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  Abstract   

Statistical learning by the human brain plays a core role in the development of cognitive systems 

like language and music. Both music and speech have structured inherent rhythms, however the 

acoustic sources of these rhythms are debated. Theoretically, rhythm structures in both systems 

may be related to a novel set of acoustic statistics embedded in the amplitude envelope, statistics 

originally revealed by modelling children’s nursery rhymes. Here we apply similar modelling to 

explore whether the amplitude modulation (AM) timescales underlying rhythm in music match 

those in child-directed speech (CDS). Utilising AM-driven phase hierarchy modelling previously 

applied to infant-directed speech (IDS), adult-directed speech (ADS) and CDS, we test whether 

the physical stimulus characteristics that yield speech rhythm in IDS and CDS describe rhythm 

in music. Two models were applied. One utilized a low-dimensional representation of the 

auditory signal adjusted for known mechanisms of the human cochlear, and the second utilized 

probabilistic amplitude demodulation, estimating the modulator (envelope) and carriers using 

Bayesian inference. Both models revealed a similar hierarchically-nested temporal modulation 

structure across Western musical genres and instruments. Core bands of AM and spectral 

patterning matched prior analyses of IDS and CDS, and music showed strong phase dependence 

between slower bands of AMs, again matching IDS and CDS. This phase dependence is critical 

to the perception of rhythm. Control analyses modelling other natural sounds (wind, rain, storms, 

rivers) did not show similar temporal modulation structures and phase dependencies. We 

conclude that acoustic rhythm in language and music has a shared statistical basis. 

 250 words 
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The potential parallels between language and music have long fascinated researchers in 

cognitive science. In this paper, we examine whether a statistical learning approach previously 

applied to understand the development of phonology as a cognitive system in language-learning 

infants and children may enable theoretical advances in understanding the acoustic basis of 

rhythm in music. Although language acquisition by human infants was once thought to require 

specialized neural architecture, studies of infant statistical learning have revealed that basic 

acoustic processing mechanisms are sufficient for infants to learn phonology (speech sound 

structure at different linguistic levels such as words, syllables, rhymes and phonemes; e.g. 

Saffran, 2001). Most statistical learning studies have focused on syllable and word learning, 

however infant language learning has been argued to begin with speech rhythm (Mehler et al., 

1988). Children who exhibit difficulties with phonological learning also exhibit rhythm 

processing difficulties (Goswami, 2015, for review). Modelling of the speech signal aimed at 

understanding the potential sensory basis of these phonological and rhythmic difficulties has 

revealed a novel set of acoustic statistics that underpin speech rhythm in infant- and child-

directed speech (IDS and CDS). These novel statistics were discovered by applying an amplitude 

modulation (AM) phase hierarchy modelling approach based on the neural speech encoding 

literature to children’s nursery rhymes and to baby talk (Leong & Goswami, 2015; Leong et al., 

2017).  

The theoretical framework underpinning this novel modelling approach was Temporal 

Sampling theory (TS theory, Goswami, 2011). TS theory was initially developed to provide a 

systematic sensory/neural/cognitive framework for explaining childhood language disorders, 

with a view to supporting musical remediation of such disorders (Bhide et al., 2013). TS theory 

is based on the perception of the amplitude envelope of speech, and proposes that accurate 
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sensory/neural processing of the envelope is one foundation of language acquisition (Goswami, 

2019a). The amplitude envelope of any sound is the slower changes in AM (intensity or signal 

energy) that unfold over time. By TS theory, phonological learning in infancy depends in part on 

automatic sensory learning of the statistical structure of the amplitude envelope. TS theory has 

led to the modelling of both IDS and rhythmic CDS (English nursery rhymes) in terms of 

patterns of AM in the amplitude envelope (Spectral-Amplitude Modulation Phase Hierarchy or 

S-AMPH modelling, see Leong, 2012; Leong & Goswami, 2015; Leong et al., 2014, 2017). This 

modelling revealed that an AM phase hierarchy between three broad bands of AMs (at rates of 

~2 Hz, 5 Hz and 20 Hz) described rhythm patterns in both IDS and CDS, with the phase relations 

between peaks and troughs in AM in the two slower bands being particularly important for 

perceiving metrical patterning (Leong et al., 2014, 2017). For example, in experimental work 

with adults, perceptual experience of a trochaic rhythm could be changed to an iambic rhythm by 

phase-shifting the AM peaks in the slowest (~2 Hz) AM band by 180’, so that they now aligned 

with different AM peaks in the adjacent (~5 Hz) AM band compared to their alignment prior to 

the phase shift (Leong et al., 2014). Theoretically, it is plausible that the physical stimulus 

characteristics that describe CDS and IDS may also describe the hierarchical rhythmic 

relationships that characterize modern music. 

