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Abstract
Spontaneous correlated activity is a universal hallmark of immature neural circuits. However,
the cellular dynamics and intrinsic mechanisms underlying neuronal synchrony in the intact
developing brain are largely unknown. Here, we use two-photon Ca*" imaging to
comprehensively map the developmental trajectories of spontaneous network activity in
hippocampal area CAl in vivo. We unexpectedly find that synchronized activity peaks after
the developmental emergence of effective synaptic inhibition in the second postnatal week.
We demonstrate that the enhanced network synchrony reflects an increased functional
coupling of individual neurons to local population activity. However, pairwise neuronal
correlations are low, and network bursts recruit CA1 pyramidal cells in a virtually random
manner. Using a dynamic systems modeling approach, we reconcile these experimental
findings and identify network bi-stability as a potential regime underlying network burstiness at
this age. Our analyses reveal an important role of synaptic input characteristics and network
instability dynamics for the emergence of neuronal synchrony. Collectively, our data suggest
a mechanism, whereby developing CA1 performs extensive input-discrimination learning prior

to the onset of environmental exploration.
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Introduction

Developing neural circuits generate correlated spontaneous activity in which synchronous
activations of large groups of neurons are interspersed by relatively long periods of
guiescence (Molnar et al., 2020). In rodents, synchronized network activity commences long
before the onset of hearing, vision and active environmental exploration and makes important
contributions to the proper assembly of brain circuits (Kirkby et al., 2013). Activity-dependent
refinements operate at multiple steps of maturation, including the control of neural progenitor
progression (Vitali et al., 2018), apoptotic cell death (Blanquie et al., 2017; Wong et al., 2018),
neuronal cell-type specification (Sun et al., 2018), migration (Maset et al., 2021) as well as
synapse formation and plasticity (Oh et al., 2016; Sando et al., 2017; Winnubst et al., 2015).
Experimental and theoretical evidence suggests that, in addition to the overall level of activity,
specific spatiotemporal firing patterns are critical for activity-dependent refinements to occur
(Zhang et al., 2011; Albert et al., 2008).

A representative example of correlated spontaneous network activity is found in the neonatal
hippocampus in vivo. During the first postnatal week, the main electrophysiological signature
are bursts of multi-unit activity (MUA) (Leinekugel et al., 2002), which bilaterally synchronize
large parts of the dorsal CAl and are often accompanied by sharp waves (SPWSs) in the local
field potential (Valeeva et al., 2020; Valeeva et al., 2019). SPWs frequently follow myotonic
limb or whisker twitches (Karlsson et al., 2006; Valeeva et al., 2019; Del Rio-Bermudez et al.,
2020), suggesting that SPWs convey feedback information from the somatosensory
periphery. By the second postnatal week, discontinuous activity in the olfactory bulb drives
network oscillations in the entorhinal cortex (Gretenkord et al., 2019), further pointing to a role
of multi-sensory integration in limbic ontogenesis. Interestingly, recent in vivo investigations

revealed that GABAergic interneurons (INs) could promote MUA bursts in the neonatal CA1
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through NKCC1-dependent excitation of pyramidal cells (PCs), although inhibitory effects of
GABAergic signaling coexist (Graf et al., 2021; Murata et al., 2020; but see Valeeva et al.,
2016). A qualitatively similar situation applies to the immature hippocampus in vitro (Ben-Ari
et al., 1989; Flossmann et al., 2019), in which correlated spiking of PCs is facilitated by
increasing the intracellular chloride concentration (Zhang et al., 2019; Spoljaric et al., 2019),
whereas inhibition of chloride uptake has the opposite effect (Dzhala et al., 2005). In this line,
in vitro studies suggest that correlated spontaneous activity largely disappears by the
beginning of the second postnatal week, when the reversal potential of GABAA receptor-
mediated currents shifts into the hyperpolarizing direction (Tyzio et al., 2008; Spoljaric et al.,
2017). However, the developmental trajectories of cellular network firing dynamics in the
hippocampus in vivo remain unknown.

Using two-photon Ca®" imaging, we here provide the first detailed analysis of the
spatiotemporal dynamics of network activity in the developing CA1 region at single-cellular
resolution in vivo. We reveal that CA1 PCs undergo a transient period of enhanced burst-like
network activity during the second postnatal week, when GABA already acts as an inhibitory
transmitter. Our results show that, at this time, network bursts (NBs) recruit CA1 PCs in an
almost random manner, and recurring cellular activation patterns become more stable only
after eye opening. Using computational network modeling, we identify bi-stability as a
dynamical regime underpinning the enhanced bursting activity of CA1 PCs. We show that
NBs mainly reflect the network’s intrinsic instability dynamics, which exquisitely depend on
proper input timing and strength. In addition, inhibitory GABAergic signaling effectively
promotes state transitions underlying NB generation. Our data suggest a mechanism,
whereby CA1l undergoes extensive input-discrimination learning before the onset of

environmental exploration.
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Results

Reliable detection of somatic Ca®" transients in densely labeled tissue

We used in vivo two-photon laser-scanning microscopy (2PLSM) in spontaneously breathing,
head-fixed Emx1'RE5¢"®:GCaMP6s->" mice to record somatic Ca®* transients (CaTs) from CA1
PCs as a proxy of their firing activities. In this strain, Cre is expressed in virtually all CA1 PCs
(Kummer et al., 2012; Gorski et al., 2002). Due to the finite point-spread function inherent to
2PLSM, dense cell labeling resulted in a non-negligible overlap of signals originating from
neighboring somata and/or neurites (Denis et al., 2020; Chen et al., 2020). Our preliminary
analysis revealed that, under such conditions, standard CaT detection methods based on
analyzing mean fluorescence intensities from regions of interests (ROIs) can lead to
substantial false positive rates (Fig. 1). We therefore devised a novel cell-specific spatial
template-matching approach for the reliable detection of CaTs in densely labeled tissue,
which we refer to as CATHARSIS (Calcium transient detection harnessing spatial similarity).
CATHARSIS makes use of the fact that, for each cell, the spike-induced changes in GCaMP
fluorescence intensity (AF) have a specific, spatially inhomogeneous (ring-like) configuration
(see Methods for details). In brief, a cell-specific spatial AF template representing the active
cell is computed (Figs. 1A and 1B) and optimally scaled to fit its AF in each recorded frame.
Based on the optimum scaling factor and the quality of the fit, a detection criterion D(t) is
computed for each time point (Clements et al., 1997). D(t) is then subjected to a general-
purpose event detection routine for the extraction of CaT onsets (Rahmati et al., 2018). We
first illustrate CATHARSIS by analyzing simulated spike-induced CaTs in ring-shaped cells
(Figs. 1A and 1B). Here, fluorescence signals of the cell of interest were contaminated by (I)
signals originating from a partially overlapping second cell, (Il) spatially homogenous

fluorescence changes mimicking axon-based neuropil activity (Kerr et al., 2005) and (lIl) a low
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level of Poissonian noise (Fig. 1C). Figures 1C and 1D demonstrate that D(t) will increase
only if AF has a spatial configuration similar to that of the template, i.e. if the simulated cell is
active. Of note, D(t) is insensitive to a spatially uniform offset of AF and can decrease for
mean AF increases having a dissimilar spatial configuration (#3 in Figs. 1C and 1D). We
applied CATHARSIS to two simulated sample cells of identical shape and varied their spatial
overlap from 0 to 75% of the cell area, in accordance to the observed overlap in our empirical
data. CATHARSIS correctly retrieved all ground-truth CaTs without false positive events (n =
665 CaTs in total). We also found that the delay of detected CaT onsets vs. simulated spikes
was low (-0.3 = 0.0 frames), pointing to a high temporal accuracy of spike reconstruction,
which is a prerequisite of a precise analysis of network activity patterns and cellular
synchronicity. We next evaluated CATHARSIS on data recorded from developing CA1 PCs in
Emx1'RES¢"®:GCaMP6s->" mice in vivo (Figs. 1E and 1F). For comparison, a consensus visual
annotation by human experts was used (Fig. 1G, top), as simultaneous electrophysiological
data were not available (see Methods). We compared CATHARSIS to an event detection
routine based on analyzing mean AF(t) and found that recall was ~95% for both approaches
(Fig. 1I; see Table S1). However, CATHARSIS vyielded considerably fewer false positive
events, thus resulting in a significantly higher precision and F1 score (Fig. 11). Importantly, the
delay of detected CaT onsets relative to the consensus annotation was consistently low (0.9 +
0.1 frames at a frame rate of 11.6 Hz, n = 20 cells), confirming that CATHARSIS achieved a
high temporal accuracy.

