predicts the clonal expansion of deletions without assuming a replicative advan-
tage, even allowing mutants to be subject to preferential elimination, and drastically lowers the de
novo mutation rate required to account for a given mutant load. The model’s parameters have all a
clear biological interpretation and are estimated from published experimental data. The wave of mu-
tants we observe requires the model’s stochasticity and is an effect which promises wider evolutionary
application.

Clonal waves of mutants

The building block of our approach is a simple stochastic model that describes a population of mtDNA,
wildtype w and mutants m, evolving under central regulation by the nucleus. The main quantity of in-
terest is heteroplasmy h: the proportion of the population that is mutant. Importantly, we principally
focus on the mechanism by which a pre-existing mutation reaches high heteroplasmy through clonal
expansion; we will later consider de novo mutations occurring continuously through time. The model
is neutral: the two species have an identical constant degradation rate µ, and an identical replication
rate λ given by

λ(w,m) = µ+ c(Nss − w − δm), (1)

with parameters c,Nss, δ. The replication rate is scaled by the distance of a count, w + δm, of the
current population size from a target population Nss. Crucially, mutants contribute less to the current
population than wildtypes, the relative size of this contribution being the parameter 0 ≤ δ < 1. The
parameter c quantifies the strength of control exerted by the nucleus (SI.1.1). In SI.1 we show that
0 ≤ δ < 1 means mutants are the denser species. The focus of this work is providing a mechanistic
model of the clonal expansion of the mtDNA deletions, and we can be agnostic to the detailed molecular
mechanism behind their observed higher density3,4,21–23 .

The single-unit model is summarised by the first four reactions in Fig. 1B. In this setting, for
0 ≤ δ < 1, mean heteroplasmy stays constant for both the deterministic (Eq. (S4)) and stochastic
(Eq. (S16)) versions of this system. Although mean heteroplasmy is constant, mean mutant copy
number can increase through stochastic mechanisms (Eq. S14)15,29,30. Coupling two of these units
together, allowing exchange of mtDNA molecules between them at a constant per-capita rate γ (last
reaction Fig. 1B), makes no difference under deterministic dynamics (Fig. 1C, top left, black), makes
no difference under stochastic dynamics if δ = 1 (Fig. 1C, bottom left, black) but, we observe an
increase in mean heteroplasmy for stochastic dynamics with diffusion and 0 ≤ δ < 1 (Fig. 1C, bottom
right, red). Fig. 1C illustrates that this effect requires 1) spatial structure with diffusion of molecules
between units, 2) stochasticity, 3) higher density of mutants (0 < δ < 1). For this reason, we term
this novel mechanism stochastic survival of the densest (SSD). In this paper we link SSD to the clonal
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Figure 1: Stochastic survival of the densest (SSD) can produce increases in the proportion of mutants
even if they are subject to higher degradation rates than wildtypes. (A) Dysfunctional mtDNA mutants
expand in muscle fibres with age in a wave-like manner, leading to defects in OXPHOS. (B) In a
spatially extended system, the possible events are birth and death of a wildtype (first two), birth
and death of a mutant (third and fourth), a mutant or wildtype hops to a neighboring unit (fifth).
Births happen at rate λ(w,m) (defined at the bottom), deaths at constant rate µ, hopping at constant
rate γ. (C) SSD (bottom right subpanel) is observed in the presence of noise, spatial structure (with
diffusion) and higher density of mutants, which lead to increase in mean heteroplasmy in a neutral
model (red line) and even with higher degradation of mutants (green line). If any of the factors is
missing, as in the other subpanels, heteroplasmy stays constant in a neutral model (black) or decreases
with preferential elimination of mutants (green). Error bars are standard error of the mean. (D) In a
spatially structured model, SSD drives a travelling wave of mutants only in the presence of noise and
higher mutant density (rightmost subpanel), while the high-heteroplasmy front diffuses away if either
noise (left) or higher mutant density (middle) are missing. (E) For the same model as in D, if mutants
are preferentially degraded an invasive wave can still occur, because of SSD. If any of the three factors
of SSD is missing, mutants subject to a higher degradation rate go extinct instead (e.g. Fig. S4B).
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expansion of deletions in skeletal muscle fibres. We model a fibre as a chain of units, each containing
an mtDNA population evolving under nuclear control, and exchanging mtDNA molecules between
neighbours.

In our spatial model of skeletal muscle fibres – a chain of units with diffusion of mtDNA molecules –
the high-heteroplasmy front diffuses away without noise (Fig. 1D, left) or without higher mutant
density (Fig. 1D, middle) and only advances in the presence of noise and higher density mutants
(Fig. 1D, right). The wave of advance of mutants requires spatial structure, noise and higher mutant
density. When these three elements are present, SSD predicts the wave-like expansion of mutants even
if they are preferentially degraded (Fig. 1E), whereas in a deterministic model a higher degradation
rate for mutants leads to their extinction (Fig. S4B).

SSD matches clonal expansion in muscles

Experimental data (Fig. 2A,21), shows the characteristic spatial profile of heteroplasmy data, with
high-heteroplasmy (OXPHOS-defective) regions flanked by transition regions to low or zero hetero-
plasmy. This heteroplasmy profile is well described by a sigmoid (SI.16), the shape expected for a
travelling wave (SI.14). This suggests that the expansion is a wave-like phenomenon. We have esti-
mated the speed of this wave by analysing data from Ref. [10] on the length of abnormal regions in
rhesus monkeys and age of the subject. Regressing the lengths against age (Fig. 2B), we observe a
relationship (p = 5 · 10−4) which is approximately linear (R2 = 0.76) and corresponds to an average
wave-speed of (0.131 ± 0.025)µm/day. Fig. 2C, relative to the same fibre as in 2A21, highlights the
key fact that the absolute copy number in high-heteroplasmy regions is larger than in normal regions:
mutants are the denser species. This is an established phenomenon known for over 20 years3,4,15,22,23.
We find that a standard model which assigns a replicative advantage to mutants, and accounts for the
wavefront’s elevation in copy number (SI.9), predicts a wave-like expansion of ≈ 40 µm/day (Fig. 2D),
300 times faster than the observed speed. In contrast, SSD predicts a wave-like expansion of deletions
with a speed of ≈ 0.2 µm/day (Fig. 2 E). We have estimated the parameter values for both models
from data in the literature (see SI.9).

By measuring the simulated wave-speed for 110 combinations of parameters, we found that it is
well described (R2 = 0.99) by the phenomenological formula:

v ' 2
√
kD, (2)

where D is the diffusion coefficient of mtDNA along the fibres and with k =
√

(1−δ)2µγ/N
2
3
ss.

Eq. (2) is analogous to the wave-speed formula for the wave of advance of advantageous mutants
introduced by Fisher and Kolmogorov31,32. In our case k can be seen as an effective selective advantage
for mutants induced by SSD, in contrast with the replicative advantage (RA) driving the original
Fisher-Kolmogorov waves. In light of this analogy, our model can be seen as a reaction-diffusion
system where the reaction component emerges from the combined effect of noise and higher mutant
density.

We obtained probability distributions for the wave-speeds predicted by SSD and a RA model,
by inserting draws from the distributions of parameter values (given in SI.9) into Eq. (2), with
the appropriate interpretation of k for the two models. The predicted distributions are plotted in
Fig. 2F, together with the distribution of the experimentally observed wave-speed obtained via linear
fit (Fig. 2B). After accommodating this parametric uncertainty, SSD remains much superior to RA at
reproducing the observed speed.
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Figure 2: Stochastic survival of the densest predicts a wave-like expansion of mtDNA mutants at
a speed in agreement with experimental observations, while a standard replicative advantage model
predicts a speed a factor of ≈ 300 too large. A) Spatial profile of mutant fraction (heteroplasmy)
along a human skeletal muscle fibre21. The heteroplasmy profile follows a sigmoid (SI.16), the shape
expected for a travelling wave. (B) Experimental data on the length of abnormal regions of muscle
fibres against age in rhesus monkeys, from Ref. [10]. An approximate linear relationship is found
(R2 = 0.76, p = 5 · 10−4), compatible with a wave-like expansion with speed (0.131 ± 0.025)µm/day
(linear fit). (C) Spatial structure of copy number for wildtype (blue) and mutants (orange) for the
same muscle fibre as in panel A. The heteroplasmic regions present a higher absolute copy number,
i.e. mutants are present at a higher density. (D) Stochastic simulations of a spatially extended model
with a replicative advantage for mutants, with our best estimate of the model parameters (see SI.9)
for muscle fibres of rhesus monkeys predicts a wave-like expansion with a speed of ' 40µm/day,
300 times faster than the observed speed. (E) Simulations of survival of the densest, with same
death and replication rate for wildtypes and mutants, yields a mutant wave speed of ' 0.2µm/day
for the fibres or rhesus monkeys, which is comparable with experimental observations (see (C)). (F)
Inserting probabilistic estimates of the model parameters (see SI.9) into Eq. (2), we find that survival
of the densest predicts a distribution for the wave speed (red histogram) compatible with observations
(blue), whereas a wave driven by replicative advantage with the same model parameters is two orders
of magnitude faster (grey).
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Figure 3: A steeper wave of mutants propagates more slowly in fibres which have a higher copy
number per unit length, in agreement with the predictions of stochastic survival of the densest.
(A) Significant difference in the steepness of wavefronts of two human muscle fibres H1 and H2:
τH1 = (2.4± 0.1) · 10−2/µm for H1 and τH2 = (1.4±0.2) ·10−2/µm for H2 (MLE). Data from Ref. [3].
According to the mathematics of travelling waves (SI.14), the steeper wave is slower. (B) Com-
parison between the corresponding Nss of the two fibres H1 and H2. We have found evidence
(p = 10−4, d = 1.48, one-sided Welch’s t-test) that the average copy number per unit length (a
slice of length 20 µm here) in normal regions of the two fibres H1 and H2, Nss in our model, is higher
for the steeper, and hence slower, wave. This is in qualitative agreement with the predictions of our
stochastic survival of the densest model that wave speed decreases with copy number. In contrast,
a model based on replicative advantage predicts that speed increases with copy number. (C) Two
muscle fibres in rats, R1 and R2, present waves of mutants with significantly different steepness of
the waveform: τR1 = (4.0 ± 0.6) · 10−2 /µm for R1 and τR2 = (1.8 ± 0.2) · 10−2 /µm for R2 (MLE).
(D) We have found an indication (p = 0.06, d = 1.00, one-sided Welch’s t-test) that the average copy
number per unit length in normal regions of the two fibres R1 and R2, is higher for the steeper wave
(R1). Data from Ref. [4].
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Linking ageing, wave-speed and copy number

As Eq. (2) states, SSD predicts a wave-speed that decreases when copy number (per nucleus) increases.
Indeed, the expansion of mutants is driven by stochastic fluctuations, whose effect generally becomes
smaller for larger population size (see also Eq. (S14)). In contrast, a standard model based on an RA
predicts a wave-speed that increases with population size31,33. This allows us to test SSD and RA
models against other experimental observations. It has been found that copy number depletion caused
by antiretroviral therapy34 or AKT2 deficiency35 is associated with enhanced sarcopenia. Likewise,
statins are well known for increasing the risk of sarcopenia36–38 and have consistently been associated
with reduction in mitochondrial copy number39–41. Conversely, increase in mtDNA content through
exercise42,43 or overexpression of TFAM44 and parkin45 have been found to protect against sarcopenia
and muscle atrophy.

Skeletal muscle fibres can be broadly classified into Type 1 (oxidative) and Type 2 (glycolytic)
fibres46. The former rely on OXPHOS to function and typically have twice as many mitochondria
as the latter10,47,48, that depend on glycolysis. It is known that Type 2 fibres are more affected by
sarcopenia with ageing3,10,49–52. Small, short-lived animals like rodents show sarcopenia on a time
scale of years (from ≈ 2 years) and have a larger proportion of Type 2 fibres compared to long-
lived animals such as rhesus monkeys and humans34, that exhibit sarcopenia on a longer time scale
(decades). While there are other physiological differences between the fibre types, this is a further
link between smaller mtDNA copy numbers and faster mutant expansion. The leading edge of a faster
wave is flatter than that of a slower wave (e.g. Ref. [53], summarised in SI.14). By exploiting this
property, it is possible to compare the speeds of two waves by examining their shapes. Data on muscle
fibres for humans3 (Fig. 3A, B) and rats4 (Fig. 3C, D) show that flatter – hence faster – waves of
mutants propagate along fibres with smaller copy numbers. All these observations support our model’s
prediction of an inverse relationship between copy number and wave-speed, opposite to that predicted
by a standard RA model33.

Importantly, the travelling wave of mutants with inverse relationship between speed and copy
number is observed not only in the case of linear feedback control (Eq. (1)), but also for other controls
encoding a higher density of mutants (see SI.13), provided that stochasticity and spatial structure
(with diffusion) are present.