Rhythmic structure is a fundamental feature of both language and music. Rhythm 

involves sequences of events (such as syllables, notes, or drum beats) and these events have 

systematic patterns of timing, accent, and grouping (Patel, 2008). IDS, also called baby talk or 

Parentese, has been described as sing-song speech, and has particular prosodic or quasi-musical 

characteristics that have been suggested to explain both natural selection for human language 

from an anthropological perspective (Falk, 2004), and to facilitate infant learning of the 
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phonological structure of human languages (Nazzi et al., 1998). The potential role of the physical 

structure of the amplitude envelope in children’s phonological learning can be investigated by 

separating the AM characteristics of speech from the frequency modulation (FM) characteristics. 

This is achieved by acoustic engineering methods for decomposing the amplitude envelope 

(called demodulation; Turner & Sahani, 2011). The AM patterns are associated with fluctuations 

in loudness or sound intensity, a primary acoustic correlate of perceived rhythm based on onset 

timing, beat, accent, and grouping. In contrast, the FM patterns can be interpreted as fluctuations 

in pitch and noise (Turner, 2010). Particularly relevant to an application to music, the 

demodulation approach to modelling IDS and CDS revealed (a) that the modulation peak in IDS 

is ~2 Hz, in direct contrast to the modulation peak found for adult-directed speech (ADS, also 

modelled, ~5 Hz) (Leong et al., 2017), and (b) that rhythmic patterning in IDS and CDS is 

represented in the phase relations of slower AM bands in the amplitude envelope, particularly 

those corresponding temporally to delta and theta bands in electroencephalography (EEG, Leong 

& Goswami, 2015). Prior analyses of the temporal modulation spectrum in Western musical 

genres have also revealed a peak at ~2 Hz, matching the peak in IDS (Ding et al., 2017). When 

the S-AMPH modelling approach was applied to adult-directed speech (ADS), a different set of 

acoustic statistics was revealed (Leong et al., 2017; Araujo et al., 2018). The adult modelling 

showed that the amplitude phase relations in ADS do not foreground rhythm, but rather increase 

the salience of acoustic information related to phonemes and syllables (Araujo et al., 2018). This 

suggests that the different modulation statistics characterizing IDS versus ADS represent 

structural acoustic differences that are important for early language learning, which is known to 

utilise rhythm. The different statistical structure of ADS may reflect the acquisition of literacy, 
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which is known to re-map phonology to reflect sound categories like phonemes that are 

highlighted by spelling systems (Ziegler & Goswami, 2005).  

Music and language are ubiquitous in human societies (Mehr et al., 2020), but literacy is 

a relatively recent cultural acquisition. Accordingly, given that the temporal modulation structure 

of speech varies depending on whether an infant or an adult is being addressed, as well as with 

the literacy level of the speaker, we can ask which kind of human speech should be used as a 

basis for extracting the physical stimulus characteristics that are to be compared with music. It is 

notable that prior music/speech analyses across languages have emphasized differences regarding 

the temporal modulation structure of music and speech, but have depended on analyses of speech 

produced by highly literate adult speakers (Ding et al., 2017). Comparisons based on IDS and 

CDS may reveal similarities rather than differences. The strong AM phase relations of IDS in 

essence underpin its prosodic structure, which is thought to have played a key role in the pre-

linguistic foundations of the protolanguage(s) evolved by early hominins (Falk, 2004). This 

prosodic structure appears to have arisen from hominid soothing routines, devised to settle 

infants placed on the ground during foraging behavior: “affectively positive, rhythmic melodies” 

(Falk, 2004). Intriguingly, current analyses of the lullabies sung by mothers to their infants 

across cultures reveals a beat rate of ~2 Hz (120 beats per minute, bpm, see Trehub & Trainor, 

1998), matching the modulation peak found in studies of IDS (Leong et al., 2017) as well as 

music (Ding et al., 2017). The strong phase synchronization of delta- and theta-rate AMs in IDS 

reflects stronger rhythmic synchronization and acoustic temporal regularity, contributing to the 

“sing-song” nature of Motherese remarked by Falk (2004). Human song, and possibly also 

human music across genres, may thus exhibit similar physical stimulus characteristics to IDS. 
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In principle, therefore, it can be argued that statistical comparisons between music and the 

rhythmic speech directed to infants and young children may be theoretically more appropriate 

than current comparisons between music and ADS (Ding et al., 2017). 