We conclude that CATHARSIS is suited for the reliable reconstruction of somatic CaTs in

densely packed neuronal tissue with both high detection and temporal accuracies.

A transient period of firing equalization during CA1 development in vivo
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In the adult CA1, firing rate distributions are approximately log-normal, implying that a minority
of neurons accounts for the majority of spikes. In addition, firing rates of individual cells are
relatively stable across brain states and tasks, suggesting that skewed firing rate distributions
reflect an inherent characteristic of mature hippocampal computations (Mizuseki et al., 2013).
To reveal the developmental trajectory of single-cell firing characteristics, we applied
CATHARSIS to extract spontaneous CaTs from Emx1+ PCs at P3—4 (n = 19 fields of view
[FOVs]), P10-12 (n = 11 FOVs) and P17-19 (n = 12 FOVSs), respectively (Fig. 2A). For the
sake of brevity, these age groups are hereafter referred to as P4, P11 and P18, respectively.
We found that mean CaT frequencies significantly increased ~2.5-fold from 1.5 + 0.2 min™ at
P4 to 3.9 + 0.4 min™ at P11 and remained relatively stable afterwards (P18: 4.8 + 0.3 min™,
Figs. 2B and 2C; see Table S2). Additionally, we observed a striking change in the shape of
CaT frequency distributions, which were broad and strongly right-tailed at P4 and P18, but
much less so in the second postnatal week (Fig. 2B). To quantify the dispersion of firing rates
among individual cells, we plotted the corresponding Lorenz curves (Fig. 2D), in which the
cumulative proportion of CaT frequencies is plotted against the cumulative proportion of cells
rank-ordered by frequency (Mizuseki et al., 2013). Here, the line of equality represents the
case where all neurons have equal firing rates. We computed the Gini coefficient as a
measure of deviation from equality (for a graphical representation, see inset in Fig. 2D). Gini
coefficients underwent a transient minimum at P11, indicating that CaT frequencies among
individual neurons were considerably more similar to each other as compared to P4 and P18
(Fig. 2E). We next addressed whether these developmental alterations in firing rates were
accompanied by changes in the irregularity of firing in individual cells. The local coefficient of
variation (CV2), a robust measure of local spiking irregularity (Holt et al., 1996; Ponce-Alvarez

et al., 2010), gradually declined from P4 to P18 (Fig. 2G). At P11, CV2 was close to one,
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indicating that the irregularity of CaT occurrence is similar to that of a Poissonian point
process, in which successive events occur independently of one another. As previously
observed for CaT frequencies, CV2 distributions were also relatively broad at P4 and P18, but
narrow at P11 (Fig. 2F). Consistently, Gini coefficients of CV2 showed a distinct minimum at
P11 (see #4 in Table S2).

Collectively, our data reveal a transient equalization of the firing statistics of individual CA1
PCs during the second postnatal week, while highly skewed firing-rate distributions eventually

emerge only around/after eye opening.

CA1l undergoes a transient enhanced bursting period in vivo

Previous in vitro work has identified giant depolarizing potentials (GDPs) as the most
prominent pattern of synchronized network activity in the neonatal hippocampus (Ben-Ari et
al., 1989; Leinekugel et al., 1997; Garaschuk et al., 1998). GDPs depend on a depolarizing
action of GABA receptor-dependent transmission (Ben-Ari et al., 1989; Owens et al., 1996)
and disappear at around the beginning of the second postnatal week, when GABA actions
shift from mainly excitatory to mainly inhibitory (Yamada et al., 2004; Tyzio et al., 2007). To
investigate whether a similar developmental profile of NB generation exists in the CAL in vivo,
we next determined the time-course of the fraction of active cells ®(t) (Fig. 3A). We found
that, at P4, CA1 PCs spent relatively long time periods in a low-activity (silent) state, which
was interspersed by transient periods of co-activation, i.e. NBs (Fig. 3A, left). During NBs, ®(t)
rarely exceeded 20% indicating that the degree of synchronous activation in vivo is
considerably lower than that reported for GDPs in vitro (Leinekugel et al., 1997; Garaschuk et
al., 1998; Flossmann et al., 2019). In contrast to GDPs in vitro, bursting activity was even

more pronounced at P11, when the network tended to oscillate between an almost silent and
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a bursting state with an inter-burst period of ~2—-10 seconds (Fig. 3A, middle). CA1 PCs
frequently maintained such oscillatory behavior for several minutes. At P18, network activity
was more continuous than at earlier stages, and large NBs were generally rare (Fig. 3A,
right).

To quantify developmental changes in the rhythmicity of network activity, we first computed
the power spectrum of ®(t). At P11, this revealed a distinct peak in the range of ~0.1-0.5 Hz
(Fig. 3B), pointing to the existence of a preferred oscillation frequency of CA1 PCs. Such a
power peak was absent at P4 and reduced at P18. Accordingly, band-power in the 0.1-0.5 Hz
frequency range was significantly higher in the second postnatal week than at earlier or later
stages (Fig. 3C, see Table S3).

To characterize periods of synchronized network activity in more detail, we next defined NBs
by thresholding ®(t) (Fig. 3A and Methods). The fraction of time that the network spent in NBs
was lowest at P4 and peaked at P11 (Fig. 3D). Moreover, NBs at P18 were significantly
shorter in duration than during the first and second postnatal weeks (Fig. 3E). We quantified
NB size as the fraction of active cells (corrected for the threshold applied to ®(t)) and found
that it only declined after P11 (Fig. 3F). At P11, each neuron participated in 14.4 + 1.2% of all
NBs, which significantly exceeded participation rates at P4 (10.3 + 0.8%) and P18 (11.2 +
0.4%) (see #5 in Table S3). Additionally, distributions of participation rates were very narrow
at P11 (Fig. 3G), pointing to a greater similarity of cells with respect to their contribution to NB
generation as compared to earlier or later developmental stages. We confirmed this
equalization of the single-neuron contribution to NBs by analyzing the Gini coefficient of
participation rates, which we found to be lowest at P11 (#6 in Table S3).

Taken together, our data reveal that CA1 undergoes a transient period of enhanced bursting
activity during the second postnatal week in vivo. These network discharges display
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rhythmicity in the sub-Hz range — in spite of the close-to-random firing of individual PCs.

Enhanced population coupling underlies network burstiness in the second postnatal week in
vivo

The transient developmental increase in bursting propensity was unexpected, as (1) GDPs in
vitro disappear soon after the first postnatal week (Ben-Ari et al., 1989; Garaschuk et al.,
1998; Khazipov et al., 2004) and (2) previous in vivo data from the visual and somatosensory
neocortex revealed a desynchronization in firing of local neuronal populations during the
same time period (Rochefort et al., 2009; Golshani et al., 2009; van der Bourg et al., 2017,
Colonnese et al.,, 2010). We therefore assessed whether the enhanced burstiness at P11
reflects an increase in functional neuronal coupling. To this end, we first investigated the
coupling of single cell firing to that of the overall population. For each cell, we computed its
population coupling (PopC) index (Okun et al., 2015; Sweeney et al., 2020) and tested for its
significance using surrogate data (see Methods). The PopC index significantly peaked at P11
(Fig. 4A, Table S4), while there was no difference between P4 and P18. The higher PopC
index at P11 arose from a significantly higher fraction of coupled cells (Fig. 4B), whereas the
indices of coupled cells were similar (Fig. 4C). We next addressed whether the increased
PopC index at P11 results from an increase in pairwise temporal correlation of neuronal firing
activities. To this end, we computed the spike time tiling coefficient (STTC) as a frequency-
independent affinity metric of two firing-event time series (Cutts et al., 2014) (Fig. 4D). The
fraction of significantly correlated cell pairs did not significantly differ between P4 and P11
(P4: 13 + 2%, P11: 23 + 5%), but strongly decreased to 5 + 1% at P18 (Fig. 4E). Remarkably,
STTCs of significantly correlated pairs profoundly declined from 0.18 + 0.01 at P4 to 0.09 +

0.01 already at P11, but did not significantly change afterwards (P18: 0.10 = 0.00; Figs. 4F
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and 4G). These data suggest that developmental changes in pairwise neuronal correlations
do not account for the increased PopC nor the increased burstiness of CA1 during the second
postnatal week. It is worth noting that pairwise correlations of CA1 PCs found here are
considerably lower than previously reported for the neonatal neocortex (Golshani et al.,
2009). This prompted us to analyze the spatial structure of CA1 ensemble dynamics. We
found that the dependence of STTCs on the Euclidean somatic distance was weak already
during the first two postnatal weeks and non-significant at P18 (Fig. 4H), indicating that the
horizontal confinement of patterned network activity is weak or absent in CAL.

