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2 

Abstract 22 

Spontaneous correlated activity is a universal hallmark of immature neural circuits. However, 23 

the cellular dynamics and intrinsic mechanisms underlying neuronal synchrony in the intact 24 

developing brain are largely unknown. Here, we use two-photon Ca2+ imaging to 25 

comprehensively map the developmental trajectories of spontaneous network activity in 26 

hippocampal area CA1 in vivo. We unexpectedly find that synchronized activity peaks after 27 

the developmental emergence of effective synaptic inhibition in the second postnatal week. 28 

We demonstrate that the enhanced network synchrony reflects an increased functional 29 

coupling of individual neurons to local population activity. However, pairwise neuronal 30 

correlations are low, and network bursts recruit CA1 pyramidal cells in a virtually random 31 

manner. Using a dynamic systems modeling approach, we reconcile these experimental 32 

findings and identify network bi-stability as a potential regime underlying network burstiness at 33 

this age. Our analyses reveal an important role of synaptic input characteristics and network 34 

instability dynamics for the emergence of neuronal synchrony. Collectively, our data suggest 35 

a mechanism, whereby developing CA1 performs extensive input-discrimination learning prior 36 

to the onset of environmental exploration. 37 

 38 
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Introduction 40 

Developing neural circuits generate correlated spontaneous activity in which synchronous 41 

activations of large groups of neurons are interspersed by relatively long periods of 42 

quiescence (Molnar et al., 2020). In rodents, synchronized network activity commences long 43 

before the onset of hearing, vision and active environmental exploration and makes important 44 

contributions to the proper assembly of brain circuits (Kirkby et al., 2013). Activity-dependent 45 

refinements operate at multiple steps of maturation, including the control of neural progenitor 46 

progression (Vitali et al., 2018), apoptotic cell death (Blanquie et al., 2017; Wong et al., 2018), 47 

neuronal cell-type specification (Sun et al., 2018), migration (Maset et al., 2021) as well as 48 

synapse formation and plasticity (Oh et al., 2016; Sando et al., 2017; Winnubst et al., 2015). 49 

Experimental and theoretical evidence suggests that, in addition to the overall level of activity, 50 

specific spatiotemporal firing patterns are critical for activity-dependent refinements to occur 51 

(Zhang et al., 2011; Albert et al., 2008). 52 

A representative example of correlated spontaneous network activity is found in the neonatal 53 

hippocampus in vivo. During the first postnatal week, the main electrophysiological signature 54 

are bursts of multi-unit activity (MUA) (Leinekugel et al., 2002), which bilaterally synchronize 55 

large parts of the dorsal CA1 and are often accompanied by sharp waves (SPWs) in the local 56 

field potential (Valeeva et al., 2020; Valeeva et al., 2019). SPWs frequently follow myotonic 57 

limb or whisker twitches (Karlsson et al., 2006; Valeeva et al., 2019; Del Rio-Bermudez et al., 58 

2020), suggesting that SPWs convey feedback information from the somatosensory 59 

periphery. By the second postnatal week, discontinuous activity in the olfactory bulb drives 60 

network oscillations in the entorhinal cortex (Gretenkord et al., 2019), further pointing to a role 61 

of multi-sensory integration in limbic ontogenesis. Interestingly, recent in vivo investigations 62 

revealed that GABAergic interneurons (INs) could promote MUA bursts in the neonatal CA1 63 
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through NKCC1-dependent excitation of pyramidal cells (PCs), although inhibitory effects of 64 

GABAergic signaling coexist (Graf et al., 2021; Murata et al., 2020; but see Valeeva et al., 65 

2016). A qualitatively similar situation applies to the immature hippocampus in vitro (Ben-Ari 66 

et al., 1989; Flossmann et al., 2019), in which correlated spiking of PCs is facilitated by 67 

increasing the intracellular chloride concentration (Zhang et al., 2019; Spoljaric et al., 2019), 68 

whereas inhibition of chloride uptake has the opposite effect (Dzhala et al., 2005). In this line, 69 

in vitro studies suggest that correlated spontaneous activity largely disappears by the 70 

beginning of the second postnatal week, when the reversal potential of GABAA receptor-71 

mediated currents shifts into the hyperpolarizing direction (Tyzio et al., 2008; Spoljaric et al., 72 

2017). However, the developmental trajectories of cellular network firing dynamics in the 73 

hippocampus in vivo remain unknown.  74 

Using two-photon Ca2+ imaging, we here provide the first detailed analysis of the 75 

spatiotemporal dynamics of network activity in the developing CA1 region at single-cellular 76 

resolution in vivo. We reveal that CA1 PCs undergo a transient period of enhanced burst-like 77 

network activity during the second postnatal week, when GABA already acts as an inhibitory 78 

transmitter. Our results show that, at this time, network bursts (NBs) recruit CA1 PCs in an 79 

almost random manner, and recurring cellular activation patterns become more stable only 80 

after eye opening. Using computational network modeling, we identify bi-stability as a 81 

dynamical regime underpinning the enhanced bursting activity of CA1 PCs. We show that 82 

NBs mainly reflect the network’s intrinsic instability dynamics, which exquisitely depend on 83 

proper input timing and strength. In addition, inhibitory GABAergic signaling effectively 84 

promotes state transitions underlying NB generation. Our data suggest a mechanism, 85 

whereby CA1 undergoes extensive input-discrimination learning before the onset of 86 

environmental exploration.  87 
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Results 88 

Reliable detection of somatic Ca2+ transients in densely labeled tissue 89 

We used in vivo two-photon laser-scanning microscopy (2PLSM) in spontaneously breathing, 90 

head-fixed Emx1IREScre:GCaMP6sLSL mice to record somatic Ca2+ transients (CaTs) from CA1 91 

PCs as a proxy of their firing activities. In this strain, Cre is expressed in virtually all CA1 PCs 92 

(Kummer et al., 2012; Gorski et al., 2002). Due to the finite point-spread function inherent to 93 

2PLSM, dense cell labeling resulted in a non-negligible overlap of signals originating from 94 

neighboring somata and/or neurites (Denis et al., 2020; Chen et al., 2020). Our preliminary 95 

analysis revealed that, under such conditions, standard CaT detection methods based on 96 

analyzing mean fluorescence intensities from regions of interests (ROIs) can lead to 97 

substantial false positive rates (Fig. 1). We therefore devised a novel cell-specific spatial 98 

template-matching approach for the reliable detection of CaTs in densely labeled tissue, 99 

which we refer to as CATHARSiS (Calcium transient detection harnessing spatial similarity). 100 

CATHARSiS makes use of the fact that, for each cell, the spike-induced changes in GCaMP 101 

fluorescence intensity (∆F) have a specific, spatially inhomogeneous (ring-like) configuration 102 

(see Methods for details). In brief, a cell-specific spatial ∆F template representing the active 103 

cell is computed (Figs. 1A and 1B) and optimally scaled to fit its ∆F in each recorded frame. 104 

Based on the optimum scaling factor and the quality of the fit, a detection criterion D(t) is 105 

computed for each time point (Clements et al., 1997). D(t) is then subjected to a general-106 

purpose event detection routine for the extraction of CaT onsets (Rahmati et al., 2018). We 107 

first illustrate CATHARSiS by analyzing simulated spike-induced CaTs in ring-shaped cells 108 

(Figs. 1A and 1B). Here, fluorescence signals of the cell of interest were contaminated by (I) 109 

signals originating from a partially overlapping second cell, (II) spatially homogenous 110 

fluorescence changes mimicking axon-based neuropil activity (Kerr et al., 2005) and (III) a low 111 
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level of Poissonian noise (Fig. 1C). Figures 1C and 1D demonstrate that D(t) will increase 112 

only if ∆F has a spatial configuration similar to that of the template, i.e. if the simulated cell is 113 

active. Of note, D(t) is insensitive to a spatially uniform offset of ∆F and can decrease for 114 

mean ∆F increases having a dissimilar spatial configuration (#3 in Figs. 1C and 1D). We 115 

applied CATHARSiS to two simulated sample cells of identical shape and varied their spatial 116 

overlap from 0 to 75% of the cell area, in accordance to the observed overlap in our empirical 117 

data. CATHARSiS correctly retrieved all ground-truth CaTs without false positive events (n = 118 

665 CaTs in total). We also found that the delay of detected CaT onsets vs. simulated spikes 119 

was low (-0.3 ± 0.0 frames), pointing to a high temporal accuracy of spike reconstruction, 120 

which is a prerequisite of a precise analysis of network activity patterns and cellular 121 

synchronicity. We next evaluated CATHARSiS on data recorded from developing CA1 PCs in 122 

Emx1IREScre:GCaMP6sLSL mice in vivo (Figs. 1E and 1F). For comparison, a consensus visual 123 

annotation by human experts was used (Fig. 1G, top), as simultaneous electrophysiological 124 

data were not available (see Methods). We compared CATHARSiS to an event detection 125 

routine based on analyzing mean ∆F(t) and found that recall was ~95% for both approaches 126 