Of course, music shares many commonalities with speech aside from rhythm at both an 

acoustic and cognitive level (Hayes, 1995; Tierney & Kraus, 2013; Schön et al., 2010; Peretz et 

al., 2015). However, the human peripheral auditory system responds to “broadband” sounds like 

speech or music in the same manner, by filtering the sounds into narrowband signals with a wide 

range of center frequencies (Moore, 2012). Like pre-verbal infants listening to spoken language, 

the music listener experiences a coherent perceptual signal with accentuation and rhythms that 

are captured by the overall amplitude envelope (the broadband sound). The music listener needs 

to identify discrete units to gain meaning, like musical notes and phrasing, analogous to infants 

needing to identify discrete units like syllables, words and syntactic phrases from the prosodic 

rhythm structure of IDS. This segmentation task is aided by the filtering that occurs in the human 

cochlea, and each of the resultant narrowband signals can be modelled as a rapidly oscillating 

carrier signal with a relatively slowly varying amplitude envelope (the cochlear filterbank model 

of human hearing, Moore, 2019; Glasberg & Moore, 1990; Elliott & Theunissen, 2009). In terms 

of parsing the signal into discrete units like musical notes and phrasing, the prior linguistic 

analyses have revealed that the systematic patterns of AM nested in the amplitude envelope of 

both IDS and CDS support the identification of discrete units like syllables. For example, when 

one particular AM cycle is assumed to match a particular speech unit, application of the S-

AMPH to English nursery rhyme corpora identifies 72% of stressed syllables correctly, 82% of 

syllables correctly, and 78% of onset-rime units correctly (Leong & Goswami, 2015). If the 

nursery rhymes are chanted to a regular 2 Hz beat (a temporal rate also dominant in music, 120 
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bpm), then the model identifies over 90% of each type of linguistic unit correctly. Accordingly, 

decomposition of the amplitude envelope of different musical genres may identify similar 

hierarchical AM structures in spectral (pitch) bandings matching IDS and CDS. For music, such 

a phase hierarchy may provide a perceptual basis for perceiving rhythm patterns, musical notes 

and musical phrasing. Whether music would exhibit similar salient bands of AMs, similar 

spectral banding and similar phase dependencies between AM bands as CDS and IDS is explored 

here.  

This theoretical question is addressed using two contrasting mathematical approaches to 

demodulation of the amplitude envelope of music. The same genres of Western music studied by 

Ding et al. (2017) were modelled using two different algorithms, the S-AMPH (Leong & 

Goswami, 2015), and PAD (Probabilistic Amplitude Demodulation, Turner & Sahani, 2011; 

Turner, 2010). Both models parse the amplitude envelope of the music signals into an hierarchy 

of AM bands, but the principles underpinning their operation are different. The S-AMPH 

simulates the frequency decomposition known to be carried out by the cochlea (Moore, 2012; 

Zeng et al., 2005; Dau et al., 1997b), thereby aiming to decompose the amplitude envelope of 

music in the same way as the human ear. PAD infers the modulators and carriers in the envelope 

based purely on Bayesian inference, thereby carrying out amplitude demodulation on a neutral 

statistical basis that makes no adjustments for the human hearing system. PAD is thus a “brain-

neutral” approach. In our prior work with English nursery rhymes (Leong et al., 2014), both S-

AMPH and PAD modelling showed that adult perception of linguistic rhythm patterns such as 

trochaic and iambic meters depended on the temporal alignment of modulation peaks in the 

delta- and theta-rate bands of AM. Accordingly, here we predict that musical meter may also 

depend primarily on the temporal alignment of modulation peaks in the delta- and theta-rate 
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bands of AM, across musical genres. To test the specificity of this prediction regarding speech 

and music, we also modelled other quasi-rhythmic natural sounds such as wind and rain, using 

both the S-AMPH and PAD approaches. 

Our prediction that the perception of musical meter may depend on the temporal 

alignment of different AM bands across musical genres also relates to linguistic theory 

(Liberman & Prince, 1977; Selkirk, 1984; Selkirk, 1980). Linguistically, hierarchical structures 

like the phonological hierarchy of prosodic, syllabic, rhyme and phoneme levels nested within 

speech rhythm are classically represented as a tree that captures the relative prominence of units 

(Hayes, 1995; Selkirk, 1980). Such tree representations may also provide a good model 

regarding the core principles of metrical structure in music (Lerdahl et al., 1983). In the tree 

representation, a “parent” node (element) at one tier of the hierarchy encompasses one or more 

“daughter” nodes at a lower level of the hierarchy. The adjacent connection between the parent 

and daughter nodes are indicated as “branches” in the tree. To give an example from CDS, a 

parent node such as the trisyllabic word “pussycat” in the nursery rhyme “Pussycat pussycat 

where have you been,” which is also the prosodic foot, would have 3 daughter nodes at the next 

hierarchical level, comprising the three syllables. By the S-AMPH model, the level of the 

prosodic foot would be captured by the cycles of AM at the delta-band (~2 Hz) rate, while the 

individual syllables would be captured by the cycles of AM at the theta-band (~5 Hz) rate. As 

noted, when modelled with the S-AMPH, English nursery rhymes with different metrical 

structures like “Jack and Jill went up the hill” (trochaic rhythm), “As I was going to St Ives” 

(iambic rhythm) and “Pussycat pussycat where have you been” (dactyl rhythm) all showed the 

same acoustic hierarchical AM structure. Which metrical structure was perceived by the listener 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2021. ; https://doi.org/10.1101/2020.08.18.255117doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.255117


TEMPORAL STATISTICS OF MUSIC  

 

 

10

depended on the temporal alignment of AM peaks in the delta- and theta-rate AM bands (Leong 

et al., 2014). 