Low mutation rates can yield large mutant load

Previous neutral models of mtDNA dynamics in skeletal muscle fibres require high de novo mutation
rates Rmut to explain the observed mutational loads in fibres of short-lived animals4,17,20,54. In turn,
these high mutation rates produce an unrealistically high mutational diversity, at odds with the
observed clonality of the expansion of deletions: this shortcoming has motivated theorists to develop
RA models. However, previous studies modelled skeletal muscle fibres as an unstructured bulk of
well-mixed mtDNAs6,11,17. Spatial structure is one of the three key factors in SSD (Fig. 1C, D): non-
spatial models do not predict the wave-like expansion of mutations that we highlight here. Crucially,
a travelling wave of mutants in a stochastic model yields a higher probability of fixation for mutants,
which implies that a lower mutation rate is needed to produce a given mutant load. In Fig. 4 we plot
the reciprocal of the probability that a founder mutation takes over a muscle fibre against Nss over
three orders of magnitude. The inferred probability for Nss = 3500 (humans) is such that the de novo
mutation rate required to reproduce observed mutant loads is in the range Rmut = 4.1 ·10−9−1.6 ·10−7

per replication for a typical fibre (SI.11), in line with conservative experimental estimates11,55 and

7

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2021. ; https://doi.org/10.1101/2020.09.01.277137doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.277137
http://creativecommons.org/licenses/by/4.0/


Figure 4: Fixation probability of a founder mutation in a muscle fibre depends on local numbers of
mtDNA per nucleus (Nss in our model) and is independent of the total number of mtDNA in the
fibre. The reciprocal of the fixation probability Pf increases linearly with Nss (see SI.11), and hence
Pf ≈ α/Nss, with α = (3.316 ± 0.002) for Nss � 1. The black dots represent estimates of this
probability for 10 < Nss < 1000, obtained via stochastic simulations (details in SI.12, error bars are
standard deviations). For Nss = 3500, a plausible value for humans, the predicted fixation probability
is Pf = (9.47± 0.06) · 10−4 (blue dot).
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about three orders of magnitude smaller than estimated in the reference study11. In conclusion, SSD
can reproduce the observed mutant loads in skeletal muscle fibres requiring drastically lower de novo
mutation rates than previous neutral models.

Discussion

We have presented a bottom-up, physically interpretable spatial stochastic model that predicts the
wave-like clonal expansion of mitochondrial deletions in skeletal muscle fibres even if they are subject
to preferential elimination. This counterintuitive result (stochastic survival of the densest) depends on
the increased density of deletions – a widely observed fact3,4,21–23 – and on the spatial and stochastic
nature of the model. Previously, the clonal expansion of mitochondrial deletions has been modelled via
a replicative advantage6–8,17,18. We have discovered that a literature-parameterised model of this type
produces a wave of deletions that is 300 times faster than observed speeds, whereas our model predicts
a speed that is of the same order of magnitude as observations. We have provided a phenomenological
formula for the wave-speed that has implications for therapy, since existing drugs allow us to modulate
some of the parameters influencing the propagation of mutants. We have corroborated our prediction
of a wave-speed decreasing with copy number, by examining how copy number changes the steepness
of the wavefront and likelihood of developing sarcopenia. Finally, we have shown that the wave-like
spread lowers the de novo mutation rate needed to reproduce the observed mutant loads by four orders
of magnitude in humans. Our core claim is that the expansion of mutants is not driven by a replicative
advantage, nor by neutral stochastic drift. Rather, mutants have an effective selective advantage
induced by the combined effect of noise, higher density and spatial structure with diffusion (Fig. 1C, D).
To our knowledge, the expansion of mtDNA deletions in skeletal muscle fibres is the first experimental
candidate for what we have termed stochastic survival of the densest, a novel mechanism that might be
the driving force behind other counterintuitive evolutionary phenomena. In the supplement, beyond
giving a wider positioning of this work in the evolutionary literature (SI.6–7), we show that in our
model the replication rate of all individuals increases with the proportion of mutants (SI.1.2). Mutants’
higher degradation rate might be seen as the cost of bringing this benefit (as in Refs. [30, 33, 56, 57]).
An altruist can be defined as an individual that benefits others at a cost to itself56,58, and there is
thus a link between the mutants in our model and a specific definition of altruism. A classic setting
for the wave-like spread of a trait is in the uptake of agriculture59, which might not impart an explicit
replicative advantage and might lead to higher death rates60, but nonetheless spreads, possibly due
to an increase in carrying capacity of the land. We believe that this study and the simplicity of our
microscopic model might pave the way for an increased recognition of this intriguing mechanism in
evolutionary biology.
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Introduction

In this Supporting information we provide arguments for the statements contained in the main text,
derive the mathematical results underpinning this work, report further numerical results (detailing
the setup of simulations) and provide estimates of the parameter values used for simulations shown in
the main text.

In SI.1 and SI.2 we formulate the single-unit system and detail the stochastic dimensionality
reduction procedure that leads to an effective single-SDE description of its dynamics. Understanding
the single-system dynamics is the basis to account for stochastic survival of the densest (SSD), observed
in stochastic spatially extended systems, such as the two-unit system formulated in SI.3. Further, in
SI.4 we show mathematically that the single-unit system is the building block for a continuous model
exhibiting a travelling-wave of mutants. In SI.5 we detail how we obtained the phenomenological wave
speed formula Eq. (2) for our microscopic spatially extended model.

The following two sections position our work in the wider evolutionary biology literature. In SI.6
we define the contribution of this work to the debate on the evolution of altruism, while in SI.7 we
differentiate SSD from density-dependent selection.

SI.8 details the parameter values used for simulations relating to some of the panels of Figs. 1 and
S1, plots that do not refer to actual biological systems and are meant to illustrate SSD. In SI.9, instead,
we provide estimates of the model parameters, derived from independent experimental studies.
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One of the main contributions of this work is to provide a mechanistic accounts of the expansion of
mitochondrial deletions in skeletal muscle fibres that can explain the observed mutant loads without
requiring excessively high de novo mutation rates. In SI.10 we provide revised estimates of the
mutant loads from experimental studies based on skeletal muscle fibres biopsies. In SI.11 we provide
a mathematical argument that SSD can explain the observed loads with drastically lower mutation
rates than previous models.

In SI.13 we demonstrate that the specific form of Eq. 1, with the replication rate λ depending
linearly on copy numbers, is not necessary for SSD. The increase in mean heteroplasmy is observed
with other replication rates that encode the higher density of mutants, provided that noise and spatial
structure (with diffusion) are also present.

In SI.14 we provide computational evidence that, for waves driven by SSD, the steeper the wave-
front, the slower the speed, a relationship that is also present in waves driven by a replicative advantage.

Finally, in SI.15 we explain how we obtained the data points plotted in Fig. 2B. and in SI.16 we
define error bars in all our plots and give details on the statistical models and tests used.

1 Single-unit model: deterministic and stochastic treatment

We formulate the single-unit model, in its deterministic (Section 1.1) and stochastic version (Section
1.3), and explicit the dependence of the system’s carrying capacity on mutant fraction (Section 1.2).

The fundamental unit of our model is the single unit hosting a well-mixed population evolving accord-
ing to linear feedback control. This constitutes the building block of our description of the skeletal
muscle fibre. Our physical model of muscle fibres is a chain of these units..

In our model, there are two species: wildtypes w and and mutants (deletions) mitochondrial DNA
molecules m.

Every molecule is degraded at rate µ and replicates at rate λ(w,m) given by

λ(w,m) = max[0, µ+ c(Nss − w − δm)], (S1)

i.e. the larger between 0 and µ + c(Nss − w − δm). However, for biologically relevant values of the
parameters, µ + c(Nss − w − δm) is practically always positive, as we noticed in our simulations.
Therefore we can also use the simpler form in Eq. (1). Because of the linear relationship between the
replication rate λ and the copy number we name the replication rate linear feedback control .

The meaning of the parameters Nss and δ are explained in the main text, where we also mentioned
that c > 0 modulates the strength of the control. This means that the larger c, the more strongly
the system is penalised to be away from steady state when w + δm 6= Nss, i.e. when the terms in
parentheses on the right-hand-side (RHS) is 6= 0 and hence λ 6= µ. In other words, a larger value of
c > 0 will cause a stronger push toward steady state.

In the following we study a deterministic and stochastic version of the model defined by the above
rates.
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1.1 Deterministic (ODE) treatment

In a deterministic setting, the above rates give rise to the following system of ODEs:

dw

dt
= cw(Nss − w − δm)

dm

dt
= cm(Nss − w − δm).

(S2)

The analysis of this deterministic dynamical system is useful to understand the stochastic version of
the model. We limit our analysis to w > 0,m > 0 given the meaning of the variables as copy numbers.
We start by noticing the existence of the trivial, unstable fixed point (0, 0). We then notice a set of
attractive fixed points which form the straight line of equation w + δm = Nss in the (m,w) plane.
We refer to this as the central manifold (CM) or steady state (µ = λ) line. An example of CM, for
a system with for a system with Nss = 500 and δ = 0.5, is plotted in Fig. S1A. The CM includes
the configurations in which there is only a species, namely the wildtype fixed point (Nss, 0) and the
mutant fixed point (0, Nss/δ). The carrying capacity of a species is the population size of this species
at its fixed point, at which the species exists in isolation. We see that in our model the carrying
capacities are Nss for wildtypes and Nss/δ for mutants. When 0 < δ < 1 – that is always the case
in this work – the mutant carrying capacity is larger than wildtype. Another interpretation of the
condition 0 < δ < 1 is that mutants are less tightly controlled or sensed by the system, as a change in
the number of mutants entails a smaller variation in λ(w,m) than an equal change in the number of
wildtypes. Hence, in our model mutants are the densest and less tightly controlled species. We define
the heteroplasmy h as the proportion of mutants:

h =
m

m+ w
, (S3)

a conserved quantity of the dynamical system, namely

dh

dt
= 0, (S4)

which can be verified by direct calculation. Eq. (S4) accounts for the constant heteroplasmy in the
single-unit neutral deterministic model, illustrated in Fig. S1B (black line). Eq. (S4) is equivalent
to the ratio m/w being constant, meaning that any line passing through the origin is a constant-
heteroplasmy line. Hence, a way to summarise the behaviour of the system is:

• If the system is in steady state, i.e. if w + δm = Nss, the dynamics stop.

• If the system is not in steady state, it will move toward the CM along a line connecting the
initial condition to the origin.

The same behaviour can be recovered from the full solution of the system, which is

w(t) = Nss
w0

(Nss − w0 − δmo)e−cNsst + w0 + δm0

m(t) = Nss
m0

(Nss − w0 − δmo)e−cNsst + w0 + δm0
,

(S5)
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where w0 = w(0) and m0 = m(0) are the initial conditions. From Eq. (S5) it follows that

w(t) + δm(t) = Nss
w0 + δm0

(Nss − w0 − δmo)e−cNsst + w0 + δm0
. (S6)

For t→∞, as e−cNsst → 0, w(t) + δm(t)→ Nss. This shows that the parameter c is connected to how
fast the state of the system decays to the CM, justifying its interpretation of c as control strength.

In summary, in the deterministic single-unit model the system evolves toward the CM of equation
w + δm = Nss with the condition ḣ = 0. We remark on the difference in carrying capacity of the
two species, being modulated by the parameter δ.

1.2 Carrying capacity of the whole system and replication rate increase with
heteroplasmy

The global carrying capacity K of the system is the value of the total population n = w+m at steady
state. K can be expressed as a function of h. Since m = hn and w = (1 − h)n the steady state
condition w + δm = Nss becomes

(1− h)n+ δhn = (1− h)K + δhK = Nss, (S7)

where the first equality holds because we have defined K as the value of n at steady state. This leads
to

K ≡ K(h) =
Nss

1− (1− δ)h
. (S8)

For δ < 1, K(h) is an increasing function of h: the higher the proportion of mutants, the larger
the population that the system can sustain. When h = 1, i.e. mutants are in isolation, the mutant
carrying capacity Nss

δ is recovered. One way to interpret this is that mutants are using the resources
of the system in a more economical way. The economical use of a limited resource is considered one
of the earliest and simplest forms of altruism33,56, that brings benefits to all the other individuals in
the system regardless of their identity.

Another way of seeing the benefit that mutants bring to all the other molecules in the system is
in terms of enhanced replication rate. By expressing w,m in terms of h, n as above, Eq. (S1) can be
written as

λ(h, n) = µ+ c[Nss − (1 + h− δh)n], (S9)

that shows that, for a given population size n, the common replication rate is an increasing function
of h when δ < 1. Notice that here, differently from Eq. (S8), n 6= K since we are not assuming that
the system is in the steady state.