(Fig. 1I; see Table S1). However, CATHARSiS yielded considerably fewer false positive 127 

events, thus resulting in a significantly higher precision and F1 score (Fig. 1I). Importantly, the 128 

delay of detected CaT onsets relative to the consensus annotation was consistently low (0.9 ± 129 

0.1 frames at a frame rate of 11.6 Hz, n = 20 cells), confirming that CATHARSiS achieved a 130 

high temporal accuracy. 131 

We conclude that CATHARSiS is suited for the reliable reconstruction of somatic CaTs in 132 

densely packed neuronal tissue with both high detection and temporal accuracies. 133 

  134 

A transient period of firing equalization during CA1 development in vivo 135 
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In the adult CA1, firing rate distributions are approximately log-normal, implying that a minority 136 

of neurons accounts for the majority of spikes. In addition, firing rates of individual cells are 137 

relatively stable across brain states and tasks, suggesting that skewed firing rate distributions 138 

reflect an inherent characteristic of mature hippocampal computations (Mizuseki et al., 2013). 139 

To reveal the developmental trajectory of single-cell firing characteristics, we applied 140 

CATHARSiS to extract spontaneous CaTs from Emx1+ PCs at P3–4 (n = 19 fields of view 141 

[FOVs]), P10–12 (n = 11 FOVs) and P17–19 (n = 12 FOVs), respectively (Fig. 2A). For the 142 

sake of brevity, these age groups are hereafter referred to as P4, P11 and P18, respectively. 143 

We found that mean CaT frequencies significantly increased ~2.5-fold from 1.5 ± 0.2 min-1 at 144 

P4 to 3.9 ± 0.4 min-1 at P11 and remained relatively stable afterwards (P18: 4.8 ± 0.3 min-1, 145 

Figs. 2B and 2C; see Table S2). Additionally, we observed a striking change in the shape of 146 

CaT frequency distributions, which were broad and strongly right-tailed at P4 and P18, but 147 

much less so in the second postnatal week (Fig. 2B). To quantify the dispersion of firing rates 148 

among individual cells, we plotted the corresponding Lorenz curves (Fig. 2D), in which the 149 

cumulative proportion of CaT frequencies is plotted against the cumulative proportion of cells 150 

rank-ordered by frequency (Mizuseki et al., 2013). Here, the line of equality represents the 151 

case where all neurons have equal firing rates. We computed the Gini coefficient as a 152 

measure of deviation from equality (for a graphical representation, see inset in Fig. 2D). Gini 153 

coefficients underwent a transient minimum at P11, indicating that CaT frequencies among 154 

individual neurons were considerably more similar to each other as compared to P4 and P18 155 

(Fig. 2E). We next addressed whether these developmental alterations in firing rates were 156 

accompanied by changes in the irregularity of firing in individual cells. The local coefficient of 157 

variation (CV2), a robust measure of local spiking irregularity (Holt et al., 1996; Ponce-Alvarez 158 

et al., 2010), gradually declined from P4 to P18 (Fig. 2G). At P11, CV2 was close to one, 159 
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indicating that the irregularity of CaT occurrence is similar to that of a Poissonian point 160 

process, in which successive events occur independently of one another. As previously 161 

observed for CaT frequencies, CV2 distributions were also relatively broad at P4 and P18, but 162 

narrow at P11 (Fig. 2F). Consistently, Gini coefficients of CV2 showed a distinct minimum at 163 

P11 (see #4 in Table S2). 164 

Collectively, our data reveal a transient equalization of the firing statistics of individual CA1 165 

PCs during the second postnatal week, while highly skewed firing-rate distributions eventually 166 

emerge only around/after eye opening. 167 

 168 

CA1 undergoes a transient enhanced bursting period in vivo 169 

Previous in vitro work has identified giant depolarizing potentials (GDPs) as the most 170 

prominent pattern of synchronized network activity in the neonatal hippocampus (Ben-Ari et 171 

al., 1989; Leinekugel et al., 1997; Garaschuk et al., 1998). GDPs depend on a depolarizing 172 

action of GABAA receptor-dependent transmission (Ben-Ari et al., 1989; Owens et al., 1996) 173 

and disappear at around the beginning of the second postnatal week, when GABA actions 174 

shift from mainly excitatory to mainly inhibitory (Yamada et al., 2004; Tyzio et al., 2007). To 175 

investigate whether a similar developmental profile of NB generation exists in the CA1 in vivo, 176 

we next determined the time-course of the fraction of active cells Φ(t) (Fig. 3A). We found 177 

that, at P4, CA1 PCs spent relatively long time periods in a low-activity (silent) state, which 178 

was interspersed by transient periods of co-activation, i.e. NBs (Fig. 3A, left). During NBs, Φ(t) 179 

rarely exceeded 20% indicating that the degree of synchronous activation in vivo is 180 

considerably lower than that reported for GDPs in vitro (Leinekugel et al., 1997; Garaschuk et 181 

al., 1998; Flossmann et al., 2019). In contrast to GDPs in vitro, bursting activity was even 182 

more pronounced at P11, when the network tended to oscillate between an almost silent and 183 
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a bursting state with an inter-burst period of ~2–10 seconds (Fig. 3A, middle). CA1 PCs 184 

frequently maintained such oscillatory behavior for several minutes. At P18, network activity 185 

was more continuous than at earlier stages, and large NBs were generally rare (Fig. 3A, 186 

right). 187 

To quantify developmental changes in the rhythmicity of network activity, we first computed 188 

the power spectrum of Φ(t). At P11, this revealed a distinct peak in the range of ~0.1–0.5 Hz 189 

(Fig. 3B), pointing to the existence of a preferred oscillation frequency of CA1 PCs. Such a 190 

power peak was absent at P4 and reduced at P18. Accordingly, band-power in the 0.1–0.5 Hz 191 

frequency range was significantly higher in the second postnatal week than at earlier or later 192 

stages (Fig. 3C, see Table S3). 193 

To characterize periods of synchronized network activity in more detail, we next defined NBs 194 

by thresholding Φ(t) (Fig. 3A and Methods). The fraction of time that the network spent in NBs 195 

was lowest at P4 and peaked at P11 (Fig. 3D). Moreover, NBs at P18 were significantly 196 

shorter in duration than during the first and second postnatal weeks (Fig. 3E). We quantified 197 

NB size as the fraction of active cells (corrected for the threshold applied to Φ(t)) and found 198 

that it only declined after P11 (Fig. 3F). At P11, each neuron participated in 14.4 ± 1.2% of all 199 

NBs, which significantly exceeded participation rates at P4 (10.3 ± 0.8%) and P18 (11.2 ± 200 

0.4%) (see #5 in Table S3). Additionally, distributions of participation rates were very narrow 201 

at P11 (Fig. 3G), pointing to a greater similarity of cells with respect to their contribution to NB 202 

generation as compared to earlier or later developmental stages. We confirmed this 203 

equalization of the single-neuron contribution to NBs by analyzing the Gini coefficient of 204 

participation rates, which we found to be lowest at P11 (#6 in Table S3). 205 

Taken together, our data reveal that CA1 undergoes a transient period of enhanced bursting 206 

activity during the second postnatal week in vivo. These network discharges display 207 
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rhythmicity in the sub-Hz range – in spite of the close-to-random firing of individual PCs. 208 

 209 

Enhanced population coupling underlies network burstiness in the second postnatal week in 210 

vivo 211 

The transient developmental increase in bursting propensity was unexpected, as (1) GDPs in 212 

vitro disappear soon after the first postnatal week (Ben-Ari et al., 1989; Garaschuk et al., 213 

1998; Khazipov et al., 2004) and (2) previous in vivo data from the visual and somatosensory 214 

neocortex revealed a desynchronization in firing of local neuronal populations during the 215 

same time period (Rochefort et al., 2009; Golshani et al., 2009; van der Bourg et al., 2017; 216 

Colonnese et al., 2010). We therefore assessed whether the enhanced burstiness at P11 217 

reflects an increase in functional neuronal coupling. To this end, we first investigated the 218 

coupling of single cell firing to that of the overall population. For each cell, we computed its 219 

population coupling (PopC) index (Okun et al., 2015; Sweeney et al., 2020) and tested for its 220 

significance using surrogate data (see Methods). The PopC index significantly peaked at P11 221 

(Fig. 4A, Table S4), while there was no difference between P4 and P18. The higher PopC 222 

index at P11 arose from a significantly higher fraction of coupled cells (Fig. 4B), whereas the 223 

indices of coupled cells were similar (Fig. 4C). We next addressed whether the increased 224 

PopC index at P11 results from an increase in pairwise temporal correlation of neuronal firing 225 

activities. To this end, we computed the spike time tiling coefficient (STTC) as a frequency-226 

independent affinity metric of two firing-event time series (Cutts et al., 2014) (Fig. 4D). The 227 

fraction of significantly correlated cell pairs did not significantly differ between P4 and P11 228 