Collectively, our data reveal that enhanced network burstiness during the second postnatal
week is associated with a higher fraction of cells being significantly locked to the activity of the

local network, while pairwise neuronal correlations are low.

Motifs of CA1 network activity undergo distinct developmental alterations

Recurring spatiotemporal cellular activation patterns are a hallmark of network activity in the
adult hippocampus in vivo (Villette et al., 2015). Whether such repeating patterns (hereafter
referred to as ‘motifs’) are already present at early developmental stages is unknown. To
detect motifs, we divided the recording time into non-overlapping bins, each represented by a
binary spatial pattern (vector) of active and inactive cells, followed by computing the matching
index matrix of all possible pattern pairs (Fig. 5A). We then applied an eigendecomposition-
based clustering method to each similarity matrix in order to detect potential motifs, while
testing for their significance using surrogate data (see Methods). First, this analysis revealed
that the global similarity of the activation patterns was lowest at P11 (Fig. 5B, Table S5),
whereas it was similar between P4 and P18. This finding implies that there is less

commonality between the sets of active cells present in different patterns at P11, and thus a
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more random recruitment of cells. Furthermore, we found that the number of motifs was
significantly lower at P11 (2.5 = 0.9) as compared to P4 (5.9 £ 0.4) and P18 (7.0 £ 1.1) (Fig.
5C). When computing the fraction of patterns belonging to each motif, we found that the
motifs had the highest repetition rate at P18 (32.0 + 4.7%), while there was no significant
difference between P4 (17.8 £ 1.2%) and P11 (16.6 + 5.9%) (Fig. 5D). Taken together, these
results suggest that recurring cellular activation patterns become more stable only after the

onset of environmental exploration.

A neural network model with inhibitory GABA identifies intrinsic instability dynamics as a key
to the emergence of network bursts

Hitherto our analyses of experimental data revealed an unexpected bursting behavior of CAl
PCs at P11, despite the developmental emergence of synaptic inhibition (Tyzio et al., 2007,
Murata et al., 2020; Spoljaric et al., 2017), which we found to associate with their higher
coupling to local network activity. However, the mechanisms governing in vivo network
burstiness as well as its functional implications remain to be understood. Here, we provide
mechanistic insights into these open questions by using computational network modeling and
stability analysis technigues.

We employed a recurrent neural network (RNN) model of mean firing-activity rates of
excitatory glutamatergic (PC) and inhibitory GABAergic (IN) cell populations (A, and A) with

dynamic synaptic weights (Rahmati et al., 2017; Flossmann et al., 2019) (Fig. 6A). Here, we
constrain the model with previously reported and our present experimental data obtained for

P11: 1) GABAergic synapses are considered to be inhibitory (Kirmse et al., 2015; Valeeva et
al., 2016; Murata et al., 2020) and Il) the spontaneous time-averaged A, is effectively non-

zero (Fig. 2C). We found that such a network operates under a bi-stable regime, where two
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stable spontaneous fixed points (FPs) exist: one at a silent state (A, =A =0 Hz) and the

other at an active state (A, #0 Hz and A #0 Hz; green dots in Fig. 6B). The ability of the

network to embed the latter FP is mainly due to the stabilization function of inhibitory GABA
(Rahmati et al.,, 2017; Latham et al., 2004). Strikingly, our simulations showed that the
network can process a given input quite differently at the silent and active states, respectively

(time points a and c in Fig. 6C). To this end, we applied a set of two excitatory inputs to the
network’s PC and IN populations (€, and ¢€,), resembling e.g. SPW-driven inputs to CAl (Fig.

6C). We set the input strengths and duration to be identical across the two states. We found
that, when operating at the active state, the network activity monotonically decays back to this
state, once the input ceases (Fig. 6C, a). However, at the silent state, input removal is
followed by a transient profound surge in network activity (c in Fig. 6C). Hereafter, we refer to
this supra-amplification activity as simulated NB (simNB), emulating experimentally observed

NBs (Fig. 3).

Network state-dependency of sSimNB generation

To disclose the mechanisms underlying this distinct behavior of the network at the silent and
active state (Fig. 6C), we computed the corresponding steady-state A -A.-plane of the

network, after freezing the slow short-term synaptic plasticity (STP) dynamics and, thus,
synaptic weights (Frozen STP-RNNS), at either of these states separately (Fig. 6D). This
analysis enables assessing the initial phase of network activity following an input perturbation.
We found that, while operating at the silent state, the active state is not initially accessible to
the network (lower panel in Fig. 6D). Instead, an unstable FP is present in the network’s fast
(i.e. firing activity) dynamics, which builds an amplification threshold around the attraction

domain of the FP located at the silent state. This in turn allows for the emergence of sSImNBs:
13
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A sufficiently strong perturbation, amenable to initially push the network activity beyond this
threshold (i.e. to the amplification domain), will transiently expose the network to its intrinsic
instability-driven dynamics, thereby effectively triggering a simNB (Fig. 6C, c). Note that this
unstable FP is different from its counterpart in the full system (Fig. 6B) and is only visible in
the network’s fast dynamics. In particular, this FP is transient and disappears around the peak
of the elicited simNB, mainly due to short-term synaptic depression (Rahmati et al., 2017).
Unlike the silent state, the network frozen at the active state has no amplification domain, but
instead two attraction domains pertaining to its FPs at silent and active states (upper panel in
Fig. 6D). This explains the network’s incapability of eliciting simNBs, when operating at the
active state. Collectively, these results suggest that simNBs, initiated by the input, are mainly
an expression of the network’s intrinsic instability dynamics, where the silent periods of the

network are a prerequisite for its emergence.

Input-strength dependency and internal deadline of state transitions

What are the input requirements that allow the network to transition between the active and
the silent states? First, we found that the silencing of the network in an active state requires
specific ratios of excitatory input strengths to be delivered to its PC and IN populations (Figs.
6E—G). In particular, the presence of GABAergic inhibition can effectively promote this
transition, where otherwise a relatively much stronger €, is required to silence the network
solely (Fig. 6G). Furthermore, once silenced, pushing the network back to the active state is
also dependent on input ratio (Figs. 6H-J). However, to make such a transition, the network
becomes noticeably more selective about the input ratio (compare Figs. 6G and 6J). Besides,
for both transitions, the proper ratios of the inputs are effectively determined by the

approximated initial phase of the network response (Fig. 6D), and thus mainly dependent on

14
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the synaptic weights right before the input arrival. In sum, these results suggest that proper
input strengths onto the PC and IN populations, along with the inhibitory action of GABA, play
key roles in the dynamic state transitioning of the network, thereby allowing for its burstiness.
Considering the dynamics of synaptic weights in our model along with their significance for
state transitions, we next investigated the impact of input timing (Fig. 7). Furthermore, we
found that, once silenced by the first input, a deadline is formed for the network’s transitioning
back to the active state (dotted line in Figs. 7A, D, G, H). If the second input misses the
deadline, the network will elicit a large-amplitude simNB, which is not able to converge to the
active state any longer (Fig. 7D). Prior to this deadline and depending on the input ratio (Fig.
6J), the network will either transition to the active state (Figs. 7A, 6H) or return to the silent
state (Fig. 61). Importantly, our analysis showed that this deadline is an internal property of the
network and cannot be overruled by any input level (see below). Therefore, specific
combinations of input ratio (Fig. 6J) and input timing (Fig. 7G) are required for transitioning to
the active state. In addition, once the simNB failed to converge to the active state, the network
will encounter a new deadline (see Fig. S1). In sum, these results imply that the silent state of
the network can have per se different hidden sub-states, each with a specific input-encoding
operating scheme.