In the study of the expansion of mitochondrial deletions, mutants are assigned a higher degradation
rate, to model the higher mitophagy rate to which they are subject. The mitochondrial deletions of
our model, for which δ < 1, can hence be seen in a very general sense as agents that benefit others
paying a cost, in the form of a higher degradation rate. This aligns with the definition of biological
altruism56,57, hence the mutants of our model can be considered an altruistic species.

1.3 A stochastic treatment exhibits selection reversal

In the stochastic formulation of the model, the per capita degradation and replication rates µ and
λ are interpreted as instantaneous probability (in an infinitesimal time interval) that each molecule

14

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2021. ; https://doi.org/10.1101/2020.09.01.277137doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.277137
http://creativecommons.org/licenses/by/4.0/


Figure S1: (A) The single-unit system fluctuates around the steady state line (red line), on average
moving toward regions of higher m (average proportion of mutant 〈h〉 stays constant). In the plot,
Nss = 500 and δ = 0.5. (B) In the stochastic single-unit system, mean mutant copy number increases
in the neutral model (red) and in presence of weak preferential elimination of mutants (green). This
is a consequence of higher carrying capacity for mutants (δ < 1) and noise. In the corresponding
deterministic neutral model, mutant copy number remains constant (black). Parameter values in SI.8.
Error bars are standard error of the mean (SEM). (C) In the single-unit system, heteroplasmy is
constant in the neutral deterministic system, as well as mean heteroplasmy in the neutral stochastic
system. Any selective elimination of mutants in the stochastic system causes a decrease in mean
heteroplasmy, while mean number of mutants can still increase (green line in panel B). Parameter
values in SI.8. Error bars are SEM. (D) In the stochastic two-unit system, mean mutant fraction
(heteroplasmy) increases in the neutral model (red) and even if mutants are preferentially eliminated
(green). Parameter values in SI.8. Error bars are SEM.
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is degraded or replicates. In this setting, w,m and h are random variables, and we ask questions
about their probability distributions and their moments. Stochastic population dynamics models can
be formalised as chemical reactions networks, consisting, in the terminology of chemical systems, of a
set of reactants, reactions and products. Consider a general chemical system consisting of N distinct
chemical species (Xi) interacting via R chemical reactions, where the jth reaction is of the form

s1jX1 + · · ·+ sNjXN
k̂j−→ r1jX1 + · · ·+ rNjXN (S10)

where sij and rij are stoichiometric coefficients. We define k̂j as the per molecule rate for the jth
reaction. A chemical reaction network can be described by the associated N ×R stoichiometry matrix
Sij = rij − sij and the set of rates k̂j . The reactants are the molecules of the two species. In our
model the reactions are birth and death and the possible products are i) another molecule of the same
species (birth), or ii) ∅ for the degradation of a molecule (death reaction).

The chemical reaction network for the single-unit model of the first section of Results is

W
µ−−−−→ ∅

M
µ−−−−→ ∅

W
λ(w,m)−−−−→W + 1

M
λ(w,m)−−−−→M + 1.

(S11)

This is a network with N = 2 species and R = 4 reactions, with stoichiometry matrix given by

S =

[
−1 0 1 0
0 −1 0 1

]
(S12)

The global rates for wildtypes or mutants are found by multiplying the per molecule rates µ, λ by
w or m. This is true only in the case Sij ≤ 1; more details for the general case can be found in
Ref. [19]. These reactions and rates can be used to set up a Chemical Master Equation (CME), a
system of coupled ODEs in P (w,m, t), the probability that the system is in the state (w,m) at time
t. In principle, solving the CME would give the probability that the system is found in any state
at any given time. However, given the nonlinearity of the global rates, the CME cannot be solved
exactly. One can explore the behaviour of the stochastic models by simulating the CME, which can
be done through Gillespie’s stochastic simulation algorithm61,62. This algorithm is exact, in that
each Gillespie simulation represents an exact sample from P (w,m, t). The simulations allowed us to
observe the increase in mean mutant copy number 〈m〉 for δ < 1 (Fig. S1B, red line). Intuitively,
while fluctuating around the steady state line the system on average drifts toward regions of higher
m (Fig. S1A).

It is worthwhile having an analytical account of this effect, in order to establish how the increase
in mutant copy number depends on the parameters of the model. We have obtained an effective
description of the system, in the form of an approximate stochastic differential equation (SDE) that
shows an increase in the number of mutants for δ < 1. The steps are the following:

1. Applying the Kramers-Moyal expansion to the CME, obtaining a Fokker-Planck equation (a
PDE for the probability distribution P (w,m, t)).

2. Converting the Fokker-Plack Equation into a system of two coupled SDEs in the variables w(t)
and m(t).
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3. Applying a stochastic dimensionality reduction procedure, that exploits the fact that the system
fluctuates around a central manifold (CM), to get a single SDE for m(t) that shows a positive
drift for δ < 1.

The first two steps are standard63,64. From the chemical reaction network in Eq. (S11), we obtain the
system of SDEs:

dw = cw(Nss − w − δm) dt+ w[c(Nss − w − δm) + 2µ]
1/2 dW1

dm = cm(Nss − w − δm) dt+m[c(Nss − w − δm) + 2µ]
1/2 dW2,

(S13)

where dW1 and dW2 are two i.i.d. Wiener increments, i.e. Gaussian noise with zero mean and variance
dt (see also Eq. S31). The third steps relies on a recently developed technique30,65,66, which works
specifically for systems fluctuating around a CM. In the next section SI.2 we detail each step, while
here we only present and interpret the results. The final, effective SDE is

dm =
2(1− δ)µ
Nss

m

(
1− δm

Nss

)
dt+

1

Nss
[2mµ(Nss − δm)(Nss +m− δm)]

1/2 dW, (S14)

with dW a Wiener increment. The first term on the RHS is the drift, and it corresponds to a logistic
growth with carrying capacity Nss

δ . When the drift is positive, since 〈dW 〉 = 0, copy number increases
on average. The drift is positive for 0 < δ < 1, i.e. when mutants have a higher carrying capacity
or density, and δm < Nss. Because of noise the final value of the mutant copy number will not be
Nss
δ . The dynamics stop either when m = 0 or m = Nss

δ , the only values for which dm = 0. This
approximation relies on the system fluctuating closely around the CM, which is true for large values of
c (strong control). The parameter c is not present in Eq. (S14) because this equation holds exactly for
c→∞. Indeed, when simulating Eq. (S14) using the Euler scheme, the agreement with the results of
the exact Gillespie simulations is better for larger values of c (not shown). By applying Itô’s formula
(see SI.2) it is possible to find the SDE for h, which is

dh =

[
(2µ− cn+ cNss + chn(1− δ))h(1− h)

n

] 1
2

dW, (S15)

where n = w +m. We notice in this equation the absence of a drift term, meaning that

d〈h〉
dt

= 0, (S16)

i.e. mean heteroplasmy is constant in the single-unit stochastic model, as stated in the main text.
This is shown in Fig. S1C, that reports data from an ensemble of stochastic simulations (apart from
the black line that refers to the ODE system).

A heuristic way to understand why the mean number of mutants 〈m〉 increases and mean hetero-
plasmy 〈h〉 is constant is the following. The per capita rates in Eq. (S11) are linear, hence the system
is a stochastic Lotka-Volterra model, for which each individual has the same chance of generating a
lineage that will take over the whole system67. Hence, this probability must be 1

w0+w0
. Since there

are m0 mutants, the probability that a mutant will take over the whole population is m0
w0+w0

= h0:
the mutant fixation probability coincides with the initial fraction of mutants. At mutant fixation, the
steady state mutant population is Nss

δ and the mutant fraction is (obviously) 1. Based on this, one

can conclude that, for t → ∞, 〈m〉 → h0
Nss
δ and 〈h〉 → h0 · 1 = h0. Taking the limit t → ∞ means
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that we wait long enough for fixation to happen and for the population to reach the steady state.
Recall that this differs from the deterministic case, in which there is a locus of fixed points of equation
w + δm = Nss (the CM) and the system equilibrates at the point of the CM for which heteroplasmy
is h0. For 0 < δ < 1, h0

Nss
δ > m0 always, hence 〈m〉 will increase to reach its final value. Conversely,

the final value of 〈h〉 coincides with the initial value h0, giving intuition as to why 〈h〉 is constant.
It is also illuminating to consider the case in which δ ≈ 0, namely when the mutants are scarcely
controlled. When a wildtype dies at steady state this increases the birth rate. Either a mutant or
a wildtype will be the next birth, but if a mutant is born this leaves the elevated birth rate (caused
by the degradation of the wildtype) almost unchanged, encouraging further possible mutant births.
Interestingly, even for δ ≈ 0 and in the extreme, unrealistic case of infinite mutant density δ = 0, 〈h〉
stays constant. Indeed, Eq. (S16) and the above heuristic argument are valid for any value of δ.

Importantly, the stochastic system can exhibit an increase in 〈m〉 even if we introduce preferential
elimination of mutants (Fig. S1B, green line). This can be done by increasing mutant degradation
rate by ε, reflecting what we expect for defective mtDNA molecules. Indeed, under certain cases there
is evidence for enhanced clearing of defective mutations68,69, subject to higher degradation rates.
Mathematically, this is described by replacing the second reaction in Eq. (S11) by

M
µ+ε−−−−→ ∅, (S17)

with ε > 0, leaving all other reactions unchanged. In the next section (Eq. (S34)) we will see that,
through the techniques in Refs. [30, 65, 66], it is possible to derive an SDE for mutant copy number
that is valid for ε� µ :

dm =

[
2(1− δ)µ
Nss

− ε
]
m

(
1− δm

Nss

)
dt+

1

Nss
[2mµ(Nss − δm)(Nss +m− δm)]

1/2 dW. (S18)

The drift in m is now positive for δm < Nss and ε < 2(1−δ)µ
Nss

. In this case, the combined effect
of stochasticity and differences in carrying capacity (density) produces a stochastic reversal of the
direction of deterministic selection30. Indeed, in the deterministic case, for any ε > 0 and for any
initial condition with non-zero w0 the system tends to the point (Nss, 0), the only stable fixed point,
corresponding to wildtype fixation (mutant extinction). Conversely, in the stochastic case, there is

a critical εM = 2(1−δ)µ
Nss

such that, for ε < εM , 〈m〉 still increases, meaning that mutant fixation is
more likely than wildtype. Inspection of the expression for εM , interpretable as the largest amount of
additional mitophagy rate that still allows mutant to expand, reveals the following interesting points:

• εM increases with µ, meaning that the noisier the system, the higher the mitophagy rate that
mutants can tolerate and still expand.

• For 0 < δ < 1, εM is decreasing function of δ. The higher the difference in density, the higher
the mitophagy rate that mutants can overcome.

• εM is a decreasing function of Nss. In particular, εM → 0 when Nss → ∞. This is common to
stochastic effects, whose intensities decrease with the system size, vanishing in the deterministic
limit for which system size tends to infinity.
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2 Derivation of the effective SDE for the stochastic model con-
strained to the CM

We derive an effective SDE in the single-unit system, that accounts for the increase in mean copy
number even in the presence of a higher mutant degradation rate.

In this section we show that Eq. (S14) is an effective, approximate description for the system defined
by the chemical reaction network in Eq. (S11) given the replication rate in Eq. (S1). We provide detail
for each of the steps listed in SI.1. The approach used here is adapted from standard texts63,64 and
from Refs. [65, 66]. We strive to provide a self-contained treatment, hoping to make our derivation
and the set of techniques accessible to a wider audience. Our exposition partly follows Ref. [19], where
the same procedure is used for a related problem.

1 - From the CME to a Fokker-Planck equation via Kramers-Moyal expansion.
Let us denote n = (w,m), a vector specifying the system state. The CME can be written in compact
form as

dP (n, t)

dt
=
∑
n′ 6=n

[
T (n|n′)P (n′, t)− T (n′|n)P (n, t)

]
(S19)

T (n|n′) is the transition rate from state n′ to n. Given the reaction network in Eq. (S11), the
corresponding (global) transition rates are

T (w − 1,m|w,m) = wµ

T (w,m− 1|w,m) = mµ

T (w + 1,m|w,m) = wλ(w,m)

T (w,m+ 1|w,m) = mλ(w,m)

(S20)

The first step is to write the CME in a continuous form. We replace copy numbers n by the
abundances x = n

Nss
relative to the effective population size. The variable x can be considered

continuous for large Nss. The CME becomes

∂P (x, t)

∂t
=

∫ ∞
−∞

dx′
[
T (x|x′)P (x′, t)− T (x′|x)P (x, t)

]
. (S21)

We now proceed by expanding the CME through the second-order multivariate Kramers-Moyal ex-
pansion63, that can be written as

∂P (x, t)

∂t
≈
∫ ∞
−∞

(
−∇

(
T (x′|x)P (x, t)

)T · (x′ − x) +
1

2
(x′ − x)T ·Hx′(x) · (x′ − x)

)
dx′ (S22)

where Hx′(x) is the Hessian matrix of T (x′|x)P (x), whose general expression is

Hx′(x) :=


∂2

∂x21
. . . ∂2

∂x1∂xN
...