(P4: 13 ± 2%, P11: 23 ± 5%), but strongly decreased to 5 ± 1% at P18 (Fig. 4E). Remarkably, 229 

STTCs of significantly correlated pairs profoundly declined from 0.18 ± 0.01 at P4 to 0.09 ± 230 

0.01 already at P11, but did not significantly change afterwards (P18: 0.10 ± 0.00; Figs. 4F 231 
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and 4G). These data suggest that developmental changes in pairwise neuronal correlations 232 

do not account for the increased PopC nor the increased burstiness of CA1 during the second 233 

postnatal week. It is worth noting that pairwise correlations of CA1 PCs found here are 234 

considerably lower than previously reported for the neonatal neocortex (Golshani et al., 235 

2009). This prompted us to analyze the spatial structure of CA1 ensemble dynamics. We 236 

found that the dependence of STTCs on the Euclidean somatic distance was weak already 237 

during the first two postnatal weeks and non-significant at P18 (Fig. 4H), indicating that the 238 

horizontal confinement of patterned network activity is weak or absent in CA1. 239 

Collectively, our data reveal that enhanced network burstiness during the second postnatal 240 

week is associated with a higher fraction of cells being significantly locked to the activity of the 241 

local network, while pairwise neuronal correlations are low. 242 

 243 

Motifs of CA1 network activity undergo distinct developmental alterations 244 

Recurring spatiotemporal cellular activation patterns are a hallmark of network activity in the 245 

adult hippocampus in vivo (Villette et al., 2015). Whether such repeating patterns (hereafter 246 

referred to as ‘motifs’) are already present at early developmental stages is unknown. To 247 

detect motifs, we divided the recording time into non-overlapping bins, each represented by a 248 

binary spatial pattern (vector) of active and inactive cells, followed by computing the matching 249 

index matrix of all possible pattern pairs (Fig. 5A). We then applied an eigendecomposition-250 

based clustering method to each similarity matrix in order to detect potential motifs, while 251 

testing for their significance using surrogate data (see Methods). First, this analysis revealed 252 

that the global similarity of the activation patterns was lowest at P11 (Fig. 5B, Table S5), 253 

whereas it was similar between P4 and P18. This finding implies that there is less 254 

commonality between the sets of active cells present in different patterns at P11, and thus a 255 
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more random recruitment of cells. Furthermore, we found that the number of motifs was 256 

significantly lower at P11 (2.5 ± 0.9) as compared to P4 (5.9 ± 0.4) and P18 (7.0 ± 1.1) (Fig. 257 

5C). When computing the fraction of patterns belonging to each motif, we found that the 258 

motifs had the highest repetition rate at P18 (32.0 ± 4.7%), while there was no significant 259 

difference between P4 (17.8 ± 1.2%) and P11 (16.6 ± 5.9%) (Fig. 5D). Taken together, these 260 

results suggest that recurring cellular activation patterns become more stable only after the 261 

onset of environmental exploration. 262 

 263 

A neural network model with inhibitory GABA identifies intrinsic instability dynamics as a key 264 

to the emergence of network bursts 265 

Hitherto our analyses of experimental data revealed an unexpected bursting behavior of CA1 266 

PCs at P11, despite the developmental emergence of synaptic inhibition (Tyzio et al., 2007; 267 

Murata et al., 2020; Spoljaric et al., 2017), which we found to associate with their higher 268 

coupling to local network activity. However, the mechanisms governing in vivo network 269 

burstiness as well as its functional implications remain to be understood. Here, we provide 270 

mechanistic insights into these open questions by using computational network modeling and 271 

stability analysis techniques. 272 

We employed a recurrent neural network (RNN) model of mean firing-activity rates of 273 

excitatory glutamatergic (PC) and inhibitory GABAergic (IN) cell populations ( PA  and IA ) with 274 

dynamic synaptic weights (Rahmati et al., 2017; Flossmann et al., 2019) (Fig. 6A). Here, we 275 

constrain the model with previously reported and our present experimental data obtained for 276 

P11: I) GABAergic synapses are considered to be inhibitory (Kirmse et al., 2015; Valeeva et 277 

al., 2016; Murata et al., 2020) and II) the spontaneous time-averaged PA  is effectively non-278 

zero (Fig. 2C). We found that such a network operates under a bi-stable regime, where two 279 
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stable spontaneous fixed points (FPs) exist: one at a silent state ( P 0IA A= =  Hz) and the 280 

other at an active state ( P 0A ≠  Hz and I 0A ≠  Hz; green dots in Fig. 6B). The ability of the 281 

network to embed the latter FP is mainly due to the stabilization function of inhibitory GABA 282 

(Rahmati et al., 2017; Latham et al., 2004). Strikingly, our simulations showed that the 283 

network can process a given input quite differently at the silent and active states, respectively 284 

(time points a and c in Fig. 6C). To this end, we applied a set of two excitatory inputs to the 285 

network’s PC and IN populations ( Pe  and Ie ), resembling e.g. SPW-driven inputs to CA1 (Fig. 286 

6C). We set the input strengths and duration to be identical across the two states. We found 287 

that, when operating at the active state, the network activity monotonically decays back to this 288 

state, once the input ceases (Fig. 6C, a). However, at the silent state, input removal is 289 

followed by a transient profound surge in network activity (c in Fig. 6C). Hereafter, we refer to 290 

this supra-amplification activity as simulated NB (simNB), emulating experimentally observed 291 

NBs (Fig. 3). 292 

 293 

Network state-dependency of simNB generation 294 

To disclose the mechanisms underlying this distinct behavior of the network at the silent and 295 

active state (Fig. 6C), we computed the corresponding steady-state I P- -planeA A  of the 296 

network, after freezing the slow short-term synaptic plasticity (STP) dynamics and, thus, 297 

synaptic weights (Frozen STP-RNNs), at either of these states separately (Fig. 6D). This 298 

analysis enables assessing the initial phase of network activity following an input perturbation. 299 

We found that, while operating at the silent state, the active state is not initially accessible to 300 

the network (lower panel in Fig. 6D). Instead, an unstable FP is present in the network’s fast 301 

(i.e. firing activity) dynamics, which builds an amplification threshold around the attraction 302 

domain of the FP located at the silent state. This in turn allows for the emergence of simNBs: 303 
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A sufficiently strong perturbation, amenable to initially push the network activity beyond this 304 

threshold (i.e. to the amplification domain), will transiently expose the network to its intrinsic 305 

instability-driven dynamics, thereby effectively triggering a simNB (Fig. 6C, c). Note that this 306 

unstable FP is different from its counterpart in the full system (Fig. 6B) and is only visible in 307 

the network’s fast dynamics. In particular, this FP is transient and disappears around the peak 308 

of the elicited simNB, mainly due to short-term synaptic depression (Rahmati et al., 2017). 309 

Unlike the silent state, the network frozen at the active state has no amplification domain, but 310 

instead two attraction domains pertaining to its FPs at silent and active states (upper panel in 311 

Fig. 6D). This explains the network’s incapability of eliciting simNBs, when operating at the 312 

active state. Collectively, these results suggest that simNBs, initiated by the input, are mainly 313 

an expression of the network’s intrinsic instability dynamics, where the silent periods of the 314 

network are a prerequisite for its emergence. 315 

 316 

Input-strength dependency and internal deadline of state transitions 317 

What are the input requirements that allow the network to transition between the active and 318 

the silent states? First, we found that the silencing of the network in an active state requires 319 

specific ratios of excitatory input strengths to be delivered to its PC and IN populations (Figs. 320 

6E–G). In particular, the presence of GABAergic inhibition can effectively promote this 321 

transition, where otherwise a relatively much stronger Pe  is required to silence the network 322 

solely (Fig. 6G). Furthermore, once silenced, pushing the network back to the active state is 323 

also dependent on input ratio (Figs. 6H–J). However, to make such a transition, the network 324 

becomes noticeably more selective about the input ratio (compare Figs. 6G and 6J). Besides, 325 

for both transitions, the proper ratios of the inputs are effectively determined by the 326 

approximated initial phase of the network response (Fig. 6D), and thus mainly dependent on 327 
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the synaptic weights right before the input arrival. In sum, these results suggest that proper 328 

input strengths onto the PC and IN populations, along with the inhibitory action of GABA, play 329 

key roles in the dynamic state transitioning of the network, thereby allowing for its burstiness. 330 

Considering the dynamics of synaptic weights in our model along with their significance for 331 

state transitions, we next investigated the impact of input timing (Fig. 7). Furthermore, we 332 

found that, once silenced by the first input, a deadline is formed for the network’s transitioning 333 

back to the active state (dotted line in Figs. 7A, D, G, H). If the second input misses the 334 

deadline, the network will elicit a large-amplitude simNB, which is not able to converge to the 335 

active state any longer (Fig. 7D). Prior to this deadline and depending on the input ratio (Fig. 336 