Having found the intrinsic deadline as a main determinant for the type of network burst, we
next investigated the origin of these different activity patterns: How does the network decide
between transitioning to the active state and returning to the silent state? Remarkably, we
found that the deadline for network transitioning to the active state is mechanistically
dependent on the presence of a transient stable FP in its fast dynamics around the peak of
the simNB. This can be seen in the two examples where the network receives the same input

but at different inter-pulse intervals (IPIs), one preceding (Figs. 7A-C) and the other
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exceeding the deadline (Figs. 7D—F). For both IPIs, at the time right before the second input
(Figs. 7B, E), the Frozen RNNs only provide evidence for the emergence of simNB, but not
for the state transition (note the presence of an amplification domain; pink area). Importantly,
we found, however, that in the case of the shorter IPI, the network is able to form a transient,
stable non-zero FP in its Frozen RNN, at the peak of the sSimNB (compare Figs. 7C and 7F).
This FP can transiently attract the network’s activity towards itself, and as the activity evolves
accordingly, it also changes its position in the corresponding updated Frozen STP-RNN, until
eventually converging to its counterpart in the full system. Intuitively, this transient, stable FP
can guide the network’s activity towards that of the full system (see the non-origin green dot in
Fig. 6B). The temporal repositioning of this stable FP is due to the activity-dependency of the
synaptic weights in our model. Besides, our findings show that the existence of this FP
around the simNB peak is effectively determined by simNB size (Fig. 7G). If sSimnNB size
exceeds an internally determined threshold, the network cannot build such a transient stable
FP due to a reduction of synaptic weights (Rahmati et al., 2017); consequently, the simNB will
be attracted towards the silent state. In this line, Fig. 7G shows that simNB size is effectively
determined by the IPIl: The longer the IPI (thus, the silent period) is, the larger the simNB will
be. Here, the IPI-dependency of the simNB size mainly reflects the slow recovery from short-
term depression of excitatory synapses at the silent state (Fig. 7H).

In conclusion, our modeling results indicate that developing CA1 possesses multiple input-
encoding schemes, which are effectively determined by three factors: 1) the input ratio, 2) the

input timing, and 3) the non-linearity and dynamics of synaptic weights.
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Discussion

Unique characteristics of network dynamics in developing CALl in vivo

Using in vivo two-photon Ca** imaging, we here reveal that cellular network dynamics in
developing hippocampal CAl differ from those previously observed in neocortical areas.
Firstly, pairwise correlations of firing activities (Figs. 4D-G) were considerably lower than
those in the visual (Rochefort et al., 2009) or somatosensory (Golshani et al., 2009; Che et
al., 2018; van der Bourg et al., 2017) cortex in vivo, pointing to a lower degree of neuronal
synchrony in CA1. Similarly, the degree of neuronal co-activation was substantially lower than
that during GDPs recorded in acute slices (Flossmann et al., 2019), supporting the view that
the underlying dynamics differ markedly. Secondly, throughout the developmental period
studied here, pairwise correlations of firing activity were only weakly dependent on the inter-
somatic distance (Fig. 4H). Together with previous electrophysiological data demonstrating
bilateral synchronization of CA1 MUA along the septal-temporal axis (Valeeva et al., 2020;
Valeeva et al., 2019), these observations imply that network activity in the neonatal CA1 is
less correlated on small, but more correlated on large spatial scales, as compared to
neocortical areas. In other words, CA1 NBs tend to lack a sharp horizontal confinement
typical of neocortical spindle bursts, which activate upper layer PCs in a columnar manner
(Kummer et al., 2016; Kirmse et al., 2015). Wavefront-containing activity patterns appear to
be necessary for the proper developmental refinement of topographic maps in neocortex
(Cang et al., 2005; Li et al., 2013) and receptive field characteristics of visual cortical neurons
(Albert et al., 2008). In this line, the peculiar spatial features of CA1 NBs in our data may
reflect the absence of a clear topical macro-organization of the mature hippocampus (Bellistri

et al., 2013).
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A role for intrinsic network instability and synaptic inhibition in the generation of synchronized
network activity in CA1
We demonstrate that CA1 PCs undergo a transient period of enhanced network synchrony in
the second postnatal week, i.e. shortly before the onsets of pattern vision, active whisking and
environmental exploration. This trajectory remarkably differs from what has been previously
reported for the hippocampus in vitro, where GDPs disappear shortly after the first postnatal
week. At this time, GABA-releasing INs already impose effective synaptic inhibition on CAl
PCs (Tyzio et al., 2008; Spoljaric et al., 2017; Murata et al., 2020), implying that synchronized
activity in vivo does not depend on a GABAergic excitatory drive (in contrast to GDPSs).
Synchronized CALl activity in the second postnatal week exhibited a preferred frequency of
~0.1-0.5 Hz, indicating that NBs occur in a temporally non-random manner (Fig. 3). Strikingly,
however, individual neurons were recruited more randomly at this age, as the number of
significant motifs of network activity as well as their average repetition probability were lowest
(Fig. 5). In addition, the firing of individual cells resembled a Poissonian process (Fig. 2), and
pairwise neuronal correlations were lowest in the second postnatal week (Fig. 4). We here set
out to explain these seemingly discordant experimental findings using data-informed
computational modeling.

Capitalizing on a dynamic systems modeling approach, we show that a potential dynamical
regime of the network that allows for the generation of synchronized activity in the presence
of effective synaptic inhibition is bi-stability. We found that our network model is prone to an
intrinsic instability, governed by a nonlinear interaction between its fast (firing) and slow
(synaptic) dynamics. Such instability enables the model to over-amplify the input, even after
its removal, and thus elicit network bursts (simNBs; Fig. 6). This indicates that a (sim)NB

reflects a spatiotemporal trajectory of the network’s intrinsic instability dynamics, which, due
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to its nature, can recruit a random set of cells at random order within a specific time-window.
The size of this set and the time-window are determined by the synaptic weights right before
the input arrival (Rahmati et al., 2017). Importantly, the data-informed model mechanistically
links strong population coupling to weak pairwise neuronal correlations, the close-to-random
firing of individual PCs and the low number of network motifs — as we found experimentally for
the second postnatal week.

What are the functional roles of burstiness and synaptic inhibition at this stage? Our model, in
addition to its silent state, embeds a stable fixed point (or steady state) at non-zero low
activity rates (Fig. 6B), in accordance with our recorded data. Theoretical studies showed that
the presence of such a fixed point requires the stabilization function of inhibitory GABA
(Rahmati et al., 2017; Latham et al., 2004; Ozeki et al., 2009; Tsodyks et al., 1997). At such a
fixed point, the network can operate under an inhibition-stabilized regime, which may enable
CA1 networks to begin performing complex computations (Latham et al., 2004; Tsodyks et al.,
1997). The ability of the network to dynamically transition between its silent and active states
in an input-dependent fashion (Fig. 6) renders the second postnatal week an early
developmental stage toward forming hippocampal memory and cognition mechanisms, as
found in adult hippocampal attractor networks (Rolls, 2007; Knierim et al., 2016; Hartley et al.,
2014; see also Rahmati et al., 2017). This view is supported by (I) the existence of the
internal deadlines as well as a delicate input—ratio and —timing dependency of successful
state transitions and simNB generation and (Il) the network's ability to store information in
both the silent and active state through transient synaptic weights (Mongillo et al., 2008;
Stokes, 2015; Barak et al., 2014) and persistent activity (Boran et al., 2019; Zylberberg et al.,
2017), respectively. In this line, our modeling results further imply that the network’s silent

state has per se several dynamic operational sub-states, which keep track of input timing and
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strength (Figs. 7 and S1) to produce proper network read-outs. Collectively, we postulate that

the basis of CAl encoding schemes is set in shortly before eye opening. Moreover, our data

suggest that GDPs disappear due to improper synaptic inputs in vitro during the second

postnatal week, when GABA actions switch to inhibitory (Murata et al., 2020; Valeeva et al.,

2016).