It should be noted that the terms “delta-rate” and “theta-rate” AM bands were adopted to 

describe the results of the speech demodulation analyses because TS theory was based in part on 

the neural oscillatory bands that track human speech in adult cortex (Luo & Poeppel, 2007; 

Ahissar et al., 2001; Giraud & Poeppel, 2012; Henry & Obleser, 2012; Overath et al., 2015; Ding 

et al., 2016; Park et al., 2015). These AM bands equate temporally to electrophysiological 

rhythms found across the brain at the oscillatory rates of delta, theta and beta-low gamma. In 

adult work, neural (“speech-brain”) alignment has been shown to contribute to parsing of the 

speech signal into phonological units such as syllables and words (Ding et al., 2016). It is known 

that human speech perception relies in part on neural tracking of the temporal modulation 

patterns in speech at different timescales simultaneously. These temporal modulation patterns are 

then bound into a single percept, “multi-time resolution processing” (Luo & Poeppel, 2007; 

Ahissar et al., 2001; Giraud & Poeppel, 2012; Poeppel, 2003). This neural tracking (also 

described as phase alignment, temporal alignment or entrainment) relies on oscillatory cortical 

activity. For both music and speech, oscillatory activity is known to align with selected rhythmic 

features of the input such as syllables or musical beats (Obleser & Kayser, 2019; Gross et al., 

2013; Di Liberto et al., 2015; Baltzell et al., 2019; Fujioka et al., 2015). Indeed, if musical 

rhythms and language rhythms are designed to be identical in a particular stimulus set (achieved 

by creating matching hierarchical rhythmic structures in words in German sentences and Waltz-

like 3-count musical pieces), then EEG recordings show similar phase-locked neural responses to 

both the speech and musical signals in listening adults (Harding et al., 2019). For language, delta, 

theta, and beta/gamma oscillators in auditory cortex contribute to the perception of prosodic, 
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syllabic, and phonetic information respectively (Luo & Poeppel, 2007; Park et al., 2015; 

Fontolan et al., 2014). For music, possible correspondences between different oscillators and 

musical units has yet to be investigated. 

Of core relevance to the demodulation modelling approach adopted here, there is also 

growing biological evidence that these adjacent-band neural oscillators are not independent of, 

but interdependent on, each other (Gross et al., 2013; Lakatos et al., 2005). For example, the 

phase of delta oscillators modulates the phase of theta oscillators, and theta phase modulates 

beta/gamma power (Gross et al., 2013). Accordingly, there are mechanistic phase dependencies 

in the neural system, which mirror the acoustic phase dependencies between AM bands revealed 

by the S-AMPH modelling of speech. Thus, musical rhythm may depend on the same acoustic 

phase dependencies. To date, despite a number of studies of music encompassing brain-based 

analyses (Doelling & Poeppel, 2015; Norman-Haignere et al., 2015; Nozaradan et al., 2011; 

Baltzell et al., 2019), no studies have examined the temporal correlates of musical rhythm from 

an hierarchical AM modelling perspective. As outlined above, it is biologically plausible to 

suggest that rhythm perception in music and language may depend on neural entrainment to the 

AM hierarchies nested in the amplitude envelope of music versus speech respectively. Most of 

the slow energy modulations within the speech amplitude envelope reflect intensity patterns 

associated with syllable production (Greenberg, 2006). However, within the overall speech 

envelope there are many amplitude envelopes of the different constituent (spectral) frequencies 

changing at different temporal rates, which can be modelled by decomposing the overall 

envelope. The resulting “temporal modulation spectrum” of speech has a relatively 

straightforward neurophysiological interpretation which could also apply to musical signals. The 

cochlea decomposes acoustic signals into narrow frequency bands (Moore, 2012), which are then 
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low-pass filtered at different stages of the auditory pathway (Dau et al., 1997a), thereby 

extracting the temporal modulation envelope of the narrowband signals (Yang et al., 1992). 