6J), the network will either transition to the active state (Figs. 7A, 6H) or return to the silent 337 

state (Fig. 6I). Importantly, our analysis showed that this deadline is an internal property of the 338 

network and cannot be overruled by any input level (see below). Therefore, specific 339 

combinations of input ratio (Fig. 6J) and input timing (Fig. 7G) are required for transitioning to 340 

the active state. In addition, once the simNB failed to converge to the active state, the network 341 

will encounter a new deadline (see Fig. S1). In sum, these results imply that the silent state of 342 

the network can have per se different hidden sub-states, each with a specific input-encoding 343 

operating scheme. 344 

Having found the intrinsic deadline as a main determinant for the type of network burst, we 345 

next investigated the origin of these different activity patterns: How does the network decide 346 

between transitioning to the active state and returning to the silent state? Remarkably, we 347 

found that the deadline for network transitioning to the active state is mechanistically 348 

dependent on the presence of a transient stable FP in its fast dynamics around the peak of 349 

the simNB. This can be seen in the two examples where the network receives the same input 350 

but at different inter-pulse intervals (IPIs), one preceding (Figs. 7A–C) and the other 351 
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exceeding the deadline (Figs. 7D–F). For both IPIs, at the time right before the second input 352 

(Figs. 7B, E), the Frozen RNNs only provide evidence for the emergence of simNB, but not 353 

for the state transition (note the presence of an amplification domain; pink area). Importantly, 354 

we found, however, that in the case of the shorter IPI, the network is able to form a transient, 355 

stable non-zero FP in its Frozen RNN, at the peak of the simNB (compare Figs. 7C and 7F). 356 

This FP can transiently attract the network’s activity towards itself, and as the activity evolves 357 

accordingly, it also changes its position in the corresponding updated Frozen STP-RNN, until 358 

eventually converging to its counterpart in the full system. Intuitively, this transient, stable FP 359 

can guide the network’s activity towards that of the full system (see the non-origin green dot in 360 

Fig. 6B). The temporal repositioning of this stable FP is due to the activity-dependency of the 361 

synaptic weights in our model. Besides, our findings show that the existence of this FP 362 

around the simNB peak is effectively determined by simNB size (Fig. 7G). If simNB size 363 

exceeds an internally determined threshold, the network cannot build such a transient stable 364 

FP due to a reduction of synaptic weights (Rahmati et al., 2017); consequently, the simNB will 365 

be attracted towards the silent state. In this line, Fig. 7G shows that simNB size is effectively 366 

determined by the IPI: The longer the IPI (thus, the silent period) is, the larger the simNB will 367 

be. Here, the IPI-dependency of the simNB size mainly reflects the slow recovery from short-368 

term depression of excitatory synapses at the silent state (Fig. 7H).  369 

In conclusion, our modeling results indicate that developing CA1 possesses multiple input-370 

encoding schemes, which are effectively determined by three factors: 1) the input ratio, 2) the 371 

input timing, and 3) the non-linearity and dynamics of synaptic weights.  372 
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Discussion 373 

Unique characteristics of network dynamics in developing CA1 in vivo 374 

Using in vivo two-photon Ca2+ imaging, we here reveal that cellular network dynamics in 375 

developing hippocampal CA1 differ from those previously observed in neocortical areas. 376 

Firstly, pairwise correlations of firing activities (Figs. 4D–G) were considerably lower than 377 

those in the visual (Rochefort et al., 2009) or somatosensory (Golshani et al., 2009; Che et 378 

al., 2018; van der Bourg et al., 2017) cortex in vivo, pointing to a lower degree of neuronal 379 

synchrony in CA1. Similarly, the degree of neuronal co-activation was substantially lower than 380 

that during GDPs recorded in acute slices (Flossmann et al., 2019), supporting the view that 381 

the underlying dynamics differ markedly. Secondly, throughout the developmental period 382 

studied here, pairwise correlations of firing activity were only weakly dependent on the inter-383 

somatic distance (Fig. 4H). Together with previous electrophysiological data demonstrating 384 

bilateral synchronization of CA1 MUA along the septal-temporal axis (Valeeva et al., 2020; 385 

Valeeva et al., 2019), these observations imply that network activity in the neonatal CA1 is 386 

less correlated on small, but more correlated on large spatial scales, as compared to 387 

neocortical areas. In other words, CA1 NBs tend to lack a sharp horizontal confinement 388 

typical of neocortical spindle bursts, which activate upper layer PCs in a columnar manner 389 

(Kummer et al., 2016; Kirmse et al., 2015). Wavefront-containing activity patterns appear to 390 

be necessary for the proper developmental refinement of topographic maps in neocortex 391 

(Cang et al., 2005; Li et al., 2013) and receptive field characteristics of visual cortical neurons 392 

(Albert et al., 2008). In this line, the peculiar spatial features of CA1 NBs in our data may 393 

reflect the absence of a clear topical macro-organization of the mature hippocampus (Bellistri 394 

et al., 2013). 395 

 396 
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A role for intrinsic network instability and synaptic inhibition in the generation of synchronized 397 

network activity in CA1 398 

We demonstrate that CA1 PCs undergo a transient period of enhanced network synchrony in 399 

the second postnatal week, i.e. shortly before the onsets of pattern vision, active whisking and 400 

environmental exploration. This trajectory remarkably differs from what has been previously 401 

reported for the hippocampus in vitro, where GDPs disappear shortly after the first postnatal 402 

week. At this time, GABA-releasing INs already impose effective synaptic inhibition on CA1 403 

PCs (Tyzio et al., 2008; Spoljaric et al., 2017; Murata et al., 2020), implying that synchronized 404 

activity in vivo does not depend on a GABAergic excitatory drive (in contrast to GDPs). 405 

Synchronized CA1 activity in the second postnatal week exhibited a preferred frequency of 406 

~0.1–0.5 Hz, indicating that NBs occur in a temporally non-random manner (Fig. 3). Strikingly, 407 

however, individual neurons were recruited more randomly at this age, as the number of 408 

significant motifs of network activity as well as their average repetition probability were lowest 409 

(Fig. 5). In addition, the firing of individual cells resembled a Poissonian process (Fig. 2), and 410 

pairwise neuronal correlations were lowest in the second postnatal week (Fig. 4). We here set 411 

out to explain these seemingly discordant experimental findings using data-informed 412 

computational modeling. 413 

Capitalizing on a dynamic systems modeling approach, we show that a potential dynamical 414 

regime of the network that allows for the generation of synchronized activity in the presence 415 

of effective synaptic inhibition is bi-stability. We found that our network model is prone to an 416 

intrinsic instability, governed by a nonlinear interaction between its fast (firing) and slow 417 

(synaptic) dynamics. Such instability enables the model to over-amplify the input, even after 418 

its removal, and thus elicit network bursts (simNBs; Fig. 6). This indicates that a (sim)NB 419 

reflects a spatiotemporal trajectory of the network’s intrinsic instability dynamics, which, due 420 
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to its nature, can recruit a random set of cells at random order within a specific time-window. 421 

The size of this set and the time-window are determined by the synaptic weights right before 422 

the input arrival (Rahmati et al., 2017). Importantly, the data-informed model mechanistically 423 

links strong population coupling to weak pairwise neuronal correlations, the close-to-random 424 

firing of individual PCs and the low number of network motifs – as we found experimentally for 425 

the second postnatal week. 426 

What are the functional roles of burstiness and synaptic inhibition at this stage? Our model, in 427 

addition to its silent state, embeds a stable fixed point (or steady state) at non-zero low 428 

activity rates (Fig. 6B), in accordance with our recorded data. Theoretical studies showed that 429 

the presence of such a fixed point requires the stabilization function of inhibitory GABA 430 

(Rahmati et al., 2017; Latham et al., 2004; Ozeki et al., 2009; Tsodyks et al., 1997). At such a 431 

fixed point, the network can operate under an inhibition-stabilized regime, which may enable 432 

CA1 networks to begin performing complex computations (Latham et al., 2004; Tsodyks et al., 433 

1997). The ability of the network to dynamically transition between its silent and active states 434 

in an input-dependent fashion (Fig. 6) renders the second postnatal week an early 435 

developmental stage toward forming hippocampal memory and cognition mechanisms, as 436 

found in adult hippocampal attractor networks (Rolls, 2007; Knierim et al., 2016; Hartley et al., 437 

2014; see also Rahmati et al., 2017). This view is supported by (I) the existence of the 438 

internal deadlines as well as a delicate input–ratio and –timing dependency of successful 439 

state transitions and simNB generation and (II) the network's ability to store information in 440 

both the silent and active state through transient synaptic weights (Mongillo et al., 2008; 441 

Stokes, 2015; Barak et al., 2014) and persistent activity (Boran et al., 2019; Zylberberg et al., 442 