Potential developmental functions of network bursts in the neonatal CA1

Computational modeling suggests a mechanism, whereby CAl undergoes extensive input-
discrimination learning before eye opening. In this scenario, NBs serve as a feedback that
informs individual CA1 PCs about functionally important characteristics of the synaptic input
to the local network, including (I) the proper targeting ratio of excitatory PCs versus inhibitory
GABAergic INs (Murata et al., 2020; Valeeva et al., 2016) and (Il) the timing of inputs relative
to the network's operational state. Interestingly, the developmental period of enhanced
network burstiness coincides with a major surge of synaptogenesis in CA1 PCs (Kirov et al.,
2004). The latter involves a net addition of synapses, but also functionally important
anatomical rearrangements. Specifically, the formation of mature dendritic spines, which allow
for electrical and metabolic compartmentalization of postsynaptic responses, commences
only at around P10, by which time most glutamatergic synapses are rather localized to
dendritic shafts (Fiala et al., 1998; Kirov et al., 2004). In addition to acting as potential
synaptogenic stimuli (Kirov et al., 2004), NBs could thus be an important element underlying
synaptic competition and pruning, for example, based on synchronization-dependent plasticity
rules in nascent dendrites (Winnubst et al., 2015). Synchronized activity might therefore be
causally related to the delayed development of skewed (approximately log-normal) firing rate

distributions (Fig. 2) underlying sparse coding (lkegaya et al., 2013; Yassin et al., 2010;
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Trojanowski et al., 2020; Narayanan et al., 2012; Roxin et al., 2011) — an energy-efficient
regime of input processing and information storage (Mizuseki et al., 2013). In accordance with
the efficient coding hypothesis and seminal work in the visual system (Albert et al., 2008), we
argue that one function of developing CA1 and, thus, NBs is to remove statistical redundancy
in the multi-sensory place-field code, by making use of a learning scheme that uses both

intrinsically and sensory-evoked activity already before environmental exploration.
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Figure 1. CATHARSIS enables reliable CaT detection in densely labeled tissue. (A) Resting
image of two partially overlapping simulated cells (left) and regions of interest (ROIs) used for
analysis (right). bg - background. (B) AF template of cell 1. (C) Top, simulated trains of action
potentials. Middle, relative changes from baseline fluorescence (AF/Fo) of ROIs shown in A.
Bottom, detection criterion (D) for cell 1 and corresponding CaT onsets retrieved by
CATHARSIS (arrows). (D) Sample AF images of three individual frames at time points
indicated in C. Spikes in cell 1 or 2 translated into ring-shaped increases in AF, whereas
those induced by bg spikes were applied to the entire field of view. (E) Resting GCaMP6s
fluorescence image (left) and ROIs used for analysis (right). (F) AF template of the cell
indicated in E. (G) Top, consensus visual annotation by two human experts for the same cell.

Middle, AF/Fy and detected event onsets (red arrows). Bottom, detection criterion (D) and

32


https://doi.org/10.1101/2021.05.28.446133

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446133; this version posted May 29, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
corresponding CaT onsets retrieved by CATHARSIS (black arrows). (H) Sample AF images of
three individual frames at time points indicated in G. Note that frames #2 and #3 led to false
positive results if event detection was performed on mean AF, but not if performed on D. (I)
Quantification of recall, precision and F1 score for event detection based on D (i.e.
CATHARSIS) and mean AF, respectively. Each open circle represents a single cell. Data are

presented as mean + SEM. ns — not significant. *** P < 0.001. See also Table S1.
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Figure 2. A transient period of firing equalization during CA1 development in vivo. (A) Sample
D(t) traces (top) and raster plots showing reconstructed CaT onsets (bottom). Note that
cellular firing undergoes a developmental transition from synchronized-discontinuous to
desynchronized-continuous activity. (B) Cumulative probability of CaT frequencies. (C) Mean
CaT frequencies per FOV. (D) Lorenz curves of CaT frequencies. Line of equality (dotted)
represents the case that all neurons have equal CaT frequencies. Inset depicts Gini
coefficient calculation. (E) Mean Gini coefficients per FOV. (F) Cumulative probability of mean
CV2 of inter-CaT intervals. Note that, at P11, CV2 distribution is narrower and centered

around 1. (G) Mean CV2 per FOV. For a Poisson process, CV2 = 1 (dotted line). Each open
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circle represents a single FOV. Data are presented as mean + SEM. ns — not significant. P4

P3—4, P11: P10-12, P18: P17-19, "™ P < 0.001. See also Table S2.
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Figure 3. CAl undergoes a transient enhanced bursting period in vivo. (A) Sample traces of
the fraction of active cells ®(t). Bottom traces show time periods marked on top (dotted
rectangle) at higher temporal resolution. The red dotted line indicates the activity-dependent
threshold for NB detection. (B) Power spectral density of ®(t). (C) Bandpower of ®(t) in the
0.1-0.5 Hz range. (D) The fraction of time that the network spent in NBs peaked at P11. (E)
The average NB duration is lowest at P18. (F) Quantification of NB size as the mean fraction
of active neurons (corrected for burst threshold as indicated in A). (G) Cumulative probability

of the fraction of NBs that each cell is participating in. Each open circle represents a single
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FOV. Data are presented as mean + SEM. ns — not significant. P4: P3—4, P11: P10-12, P18:

P17-19, ™ P <0.001. ™ P <0.01. “ P < 0.05. See also Table S3.
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Figure 4. Enhanced population coupling underlies network burstiness in the second postnatal

week in vivo. (A) The mean population coupling (PopC) index peaked at P11. (B) Mean

fraction of cells with significant PopC. (C) Mean PopC index of significantly coupled cells only.

(D) Sample STTC matrices (re-ordered). (E) Mean fraction of cell pairs having a significant

STTC. (F) Cumulative probability of STTCs of significantly correlated cell pairs only. (G) Mean

STTCs of significantly correlated cell pairs. (H) Relationship between STTC and Euclidean

somatic distance for significantly correlated cell pairs. p denotes the Spearman's rank
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correlation coefficient for all cell pairs analyzed (n) at a given age. Each open circle
represents a single FOV. Data are presented as mean + SEM. ns — not significant. P4: P3—4,

P11: P10-12, P18: P17-19, ™ P < 0.001. ™ P < 0.01. See also Table S4.
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Figure 5. Motifs of CA1l network activity undergo distinct developmental alterations. (A)
Similarity matrices (matching index) of binary activity patterns (re-ordered for illustration of
motif detection). (B) Global similarity of activity patterns is lowest at P11. (C) The absolute
number of detected motifs per FOV is lowest at P11. (D) Motif repetition quantified as the
fraction of activity patterns belonging to each motif. Each open circle represents a single FOV.
Data are presented as mean + SEM. ns — not significant. P4: P3—4, P11: P10-12, P18: P17—-

19, "™ P < 0.001. ™ P < 0.01. See also Table S5.
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Figure 6. A neural network model with inhibitory GABA identifies intrinsic instability dynamics

as key to the emergence of network bursts. (A) Schematic diagram of the STP-RNN model.
(B) The A-A.-plane of the full STP-RNN'’s stationary dynamics. Note the presence of two

stable fixed points (FPs; green dots) at silent and active states as well as the unstable FP
(black dot). (C) simNB generation requires network silencing. The model was stimulated by

pulse-like input to both PC and IN populations for a duration of 0.020 s (att = 3 and 9.2 s:
e, =€ =025; att=8s: =025, ¢ =0.75). Zoom-in of the activity around the stimulation

times at active (a and b) and silent (c) states are shown in right panels. Input time series are

shown on top of the plots. (D) The presence of an amplification domain in the initial phase of
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network firing dynamics enables the emergence of simNBs. The A-A.-plane of the STP-RNN

with synaptic efficacies frozen at active (a, top) and silent (b, bottom) states, right before input

arrival. (E-G) Transition from active to silent state requires specific input ratios. Input

delivered at t = 8 s. (E) A failed transition: €, =0.25, € =0.5. (F) A successful transition:
e, =0.25, ¢ =1. (G) A color-coded matrix of successful (dark green) and failed (light green)

transitions to the silent state in response to different combinations of €, and € amplitudes.