...
∂2

∂xN∂x1
. . . ∂2

∂x2N

T (x′|x)P (x). (S23)

A transition x → x′ corresponds to some reaction j which moves the state from x to x′. Since we
know how each reaction affects state x through the constant stoichiometry matrix Sij , and since the
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global rate of each reaction is independent from x′ itself (see Eq. (S20)), we may transition from a
notation involving x and x′ into a notation involving x and the reaction j that affects x . We may
therefore define Tj(x) := T (x′|x), and let Hx′(x)→ Hj(x).

We now wish to re-write Eq. (S22) as a Fokker-Planck equation. Since the integral in Eq. (S22)
is over x′, and for a given x every x′ corresponds to a reaction j, we may interpret the integral in
Eq. (S22) as a sum over all reactions, i.e.

∫
dx′ →

∑R
j=1. Hence, for the jth reaction, [(x′−x)]i = Sij .

With these observations, we may write the first term in the integral in Eq. (S22) as∫ ∞
−∞
−∇(T (x′|x)P (x, t))T · (x′ − x) dx′ =

∫ ∞
−∞
−∇(Tj(x)P (x, t))T · (x′ − x) dx′

= −
R∑
j=1

N∑
i=1

∂

∂xi
(Tj(x)P (x, t))Sij

= −
N∑
i=1

∂

∂xi
AiP (x, t) (S24)

where
A := ST, (S25)

with A a vector of length N , S the N ×R stoichiometry matrix and T the vector of transition rates,
of length R. To re-write the second integral of Eq. (S22), we write an element of the Hessian Hj in
Eq. (S23) as

Hjlm =
∂2

∂xl∂xm
Tj(x)P (x, t) (S26)

where j = 1, . . . , R and l,m = 1, . . . , N . Thus, we may write∫ ∞
−∞

1

2
(x′ − x)T ·Hx′(x) · (x′ − x) dx′ =

1

2

R∑
j=1

N∑
l=1

N∑
m=1

SljHjlmSmj

=
1

2

R∑
j=1

N∑
l=1

N∑
m=1

Slj
∂2

∂xl∂xm
TjP (x, t)Smj

=
1

2

N∑
l=1

N∑
m=1

∂2

∂xl∂xm

 R∑
j=1

SljTjSmj

P (x, t)

=
1

2

N∑
i,m=1

∂2

∂xi∂xm
BimP (x, t) (S27)

where
B := S ·Diag(T) · ST , (S28)

and B is an N ×N matrix, and Diag(T) is a diagonal matrix whose main diagonal is the vector T.
We may therefore re-write Eq. (S22) as a Fokker-Planck equation for the state vector x of the form

∂P (x, t)

∂t
≈ −

N∑
i=1

∂

∂xi
[Ai(x)P (x, t)] +

1

2

N∑
i,m=1

∂2

∂xi∂xm
[Bim(x)P (x)]. (S29)

From a system of coupled ODEs for P (w,m, t) (the CME of Eq. (S19)) we have obtained a single
PDE for P (x, t) approximating copy numbers as continuous variables.
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2 - From Fokker-Planck to a system of Itô SDEs.
In general, the Fokker-Planck equation in Eq. (S29) is equivalent64 to the following Itô stochastic
differential equation (SDE)

dx = A dt+
√
σG dW (S30)

where GGT ≡ B (where G is an N × R matrix) and dW is a vector of length R of independent
Wiener increments, that satisfy∫ t

0
dW := W (t), P (W, t) ≡ 1√

2πt
e−W

2/(2t), (S31)

and σ is a constant that controls the strength of the noise. For our chemical reaction network Eq. (S11),
the corresponding system of Itô SDEs is given in Eq. (S13).

3 - From a system of Itô SDEs to a single effective SDE for a system forced onto the
central manifold.
What follows is an adaptation from65,66, to which we refer for a proof and for interpretation of the
functions introduced. We start from Eq. (S30). The procedure can be applied when the system admits
a manifold on which A = 0, the central manifold (CM). We though it would be an helpful complement
to Refs. [65, 66] to give an explicit sequence of the steps involved for the specific system at hand.

• Identify the CM.

• Find the Jacobian of A, namely J such that

Jij =
∂Ai
∂xj

,

and evaluate it on the CM, obtaining JCM .

• Find the eigenvalues λ1, · · · , λN of JCM . The CM is the kernel of JCM , hence the multiplicity
of the zero eigenvalue is the dimensionality of the CM.

• Compute the decomposition of JCM , writing

JCM = WΛW−1,

where W = (w1, · · · ,wN) is the matrix of eigenvectors with those corresponding to the zero
eigenvalues written first.

• Compute J+
CM , defined as

J+
CM = W−1Λ+W,

where Λ+ is the diagonal matrix with diagonal elements λ+1 , · · · , λ
+
N defined as

λ+i =

{
1/λi if λi 6= 0

0 if λi = 0.
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• For each element of A, compute the Hessian Hi as

Hijk =
∂2Ai
∂xi∂xj

,

and evaluate it on the CM, obtaining HiCM .

• Compute the matrix P as
P = I − J+J,

where I is the identity matrix, and the matrices Qi as

Qi = −
N∑
l=1

[J+
il P

THlP + Pil(J+THlP + PTHlJ
+)]

• Calculate the vector g(x), whose elements are

gi(x) =
1

2
Tr[GTQiG].

• Finally, effective SDEs for the variable z, namely the variable x constrained to the CM, are

dz = σg(z) dt+
√
σPG(z) dW, (S32)

where the equations are now uncoupled because all the functions are evaluated on the CM.

This procedure allows one to obtain Eq. (S14) as an effective description of the neutral stochastic
model defined in Eq. (S11). We provide a Mathematica notebook (see Supplementary File 1) to
obtain Eq. (S30) from the system of SDEs in Eq. (S13). This technique is extended in Ref. [65] to the
more general case in which the stochastic system is equivalent to a system of Itô SDEs of the form

dx = (A + εh) dt+
√
σG dW, (S33)

where h ≡ h(x) is another vector-valued function of x and ε� σ is a small parameter, such that for
ε = 0 the system admits a CM. In this case, Eq. (S32) becomes

dz = [εPh(z) + σg(z)] dt+
√
σPG(z) dW. (S34)

The stochastic system in which mutants are subject to preferential elimination ε (Eq. (S17)) corre-
sponds to the case h(x) = (0, x2) (recall that x2 = m/Nss). Inserting this into Eq. (S34), one obtains
Eq. (S18), that describes the noise and density-induced selection reversal.

Change of variable through Itô’s formula to obtain an SDE for heteroplasmy.
Itô’s formula states that, for an arbitrary function y(x, t) where x satisfies Eq. (S30), we may write
the following SDE:

dy(x, t) =

{
∂y

∂t
+ (∇y)T A +

1

2
Tr
[
GTH′(x)G

]}
dt+ (∇y)TG dW, (S35)

where H′(x) is the Hessian matrix of y(x, t) with respect to x (see Eq. (S23), where T (x′|x)P (x)
should be replaced with y(x, t)). Applying this rule to Eq. (S14) for

y(x, t) = (h(x), n(x)),

where h is the heteroplasmy and n is the total copy number, one obtains Eq. (S15)
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3 The two-unit model: deterministic and stochastic formulation

We formulate the deterministic and stochastic two-unit model, the latter being the simplest system
exhibiting stochastic survival of the densest.

The deterministic two-unit model is formalised via the ODE system

ẇ1 = cw1[Nss − (w1 + δm1)] + γ(w2 − w1)

ṁ1 = cm1[Nss − (w1 + δm1)] + γ(m2 −m1)

ẇ2 = cw2[Nss − (w2 + δm2)] + γ(w1 − w2)

ṁ2 = cm2[Nss − (w2 + δm2)] + γ(m1 −m2).

(S36)

The addition of the second term on the RHS, proportional to the constant hopping rate γ accounts
for diffusion of the mtDNA molecules between neighbouring units. The first term on the RHS of each
equation means that each cell seeks to maintain its own separate target population, i.e. copy number
control is local. This system does not admit an analytical solution. However, it has a CM given by
w1 + δm1 = w2 + δm2 = Nss, w1 = w2 (and consequently m1 = m2). It is easy to see that if these
conditions are satisfied, all the time derivatives (the left-hand-sides) are zero and the dynamics stop,
i.e. steady state is reached. Afterwards, heteroplasmy stays constant, as shown in Fig. S1D (black
line). A similar system of ODEs can be used to describe chains of units of arbitrary length (see SI.5).

The stochastic formulation of the model is obtained by replicating the reaction network in Eq. (S11)
for w2,m2 and adding the reactions accounting for diffusion of the mtDNA molecules. The death rate
is still constant and common, and each unit has its own independently controlled replication rate given
by λi = µ+ c(Nss − wi − δmi), for i = 1, 2. The full chemical reaction network is

W1
µ1−−−−→ ∅

M1
µ1−−−−→ ∅

W1
λ1(w1,m1)−−−−→W1 + 1

M1
λ1(w1,m1)−−−−→M1 + 1

W2
µ2−−−−→ ∅

M2
µ2−−−−→ ∅

W2
λ2(w2,m2)−−−−→W2 + 1

M2
λ2(w2,m2)−−−−→W2 + 1

W1
γ−−−−→W2

M1
γ−−−−→M2

W2
γ−−−−→W1

M2
γ−−−−→M1.

(S37)

The dimensionality reduction technique from65, used to obtain Eq. (S18) is not viable in this case
to obtain an SDE showing the increase in 〈h1〉 (or 〈h2〉 ) when 0 < δ < 1. The technique works by
projecting the system onto the CM, where the two units are identical; however, the increase in mean
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heteroplasmy is driven by fluctuations that move one of the units away from the CM condition, after
which the system relaxes to steady state with an average increase in h. The approximation involved in
the technique is too crude to capture the effect. However, stochastic simulations consistently show the
increase in 〈h〉 in chains of arbitrary length when 0 < δ < 1. This effect, conveniently highlighted in
the two-unit system (see Fig. S1D, red line), is key to the appearance of a travelling wave of mutants
in a chain of units. Crucially, the increase in mean heteroplasmy is observed even if mutants are
subject to a slightly higher degradation rate (Fig. S1D, green line). This leads to a travelling wave of
mutants, despite their preferential elimination, in a chain of units.

4 The single-unit model is a microscopic building block for a system
exhibiting a noise-driven wave

We show that a previous continuous model producing a noise-driven wave is a particular case of our
microscopic mechanistic model.

In Ref. [33], a stochastic continuous-space model is presented, in the form of partial differential equa-
tions, describing a noise-driven wave of mutants, possibly subject to higher death rates than wildtypes.
The paper is an extension of the classical Fisher-Kolmogorov PDE to a stochastic setting. In this sec-
tion, we show how that our microscopically interpretable bottom-up model, based on the simple
Lotka-Volterra dynamics, gives rise to the model in Ref. [33] for δ → 1 and in a continuous-space
limit.

Let us reconsider the deterministic system of Eq. (S2) and change variable to (n, h), where n =
w +m is the total population. We already observed that dh

dt = 0. For n we have

dn

dt
= cn[Nss − w − δm] (S38)

Let’s write δ = 1− α :
dn

dt
= cn[Nss − w −m+ αm] (S39)

The constancy of h allows us to write m = hn, hence

dn

dt
= cn[Nss − n(1− αh)] = cNssn

[
1− n

Nss/(1− αh)

]
. (S40)

Considering the case α→ 0, equivalent to δ → 1, we can write

1

1− αh
= 1 + αh+O(α2).

Neglecting O(α2) terms we obtain

dn

dt
= cNssn

[
1− n

K(h)

]
, (S41)

with K(h) = Nss(1 + αh). The total copy number follows a logistic growth with a carrying capacity
K(h) that is a linearly increasing function of heteroplasmy h. In order to model a spatially-extended
system as a muscle fibre, we give spatial dependence to copy number, i.e. n ≡ n(x). The hopping
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Figure S2: An empirical formula accurately predicts the survival of the densest wave speed obtained
through stochastic simulations for a wide range of parameter values. A) The blue dots are 110 values
of wave speed measured through stochastic simulations of the linear feedback control for varying
values of the parameters Nss, µ, γ and 0 < δ < 1. The black line is the linear fit against the variable

x = (1− δ)(µγ3)
1
4/N

1
3
ss. The excellent fit (R2 = 0.99) shows that the wave speed v is well predicted by

Eq. (S43), except for x→ 0. B) Although the residuals do not follow a Gaussian distribution (Shapiro-
Wilk, p < 10−4), the absence of a clear pattern in the plot suggests that Eq. (S43) is a satisfactory
approximation in the parameter range considered. C) The Q-Q plot of the residuals against a normal
distribution confirms the absence of a clear pattern.

of mtDNA molecules between neighbouring units of the muscle fibres is described in this case as a

diffusion term, proportional to the second spatial derivative of ∂2n(x)
∂x2

. In order to model a muscle
fibre, we can therefore write

∂n(x, t)

∂t
= D

∂2n(x, t)

∂x2
+ cNssn(x, t)

[
1− n(x, t)

K(h(x, t))

]
, (S42)

where we have explicitly written the time-dependence. D is the diffusion coefficient, for which D =
γL2, where L is the inter-unit spacing.