2017), respectively. In this line, our modeling results further imply that the network’s silent 443 

state has per se several dynamic operational sub-states, which keep track of input timing and 444 
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strength (Figs. 7 and S1) to produce proper network read-outs. Collectively, we postulate that 445 

the basis of CA1 encoding schemes is set in shortly before eye opening. Moreover, our data 446 

suggest that GDPs disappear due to improper synaptic inputs in vitro during the second 447 

postnatal week, when GABA actions switch to inhibitory (Murata et al., 2020; Valeeva et al., 448 

2016). 449 

 450 

Potential developmental functions of network bursts in the neonatal CA1 451 

Computational modeling suggests a mechanism, whereby CA1 undergoes extensive input-452 

discrimination learning before eye opening. In this scenario, NBs serve as a feedback that 453 

informs individual CA1 PCs about functionally important characteristics of the synaptic input 454 

to the local network, including (I) the proper targeting ratio of excitatory PCs versus inhibitory 455 

GABAergic INs (Murata et al., 2020; Valeeva et al., 2016) and (II) the timing of inputs relative 456 

to the network's operational state. Interestingly, the developmental period of enhanced 457 

network burstiness coincides with a major surge of synaptogenesis in CA1 PCs (Kirov et al., 458 

2004). The latter involves a net addition of synapses, but also functionally important 459 

anatomical rearrangements. Specifically, the formation of mature dendritic spines, which allow 460 

for electrical and metabolic compartmentalization of postsynaptic responses, commences 461 

only at around P10, by which time most glutamatergic synapses are rather localized to 462 

dendritic shafts (Fiala et al., 1998; Kirov et al., 2004). In addition to acting as potential 463 

synaptogenic stimuli (Kirov et al., 2004), NBs could thus be an important element underlying 464 

synaptic competition and pruning, for example, based on synchronization-dependent plasticity 465 

rules in nascent dendrites (Winnubst et al., 2015). Synchronized activity might therefore be 466 

causally related to the delayed development of skewed (approximately log-normal) firing rate 467 

distributions (Fig. 2) underlying sparse coding (Ikegaya et al., 2013; Yassin et al., 2010; 468 
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Trojanowski et al., 2020; Narayanan et al., 2012; Roxin et al., 2011) – an energy-efficient 469 

regime of input processing and information storage (Mizuseki et al., 2013). In accordance with 470 

the efficient coding hypothesis and seminal work in the visual system (Albert et al., 2008), we 471 

argue that one function of developing CA1 and, thus, NBs is to remove statistical redundancy 472 

in the multi-sensory place-field code, by making use of a learning scheme that uses both 473 

intrinsically and sensory-evoked activity already before environmental exploration.  474 
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Figures and legends 732 

 733 

Figure 1. CATHARSiS enables reliable CaT detection in densely labeled tissue. (A) Resting 734 

image of two partially overlapping simulated cells (left) and regions of interest (ROIs) used for 735 

analysis (right). bg - background. (B) ΔF template of cell 1. (C) Top, simulated trains of action 736 

potentials. Middle, relative changes from baseline fluorescence (ΔF/F0) of ROIs shown in A. 737 

Bottom, detection criterion (D) for cell 1 and corresponding CaT onsets retrieved by 738 

CATHARSiS (arrows). (D) Sample ΔF images of three individual frames at time points 739 

indicated in C. Spikes in cell 1 or 2 translated into ring-shaped increases in ΔF, whereas 740 

those induced by bg spikes were applied to the entire field of view. (E) Resting GCaMP6s 741 

fluorescence image (left) and ROIs used for analysis (right). (F) ΔF template of the cell 742 

indicated in E. (G) Top, consensus visual annotation by two human experts for the same cell. 743 

Middle, ΔF/F0 and detected event onsets (red arrows). Bottom, detection criterion (D) and 744 
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corresponding CaT onsets retrieved by CATHARSiS (black arrows). (H) Sample ΔF images of 745 

three individual frames at time points indicated in G. Note that frames #2 and #3 led to false 746 

positive results if event detection was performed on mean ΔF, but not if performed on D. (I) 747 

Quantification of recall, precision and F1 score for event detection based on D (i.e. 748 

CATHARSiS) and mean ΔF, respectively. Each open circle represents a single cell. Data are 749 

presented as mean ± SEM. ns – not significant. ∗∗∗ P < 0.001. See also Table S1.  750 
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 751 

Figure 2. A transient period of firing equalization during CA1 development in vivo. (A) Sample 752 

D(t) traces (top) and raster plots showing reconstructed CaT onsets (bottom). Note that 753 

cellular firing undergoes a developmental transition from synchronized-discontinuous to 754 

desynchronized-continuous activity. (B) Cumulative probability of CaT frequencies. (C) Mean 755 

CaT frequencies per FOV. (D) Lorenz curves of CaT frequencies. Line of equality (dotted) 756 

represents the case that all neurons have equal CaT frequencies. Inset depicts Gini 757 

coefficient calculation. (E) Mean Gini coefficients per FOV. (F) Cumulative probability of mean 758 

CV2 of inter-CaT intervals. Note that, at P11, CV2 distribution is narrower and centered 759 

around 1. (G) Mean CV2 per FOV. For a Poisson process, CV2 = 1 (dotted line). Each open 760 
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circle represents a single FOV. Data are presented as mean ± SEM. ns – not significant. P4: 761 

P3–4, P11: P10–12, P18: P17–19, ∗∗∗ P < 0.001. See also Table S2.  762 
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 763 

Figure 3. CA1 undergoes a transient enhanced bursting period in vivo. (A) Sample traces of 764 

the fraction of active cells Φ(t). Bottom traces show time periods marked on top (dotted 765 

rectangle) at higher temporal resolution. The red dotted line indicates the activity-dependent 766 

threshold for NB detection. (B) Power spectral density of Φ(t). (C) Bandpower of Φ(t) in the 767 

0.1–0.5 Hz range. (D) The fraction of time that the network spent in NBs peaked at P11. (E) 768 

The average NB duration is lowest at P18. (F) Quantification of NB size as the mean fraction 769 

of active neurons (corrected for burst threshold as indicated in A). (G) Cumulative probability 770 

of the fraction of NBs that each cell is participating in. Each open circle represents a single 771 
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FOV. Data are presented as mean ± SEM. ns – not significant. P4: P3–4, P11: P10–12, P18: 772 

P17–19, ∗∗∗ P < 0.001. ∗∗ P < 0.01. ∗ P < 0.05. See also Table S3.  773 
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 774 

Figure 4. Enhanced population coupling underlies network burstiness in the second postnatal 775 

week in vivo. (A) The mean population coupling (PopC) index peaked at P11. (B) Mean 776 

fraction of cells with significant PopC. (C) Mean PopC index of significantly coupled cells only. 777 

(D) Sample STTC matrices (re-ordered). (E) Mean fraction of cell pairs having a significant 778 

STTC. (F) Cumulative probability of STTCs of significantly correlated cell pairs only. (G) Mean 779 

STTCs of significantly correlated cell pairs. (H) Relationship between STTC and Euclidean 780 

somatic distance for significantly correlated cell pairs. ρ denotes the Spearman's rank 781 
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correlation coefficient for all cell pairs analyzed (n) at a given age. Each open circle 782 

represents a single FOV. Data are presented as mean ± SEM. ns – not significant. P4: P3–4, 783 

P11: P10–12, P18: P17–19, ∗∗∗ P < 0.001. ∗∗ P < 0.01. See also Table S4.  784 
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 785 

Figure 5. Motifs of CA1 network activity undergo distinct developmental alterations. (A) 786 

Similarity matrices (matching index) of binary activity patterns (re-ordered for illustration of 787 

motif detection). (B) Global similarity of activity patterns is lowest at P11. (C) The absolute 788 

number of detected motifs per FOV is lowest at P11. (D) Motif repetition quantified as the 789 

fraction of activity patterns belonging to each motif. Each open circle represents a single FOV. 790 

Data are presented as mean ± SEM. ns – not significant. P4: P3–4, P11: P10–12, P18: P17–791 

19, ∗∗∗ P < 0.001. ∗∗ P < 0.01. See also Table S5.  792 
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 793 

Figure 6. A neural network model with inhibitory GABA identifies intrinsic instability dynamics 794 

as key to the emergence of network bursts. (A) Schematic diagram of the STP-RNN model. 795 

(B) The I P- -planeA A  of the full STP-RNN’s stationary dynamics. Note the presence of two 796 

stable fixed points (FPs; green dots) at silent and active states as well as the unstable FP 797 

(black dot). (C) simNB generation requires network silencing. The model was stimulated by 798 

pulse-like input to both PC and IN populations for a duration of 0.020 s (at t = 3 and 9.2 s: 799 