(H-J) Both the transition from the silent to the active state and the simNB generation require
specific input ratios. Input delivered at t = 9.2 s. Same as E-G, but for the backward transition

to the active state. +simNB and —simNB indicate the emergence and absence of bursts.
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Figure 7. Internal deadline of state transitions. (A—C) Input delivered to the network before

the deadline can move it to active state. (A) A successful transition. The input delivered at t =
0.8s; €=025, ¢ =0.25. (B) The A-A.-plane of the STP-RNN with synaptic efficacies frozen

at the silent state right before the input arrival. (C) Same as B, but frozen at the peak of the
network burst (i.e. simNB) shown in A. Note the presence of the transient stable FP (non-
origin green dot), which triggers the transitioning to the active state. (D—F) Once the deadline
is missed, the network cannot be moved to the active state by the subsequent input. Same as
A—-C, but the input delivered at t = 2.1 s. Note the absence of a non-origin transient stable FP
in F, in contrast to C. (G) The simNB size and network transition to the active state depend on

the inter-pulse intervals (IPI: the arrival time of the next input relative to the silencing time of

the network). simNB size is computed as the maximum of A +A, after the secondary input.
Note the presence of a short window for transitioning to the active state. €, =0.25, ¢ =0.25.
(H) Same as G, but for the non-scaled efficacies of GABAergic (U, X, ; orange; see Methods)

and glutamatergic (U,X;; black) synapses, right before the arrival of the secondary input. (A,
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D, G, H) The dotted line at t = 1.45 s depicts the internal deadline.
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Methods

Animals

All animal procedures were performed with approval of the local government (Thiringer
Landesamt fur Verbraucherschutz, Bad Langensalza, Germany) and complied with European
Union norms (Directive 2010/63/EU). Animals were housed in standard cages with 14h/10h
light/dark cycles. Emx1'"¥5"® (stock no. 005628) and GCaMP6s-S" (Ai96, stock no. 024106)
mice were originally obtained from The Jackson Laboratory. Double heterozygous offspring
(Emx1"REST*"W: GcamMP6s-SH" was used for experiments at P3—4 (‘P4'), P10-12 (‘P11 and

P17-19 ('P18'). Mice of either sex were used.

Surgical preparation, anesthesia and animal monitoring for in vivo imaging

30 minutes before starting the preparation, 200 mg/kg metamizol (Novacen) was
subcutaneously injected for analgesia. Animals were then placed onto a warm platform and
anesthetized with isoflurane (3.5% for induction, 1-2% for maintenance) in pure oxygen (flow
rate: 1 I/min). The skin overlying the skull was disinfected and locally infiltrated with 2%
lidocaine (s.c.) for local analgesia. Eyes of P17-19 were lubricated with a drop of eye
ointment (Vitamycin). Scalp and periosteum were removed, and a custom-made plastic
chamber with a central borehole (@ 2.5-4 mm) was fixed on the skull using cyanoacrylate
glue (Uhu) (P4: 3.5 mm rostral from lambda and 1.5 mm lateral from midline; P11: 3.5 mm
rostral from lambda and 2 mm lateral from midline; P18: 3.5 mm rostral from lambda and 2.5
mm lateral from midline).

For the hippocampal window preparation (Mizrahi et al., 2004), the plastic chamber was

tightly connected to a preparation stage and subsequently perfused with warm artificial
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cerebrospinal fluid (ACSF) containing (in mM): 125 NaCl, 4 KCI, 25 NaHCOg3, 1.25 NaH,PO,,
2 CaCl,, 1 MgCl;, and 10 glucose (pH 7.4, 35-36°C). A circular hole was drilled into the skull
using a tissue punch (outer diameter 1.8 mm for P4 and 2.7 mm for P11 and P18 mice). The
underlying cortical tissue and parts of corpus callosum were carefully removed by aspiration
using a vacuum supply and a blunt 27G or 30G needle. Care was taken not to damage alveus
fibers. As soon as bleeding stopped, the animal was transferred to the microscope stage.

During in vivo recordings, body temperature was continuously monitored and maintained at
close to physiological values (36—37°C) by means of a heating pad and a temperature sensor
placed below the animal. Spontaneous respiration was monitored using a differential pressure
amplifier (Spirometer Pod and PowerLab 4/35, ADInstruments). Isoflurane was discontinued
after completion of the surgical preparation and gradually substituted with the analgesic-
sedative nitrous oxide (up to the fixed final NoO/O, ratio of 3:1, flow rate: 1 I/min). Experiments
started 60 min after withdrawal of isoflurane. At the end of each experiment, the animal was

decapitated under deep isoflurane anesthesia.

Two photon Ca? imaging in vivo

After transferring the animal to the microscope stage, ACSF was removed and the
hippocampal window was filled up with a droplet of agar (1%, in 0.9% NaCl) and covered with
a cover glass. As soon as the agar solidified, the chamber was again perfused with ACSF.
Imaging was performed using a Movable Objective Microscope (Sutter Instrument) equipped
with two galvanometric scan mirrors (6210H, MicroMax 673XX Dual Axis Servo Driver,
Cambridge Technology) and a piezo focusing unit (P-725.4CD PIFOC, E-665.CR amplifier,
Physik Instrumente) controlled by a custom-made software written in LabVIEW 2010

(National Instruments) (Kummer et al.,, 2015) and MPScope (Nguyen et al., 2006).
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Fluorescence excitation at 920 nm was provided by a tunable Ti:Sapphire laser (Chameleon
Ultra Il, Coherent) using a 20x%/1.0 NA water immersion objective (XLUMPLFLN 20XW,
Olympus). Emission light was separated from excitation light using a 670-nm dichroic mirror
(670 DCXXR, Chroma Technology), short-pass filtered at 680 nm and detected by a
photomultiplier tube (12 bit, H10770PA-40, Hamamatsu). Data were acquired using two
synchronized data acquisition devices (NI 6110, NI 6711, National Instruments). Sampling
rate was set to 11.63 Hz (256x256 pixels, 248x248 pm). For each animal, spontaneous

activity was recorded within 3-5 fields of view, each one usually for ~20 min.

Quantification and statistical analysis

Preprocessing

Image stacks were registered using NoRMCorre (Pnevmatikakis et al., 2017). For residual
drift detection, a supporting metric was calculated as the Pearson correlation coefficient of the
binarized template image used for stack registration and the binarized images of the
registered image stack. Time periods with residual drift were then visually identified (by
inspecting the supporting metric and the aligned image stack) and considered as missing
values in subsequent analyses. Raw regions of interest (ROIs) were manually drawn around

the somata of individual CA1 PCs using Fiji.