Eq. (S42), derived from the special case of the simple single-unit Lotka-Volterra model, is the
starting point of the work in Ref. [33]. By introducing noise from Wright-Fisher sampling and taking
the low-diffusion limit D → 0, a wave equation for h can be derived which holds also in the case of
slow preferential elimination of mutants. The limit δ → 1, that we have taken here to derive Eq. (S42)
from Eq. (S2), is needed also in Ref. [33] in order to derive the wave equation. Hence our model,
for some limiting values of the parameters D and δ, leads to a wave-equation for h. We stress the
remarkable fact that from one of the simplest models of population genetics, the Lotka-Volterra, it is
possible to derive an equation for a travelling wave of heteroplasmy driven by stochastic survival of
the densest, albeit in some limit.

5 Phenomenological formula for wave speed

We describe how Eq. (S43) was obtained and compare it to the wavespeed of the classical Fisher-
Kolmogorov wave.
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In the previous section we have shown how our model, in the limits γ → 0 and δ → 1, leads to an
analytical description of a noise-driven wave. Moreover, through numerical simulations we have shown
that the wave-like expansion is exhibited by our model without having to assume the above limits.
We have performed simulations of a 201-unit chain with 110 combination of the parameter values,
with δ ∈ [0.1, 1], Nss ∈ [2, 35], γ ∈ [0, 0.25], µ ∈ [0.01, 0.15]. For each parameter configuration we have
observed a wave-like expansion, except, as expected, when δ = 1 or γ = 0. We have calculated the
wave speed plotting the wavefront at different times and measuring the distance covered, measuring
the degree of shift between the two wavefronts. In some cases, the overlap could not be total since
the wavefront’s steepness changed slightly over time: in those cases we have looked for an overlap of
the midpoint of the curves (i.e. the point for which 〈h〉 = 0.5). In all cases, it has been verified that
the speed is constant, by measuring it for several different time intervals. We have found that v can
be predicted with excellent accuracy through the formula

v = 2
√
kD + β. (S43)

Apart from the intercept, Eq. (S43) is analogous to the formula for the wave speed of FK waves, with
k being an effective reaction rate induced by stochastic survival of the densest, given by

kSSD =

√
(1− δ)2µγ

N
2
3
ss

, (S44)

and β = 0.207 ± 0.007 is calculated via MLE (uncertainty is standard deviation). In Fig. S2 we
show the fit, for which R2 = 0.99, and we observe residuals without any clear pattern. However, the
presence of an intercept β 6= 0 means that Eq. (S43) is not accurate for x → 0, for which v = 0.
In Fig. 2F we compare the probability distribution of the wave speed predicted through Eq. (S43),
obtained through Monte-Carlo sampling on the basis of the estimated distributions for the parameters
of our model, given in SI.9.

Finally, we have verified that in a deterministic model deployed on a chain, i.e. Eq. (S36) applied
to a larger number of units, the high-heteroplasmy front diffuses away even if δ < 1 (Fig. S4A), which
is consistent with the statement that the wave-like expansion is noise-driven.

6 Implications for the evolution of altruism

We connect our work to the debate on the evolution of biological altruism.

An altruistic trait has been defined as one that benefits others while costing its carriers56,58. In SI.1.2,
specifically in Eq. (S8), we show that the global carrying capacity of the system – the total population
it can sustain – increases with the proportion of mutants. In this sense, mutants are a density-
increasing species. In Eq. (S9) we show that, equivalently, the replication rate of both wildtypes and
mutants is an increasing function of the proportion of mutants. If we assign a higher degradation rate
to mutants, as we do in order to model a notional higher degradation rate for mitochondrial deletions,
then our model can be linked to the specific definition of altruism in Refs. [56, 58]. Indeed, the increase
in carrying capacity and replication rate can be seen as a benefit that mutants bring to the whole
population, including wildtypes, at the cost of a higher degradation rate.

An increase in the system’s carrying capacity is present also in mathematical models of public
good production30,70 and cooperative use of limited resources56. These two behaviours are observed
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in microbial communities and have been described as early examples of altruism in the history of
life33,71.

The two most prominent accounts for the evolution of altruism are kin selection and group selec-
tion72. The former approach argues that altruism directed towards genetically related individuals can
increase the overall success of the altruistic gene, which is likely to be shared by relatives of the carri-
ers73. In group selection, altruism spreads through advantages conferred to the group; for instance, a
group whose members are ready to sacrifice themselves for other members will likely prevail over other
groups74. These approaches seek a deterministic advantage for altruistic traits. In our model, the
spread of density-increasing mutants is driven by noise and has no deterministic counterpart. We now
highlight our contributions in this area, referring to SI.7 for further links to the wider evolutionary
biology literature.

A first, important merit of our model consists in describing the spread of the density-increasing
trait in a spatially extended system using a fundamental and widely-used model of population genetics,
the Lotka-Volterra model, which uses linear per molecule transition rates. The Moran model is another
fundamental model of stochastic population genetics, dealing with the less general case of finite fixed-
size populations. Previously, the study in Ref. [57] has shown that in a modified Moran Model with
nonlinear rates, where the assumption of fixed population size is relaxed, density-increasing mutants
(termed altruists by the author) can have a higher fixation probability despite a higher death rate.
Analogous results are presented in Ref. [75], which is based on a modification of the Wright-Fisher
model, retaining the feature of discrete, non-overlapping populations. Our continuous-time model
uses simpler (linear) rates, and the relevance of the Lotka-Volterra model, widely used in population
genetics, indicates that SSD might be a widespread effect.

The increase in mean mutant copy number in the single-unit system in a neutral model was
highlighted 20 years ago in the field of mitochondrial biology, in the context of the relaxed replication
model formulated in Refs. [11, 15, 16, 29] and further analysed in Refs. [29, 76]. Models yielding an
increase in mean copy number of a denser mutant species have found that space can amplify the effect
of randomness30,65,66, in the sense that the denser mutants can tolerate a higher selective elimination
in a spatially structured system. Crucially, our work explicitly shows that spatial structure can lead to
a qualitatively different result, namely an increase in the proportion of the density-increasing mutants,
that in turn leads to a travelling wave invading the system.

Another contribution of our study is the use of a physically motivated and biologically interpretable
microscopic mechanism. The study in Ref. [33] presents a phenomenological, macroscopic model that
exhibits a noise-driven wave of (what the author calls) altruists. We show in the SI.4 that the model
in Ref. [33] is a special case of ours, in the limit of continuous space. We have further been able to
obtain a formula for the wave speed covering a range of biologically and clinically relevant regimes not
covered by other studies, namely without taking δ → 1 and without imposing the quasi-static limit,
i.e. very slow diffusion (see SI.5).

Finally, but perhaps most importantly, we have identified the mtDNA populations in skeletal
muscles as a candidate system that shows a noise-driven travelling wave of a preferentially eliminated
but density-increasing species. Muscle ageing could therefore be the first example of a new class of
evolutionary phenomena best described as SSD.

7 Further links to the wider literature

We differentiate our contribution from previous work on density-dependent selection and the impact
of spatial structure on the evolution of altruism.
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Density-dependent selection refers to situations in which the fitnesses of the different species within
a population depend differently on population density (or size)77. The theory of r/K selection78,79,
one of the most influential ideas in evolutionary biology80–82, examines how selection shapes the
strategies of species in the presence (or in absence) of density effects. The study of density-dependent
selection has attracted interest across five decades78,83–85, including in systems where stochasticity
is important77,86–91. In stochastic survival of the densest, wildtypes and mutants have a common
per capita replication rate. Per capita degradation rates are constant, and the mutant degradation
rate can be higher than the wildtype by a constant additive factor. The mutant and wildtype rates
therefore depend in the same way on copy numbers, and hence our model is not an example of density-
dependent selection. Frequency-dependent selection92 is distinct, but related, to density-dependent
selection. Numerous definitions of frequency dependent-selection have been used over the decades,
a classic one being that the relative fitness of a species varies with the relative frequencies of other
species93. Our model satisfies a strong mathematical definition of frequency-independent selection,
based on the per capita growth rate (PCGR) of the species, the difference between per capita birth and
death rates. The PCGR can be defined as a vector-valued function of copy number variables, with an
output for each species. Frequency-independent selection is assured when the Jacobian of the PCGR
is independent of copy numbers94. This is clear for our linear feedback model (and all generalised
Lotka-Volterra models), since the replication rate in Eq. (1) is linear in w and m. Therefore, stochastic
survival of the densest is not a case of frequency-dependent selection.

In the context of a single-species population, the Allee effect can be described as a positive de-
pendence of the PCGR on the density or size of the population for some interval of the values of
population size95. This contrasts with theories in which the PCGR always decreases with population
size because of competition for resources or space among members of the same species (intra-specific
competition), as in logistic growth. When the dynamics of a population exhibits the Allee effect, it
means that there is some other mechanism at play that counterbalances the general limiting effect of
competition on the PCGR. An example is that of plants that reproduce through pollination, whose
rate is increased by the density of plants in the environments. The Allee effect is connected to altru-
ism, in that the efficiency of some fitness-increasing behaviours, e.g. defence and feeding, is enhanced
by a large population size when the associated tasks are carried out cooperatively96. The difference
between stochastic survival of the densest and the Allee effect is two-fold. The Allee effect refers to
the possibility that PCGR in a population can be an increasing function of population size (for some
interval) despite the increase in intra-specific competition that generally comes with higher density.
Our work instead models inter-specific (between species) competitions, showing that the species that
is denser in isolation can prevail despite a higher degradation rate and no replicative advantage.
Moreover, the PCGR of our neutral model is proportional to Nss − w − δm for both species; in the
case of a higher degradation rate for mutants, their PCGR is proportional to Nss − w − δm. In both
cases we have linearly decreasing functions of the population size, with no positive dependence on it.

Previous work has explored how the spatial structure of a population can favour97,98 or hinder99

the evolution of altruistic behaviour. These studies refer to game theoretical models that can be recast
in terms of population dynamics models, due to the correspondence between the replicator equation
and the generalised Lotka-Volterra model, in their deterministic100 and stochastic101 versions. Similar
results have been found applying agent-based models to cell populations56,102. In these studies, the
continuous spatial structure of the population influences the way its members interact, with interaction
possible only within spatial neighbourhoods. The recurring theme of these studies is that when
altruists cluster together they share the benefits of their behaviour mainly among themselves, and this
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can favour the spread of altruism. Our work is different in that we have a discrete spatial structure:
individuals can migrate to different units, but the population itself within a unit is well-mixed; all its
members interact in the same way with one another and everyone benefits from the mutants’ altruism
in the same way. In this sense, our model is more similar to Refs. [30, 57, 75].

8 Parameter values for simulations in Figs. 1 and S1

We detail the parameter values used to obtain the simulation results plotted in Figs. 1 and S1.

The parameter values for Figs. 1 and S1 are not derived from the scientific literature and are not
meant to describe a realistic system. Rather, they are chosen to show the increase in mean mutant copy
number and the increase in mean heteroplasmy with a limited computational effort in the simplest
possible systems. Realistic parameter values for simulating skeletal muscle fibres models as a chain of
units (Fig. 2) are reported in the next section.

8.1 Fig. 1

In Fig. 1C, All simulations are run for 7 · 102 days. All systems have µ = 7 · 10−2/day, c = 10−3/day,
with parameters that vary by panel specified below. All units are initialised (in steady state) with
copy number (w0,m0) = 100, corresponding to an initial heteroplasmy h0 = 0.5. Averages have been
taken over 2 · 103 realisations. Error bars are SEM.

In the top-left subpanel, we simulate the two-unit deterministic system (Eq. (S36)), with the above
parameters and Nss = 150, δ = 0.5, γ = 7 · 10−4/day. The black dots refer to the neutral system, the
green dots refer to the system with preferential elimination of mutants (Eq. (S17)), with ε = 10−3µ.

The top-right subpanel refers to the single-unit stochastic system (Eq. (S11)), with Nss = 150, δ =
0.5. The black dots refer to the neutral system, the green dots refer to the preferential elimination of
mutants (Eq. (S17)), with ε = 10−3µ.

The bottom-left subpanel refers to the two-unit stochastic system (Eq. (S37)), withNss = 200, δ = 1,
γ = 3.5 ·10−2/day. The black dots refer to the neutral system, the green dots refer to the deterministic
system with preferential elimination of mutants (Eq. (S17)), with ε = 10−3µ.