P I 0.25e e= = ; at t = 8 s: P 0.25e = , I 0.75e = ). Zoom-in of the activity around the stimulation 800 

times at active (a and b) and silent (c) states are shown in right panels. Input time series are 801 

shown on top of the plots. (D) The presence of an amplification domain in the initial phase of 802 
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network firing dynamics enables the emergence of simNBs. The I P- -planeA A  of the STP-RNN 803 

with synaptic efficacies frozen at active (a, top) and silent (b, bottom) states, right before input 804 

arrival. (E–G) Transition from active to silent state requires specific input ratios. Input 805 

delivered at t = 8 s. (E) A failed transition: P 0.25e = , I 0.5e = . (F) A successful transition: 806 

P 0.25e = , I 1e = . (G) A color-coded matrix of successful (dark green) and failed (light green) 807 

transitions to the silent state in response to different combinations of Pe  and Ie  amplitudes. 808 

(H–J) Both the transition from the silent to the active state and the simNB generation require 809 

specific input ratios. Input delivered at t = 9.2 s. Same as E–G, but for the backward transition 810 

to the active state. +simNB and –simNB indicate the emergence and absence of bursts.  811 
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 812 

Figure 7. Internal deadline of state transitions. (A–C) Input delivered to the network before 813 

the deadline can move it to active state. (A) A successful transition. The input delivered at t = 814 

0.8 s; P 0.25e = , I 0.25e = . (B) The I P- -planeA A  of the STP-RNN with synaptic efficacies frozen 815 

at the silent state right before the input arrival. (C) Same as B, but frozen at the peak of the 816 

network burst (i.e. simNB) shown in A. Note the presence of the transient stable FP (non-817 

origin green dot), which triggers the transitioning to the active state. (D–F) Once the deadline 818 

is missed, the network cannot be moved to the active state by the subsequent input. Same as 819 

A–C, but the input delivered at t = 2.1 s. Note the absence of a non-origin transient stable FP 820 

in F, in contrast to C. (G) The simNB size and network transition to the active state depend on 821 

the inter-pulse intervals (IPI: the arrival time of the next input relative to the silencing time of 822 

the network). simNB size is computed as the maximum of I PA A+  after the secondary input. 823 

Note the presence of a short window for transitioning to the active state. P 0.25e = , I 0.25e = . 824 

(H) Same as G, but for the non-scaled efficacies of GABAergic ( I Iu x ; orange; see Methods) 825 

and glutamatergic ( p Pu x ; black) synapses, right before the arrival of the secondary input. (A, 826 
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D, G, H) The dotted line at t = 1.45 s depicts the internal deadline.  827 
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Methods 828 

 829 

Animals 830 

All animal procedures were performed with approval of the local government (Thüringer 831 

Landesamt für Verbraucherschutz, Bad Langensalza, Germany) and complied with European 832 

Union norms (Directive 2010/63/EU). Animals were housed in standard cages with 14h/10h 833 

light/dark cycles. Emx1IREScre (stock no. 005628) and GCaMP6sLSL (Ai96, stock no. 024106) 834 

mice were originally obtained from The Jackson Laboratory. Double heterozygous offspring 835 

(Emx1IREScre/wt:GCaMP6sLSL/wt) was used for experiments at P3–4 ('P4'), P10–12 ('P11') and 836 

P17–19 ('P18'). Mice of either sex were used. 837 

 838 

Surgical preparation, anesthesia and animal monitoring for in vivo imaging 839 

30 minutes before starting the preparation, 200 mg/kg metamizol (Novacen) was 840 

subcutaneously injected for analgesia. Animals were then placed onto a warm platform and 841 

anesthetized with isoflurane (3.5% for induction, 1–2% for maintenance) in pure oxygen (flow 842 

rate: 1 l/min). The skin overlying the skull was disinfected and locally infiltrated with 2% 843 

lidocaine (s.c.) for local analgesia. Eyes of P17–19 were lubricated with a drop of eye 844 

ointment (Vitamycin). Scalp and periosteum were removed, and a custom-made plastic 845 

chamber with a central borehole (Ø 2.5–4 mm) was fixed on the skull using cyanoacrylate 846 

glue (Uhu) (P4: 3.5 mm rostral from lambda and 1.5 mm lateral from midline; P11: 3.5 mm 847 

rostral from lambda and 2 mm lateral from midline; P18: 3.5 mm rostral from lambda and 2.5 848 

mm lateral from midline). 849 

For the hippocampal window preparation (Mizrahi et al., 2004), the plastic chamber was 850 

tightly connected to a preparation stage and subsequently perfused with warm artificial 851 
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cerebrospinal fluid (ACSF) containing (in mM): 125 NaCl, 4 KCl, 25 NaHCO3, 1.25 NaH2PO4, 852 

2 CaCl2, 1 MgCl2 and 10 glucose (pH 7.4, 35–36°C). A circular hole was drilled into the skull 853 

using a tissue punch (outer diameter 1.8 mm for P4 and 2.7 mm for P11 and P18 mice). The 854 

underlying cortical tissue and parts of corpus callosum were carefully removed by aspiration 855 

using a vacuum supply and a blunt 27G or 30G needle. Care was taken not to damage alveus 856 

fibers. As soon as bleeding stopped, the animal was transferred to the microscope stage.  857 

During in vivo recordings, body temperature was continuously monitored and maintained at 858 

close to physiological values (36–37°C) by means of a heating pad and a temperature sensor 859 

placed below the animal. Spontaneous respiration was monitored using a differential pressure 860 

amplifier (Spirometer Pod and PowerLab 4/35, ADInstruments). Isoflurane was discontinued 861 

after completion of the surgical preparation and gradually substituted with the analgesic-862 

sedative nitrous oxide (up to the fixed final N2O/O2 ratio of 3:1, flow rate: 1 l/min). Experiments 863 

started 60 min after withdrawal of isoflurane. At the end of each experiment, the animal was 864 

decapitated under deep isoflurane anesthesia. 865 

 866 

Two photon Ca2+ imaging in vivo 867 

After transferring the animal to the microscope stage, ACSF was removed and the 868 

hippocampal window was filled up with a droplet of agar (1%, in 0.9% NaCl) and covered with 869 

a cover glass. As soon as the agar solidified, the chamber was again perfused with ACSF.  870 

Imaging was performed using a Movable Objective Microscope (Sutter Instrument) equipped 871 

with two galvanometric scan mirrors (6210H, MicroMax 673XX Dual Axis Servo Driver, 872 

Cambridge Technology) and a piezo focusing unit (P-725.4CD PIFOC, E-665.CR amplifier, 873 

Physik Instrumente) controlled by a custom-made software written in LabVIEW 2010 874 

(National Instruments) (Kummer et al., 2015) and MPScope (Nguyen et al., 2006). 875 
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Fluorescence excitation at 920 nm was provided by a tunable Ti:Sapphire laser (Chameleon 876 

Ultra II, Coherent) using a 20×/1.0 NA water immersion objective (XLUMPLFLN 20XW, 877 

Olympus). Emission light was separated from excitation light using a 670-nm dichroic mirror 878 

(670 DCXXR, Chroma Technology), short-pass filtered at 680 nm and detected by a 879 

photomultiplier tube (12 bit, H10770PA-40, Hamamatsu). Data were acquired using two 880 

synchronized data acquisition devices (NI 6110, NI 6711, National Instruments). Sampling 881 

rate was set to 11.63 Hz (256×256 pixels, 248×248 µm). For each animal, spontaneous 882 

activity was recorded within 3–5 fields of view, each one usually for ~20 min. 883 

 884 

Quantification and statistical analysis 885 

Preprocessing 886 

Image stacks were registered using NoRMCorre (Pnevmatikakis et al., 2017). For residual 887 

drift detection, a supporting metric was calculated as the Pearson correlation coefficient of the 888 

binarized template image used for stack registration and the binarized images of the 889 

registered image stack. Time periods with residual drift were then visually identified (by 890 

inspecting the supporting metric and the aligned image stack) and considered as missing 891 

values in subsequent analyses. Raw regions of interest (ROIs) were manually drawn around 892 

the somata of individual CA1 PCs using Fiji. 893 

 894 

CATHARSiS – Calcium transient detection harnessing spatial similarity 895 

For the detection of CaTs in densely labeled tissue, we devised CATHARSiS (Calcium 896 

transient detection harnessing spatial similarity). CATHARSiS makes use of the fact that 897 

spike-induced somatic GCaMP signals (∆F) are spatially non-uniform and characteristic of a 898 

given cell. CATHARSiS comprises three major steps: (1) the generation of a spatial ∆F 899 
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template representing the active cell, (2) the computation of a detection criterion D(t) for each 900 

time point (frame) and (3) the extraction of CaT onsets. All analyses were performed using 901 

custom scripts in Matlab and Fiji. 902 

Ad (1): For each ROI, we first obtained the mean F(t) by frame-wise averaging across all 903 

pixels of that ROI. We then computed the first derivative of F(t) and smoothed it using a 904 

second order Savitzky-Golay algorithm (window length, 6 frames), thus yielding Ḟ(t). We then 905 

determined eight candidate CaT onsets by extracting the frame numbers corresponding to the 906 

eight Ḟ(t) peaks having the largest amplitude. This step was performed in an iterative-907 

descending manner by starting with the largest F(t) peak. For each peak, we defined a 908 

minimum time difference (5 frames) to all subsequently extracted peaks, so as to avoid 909 

extracting nearby frames belonging to the same CaT. For each candidate CaT onset, we then 910 

computed the corresponding spatial ∆F (average of five successive frames). To this end, we 911 

first radially expanded the raw ROI by two pixels using the Euclidian distance transform (we 912 

found that this increased detection reliability due to enhanced spatial contrast). Resting 913 

fluorescence F0(t) was defined as the moving median over 500 frames. Eight candidate ∆F 914 

templates were obtained by converting raw ∆F values into z-scores. Based on visual 915 

inspection, we next rejected those candidate ∆F templates that putatively reflected activation 916 

of optically overlapping somata and/or neurites. If all candidate ∆F templates had been 917 

rejected, the cell was excluded from further analysis; otherwise, the remaining candidate ∆F 918 

templates were averaged to obtain the final ∆F template representing the active cell. 919 