CATHARSIS — Calcium transient detection harnessing spatial similarity

For the detection of CaTs in densely labeled tissue, we devised CATHARSIS (Calcium
transient detection harnessing spatial similarity). CATHARSIS makes use of the fact that
spike-induced somatic GCaMP signals (AF) are spatially non-uniform and characteristic of a

given cell. CATHARSIS comprises three major steps: (1) the generation of a spatial AF
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template representing the active cell, (2) the computation of a detection criterion D(t) for each
time point (frame) and (3) the extraction of CaT onsets. All analyses were performed using
custom scripts in Matlab and Fiji.
Ad (1): For each ROI, we first obtained the mean F(t) by frame-wise averaging across all
pixels of that ROIl. We then computed the first derivative of F(t) and smoothed it using a
second order Savitzky-Golay algorithm (window length, 6 frames), thus yielding F(t). We then
determined eight candidate CaT onsets by extracting the frame numbers corresponding to the
eight F(t) peaks having the largest amplitude. This step was performed in an iterative-
descending manner by starting with the largest F(t) peak. For each peak, we defined a
minimum time difference (5 frames) to all subsequently extracted peaks, so as to avoid
extracting nearby frames belonging to the same CaT. For each candidate CaT onset, we then
computed the corresponding spatial AF (average of five successive frames). To this end, we
first radially expanded the raw ROI by two pixels using the Euclidian distance transform (we
found that this increased detection reliability due to enhanced spatial contrast). Resting
fluorescence Fo(t) was defined as the moving median over 500 frames. Eight candidate AF
templates were obtained by converting raw AF values into z-scores. Based on visual
inspection, we next rejected those candidate AF templates that putatively reflected activation
of optically overlapping somata and/or neurites. If all candidate AF templates had been
rejected, the cell was excluded from further analysis; otherwise, the remaining candidate AF
templates were averaged to obtain the final AF template representing the active cell.

Ad (2): For each ROI (spatially expanded as above), we extracted its spatial AF for all frames
in the image stack. Next, the spatial AF template representing the active cell was optimally
scaled to fit its AF in each recorded frame. Based on the optimum scaling factor and the

goodness of the fit, a detection criterion D(t) was computed for each time point. Here, D(t)
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was defined without modification as previously described for the temporal domain (Clements
et al., 1997).

Ad (3): For each ROI, CaT onsets were extracted from D(t) using UFARSA, a general-
purpose event detection routine (Rahmati et al., 2018). To this end, we slightly modified the
original UFARSA approach in two ways. 1) Following the smoothing step implemented in
UFARSA, all negative values were set to zero, as we found in our perliminary analysis that
negative-to-positive transitions occasionally resulted in false positive events. 1) We
introduced a lower bound for the leading threshold, so as to minimze potential false positive
events. Reconstructed CaT onsets were translated into a binary activity vector and used for

the following analyses.

Firing irregularity
For each cell, we quantified the irregularity of its CaT onsets (i.e. firing times) using CV2, as a
local and relatively rate-independent measure of spike time irregularity (Holt et al., 1996;

1 2)icl,,, - 11|

Ponce-Alvarez et al., 2010): CV2=
K-1% ICl, +ICI,

, where IC1, and IClI,,, are the kth

and (k+1)th inter-CaT intervals of the cell, and K is the total number of its ICI s. To achieve

more robust results cells with less than ten ICI s were excluded from this analysis.

Network bursts

Network bursts (NBs) were defined as a significant co-activation of cells as follows: (1) To
account for some temporal jitter in the detection of CaT onsets, we calculated the moving
maximum of the binary activity vectors of all cells in a given FOV over a sliding window of
three frames. We then computed the mean across the resulting activity vectors of all

individual cells to obtain the empirical fraction of active cells per frame ®(t). (2) We randomly
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shuffled CaT onsets of all cells (uniform distribution; 1,000 times), computed the surrogate
d(t) (as above) and defined the 99.99th percentile of all surrogate ®(t) as the threshold for
NB detection. The NB threshold was determined separately for each FOV, so as to account
for different mean CaT frequencies. (3) Any frame with an empirical ®(t) exceeding the
threshold was considered as belonging to an NB. In the resulting binary NB vectors, 0-1
transitions were defined as NB onsets and 1-0 transitions as NB offsets. Using the binary NB
vectors, we extracted (i) the relative time the network spent in NBs and (ii) the average NB
duration. NB size was defined as the fraction of cells which were active in at least one frame

of a given NB, corrected for the chance level of co-activation by subtracting the NB threshold.

Power analysis
To account for missing values representing the residual drift periods (see above), spectral
power of the fraction of active cells ®(t) was estimated by computing the Lomb-Scargle

periodogram (Matlab, MathWorks).

Pairwise correlations

Spike-time tiling coefficients (STTCs) were computed for all possible cell pairs with a
synchronicity window of three frames (~258 ms) using custom written code (Matlab,
MathWorks) (Cutts et al., 2014). STTCs derived from measured data were compared to those
from surrogate data obtained by randomly shuffling (uniform distribution; 1,000 times) CaT
onsets of all cells, separately. This randomization kept the mean CaT frequency of each cell

unchanged.

Population coupling
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To quantify the degree of coupling of each cell to the overall population firing activity we
computed its population coupling, PopC (Okun et al., 2015; Sweeney et al., 2020). To this
end, for each cell, we first smoothed its binary vector (see above) and the summed vector of
the rest of population, followed by computing PopC as the Pearson correlation coefficient
between these two vectors. For smoothing, we used a Gaussian kernel with sD =3 frames.
To assess the significance of the PopCs (i.e. being beyond chance) we generated surrogate

data by binning the raster matrix along time-axis; non-overlapping bins with a size of 10

frames (ca. \/ESD, according to (Kruskal et al., 2007)). We randomly exchanged CaT onsets

across active cells within each bin (500 times), thereby effectively preserving the CaT
frequency of each cell as well as the local summed activity of the population. For each cell,
using its surrogates, we determined the significance of its empirical PopC (95" percentile).
Moreover, when reporting the PopC of each cell, we subtracted the mean of its surrogate
PopCs, in order to account for the potential differences in population activity levels of different
FOVs (for a similar approach see (Okun et al., 2015; Sweeney et al., 2020)). Cells with less

than five CaTs were excluded from this analysis, to increase robustness of our results.

Motifs of population activity

To identify the specific cellular activation patterns recurring over time (i.e. motifs of population
activity) we used an eigendecomposition-based clustering method (Li et al., 2010; Patel et al.,
2015). To this end, we first divided the recording time into non-overlapping windows with a
size of 10 frames, and assigned 1 and 0 to cells which were active or silent during each bin.
This converts the raster matrix to a sequence of binary vectors (i.e. spatial patterns), where
each pattern has a size of Nx1 (N is the number of analyzed cells in the FOV). We then

computed the degree of similarity between all possible pairs of these patterns using matching
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|Pati N Patj|

index (Romano et al., 2015): Ml; =2°————,
|Pati|+|Patj|

where Pat; and Pat; are the ith and jth

binary cellular activation patterns (vectors), and the norms are equal to the number of ones
(i.e. active cells) in each vector. MI ranges from 0 (no similarity) to 1 (perfect similarity), and in
particular approximates the number of common neuronal activations (i.e. common ones)
between pattern pairs; for more details see (Romano et al.,, 2015; Sporns et al., 2007).
Accordingly, for each FOV, we obtained a similarity matrix of size P x P, where P indicates
the number of patterns. The rows and columns relating to the silent-pattern pairs were
excluded, as they were giving rise to an undefined value (i.e. O divided by 0). We used the MI
matrix as the input to the eigendecomposition clustering method. Briefly, this method
decomposes a given similarity matrix (here, MI matrix) into a set of eigenvalues and
eigenvectors: The number of significantly large eigenvalues determines the number of motifs,
and their corresponding eigenvectors contain the information about motif structure (i.e. the set
of patterns belonging to each motif). The largest eigenvalue is proportional to the global
similarity among all patterns. As the surrogate data for testing the statistical significance of the
eigenvalues and also computing a normalized unbiased value of global similarity index, we
used the randomly shuffled CaT onsets (see above), based on which we repeated the binning
and computation of Ml matrices (500 times). This procedure enabled us to identify the motifs
of cellular activation patterns, which occurred beyond chance level. For more details about

the clustering method and its mathematical description see (Li et al., 2010).