The bottom-right subpanel refers to the two-unit stochastic system (Eq. (S37)), with Nss =
150, δ = 0.5, γ = 3.5 · 10−2/day. The black dots refer to the neutral system, the green dots refer
to the deterministic system with preferential elimination of mutants (Eq. (S17)), with ε = 10−3µ.

Fig. 1D refers to a chain of 340 units, with µ = 7·10−2/day, c = 0.4/day and diffusion parameterised
by the hopping rate γ = 0.12/day. In the left subpanel, we simulate a chain of deterministic units
with δ = 2/3. In the mid subpanel, we simulate a chain of neutral stochastic systems with δ = 1. In
the right subpanel, we simulate a chain of neutral stochastic systems with δ = 2/3.

Fig. 1E refers to the same stochastic system as the right subpanel of Fig. 1D, except that preferential
elimination of mutants (Eq. (S17)) has been added, with ε = 7.5 · 10−2µ.

8.2 Fig. S1

Fig. S1A depicts the steady state line (red) for a single-unit deterministic system (Eq. (S2)) with
Nss = 500, δ = 0.5 (red line). In blue we depict a possible trajectory of the stochastic system
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(Eq. (S11)).
Fig. S1B refers to the single-unit system. Data is obtained simulating the deterministic ODE

system Eq. (S2) (black lines) and the chemical reaction network Eq. (S11) via Gillespie algorithm
(other lines) with parameters µ = 7 · 10−2/day, δ = 10−1, c = 2.5 · 10−3/day, Nss = 325. The
system is initialised at steady state with w0 = 300,m0 = 250 corresponding to an initial heteroplasmy
h0 ≈ 0.45. For the deterministic (black) and neutral stochastic (red) cases, mutants and wildtypes have
the same degradation rate µ. For the cases of slow and fast preferential elimination, the degradation
rate of mutants is increased by a constant ε (see Eq. (S17)). The increase in degradation rate is
ε = 2.935 · 10−4/day for slow elimination (green) and ε = 1.1735 · 10−3/day for fast elimination (blue).
For the deterministic system we plot mutant copy number m; for the stochastic systems we plot 〈m〉,
averaging over an ensemble of 104 simulations. Error bars are standard error of the mean (SEM).

Fig. S1C is relative to the same system as panel B, but plotting (mean) heteroplasmy. For the
deterministic system we plot heteroplasmy h; for the stochastic systems we plot 〈h〉, averaging over
an ensemble of 104 simulations. Error bars are standard error of the mean (SEM).

Fig. S1D refers to the two-unit system. Data obtained simulating the deterministic ODE system
Eq. (S36) (black line) and the chemical reaction network Eq. (S37) (other lines) with parameters
γ = µ = 7 · 10−2/day, δ = 10−1, c = 10−3/day, Nss = 455. The chemical reaction network is simulated
via the Gillespie algorithm. One unit is initialised with zero heteroplasmy w10 = 455,m10 = 0 and the
other with w20 = 450,m20 = 50, corresponding to an initial heteroplasmy of 0.1. For the deterministic
(black) and neutral stochastic (red) cases mutants and wildtypes have the same degradation rate µ.
For the cases of slow and fast preferential elimination, the degradation rate of mutants is increased by
a constant ε (see Eq. (S17)). The increase in degradation rate is ε = 1.5 ·10−3/day for slow elimination
(green) and ε = 6.25 · 10−3/day for fast elimination (blue). For the deterministic system the quantity
plotted is hmean = (h1 + h2)/2, the mean of the heteroplasmies of the two units. For the stochastic
system, we plot 〈hmean〉 = (〈h1 + h2〉)/2, averaging over an ensemble of 3.6 · 104 simulations. Error
bars are standard error of the mean (SEM).

9 Realistic estimates of parameter values and setup of numerical
simulations

We explain how realistic parameters have been estimated from independent experimental data, and
report details on the large-scale stochastic simulations using these values.

In this section, we report and justify our best estimates of the parameter values used to simulate the
spread of mtDNA deletions in the skeletal muscle fibres of rhesus monkeys. Specifically, we discuss the
point estimates used to obtain Figs.2D, E, and the estimated ranges used to obtain Figs.2F. We derive
these values from the scientific literature, in order to simulate a realistic travelling wave of mutants and
compare the wave speed predicted by our simulations with that estimated from experiments (Fig. 2B).

Our model has a total of five parameters, all having an immediate and clear biological interpre-
tation. We do not tune any of these parameters. Instead, we analyse experimental data to estimate
parameter values that apply to skeletal muscle fibres of rhesus monkeys and use point estimates for our
simulations (Figs. 2D, E). In Fig. 2D we show that stochastic simulations (Gillespie algorithm) model
based on a net replicative advantage kRA for mutants predicts a travelling wave of heteroplasmy with
a wave speed that is approximately 300 times faster than the observed speed. Crucially, in Fig. 2E we
show that stochastic simulations of our model for the same system predict a wave of heteroplasmy with
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a speed of expansion comparable with observations. Setting up this simulation required some care,
due to the slow dynamics caused by the large values of Nss. The wavefront of a travelling wave has the
shape of a sigmoid whose steepness depends on its speed (see SI.14), therefore one needs to initialise the
wavefront with the correct steepness such that the wavefront remains approximately stationary. For
all the other simulations presented in the paper, this is not an issue since the heteroplasmy wavefront
assumes the steepness corresponding to its constant speed in a short time transient (faster dynamics),
that can then be neglected. Instead, for Fig. 2E we established an appropriate approximate initial
steepness after a series of trials, by verifying that the shape did not change appreciably after running
the simulation for a sufficient number of days (around 50). The chosen initial heteroplasmy profile is
h0(x) = 1/(eτx−b + 1) for x > 0, with τ = 7.15 · 10−4/ µm and b = 3.915, over 500 units of length
L = 30 µm. We also introduced approximations at the boundaries of the system. In order to simulate
the effect of a macroscopic region of the muscle fibre taken over by mutants we fixed the value of the
heteroplasmy of the leftmost unit of the chain at 1. At the right boundary, we truncated the values of
heteroplasmy lower than 5 · 10−3 to zero, to rule out the possibility that edge effects alter the speed
of expansion of the heteroplasmy wavefront. We verified that the rightmost units are mutant-free up
to the longest simulated time.

In addition, in Fig. 2F we provide evidence that our conclusions are robust to the uncertainty
in parameter values. We have drawn parameter values according to the distributions inferred from
experimental data (see discussion below for details). We have then obtained distributions of the wave
speeds predicted by a SSD and RA model (FK waves), inserting parameter values in the corresponding
formulae for wave speed, namely Eq. (S43) with the appropriate interpretation of k for each case
(setting β = 0 for FK waves). The approach used to obtain the distributions of the predicted wave
speeds in is detailed in Ref. [103] and can be easily reproduced using the online tool at
http://caladis.org/ and the parameter estimates given below. The distributions plotted in Fig. 2F
confirm that SSD is strongly favoured to account for the expansion.

The parameters µ, γ, c,Nss are common to SSD and to the RA model, whereas the net mutant
replicative advantage kRA is replaced by δ in our model. We estimate the degradation rate µ from
the half-life of mitochondria. Reported values for the half-life in the literature range from a few to
100 days76,104–107. We therefore assume that the half-life is uniformly distributed on the range (2,100)
days. As a point estimate, we have chosen 10 days for the half-life, corresponding to a degradation
rate of µ = 0.07/day.

Nss represents the average copy number per nucleus when only wildtypes are present. A study108

reports Nss ' 3500 for healthy human skeletal muscle fibres. We therefore suppose that for rhesus
monkeys muscle fibres our uncertainty on Nss has a uniform distribution on the range (2000,5000).
We have chosen Nss = 3000 since macaques are smaller animals. According to our empirical formula
in Eq. (2), changing Nss from 3000 to 4000 would reduce the wave speed by about 10%, Therefore,
we do not expect the uncertainty on Nss to affect our results significantly.

An important quantity in the study of muscle ageing, although not directly a parameter of our
model, is the internuclear distance L. It has been reported that in skeletal muscle of healthy mice
around 30 nuclei are present in 1mm of fibre length, i.e. ∼ 1 nucleus per 30 µm109. We therefore take
L = 30 µm as a point estimate, while assuming a uniform distribution on the range (25, 35) µm.

The hopping rate γ is linked to the diffusion coefficient of mtDNA molecules in the muscle fibre,
through the relationship D = γL2 110. Individual organelles in muscle fibres appear to be tightly
packed. However, a study, Ref. [111], reported that the movement of nucleoids within organelles in
these tissues can be effectively described as diffusion with a value of D corresponding to γ = 0.1/day.
Therefore we choose this value as a point estimate of the individual mtDNA molecules. We quantify
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the uncertainty about the value of γ according to a uniform distribution on the range (0.05,0.15)/day
The control strength c is the only parameter for which we do not have an optimal measurement.

Our estimate is based on the fact that, in replicative cells, during a cell-cycle (≈ 1 day) the number
of mtDNA roughly doubles. In this situation, in which a fast mitochondrial biogenesis is needed, we
suppose that population is growing exponentially at a rate λ(w = 0,m = 0). For a doubling time of
1 day, this corresponds to

c =
ln 2/day− µ

Nss
,

that for Nss = 3000 and µ = 0.07/day gives c = 2 ·10−4/day. Since c is not an independent parameter
of our model, it is not present in the phenomenological wave speed formula Eq. (2).

The parameters δ and kRA correspond to the two ways of reproducing the increase in mutant
carrying capacity (or density), respectively for our model and for a model based on a replicative
advantage. From the experimental data21 reported in Fig. 2C, in high-heteroplasmy regions density
is approximately increased by a factor F = 5, as reported also in Ref. [22]. We therefore choose 5 as
the point estimate of F and we assume that F has a uniform distribution on the range (2,8). As for
δ, we notice that in our model the carrying capacity m∗ for mutants is obtained by setting in Eq. (S1)
λ = µ and w = 0 gives, leading to m∗ = Nss/δ. The carrying capacity for wildtypes is obtained by
setting λ = µ and m = 0 in Eq. (S1), leading to w∗ = Nss. Therefore, δ = 1/F and we chose δ = 1/5
as a point estimate. In a replicative advantage model, the mutants have a replication rate given by
Eq. (S1) (with δ = 1) and the addition of a net replicative advantage kRA, namely

λm(w,m) = µ+ c(Nss − w −m) + kRA.

In order to reproduce an F-fold increase of mutant carrying capacity, it must be kRA = cNss(F − 1).
Indeed, setting λm = µ and w = 0 yields m∗ = kRA/c+Nss. Hence, we assume kRA to be uniformly
distributed on the range (1, 7)cNss and we choose k = 4cNss as a point estimate, yielding

λm(w,m) = µ+ c(5Nss − w −m) (S45)

as the mutant replication rate in an RA model.

10 Revisited estimates of mutant loads in skeletal muscle fibres

We provide new estimates and interpretation of mutant loads in skeletal muscle fibres, by analysing
experimental data from muscle fibre biopsies.

Most existing modelling studies6,11,17 for humans and rodents have tried to match predictions to the
following end-of-life target mutant loads: 5 − 10% fibres must have reached a heteroplasmy level of
≥ 60%. We refer to the former quantity as threshold cell-fraction (TCF) and to the latter as threshold
heteroplasmy (TH). The TH of 60% comes from a study on cybrid HeLa cells, stating that a 5196
base pair deletion needs to reach a cell-fraction of > 60% before the cell shows a reduction in COX
activity112. However, TH is cell-dependent113 and the 60% value for HeLa cells needs not be relevant
for skeletal muscle fibres in humans and rodents. The TCF of 5%11,17 is often justified on the basis of
three studies114–116. In the first study, 5% is the upper bound of the range (0.1-5)%114. The second
study found a maximum of 0.37% COX-negative fibres in human limb muscle over a large age range115.
The last study116 did observe high percentages of COX-negative muscle fibres (∼ 40%) but, it refers
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to a patient affected by a mitochondrial deletion disease, whereas we are interested in muscle ageing
in healthy subjects.

We propose new estimates after examining data on skeletal muscle fibres of aged healthy mam-
mals10,21,114,117 and considering the spatial structure of muscle fibres. In these studies, hundreds of
serial sections of length ∼ 10µm were cut along muscle fibres and stained for cytochrome c oxidase
(COX) and succinate dehydrogenase (SDH) activities. Succinate dehydrogenase refers to complex II
of the respiratory chain, the only complex fully encoded by the nucleus. Therefore, negative SDH ac-
tivities indicate a nuclear defect, whereas normal or hyperactive activities and negative COX activities
point towards mtDNA defects. An example of these data, from Ref. [21], is Fig. 2A, where additionally
the heteroplasmy is measured for each section. Notice that, for simplicity, we have reported the spatial
dimension as continuous, while in reality the measurements (the blue circles in the plot) refer to the
section as a whole.