Oscillatory cortical networks track the temporal modulation envelope < ~40 Hz (Joris et al., 

2004; Shamma, 2001), with different oscillators (delta: <4 Hz, theta: 4–8 Hz, alpha: 8–12 Hz, 

beta: 12–30 Hz, gamma: 30–80 Hz) phase-synchronizing with different AM patterns at matching 

rates. Amplitude “rise times” (time to modulation peak) are used as automatic triggers for this 

phase re-setting, so that amplitude envelopes at different frequencies in the signal become 

temporally aligned with neural oscillators at these frequencies (Doelling et al., 2014; Luo & 

Poeppel, 2007; Ahissar et al., 2001). These populations of auditory neurons thereby encode the 

modulation spectra of the temporal envelope at different neural signaling rates (Luo & Poeppel, 

2007; Ahissar et al., 2001; Giraud & Poeppel, 2012; Henry & Obleser, 2012; Overath et al., 

2015; Ding et al., 2016; Di Liberto et al., 2015; Barton et al., 2012; Santoro et al., 2014). 

Regarding musical signals, it has already been shown that neural phase locking to 

periodic rhythms present in musical tempi is selectively enhanced compared to frequencies 

unrelated to the beat and meter (Nozaradan et al., 2011). However, to date the amplitude 

envelope of different musical inputs has not been decomposed in order to discover whether beat 

and meter are systematically related to adjacent bands of AMs that are physically connected by 

mutual phase dependencies. Aside from their mechanistic role in phase-resetting, amplitude rise 

times are important for the perception of rhythm because they determine the acoustic experience 

of “P-centers.” P-centers are the perceptual moment of occurrence (“perceptual center”) of each 

musical beat or syllable for the listener (Morton et al., 1976; Hoequist, 1983). Amplitude rise 

times are typically called attack times in the musical literature (Scott, 1993; Gordon, 1987). 

Perceiving the beat structure in both music and speech is known to be developmentally inter-
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related (Huss et al., 2011). Children’s prosodic perception and their musical rhythm perception 

are both related to individual differences in amplitude rise time perception, and children’s 

performance in a musical beat perception task uniquely predicts their performance on tests of 

phonological awareness, both concurrently and longitudinally (Huss et al., 2011; Goswami et al., 

2013). As noted, amplitude rise times also provide sensory landmarks that automatically trigger 

brain rhythms and speech rhythms into temporal alignment, acting as acoustic landmarks that 

phase-reset ongoing neural oscillatory activity (Doelling et al., 2014).  

Accordingly, exploring the physical characteristics of musical rhythm across Western 

musical genres and instruments by utilizing an AM phase hierarchy modelling approach is 

supported theoretically by neural, acoustic and developmental data. We hypothesized here that 

the two chosen models (filtering [S-AMPH] vs probabilistic [PAD]) would demonstrate the same 

core acoustic principles underlying the structure of musical rhythm. Given the biological 

evidence that each neural oscillator modulates the adjacent-band oscillator during speech 

perception (Gross et al., 2013; Lakatos et al., 2005), and our prior acoustic modelling data with 

IDS, CDS and ADS, we also hypothesized that the adjacent tiers in the temporal hierarchies of 

music would be highly dependent on each other compared with non-adjacent tiers, particularly 

for delta-theta AM coupling. By hypothesis, phase locking to different bands of AM present in 

the amplitude envelope of each genre may enable parsing of the signal to yield the perceptual 

experience of musical components such as minim, crotchet, and quaver (half, quarter, and eighth 

notes). The acoustic structure of the amplitude envelope should also contribute systematically to 

the perceptual experience of beat, tempo, and musical phrasing.  

Note that our modelling approach is conceptually distinct from models that identify the 

tactus or beat markers in singing (Coath et al., 2010), models of pulse perception based on neural 
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resonance (Large et al., 2019), and oscillatory models of auditory attention based on dynamic 

attending (Large & Jones, 1999) via its focus on decomposition of the amplitude envelope of the 

acoustic input. To test whether these predicted commonalities across speech and music would be 

unique to these two culturally-acquired systems, we also used both the PAD and S-AMPH 

models to examine mutual dependency in natural sounds with quasi-rhythmic content such as 

rain, wind, fire, storms and rivers. These natural sounds have also been present since early 

hominid times, but their statistical structure has not been constrained by the human brain. 

  

Materials and Methods 

The music samples for modelling consisted of the music corpora used in the study by 

Ding et al. (Ding et al., 2017), with the addition of 23 children’s songs, in order to characterize 

more general properties of modulation spectra across musical genres. The final samples 

consisted of over 39 h of recordings (sampling rate = 44.1 kHz) of Western music (Western-

classical music, Jazz, Rock, and Children’s song) and musical instruments (single-voice: Violin, 

Viola, Cello, and Bass; multi-voice: Piano and Guitar). In addition, a range of natural sounds like 

wind and rain were extracted from sound files available on the internet (https://mixkit.co; 

https://www.zapsplat.com). The full list is provided in S1 Appendix. The acoustic signals were 

normalized based on z-score (mean = 0, SD = 1). The spectro-temporal modulation of the signals 

was analyzed using two different algorithms for deriving the dominant amplitude modulation 

(AM) patterns: Spectral Amplitude Modulation Phase Hierarchy (S-AMPH; Leong et al., 2014), 

and Probability Amplitude Demodulation based on Bayesian inference (PAD; Large et al., 

2019). The S-AMPH model is a low-dimensional representation of the auditory signal, using 

equivalent rectangular bandwidth (ERBN) filterbank, which simulates the frequency 
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decomposition by the cochlea function in a normal human (Moore et al., 2012; Dau et al., 1997). 