Ad (2): For each ROI (spatially expanded as above), we extracted its spatial ∆F for all frames 920 

in the image stack. Next, the spatial ∆F template representing the active cell was optimally 921 

scaled to fit its ∆F in each recorded frame. Based on the optimum scaling factor and the 922 

goodness of the fit, a detection criterion D(t) was computed for each time point. Here, D(t) 923 
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was defined without modification as previously described for the temporal domain (Clements 924 

et al., 1997). 925 

Ad (3): For each ROI, CaT onsets were extracted from D(t) using UFARSA, a general-926 

purpose event detection routine (Rahmati et al., 2018). To this end, we slightly modified the 927 

original UFARSA approach in two ways. I) Following the smoothing step implemented in 928 

UFARSA, all negative values were set to zero, as we found in our perliminary analysis that 929 

negative-to-positive transitions occasionally resulted in false positive events. II) We 930 

introduced a lower bound for the leading threshold, so as to minimze potential false positive 931 

events. Reconstructed CaT onsets were translated into a binary activity vector and used for 932 

the following analyses. 933 

 934 

Firing irregularity 935 

For each cell, we quantified the irregularity of its CaT onsets (i.e. firing times) using CV2, as a 936 

local and relatively rate-independent measure of spike time irregularity (Holt et al., 1996; 937 

Ponce-Alvarez et al., 2010): 
1

1

1 1

21CV2
1

K
k k

k k k

ICI ICI
K ICI ICI

−
+

= +

−
=

− +∑ , where kICI  and 1kICI +  are the kth 938 

and (k+1)th inter-CaT intervals of the cell, and K is the total number of its ICI s. To achieve 939 

more robust results cells with less than ten ICI s were excluded from this analysis. 940 

 941 

Network bursts 942 

Network bursts (NBs) were defined as a significant co-activation of cells as follows: (1) To 943 

account for some temporal jitter in the detection of CaT onsets, we calculated the moving 944 

maximum of the binary activity vectors of all cells in a given FOV over a sliding window of 945 

three frames. We then computed the mean across the resulting activity vectors of all 946 

individual cells to obtain the empirical fraction of active cells per frame Φ(t). (2) We randomly 947 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.28.446133doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446133


50 

shuffled CaT onsets of all cells (uniform distribution; 1,000 times), computed the surrogate 948 

Φ(t) (as above) and defined the 99.99th percentile of all surrogate Φ(t) as the threshold for 949 

NB detection. The NB threshold was determined separately for each FOV, so as to account 950 

for different mean CaT frequencies. (3) Any frame with an empirical Φ(t) exceeding the 951 

threshold was considered as belonging to an NB. In the resulting binary NB vectors, 0-1 952 

transitions were defined as NB onsets and 1-0 transitions as NB offsets. Using the binary NB 953 

vectors, we extracted (i) the relative time the network spent in NBs and (ii) the average NB 954 

duration. NB size was defined as the fraction of cells which were active in at least one frame 955 

of a given NB, corrected for the chance level of co-activation by subtracting the NB threshold. 956 

 957 

Power analysis 958 

To account for missing values representing the residual drift periods (see above), spectral 959 

power of the fraction of active cells Φ(t) was estimated by computing the Lomb-Scargle 960 

periodogram (Matlab, MathWorks). 961 

 962 

Pairwise correlations 963 

Spike-time tiling coefficients (STTCs) were computed for all possible cell pairs with a 964 

synchronicity window of three frames (~258 ms) using custom written code (Matlab, 965 

MathWorks) (Cutts et al., 2014). STTCs derived from measured data were compared to those 966 

from surrogate data obtained by randomly shuffling (uniform distribution; 1,000 times) CaT 967 

onsets of all cells, separately. This randomization kept the mean CaT frequency of each cell 968 

unchanged. 969 

 970 

Population coupling 971 
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To quantify the degree of coupling of each cell to the overall population firing activity we 972 

computed its population coupling, PopC (Okun et al., 2015; Sweeney et al., 2020). To this 973 

end, for each cell, we first smoothed its binary vector (see above) and the summed vector of 974 

the rest of population, followed by computing PopC as the Pearson correlation coefficient 975 

between these two vectors. For smoothing, we used a Gaussian kernel with 3SD =  frames. 976 

To assess the significance of the PopCs (i.e. being beyond chance) we generated surrogate 977 

data by binning the raster matrix along time-axis; non-overlapping bins with a size of 10 978 

frames (ca. 12 SD , according to (Kruskal et al., 2007)). We randomly exchanged CaT onsets 979 

across active cells within each bin (500 times), thereby effectively preserving the CaT 980 

frequency of each cell as well as the local summed activity of the population. For each cell, 981 

using its surrogates, we determined the significance of its empirical PopC (95th percentile). 982 

Moreover, when reporting the PopC of each cell, we subtracted the mean of its surrogate 983 

PopCs, in order to account for the potential differences in population activity levels of different 984 

FOVs (for a similar approach see (Okun et al., 2015; Sweeney et al., 2020)). Cells with less 985 

than five CaTs were excluded from this analysis, to increase robustness of our results. 986 

 987 

Motifs of population activity 988 

To identify the specific cellular activation patterns recurring over time (i.e. motifs of population 989 

activity) we used an eigendecomposition-based clustering method (Li et al., 2010; Patel et al., 990 

2015). To this end, we first divided the recording time into non-overlapping windows with a 991 

size of 10 frames, and assigned 1 and 0 to cells which were active or silent during each bin. 992 

This converts the raster matrix to a sequence of binary vectors (i.e. spatial patterns), where 993 

each pattern has a size of Nx1 (N is the number of analyzed cells in the FOV). We then 994 

computed the degree of similarity between all possible pairs of these patterns using matching 995 
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index (Romano et al., 2015): MI 2 i j
ij

i j

Pat Pat

Pat Pat
=

+


, where iPat  and jPat  are the ith and jth 996 

binary cellular activation patterns (vectors), and the norms are equal to the number of ones 997 

(i.e. active cells) in each vector. MI ranges from 0 (no similarity) to 1 (perfect similarity), and in 998 

particular approximates the number of common neuronal activations (i.e. common ones) 999 

between pattern pairs; for more details see (Romano et al., 2015; Sporns et al., 2007). 1000 

Accordingly, for each FOV, we obtained a similarity matrix of size P x P, where P indicates 1001 

the number of patterns. The rows and columns relating to the silent-pattern pairs were 1002 

excluded, as they were giving rise to an undefined value (i.e. 0 divided by 0). We used the MI 1003 

matrix as the input to the eigendecomposition clustering method. Briefly, this method 1004 

decomposes a given similarity matrix (here, MI matrix) into a set of eigenvalues and 1005 

eigenvectors: The number of significantly large eigenvalues determines the number of motifs, 1006 

and their corresponding eigenvectors contain the information about motif structure (i.e. the set 1007 

of patterns belonging to each motif). The largest eigenvalue is proportional to the global 1008 

similarity among all patterns. As the surrogate data for testing the statistical significance of the 1009 

eigenvalues and also computing a normalized unbiased value of global similarity index, we 1010 

used the randomly shuffled CaT onsets (see above), based on which we repeated the binning 1011 

and computation of MI matrices (500 times). This procedure enabled us to identify the motifs 1012 

of cellular activation patterns, which occurred beyond chance level. For more details about 1013 

the clustering method and its mathematical description see (Li et al., 2010). 1014 

 1015 

Computational modeling of a developing neural network with inhibitory GABA 1016 

Overview. To gain insights into the mechanisms and functional role of the observed network 1017 

burstiness during the emergence of synaptic inhibition in CA1, we used computational 1018 
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modeling and stability analysis. For this purpose, we employed a recently established model 1019 

of a recurrent neural network (RNN) for first postnatal month development (Rahmati et al., 1020 