We suggest a TH of 90%, based on the fact that in Refs. [114, 117] regions of skeletal muscle fibres
presenting mitochondrial dysfunctions were shown to contain > 90% of deletion mutations.

We now propose a new interpretation of the TCF. Previous mathematical studies modelled muscle
fibres as a single units without spatial extension, with an unstructured and well-mixed mitochondrial
population around a single nucleus. These models define TCF as the fraction of single-unit systems
in which heteroplasmy exceeds TH. Having introduced a spatial model, we give an estimate of TCF
by referring to experimental studies measuring heteroplasmy levels along the length of muscle fibres.
In Ref. [21], of 10652 human vastus lateralis (VL) muscle fibres of aged (92 years old) subjects 98
fibres presented an abnormal region, approximately 1% of the total. In Ref. [10] 2115 muscle fibres of
34-year-old rhesus monkeys vastus lateralis (VL) were analysed, and 51 abnormal regions were found,
corresponding to ≈ 2% of the total. These estimates for rhesus monkeys and humans refer to subjects
at the end of their typical lifespans. We define TCF as the fraction of cells (i.e. fibres) that show a
macroscopic abnormal region (where TH > 90%) and, on the basis or the above studies, we propose
an end-of-life value of TCF≈ 1− 2%.

11 Stochastic survival of the densest can account for mutational
load in short-lived mammals

We detail how we estimate the de novo mutation rate required by stochastic survival of the densest to
reproduce the observed mutant loads in humans.

In the penultimate section of the main text we have claimed that, with respect to early neutral models
of the clonal expansion of mtDNA deletions in skeletal muscle fibres, stochastic survival of the densest
(SSD) dramatically lowers the value of the de novo mutation rate, Rmut, required to yield a given
mutant load. Here we explain this claim and provide a supporting mathematical argument.

Previous efforts to establish the ability of neutral genetic models to account for mammalian ageing
have often focussed on understanding the compatibility between mutant loads and Rmut through
mathematical modelling. The approach is to develop a model predicting a certain amount of mutant
molecules as a function of mutation rate, and then choose the Rmut that matches experimentally
observed (i.e. target) mutant loads. In Ref. [11] a neutral stochastic model of degradation and
replication of mtDNA that used a mutation rate Rmut = 5× 10−5 per mtDNA replication, predicted
that ≤ 4% of fibres will be COX-deficient due to high amount of mtDNA deletions by the 80th birthday
of the subject, in agreement with experimental observations of healthy aged human muscle114,115.
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However, it was later argued that this mechanism cannot explain mutant loads for short-lived animals
like rodents17, which show similar accumulation patterns on much shorter time scales (≈ 3 years)4,54.
For the model to predict the observed mutant loads in short-lived animals such as mice and rats,
Rmut must be so high that it would produce an unrealistically high mutational diversity, whereas
experimental studies report a single deletion that clonally expands20. It has therefore often been
assumed that neutral stochastic models cannot explain the mutational load in short-lived animals,
and therefore models where mutants have a replicative advantage are needed.

In this work we have shown that SSD induces a wave-like clonal expansion of mutants without
the need of a replicative advantage. In Fig. 4 we have plotted the reciprocal of the probability that a
single founder mutation (arising in a muscle fibre modelled as a chain of units with w = Nss wildtype
each), takes over the whole system (details in SI.12). The data are well described (R2 = 0.9995)
by a + bNss, with b = 0.301 ± 0.002, a = 1.5 ± 0.6 (linear fit). Based on this regression analysis,
we estimate a fixation probability of Pf = (9.47 ± 0.06) · 10−4 for Nss = 3500, a value plausible for
humans. In the previous section SI.10 we referenced experimental studies10,21,114,117 reporting that in
abnormal regions of muscle fibres, heteroplasmy is higher than 90%. In the following we will consider
that abnormal regions have heteroplasmy 100%, i.e. that mutants have fixed. This approximation is
not drastic and allows for a mathematically transparent argument.

The fraction of fibres that show an abnormal region – denoted by TCF, see previous section SI.10 –
can be related to the number M of mutations that occur in a lifetime by the formula MPf = TCF. We
assume that these M mutations arise early enough to have time to take over a macroscopic region of
the system if not lost due to random degradation. In our model, a chain with n units each containing
Nss molecules, if mtDNA mutates at a rate Rmut, we expect to see M = nNssRmut∆T mutations
arising in a time interval ∆T (measured in multiples of the characteristic time for a single mtDNA
molecule to replicate). If we define that mutations occurring in the first ∆T of life have enough time
to expand (if successful), we have

RmutnNss∆TPf = TCF =⇒ RSSDmut =
TCF

nNss∆TPf
, (S46)

where by RSSDmut we denote the estimate of Rmut based on SSD.
A conservative assumption is that mutations that spread to be observable are those arising in

the first 10 years of life. Considering that, on average, a mtDNA molecule replicates every 10 days
in a steady state situation (see estimate of µ in SI.9), 10 years correspond to 365 replications, i.e.
∆T = 365 replications. Typical skeletal muscle fibres are 3−12cm long, which means n ∼ 1000−4000
(see estimate of L in SI.9). Inserting these estimates and Pf = 9.47 · 10−4, Nss = 3500 in Eq. (S46),
we obtain Rmut = 4.1 · 10−9 − 1.6 · 10−7 per replication, two-to-four orders of magnitude smaller than
the estimate in the reference study11.

The above argument is valid under the following assumptions:

1. A fibre can be divided into units, the building block of our model. A mutation can arise in a
single unit and can expand into neighbouring ones.

2. An abnormal region is caused by a single mutation event. It might be that while a deletion is
expanding, an identical one arises in the same region of the muscle fibre. We assume that this
does not happen in our argument, as mutations are rare event and most of them are lost due to
random degradation.
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3. A mutation event cannot give rise to more than one abnormal region. Although it may be that
distinct but nearby abnormal regions in a single fibre are the result of a single mutation event,
this was not observed in the studies we investigated.

Neglecting spatial structure caused early models to miss the travelling wave of mutants driven by
SSD and to require unrealistically high values of Rmut. As SSD increases the probability that a single
founder mutation takes over a long fibre, it also dramatically decreases the de novo mutation rate
required (i.e. number of mutations) to yield observed mutant loads. More generally, what determines
mutant load over time, and hence the possible progression of sarcopenia, is not only Rmut, as assumed
in early studies, but rather the speed of the wave of mutants. Different animals can have different
mtDNA turnover rates, copy numbers, type of mutation and diffusion rate that, according to Eq. (2),
affect the wave speed. Different species might thus be expected to experience sarcopenia on different
time scales. In particular, according to our formula Eq. (2), short-lived animals are predicted to have
higher wave speeds for a larger proportion of fibres, since they have more glycolytic, low-copy number
fibres34. For these two reasons – decreased Rmut and possibly faster waves – SSD has the potential
to account for sarcopenia also in short-lived animals.

12 Estimation of fixation probabilities in Fig. 4

We explain the procedure used to estimate the fixation probabilities plotted in Fig. 4

In Fig. 4 we have regressed the reciprocal of the fixation probabilities (of a founder mutation in a
chain of units) as a function of the size of the steady-state wildtype population in which the founder
mutation arises, which coincides with Nss. The analysis has shown a convincing linear relationship
(p = 2 · 10−19, R2 = 0.9995).

We have estimated the fixation probabilities for 10 ≤ Nss ≤ 103. For values 10 ≤ Nss ≤ 100, we
have simulated a large ensemble of Nsim ≈ 2.5 · 104 muscle fibres, modelled as chains of hundreds of
units, with a founder mutation in the middle of the chain. We have run the simulations until, in every
fibre, the mutation had either died or taken over (h = 1) a macroscopic region of the fibre (∼50 -100
units). In the latter case, we have assumed that the mutants would have taken over the entire fibre
with more time, excluding extremely unlikely fluctuations that could have led to the extinction of the
entire mutant population (of size ∼ 103 here) occupying a large fraction of the fibre. The fixation
probability Pf has then been estimated as Nmut/Nsim, where Nmut is the number of fibres mutants
took over. In every case, we have ensured that at the boundaries of the chain were free or almost free
of mutants, tolerating a heteroplasmy at the boundaries of at most 1/100.

For Nss ≥ 500, simulations with fibres long enough that mutants do not reach the boundaries
are extremely slow. We have therefore estimated the fixation probability as shown in Fig. S3. We
have run a large number Nsim of simulations (Nsim ≈ 25000) with a founder mutation at time 0,
and recorded the number of simulations where mutants are present over time. We noticed that this
number decreases exponentially after an initial transient (not shown in the plots) of ≈ 4000 days in
which it decreases drastically (from ≈ 25000 to ≈ 150). Fitting an exponential decay to the data
allows us to estimate the height of the horizontal asymptote of the curve, namely the stationary value
of the number of simulations with surviving mutants. Since this asymptotic value coincides with
Nmut, we use it to estimate Pf , again as Nmut/Nsim. As above, we are ignoring extremely rare events,
where a large number of mutants (∼ 104 here), that have taken over a macroscopic fraction of the
fibre (hundreds of units here), would go extinct. We stopped the simulations when running them for
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longer, and adding data for longer times to the exponential fits in Fig. S3, changed the estimate of
Nmut – i.e. the horizontal asymptotes – by less than one unit. More detail on the regression analysis
are in SI.16.

We estimated the standard deviation σ of Pf modelling the phenomenon as a binomial experiment,
namely as σ = [Pf (1−Pf )/Nsim]1/2. In Fig. 4 we plotted the reciprocal of the fixation probabilities, i.e.
1/Pf = Nsim/Nmut. For the uncertainties on the values of 1/Pf , which are the error bars plotted in
Fig. 4, we used for each value of Nss the standard deviation of the random variables Y = Nss/X, where
X ∼ Binomial(Nss, Pf ). We estimated this standard deviation simulating 107 samples of Y for each
value of Nss.

In Table S1, we list the values of Nmut, Nsim and the corresponding estimates for each value of
Nss used.

Figure S3: The above exponential fits allow us to estimate the fixation probability Pf of a founder
mutation in a chain of 500 (A) and 1000 (B) units. We have initialised an ensemble of Nsim ≈ 25000
fibres with a founder mutation. Fitting an exponential to the points, we have estimated the stationary
value Nmut of the number of simulations with surviving mutants, that coincides with the number of
simulations in which mutants take over the fibre (neglecting extremely unlikely extinction events). We
then estimate Pf = Nmut/Nsim.
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Nss Nsim Nmut Pf σ

10 4000 842 0.211 0.006

12 9000 1697 0.189 0.004

14 4000 734 0.184 0.006

16 2000 319 0.160 0.008

18 2000 300 0.150 0.008

20 4000 512 0.128 0.005

30 3000 302 0.101 0.005

40 3994 299 0.075 0.004

50 5000 300 0.060 0.003

75 4999 211 0.042 0.003

100 2000 69 0.035 0.004

500 23683 150 0.0063 0.0005

1000 25834 86 0.0033 0.0004

Table S1: Estimates of Pf and standard deviation σ, with corresponding values of Nmut, Nsim, for
different values of Nss

13 Quadratic and reciprocal feedback produce a wave of hetero-
plasmy

We present variants of the replication rate in Eq. (1), that also produce stochastic survival of the
densest, a mechanism that is therefore independent of the mathematical details of our model.

In Fig. S4C, D we show that other types of feedback controls produce an analogous travelling wave
of heteroplasmy without the need of a replicative advantage for mutants. The two additional types of
controls are the quadratic control, namely

λ(w,m) = µ+ a[N2
ss − (w + δm)2], (S47)

and the reciprocal control, given by

λ(w,m) = µ− b
(

1

Nss
− 1

w + δm

)
, (S48)

where a and b are control strength parameters. Importantly, these control mechanisms all produce
wave speeds that decrease when Nss increases, a fundamental difference between our model and models
based on a net replicative advantage for mutants.

The data reported in Fig. S4C, D are obtained averaging over 400 realizations with the following
parameters. For quadratic feedback, Fig. S4C and Eq. (S47): µ = 7 · 10−2/day, γ = 0.12/day, δ = 2/3,
a = 0.4/day, Nss = 4. For reciprocal feedback, Fig. S4D and Eq. (S48): µ = 7·10−2/day, γ = 10−2/day,
δ = 0.1, b = 1.5/day, Nss = 3. The small values of Nss are chosen for numerical convenience, since
a smaller copy number produces a faster dynamics and faster waves. In the light of these results, we
argue that the mechanism of stochastic survival of the densest is independent of the mathematical
details of our model, provided that the three key factors of density difference, stochasticity and spatial
structure (with diffusion) are present.