This model can generate a hierarchical representation of the core spectral (acoustic frequency 

spanning 100–7,250 Hz) and temporal (oscillatory rate spanning 0.9–40 Hz) modulation 

hierarchies in the amplitude envelopes of speech and music. The number and the edge of bands 

are determined by principal component analysis (PCA) dimensionality reduction of original 

high-dimensional spectral and temporal envelope representations (Figure 1). This modulation 

filterbank can generate a cascade of amplitude modulators at different oscillatory rates, 

producing the AM hierarchy. On the other hand, the filterbank may partially introduce artificial 

modulations into the stimuli because the bandpass filters can introduce modulations near the 

center-frequency of the filter through “ringing.” Therefore, we also used a second AM-hierarchy 

extraction method (i.e., PAD) as a control. The PAD model does not implement the Hilbert 

transform, filtering, and PCA, but infers the modulators and a carrier based on Bayesian 

inference, identifying the envelope which best matches the data and the a priori assumptions. 

PAD can be run recursively using different demodulation parameters each time, which generates 

a cascade of amplitude modulators at different oscillatory rates (i.e., delta, theta, alpha, beta, and 

gamma), forming an AM hierarchy (Turner, 2010) (Figure 2). 

 

(Figure 1 around here) 

 

(Figure 2 around here) 

 

Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) Model 

Signal Processing: Spectral and Temporal Modulations 
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The methodologies were based on a previous study by Leong and Goswami (Leong & 

Goswami, 2015). To establish the patterns of spectral modulation, the raw acoustic signal was 

passed through a 28 log-spaced ERBN filterbank spanning 100–7250 Hz, which simulates the 

frequency decomposition by the cochlea in a normal human (Moore, 2012; Dau et al., 1997b). 

For further technical details of the filterbank design, see Stone and Moore (Stone & Moore, 

2003). The parameters of the ERBN filterbanks and the frequency response characteristics are 

provided in S2 Appendix. Then, the Hilbert envelope was obtained for each of the 28 filtered-

signals. Using the 28 Hilbert envelopes, the core spectral patterning was defined by PCA. This 

can identify the appropriate number and spacing of non-redundant spectral bands, by detecting 

co-modulation in the high-dimensional ERBN representation. To establish the patterns of 

temporal modulation, the raw acoustic signal was filtered into the number of spectral bands that 

were identified in the spectral PCA analysis. Then, the Hilbert envelope was extracted from each 

of the spectral bands. Further, the Hilbert envelope of each of the spectral bands were passed 

through a 24 log-spaced ERBN filterbank spanning 0.9–40 Hz. Using the 24 Hilbert envelopes in 

each of the spectral bands, the core AM hierarchy was defined by PCA. This can clarify co-

activation patterns across modulation rate channels 

To determine the number and the edge of the core spectral (acoustic frequency spanning 

100–7,250 Hz) and temporal (oscillatory rate spanning 0.9–40 Hz) modulation bands, PCA was 

applied separately for spectral and temporal dimensionality reductions. PCA has previously been 

used for dimensionality reduction in speech studies (e.g., Klein et al., 1970; Pols et al., 1973). 

The present study focused on the absolute value of component loadings rather than the 

component scores. The loadings indicate the underlying patterns of correlation between high-

dimensional channels. That is, PCA loading was adopted to identify patterns of covariation 
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between the high-dimensional channels of spectral (28 channels) and temporal (24 channels) 

modulations, and to determine groups (or clusters) of channels that belonged to the same core 

modulation bands.  

 

PCA to Finding the Core Modulation Hierarchy in the High-dimensional ERBN 

Representation 

In spectral PCA, the 28 spectral channels were taken as separate variables, yielding a 

total of 28 principal components. Only the top 5 principal components (PC) were considered for 

the further analysis, because these already cumulatively accounted for over 58% (on average) of 

the total variance in the original sound signal. In temporal PCA, the 24 channels in each of the 

spectral bands were entered as separate variables. Only the top 3 were considered for further 

analysis, because these cumulatively accounted for over 55% of the total variance in the original 

sound signal. Each of PC loading value was averaged across all samples in each genres 

(Western-classical music, Jazz, Rock, and Children’s song) and musical instruments (single-

voice: Violin, Viola, Cello, and Bass; multi-voice: Piano and Guitar). The absolute value of the 