Computational modeling of a developing neural network with inhibitory GABA
Overview. To gain insights into the mechanisms and functional role of the observed network

burstiness during the emergence of synaptic inhibition in CAl, we used computational
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modeling and stability analysis. For this purpose, we employed a recently established model
of a recurrent neural network (RNN) for first postnatal month development (Rahmati et al.,
2017). It is an extended Wilson-Cowan-type model (Tsodyks et al., 1998), and benefits from
being biophysically interpretable and mathematically accessible. Recently, this model was
also adapted successfully to explain key dynamics and mechanisms of GDPs in neonatal
CALl with excitatory GABA signaling during the first postnatal week (Flossmann et al., 2019).
However, in accordance with previous reports and our present experimental data for the
second postnatal week, we here use the model with mainly two specific cellular properties: 1)
GABAergic synapses are considered inhibitory (Kirmse et al., 2015; Valeeva et al., 2016;
Murata et al., 2020), and Il) the mean spontaneous firing activity of PCs is effectively non-zero
(Fig. 2C). In the following, after providing the mathematical description of the model, we
describe the mathematical components used for its stability analysis. For more details about
the model and the approach see (Rahmati et al., 2017).

Model description. The model is a mean-field network model of mean firing activity rates of
two spatially localized, homogeneous glutamatergic and GABAergic cells (here, pyramidal
(PC) and interneuron (IN) populations) that are recurrently connected (Fig. 6A). The model
incorporates two short-term synaptic plasticity (STP) mechanisms, namely short-term
synaptic depression (STD) and facilitation (STF), which render the synaptic efficacies
dynamic over time. Hence, we call the network hereafter STP-RNN. The equations governing
the mean-field dynamics of the STP-RNN (10D) are (dots denote the time derivatives and,

hereafter, PC and IN are abbreviated as P and | for readability) (Rahmati et al., 2017):

7oA (1) = = A (1) + o (Jop Upp () %o (1) A (8) = Ty Upy (1) Xy (1) A (1) + €5 (1)) = = A (1) + o ()
7 A ) = =A@+ (I Up (€)X (€) A () = 3, Uy (1) X, () A (D) +, (1)) =—A (D) + f, (hy)

X = 7. (1= %;(1)) —uy (©) % (DA (B)

Uy =7t (U =1y (0) + Uy (1=, 0) A )

(1)
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where i and je{P|I}, and j is the index of the presynaptic population, A, and A are the
average activity rates (in Hz) of PC and IN populations which can be properly scaled to

represent locally the average recorded activities in these populations, X; and u; are the

average dynamic variables of STD and STF mechanisms, 7, and 7, are approximations to

the decay time constants of the glutamatergic and GABAergic postsynaptic potentials, 7 IS
the synaptic recovery time constant of depression, 7y, is the synaptic facilitation time
constant, U; is analogous to the synaptic release probability, J; is the average maximum

absolute synaptic efficacy of recurrent (i=j) or feedback (i = j) connections, and €, and €, are

the external inputs received by the PC and IN populations from other brain regions or
stimulation. In this work, we set the inputs to zero (for spontaneous baseline activity), or
model them as excitatory pulse (with variable positive amplitude) with a duration of 20 ms
thereby emulating e.g. the SPW-driven inputs to the PC and IN populations (Karlsson et al.,

2006). The transformation from the summed input to each population, h, to an activity output

(in Hz) is governed by the response function, f., defined as:

0 for h <6,
fi(hi)z{Gi(hi—Hi) for 6 <h @)

where 6, is the population activity threshold, and G, is the linear input-output gain above .. In

this work, we parameterize the STP-RNN as a network model representing mainly a stage
during the second postnatal week. To do this, we mainly followed (Rahmati et al., 2017) by

setting 7, =0.015s, 17,=0.0075s, J,=J,=J,=65, J,=J,=J,=3, ¢ =r_=r_ =38,

r, =7, =7, =258, =17, =7, =0.48, 7

:TfP|:Tf|:O'4S' UPP:UIP:UP:O-8|

U,=U,=U =08, 6=022, =053, G, =G, =1, and e, =¢, =0 Hz (for spontaneous
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baseline activity). According to these parameter values: I) both glutamatergic and GABAergic
connections will act depressing, and Il) the network will spontaneously have, in addition to a
silent state, an active state where both A and, in particular, A, are effectively non-zero, and
lI1) GABAergic transmission will be inhibitory (note the positive value of J,). Note that points
II) and Ill) render the model inherently different from the neonatal STP-RNN used by
(Flossmann et al., 2019).

Frozen STP-RNN. A Frozen STP-RNN is obtained by freezing the synaptic efficacies of a
STP-RNN; i.e. by fixing the STP variables x; and u; at the values of interest. This will convert
the STP-RNN (10D; see Eq. 1) effectively to a 2D network with constant synaptic weights. As
shown in (Rahmati et al., 2017) and (Flossmann et al., 2019), the Frozen STP-RNN can

provide a reliable approximation to the stability behavior of a STP-RNN at the state chosen for

freezing (see below). The equations governing the dynamics of a Frozen STP-RNN are:

wAN=-A0+(IFAO-ITAOeW)
nAM=-A®+f(JFAD-IFAD -+ 1)

where Ji* = J,uf” x{* , and u* and x* are the values of u; and x; (see Eg. 1) at the state of
interest; here, at a silent state, active state, or the time of network burst’'s peak (see Results).

Phase plane. To visualize the stability behavior of our network model, we used the phase
plane analysis based on the activity rates: A-A,-plane (2D). The A -A,-plane sketch includes
the curves of the A,-nullcline and A-nulicline representing sets of points for which A, (t) =0
and A (t)=0. Any intersection of these nuliclines is called a fixed point (FP), with the stability

needed to be determined (see below). For the STP-RNN, these FPs represent the steady
states of the full network, i.e. the 10D STP-RNN in Eq. 1 (see also Fig. 6B). For the Frozen
STP-RNN (thus, 2D; see Eq. 3) with synaptic efficacies frozen at the state of interest (e.qg.
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silent state), these FPs may include that state, and possibly some other FPs which may not

exist in the STP-RNN itself (e.g. see Figs. 6D and 7C). In addition to the visualization of the

FPs in the A-A.-plane, we also computed the FPs by numerically solving Eq. 1 and Eq. 3

(separately) after setting the right hand side of the equations to zero. For more details see
(Rahmati et al., 2017).

Stability of FPs. To determine the stability of any FP in the STP-RNN (resp. in the Frozen
STP-RNN) we applied the linear stability analysis to its 10D (resp. 2D) system of equations in
Eq. 1 (resp. Eq. 3): We investigated whether all eigenvalues of the corresponding Jacobian
matrix have strictly negative real parts (if so, the FP is stable), or whether at least one
eigenvalue with a positive real part exists (if so, the FP is unstable).

Simulations. All simulation results in this paper have been implemented as Mathematica and
Matlab (MathWorks) code. For network simulations, we set the integration time-step size to
0.0002 s. In Fig. 6C, the initial conditions of the STP-RNN variables were set to those values

of the spontaneous stable FP of the network at the active state.

Statistical analysis

Statistical analyses were performed using OriginPro 2018 and Microsoft Excel 2010 using the
Real Statistics Resource Pack software (Release 7.2, Charles Zaiontz). Unless otherwise
stated, the statistical parameter n refers to the number of FOVs (P4: 19 FOVs from six
animals, P11: 11 FOVs from six animals, P18: 12 FOVs from six animals). All data are
reported as mean * standard error of the mean (SEM), if not stated otherwise. The Shapiro—
Wilk test was used to test for normality. Homogeneity of variances was tested with the
Levene’s test using the median. For multi-group comparisons, analysis of variance (ANOVA)

was applied for normally distributed data or the Kruskal-Wallis test for non-normally
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distributed data. In the case of unequal group variances, Welch’s correction was applied for
the ANOVA. Following a significant result in the ANOVA, post-hoc pairwise comparisons were
performed using the Tukey-Kramer (equal variances) or the Games-Howell (unequal
variances) test. Following a significant result in the Kruskal-Wallis test, post-hoc pairwise
Mann-Whitney U-tests following Holm’s approach were performed. P values (two-tailed tests)
< 0.05 were considered statistically significant, except for the Shapiro-Wilk test (P < 0.01).

Details of the statistical tests applied are provided in Tables S1-S5.

Data and code availability

All datasets and codes generated during this study are available from the corresponding

author upon request.
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