37

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2021. ; https://doi.org/10.1101/2020.09.01.277137doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.277137
http://creativecommons.org/licenses/by/4.0/


Figure S4: A deterministic model deployed on a chain does not produce mutant expansion despite
differences in carrying capacity, while different choices of feedback control still produce a wave of
mutants when stochasticity is present. (A) The deterministic ODE model of Eq. (S36) applied to a
chain of units does not produce a travelling wave of heteroplasmy, even with larger carrying capacity
for mutants (δ = 0.2). Rather, we observe diffusion of the heteroplasmy front. The curves are the
heteroplasmy values obtained by ODE integration of a system analogous to Eq. (S36) for 41 units.
(B) In the deterministic chain, when the degradation rate of mutants is higher than that of wildtype
(1% in the plot), mutants go extinct despite a higher carrying capacity (δ = 0.2). (C) Quadratic
and (D) reciprocal feedback control (see SI.13) produce a qualitatively similar wave-like expansion of
mutants in a stochastic model.

14 Relationship between steepness and speed of a travelling wave

We provide computational evidence that the relationship between steepness and speed of a travelling
wave driven by stochastic survival of the densest is the same as Fisher-Kolmogorov waves.

This section is based on Secs. 13.2 and 13.3 of Ref. [53]. Let us consider the classical Fisher-Kolmogorov
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Figure S5: The two curves are the travelling wavefronts of two systems that differ only in the average
wildtype copy number Nss. The smaller the Nss, the faster the wave, according to Eqs. (S43) and

(S44). The blue curve is the wavefront propagating in the system with the smaller Nfast
ss = 2, while

the blue curve is relative to N slow
ss = 6. The plot shows that faster waves have a flatter wavefront, as

it is the case for FK waves. Average over an ensemble of 4000 simulations.

reaction-diffusion equation
∂h

∂t
= kh(1− h) +D

∂2h

∂x2
, (S49)

where h is heteroplasmy, k is the reaction rate and D is the diffusion coefficient. This equation admits
travelling wave solutions moving in the positive x-direction with speed c given by

h(x, t) = h(z) = h(x− ct),

having defined z = x−ct. If the mutants of our system had a replicative advantage k, Eq. (S49) would
describe the wave-like expansion of the high-heteroplasmy front in the continuous-space approximation.
If the system is initialised such that

h(x, 0) ∼ e−ax as x→∞,

for arbitrary a > 0, the heteroplasmy wavefront will evolve into an approximately sigmoidal shape
with a steepness τ linked to the wave speed through

c =
k

τ
, (S50)

meaning that the slower the wave, the steeper the wavefront (larger τ).
We speculate that waves driven by stochastic survival of the densest can be described by an

equation analogous to Eq. (S49), with an effective reaction rate induced by stochastic survival of the
densest, that we hypothesise is given by Eq. (S44). Therefore, also for our model we expect that steeper
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waves will be slower. In absence of a formal proof, we have verified this intuition computationally. In
Fig. S5 we plot the travelling waves of heteroplasmy for two systems that differ only in copy number
Nss. The blue curve corresponds to a system with a smaller Nss and hence, according to Eq. (2)
presenting a faster wave; the orange curve corresponds to a larger Nss and hence a slower wave. As
expected, the slower wave has a steeper wavefront.

In Fig. 3 we have reported experimental data on human (panels A and B) and rat (panels C and
D) muscle fibres, showing that the steeper wavefront corresponds to the fibre with a larger Nss. We
can conclude that the steeper wavefront corresponds to a slower wave. Hence, the data reported in
Fig. 3 support the prediction of our model that slower waves travel in fibres with a larger Nss.

The data plotted in Fig. S5 are obtained simulating a chain of 550 units evolving under linear
feedback control (Eq. (1)), with parameters µ = 7 ·10−2/day, c = 0.4/day, γ = 0.12/day, δ = 2/3. The
faster (flatter) blue curve corresponds to Nss = 6, while the slower (steeper) orange one to Nss = 2.

15 Rhesus monkeys data collection

We explain how we obtained the data points plotted in Fig. 2B from experimental data.

The data plotted in Fig. 2B on the length of the abnormal regions in muscle fibres of rhesus monkeys
was originally published in Ref. [10]. The measurements were performed on skeletal muscle tissues
of 11 different animals and the data set consists of the lengths of several abnormal regions for each
subject. For each animal, we only use the length of the longest abnormal region, that we assume has
originated from a mutation at birth. We consider shorter regions to be the results of mutations that
have arisen later in life. Although these assumption are unlikely to be precisely true, our analysis
is enough to give an indicative order-of-magnitude estimate, that can be considered as a moderately
tight lower bound on the speed of expansion.

16 Statistical methods

We provide information on all the statistical analyses peformed.

Error bars in Figs. 1C and S1B, C, D are standard error of the mean (SEM). Error bars in Fig. 4 are
standard deviations, obtained as explained in SI.12.

In Fig. 2A, the functional form fitted is a logistic function (sigmoid) 1/(1 + eτx). The vari-
able x is the position along the muscle fibre, centred at the point where h = 1. The parameter
is τ = (0.25± 0.01)/µm. The values are obtained using non-linear least squares, and the uncer-
tainty is the standard error. In Fig. 2B there are 11 points. With ordinary least squares we obtain
R2 = 0.758, p = 5 · 10−4, t = 5.3 for a line of equation y = a + bx, with a = (−482 ± 229) µm and
b = 0.131±0.025 µm/day (uncertainty is standard error). The wave speeds relative to Figs. 2D, E and
those corresponding to the points in Fig. S2A have been calculated as explained in SI.5. In Fig. 2F
9 · 106 values have been drawn for each of the three histograms.

For the fits in Figs. 3A, C non-linear least squares is used. The values obtained are reported
in the caption of Fig. 3, and the uncertainty is standard error. The statistical test performed on
the data in Figs. 3B, D is a one-tailed Welch’s test (unequal-variance t-test). For data in Fig. 3B,
the two samples are of size 15 and 7, with measurements taken from different samples, meaning
distinct slices of the same muscle fibres; means for copy numbers are ~x1 = 67, ~x2 = 16, standard
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deviations σ1 = 39, σ2 = 6.5. Welch’s test gives p = ·10−4, t = 4.69, d = 1.48, where the effect size
d is the unequal-variance Cohen’s d. For data in Fig. 3B, the two samples are of size 6 and 5, with
measurements taken from different samples, meaning distinct slices of the same muscle fibres; means
for copy numbers are ~x1 = 6875, ~x2 = 3505, standard deviations σ1 = 3840, σ2 = 1700. Welch’s
test gives p = ·0.6, t = 1.76, d = 1.00 (Cohen’s d). The elements of the box plots are minimum value
(lower whisker), first quartile, median, third quartile and maximum value (upper whisker).

In Fig. 4, we have 13 points, with error bars being standard deviations, obtained as explained in
SI.12. By linear least squares, we fit a line of equation a+ bNss, with b = 0.301± 0.002, a = 1.5± 0.6,
with p = 10−20 (for b) and effect size R2 = 0.9995 (square of the Pearson’s correlation coefficient r).
The uncertainty reported is standard error.

In Fig. S1, data from numerical simulations are plotted. Error bars are SEM and averages are
taken over a sample of 104 simulations. Details in SI.8.

In Fig. S2A, there are 110 points, and maximum likelihood estimation is used to fit the expression
2
√
kD + β, obtaining β = 0.207 ± 0.007, with effect size R2 = 0.99. Uncertainty reported is the

standard error. Notice that the variable k is defined in the main text and in SI.5 and D is the
diffusion coefficient, therefore β is the only parameter estimated.

In Fig. S3, non-linear least squares was used, fitting the function y = ae−bt+ c. For Nss = 500, the
estimated values are a = 21.8 ± 0.1, b = (4.7 ± 0.1) · 10−4/day, c = 150.1 ± 0.1. For Nss = 1000, the
estimated values are a = 55.8± 0.3, b = (3.37± 0.06) · 10−4/day, c = 85.6± 0.4. Uncertainty reported
is standard deviation. See SI.12 for more details on how the synthetic data was obtained.

In Fig. S4, synthetic data is plotted, averaged over an ensemble of 400 simulations; more details
in SI.13. In Fig. S5, the average is over 4000 simulations; more details in SI.14.

17 Author contributions

FI observed and characterised the noise-induced waves, performed analytical calculations and statis-
tical analysis, coded the model and performed the simulations, interpreted the results, obtained new
estimates of the de novo mutation rate, drafted the paper and supplement. HH first investigated spa-
tially structured systems, observed and interpreted early evidence of stochastic survival of the densest
and revisited the estimates of mutant loads in muscle fibres. JA supported FI with mathematical
techniques, critically revised the manuscript and significantly contributed to the presentation of the
results. NJ formulated and designed the research, interpreted the results, supervised, and contributed
to, the analytics, statistics and computation and edited the drafts.

18 Data Availability Statement

No further experiment was performed for this work, previously published data was analysed and the
relevant publications were referenced in the paper. For simplicity, we report the references here. Data
in Fig. 2A, C was published in Ref. [21]. Data in Fig. 2B was published in Ref. [10]. Fig. 2A, B is
from Ref. [3], Fig. 2C, D is from Ref. [4]. Data from simulations can be reproduced by the provided
code (SI.19. The authors welcome questions about simulations and requests of simulated data.
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19 Code availability

The C code for the linear feedback control model is available at
https://github.com/ferdinando17/Survival-of-the-Densest-Code. The authors welcome ques-
tions. The parameter values currently specified in the code allow the reproduction of Fig. S1.D, the
simplest system in which survival of the densest is observed. Other plots can be reproduced with the
parameter and instructions specified in this work (SI.8, SI.9). Notice that in order to obtains plots
such as Fig. 4 and Fig. 2.E we employed hundreds processors running in parallel for several months.
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[55] R. Shenkar, W. Navidi, S. Tavaré, M. H. Dang, A. Chomyn, G. Attardi, G. Cortopassi, and
N. Arnheim, “The mutation rate of the human mtdna deletion mtdna4977.,” American journal
of human genetics, vol. 59, no. 4, p. 772, 1996.

[56] J.-U. Kreft, “Biofilms promote altruism,” Microbiology,, vol. 150, no. 8, pp. 2751–2760, 2004.

[57] B. Houchmandzadeh and M. Vallade, “Selection for altruism through random drift in variable
size populations,” BMC Evolutionary Biology, vol. 12, p. 61, May 2012.

[58] S. Okasha, “Biological Altruism,” in The Stanford Encyclopedia of Philosophy (E. N. Zalta, ed.),
Metaphysics Research Lab, Stanford University, summer 2020 ed., 2020.

[59] A. Ammerman and L. Cavalli-Sforza, “The wave of advance model for the spread of early
farming,” Transformations: mathematical approaches to culture change. New York: Academic
Press. p, pp. 275–293, 1979.

[60] A. J. Robson, “A bioeconomic view of the neolithic transition to agriculture,” Canadian Journal
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[115] J. Müller-Höcker, “Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of
man without muscular disease: an age-related alteration,” Journal of the neurological sciences,
vol. 100, no. 1, pp. 14–21, 1990.

[116] D. Cottrell, P. Ince, E. Blakely, M. Johnson, P. Chinnery, M. Hanna, and D. Turnbull, “Neu-
ropathological and histochemical changes in a multiple mitochondrial DNA deletion disorder,”
Journal of Neuropathology & Experimental Neurology, vol. 59, no. 7, pp. 621–627, 2000.

[117] C. T. Moraes and E. A. Schon, “Detection and analysis of mitochondrial DNA and RNA in
muscle by in situ hybridization and single-fiber pcr,” Methods in enzymology, vol. 264, pp. 522–
540, 1996.

51

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2021. ; https://doi.org/10.1101/2020.09.01.277137doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.277137
http://creativecommons.org/licenses/by/4.0/

	 
	Supporting Information

	 Supporting Information
	Single-unit model: deterministic and stochastic treatment
	Deterministic (ODE) treatment
	Carrying capacity of the whole system and replication rate increase with heteroplasmy
	A stochastic treatment exhibits selection reversal

	Derivation of the effective SDE for the stochastic model constrained to the CM
	The two-unit model: deterministic and stochastic formulation
	The single-unit model is a microscopic building block for a system exhibiting a noise-driven wave
	Phenomenological formula for wave speed
	Implications for the evolution of altruism
	Further links to the wider literature
	Parameter values for simulations in Figs. 1 and S1 
	Fig. 1
	Fig. S1

	Realistic estimates of parameter values and setup of numerical simulations
	Revisited estimates of mutant loads in skeletal muscle fibres
	Stochastic survival of the densest can account for mutational load in short-lived mammals
	Estimation of fixation probabilities in Fig. 4
	Quadratic and reciprocal feedback produce a wave of heteroplasmy 
	Relationship between steepness and speed of a travelling wave
	Rhesus monkeys data collection
	Statistical methods
	Author contributions
	Data Availability Statement
	Code availability