PC loading were used to avoid mutual cancellation by averaging an opposite valence across 

samples (Leong et al., 2014). Then, peaks in the grand average PC loading patterns were taken to 

identify the core modulation hierarchy. Troughs were also identified because they reflect 

boundaries of edges between co-modulated clusters of channels. To ensure that there would be 

an adequate spacing between the resulting inferred modulation bands, a minimum peak-to-peak 

distance of 2 and 5 channels was set for the spectral and temporal PCAs, respectively. After 

detecting all the peaks and troughs, the core spectral and temporal modulation bands were 

determined based on the criteria that at least 2 of the 5 PCs and 1 of the 3 PCs showed a peak for 
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spectral and temporal bands, respectively. On the other hand, the boundary edges between 

modulation bands were determined based on the most consistent locations of “flanking” troughs 

for each group of PC peaks that indicated the presence of a band. The detailed methodologies 

and examples are shown in Leong and Goswami (Leong & Goswami, 2015). 

 

Probability Amplitude Demodulation (PAD) Model Based on Bayesian Inference 

Amplitude demodulation is the process by which a signal (yt) is decomposed into a 

slowly-varying modulator (mt) and quickly-varying carrier (ct):  

yt = mt * ct                                                 ………………………………. (1) 

Probabilistic amplitude demodulation (PAD) (Turner & Sahani, 2011) implements the 

amplitude demodulation as a problem of learning and inference. Learning corresponds to the 

estimation of the parameters that describe these distributional constraints such as the expected 

time-scale of variation of the modulator. Inference corresponds to the estimation of the 

modulator and carrier from the signals based on the learned or manually defined parametric 

distributional constraints. This information is encoded probabilistically in the likelihood: 

P(y1:T|c1:T, m1:T, θ), prior distribution over the carrier: p(c1:T|θ), and prior distribution over the 

modulators: p(m1:T|θ). Here, the notation x1:T represents all the samples of the signal x, running 

from 1 to a maximum value T. Each of these distributions depends on a set of parameters θ, 

which controls factors such as the typical time-scale of variation of the modulator or the 

frequency content of the carrier. For more detail, the parametrized joint probability of the signal, 

carrier and modulator is:  

P(y1:T, c1:T, m1:T|θ) = P(y1:T|c1:T ;m1:T, θ) * p(c1:T|θ) * p(m1:T|θ)                ……. (2) 
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Bayes’ theorem is applied for inference, forming the posterior distribution over the 

modulators and carriers, given the signal: 

P(c1:T, m1:T|y1:T, θ) = P(y1:T, c1:T, m1:T|θ) / P(y1:T|θ)                       ………………. (3) 

The full solution to PAD is a distribution over possible pairs of modulator and carrier. 

The most probable pair of modulator and carrier given the signal is returned: 

m*1:T, c*1:T = argmax P(c1:T, m1:T|y1:T, θ)                               ………………. (4) 

That is, compared with S-AMPH, PAD does not implement the Hilbert transform, 

filtering, and PCA, but estimates the most appropriate modulator (envelope) and carrier based on 

Bayesian inference that identifies the envelope which best matches the data and the a priori 

assumptions (Turner & Sahani, 2011; Turner, 2010). The solution takes the form of a probability 

distribution which describes how probable a particular setting of the modulator and carrier is, 

given the observed signal. Thus, PAD summarizes the posterior distribution by returning the 

specific envelope and carrier that have the highest posterior probability and therefore represent 

the best match to the data. As noted, PAD can be run recursively using different demodulation 

parameters each time, thereby generating a cascade of amplitude modulators at different 

oscillatory rates (Turner, 2010). The positive slow envelope is modelled by applying an 

exponential nonlinear function to a stationary Gaussian process. This produces a positive-valued 

envelope whose mean is constant over time. The degree of correlation between points in the 

envelope can be constrained by the timescale parameters of variation of the modulator 

(envelope), which may either be entered manually or learned from the data. In the present study, 

we manually entered the PAD parameters to produce the modulators at each of five tiers of 

oscillatory band (i.e., delta: -4 Hz, theta: 4-8 Hz, alpha: 8-12 Hz, beta: 12-30 Hz, and gamma: 

30-50 Hz). Note that manual entry of these parameters does not predetermine the results, rather it 
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enables exploration of whether there is a prominent peak frequency observed in each oscillatory 

rate band regardless of any tempo variations (such as speeding up or slowing down) that may 

depend on the performer or the particular music. Accordingly, it determines the frequencies that 

comprise the core temporal modulation structure of each musical genre. The carrier is interpreted 

as components including noise and pitches whose frequencies are much higher than the core 

modulation bands in phrase, prosodic, syllabic, phonological components. In each of music 

samples, the modulators (envelopes) of the five oscillatory bands were converted into the 

frequency domains by the Fast Fourier Transform (FFT). Spectral analysis of the modulator 

reflects how fast sound intensity fluctuates over time. High modulation frequency corresponds to 

fast modulations and vice versa (see Figure 2). The modulation spectra were averaged across all 

samples in each genre (Western-classical music, Jazz, Rock, and Children’s song) and musical 

instruments (single-voice: Violin, Viola, Cello, and Bass; multi-voice: Piano and Guitar). 