2017). It is an extended Wilson-Cowan-type model (Tsodyks et al., 1998), and benefits from 1021 

being biophysically interpretable and mathematically accessible. Recently, this model was 1022 

also adapted successfully to explain key dynamics and mechanisms of GDPs in neonatal 1023 

CA1 with excitatory GABA signaling during the first postnatal week (Flossmann et al., 2019). 1024 

However, in accordance with previous reports and our present experimental data for the 1025 

second postnatal week, we here use the model with mainly two specific cellular properties: I) 1026 

GABAergic synapses are considered inhibitory (Kirmse et al., 2015; Valeeva et al., 2016; 1027 

Murata et al., 2020), and II) the mean spontaneous firing activity of PCs is effectively non-zero 1028 

(Fig. 2C). In the following, after providing the mathematical description of the model, we 1029 

describe the mathematical components used for its stability analysis. For more details about 1030 

the model and the approach see (Rahmati et al., 2017). 1031 

Model description. The model is a mean-field network model of mean firing activity rates of 1032 

two spatially localized, homogeneous glutamatergic and GABAergic cells (here, pyramidal 1033 

(PC) and interneuron (IN) populations) that are recurrently connected (Fig. 6A). The model 1034 

incorporates two short-term synaptic plasticity (STP) mechanisms, namely short-term 1035 

synaptic depression (STD) and facilitation (STF), which render the synaptic efficacies 1036 

dynamic over time. Hence, we call the network hereafter STP-RNN. The equations governing 1037 

the mean-field dynamics of the STP-RNN (10D) are (dots denote the time derivatives and, 1038 

hereafter, PC and IN are abbreviated as P and I for readability) (Rahmati et al., 2017): 1039 
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where i  and { }j P,I∈ , and j  is the index of the presynaptic population, PA  and IA  are the 1041 

average activity rates (in Hz) of PC and IN populations which can be properly scaled to 1042 

represent locally the average recorded activities in these populations, ijx  and iju  are the 1043 

average dynamic variables of STD and STF mechanisms, Pt  and It  are approximations to 1044 

the decay time constants of the glutamatergic and GABAergic postsynaptic potentials, 
ijrt  is 1045 

the synaptic recovery time constant of depression, 
ijft  is the synaptic facilitation time 1046 

constant, ijU  is analogous to the synaptic release probability, ijJ  is the average maximum 1047 

absolute synaptic efficacy of recurrent ( i=j) or feedback ( i j≠ ) connections, and Pe  and Ie  are 1048 

the external inputs received by the PC and IN populations from other brain regions or 1049 

stimulation. In this work, we set the inputs to zero (for spontaneous baseline activity), or 1050 

model them as excitatory pulse (with variable positive amplitude) with a duration of 20 ms 1051 

thereby emulating e.g. the SPW-driven inputs to the PC and IN populations (Karlsson et al., 1052 

2006). The transformation from the summed input to each population, ih , to an activity output 1053 

(in Hz) is governed by the response function, if , defined as: 1054 

( ) ( )
i i

i i
i i i i i

0 for
for

h
f h

G h h
θ

θ θ
≤

=  − <
 (2) 1055 

where iθ  is the population activity threshold, and iG  is the linear input-output gain above iθ . In 1056 

this work, we parameterize the STP-RNN as a network model representing mainly a stage 1057 

during the second postnatal week. To do this, we mainly followed (Rahmati et al., 2017) by 1058 

setting P 0.015t = s, I 0.0075t = s, PP IP P 6.5J J J= = = , II PI I 3J J J= = = , 
PP IP Pr r r 3t t t= = = s, 1059 

II PI Ir r r 2.5t t t= = = s, 
PP IP Pf f f 0.4t t t= = = s, 

II PI If f f 0.4t t t= = = s, PP IP P 0.8U U U= = = , 1060 

II PI I 0.8U U U= = = , P 0.22θ = , I 0.53θ = , P I 1G G= = , and P I 0e e= =  Hz (for spontaneous 1061 
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baseline activity). According to these parameter values: I) both glutamatergic and GABAergic 1062 

connections will act depressing, and II) the network will spontaneously have, in addition to a 1063 

silent state, an active state where both IA  and, in particular, PA  are effectively non-zero, and 1064 

III) GABAergic transmission will be inhibitory (note the positive value of IJ ). Note that points 1065 

II) and III) render the model inherently different from the neonatal STP-RNN used by 1066 

(Flossmann et al., 2019). 1067 

Frozen STP-RNN. A Frozen STP-RNN is obtained by freezing the synaptic efficacies of a 1068 

STP-RNN; i.e. by fixing the STP variables ijx  and iju  at the values of interest. This will convert 1069 

the STP-RNN (10D; see Eq. 1) effectively to a 2D network with constant synaptic weights. As 1070 

shown in (Rahmati et al., 2017) and (Flossmann et al., 2019), the Frozen STP-RNN can 1071 

provide a reliable approximation to the stability behavior of a STP-RNN at the state chosen for 1072 

freezing (see below). The equations governing the dynamics of a Frozen STP-RNN are: 1073 

( )
( )

frz FP
P P P P PP P PI I P

frz frz
I I I I IP P II I I
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t

t
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 (3) 1074 

where frz frz frz
ij ij ij ijJ J u x= , and frz

iju  and frz
ijx  are the values of iju  and ijx  (see Eq. 1) at the state of 1075 

interest; here, at a silent state, active state, or the time of network burst’s peak (see Results). 1076 

Phase plane. To visualize the stability behavior of our network model, we used the phase 1077 

plane analysis based on the activity rates: I P- -planeA A  (2D). The I P- -planeA A  sketch includes 1078 

the curves of the P -nullclineA  and I -nullclineA  representing sets of points for which P ( ) 0A t =  1079 

and I ( ) 0A t = . Any intersection of these nullclines is called a fixed point (FP), with the stability 1080 

needed to be determined (see below). For the STP-RNN, these FPs represent the steady 1081 

states of the full network, i.e. the 10D STP-RNN in Eq. 1 (see also Fig. 6B). For the Frozen 1082 

STP-RNN (thus, 2D; see Eq. 3) with synaptic efficacies frozen at the state of interest (e.g. 1083 
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silent state), these FPs may include that state, and possibly some other FPs which may not 1084 

exist in the STP-RNN itself (e.g. see Figs. 6D and 7C). In addition to the visualization of the 1085 

FPs in the I P- -planeA A , we also computed the FPs by numerically solving Eq. 1 and Eq. 3 1086 

(separately) after setting the right hand side of the equations to zero. For more details see 1087 

(Rahmati et al., 2017). 1088 

Stability of FPs. To determine the stability of any FP in the STP-RNN (resp. in the Frozen 1089 

STP-RNN) we applied the linear stability analysis to its 10D (resp. 2D) system of equations in 1090 

Eq. 1 (resp. Eq. 3): We investigated whether all eigenvalues of the corresponding Jacobian 1091 

matrix have strictly negative real parts (if so, the FP is stable), or whether at least one 1092 

eigenvalue with a positive real part exists (if so, the FP is unstable). 1093 

Simulations. All simulation results in this paper have been implemented as Mathematica and 1094 

Matlab (MathWorks) code. For network simulations, we set the integration time-step size to 1095 

0.0002 s. In Fig. 6C, the initial conditions of the STP-RNN variables were set to those values 1096 

of the spontaneous stable FP of the network at the active state. 1097 

 1098 

Statistical analysis 1099 

Statistical analyses were performed using OriginPro 2018 and Microsoft Excel 2010 using the 1100 

Real Statistics Resource Pack software (Release 7.2, Charles Zaiontz). Unless otherwise 1101 

stated, the statistical parameter n refers to the number of FOVs (P4: 19 FOVs from six 1102 

animals, P11: 11 FOVs from six animals, P18: 12 FOVs from six animals). All data are 1103 

reported as mean ± standard error of the mean (SEM), if not stated otherwise. The Shapiro–1104 

Wilk test was used to test for normality. Homogeneity of variances was tested with the 1105 

Levene’s test using the median. For multi-group comparisons, analysis of variance (ANOVA) 1106 

was applied for normally distributed data or the Kruskal-Wallis test for non-normally 1107 
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distributed data. In the case of unequal group variances, Welch’s correction was applied for 1108 

the ANOVA. Following a significant result in the ANOVA, post-hoc pairwise comparisons were 1109 

performed using the Tukey-Kramer (equal variances) or the Games-Howell (unequal 1110 

variances) test. Following a significant result in the Kruskal-Wallis test, post-hoc pairwise 1111 

Mann-Whitney U-tests following Holm’s approach were performed. P values (two-tailed tests) 1112 

< 0.05 were considered statistically significant, except for the Shapiro-Wilk test (P < 0.01). 1113 

Details of the statistical tests applied are provided in Tables S1–S5. 1114 

 1115 

Data and code availability 1116 

All datasets and codes generated during this study are available from the corresponding 1117 

author upon request. 1118 
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