Mutual Information Between Different Modulation Bands 

We also examined whether one tier of the temporal hierarchy of music may be mutually 

dependent on the timing of another tier by conducting mutual information analyses. Mutual 

information is a measure of the mutual dependence between the two variables. The mutual 

information can also be expressed as 
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               �  ���� � ���|�� �����                        ………………. (5) 

where p(x,y) is the joint probability function of X and Y, p(x) and p(y) are the marginal 

probability distribution functions of the X and Y respectively, H(X) and H(Y) are the marginal 

entropies, Η(X|Y) and Η(Y|X) are the conditional entropies, and Η(X,Y) is the joint entropy of X 

and Y (Daikoku, 2018). 

This analysis could answer a question on how a certain oscillatory rhythm X (i.e., delta, 

theta, alpha and beta) is dependent on another oscillatory rhythm Y. Previous evidence suggests 

that adjacent-band oscillators are not independent of, but interdependent on each other (Gross et 

al., 2013; Lakatos et al., 2005). Given the evidence, we hypothesize that the adjacent tiers that 

can connect via so-called “branches” in the AM hierarchy are mutually dependent on each other 

compared with non-adjacent tiers. If so, the results may support a hierarchical “tree-based” 

structure of musical rhythm, highlighting the applicability of an AM hierarchy to music as well 

as speech. 

To explore this, we adopted the phase angle “θ” of the core temporal modulation 

envelopes corresponding to delta, theta, alpha and beta/gamma waves, which was detected in 

each of S-AMPH and PAD approaches. That is, in S-AMPH model, the 5 spectral envelopes (see 

Figure 1b) were passed through a second series of band-pass filters to isolate the 4 different AM 

bands based on the results of temporal PCA (channel edge frequencies: 0.9, 2.5, 7, 17 and 30 

Hz). The phase angles were then calculated using each of the 4x5 temporal modulation 

envelopes. In the PAD model, the phase angles were calculated using the four core modulators 

(envelopes) that have been detected in the last analyses, which correspond to delta, theta, alpha, 

and beta/gamma bands, respectively (for example, k, I, g, e in Figure 2). Then, using the phase 
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angle values, the mutual information between different temporal modulation bands was 

measured. 

 

Phase Synchronization Analyses 

Based on the findings of mutual information, we further investigated possible multi-

timescale phase synchronization between bands by computing the integer ratios between 

“adjacent” AM hierarchies (i.e., the number of parent vs. daughter elements in an AM 

hierarchy). This analysis addresses how many daughter elements a parent element encompasses 

in general in a particular musical genre. We adopted the core temporal modulation envelopes 

corresponding to delta, theta, alpha and beta/gamma waves, which was detected in each of S-

AMPH and PAD approaches. That is, in S-AMPH model, the five spectral envelopes (see Figure 

1b) was passed through a second series of band-pass filters to isolate the four different AM bands 

based on the results of temporal PCA (channel edge frequencies: 0.9, 2.5, 7, 17 and 30 Hz). In 

the end, the total numbers were 4x5 temporal modulation envelopes in the S-AMPH model. In 

contrast, in PAD model, we made use of the four core modulators (envelopes) corresponding to 

delta, theta, alpha, and beta/gamma bands, respectively (for example, k, I, g, e in Figure 2). 

The Phase Synchronization Index (PSI) was computed between adjacent AM bands in the 

S-AMPH representation for each of the five spectral bands and in the PAD representation (i.e., 

delta vs. theta, theta vs. alpha, alpha vs. beta, beta vs. gamma phase synchronizations). The n:m 

PSI was originally conceptualized to quantify phase synchronization between two oscillators of 

different frequencies (e.g., muscle activity; Tass et al., 1998), and was subsequently adapted for 

neural analyses of oscillatory phase-locking (Schack & Weiss, 2005). For example, if the integer 
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ratio is 1:2, then the parent element encompasses 2 daughter elements for the rhythm. The PSI 

was computed as: 

PSI = |e1(nθ1 - mθ2)|               …………………………………………………. (6) 

n and m are integers describing the frequency relationship between lower and higher AM 

bands, respectively. An n : m ratio for each PSI was defined as n & m < 10, and 1 < n/m < 3. The 

values θ1 and θ2 refer to the instantaneous phase of the two AMs at each point in time. 

Therefore, (nθ1–mθ2) is the generalized phase difference between the two AMs, which was 

computed by taking the circular distance (modulus 2π) between the two instantaneous phase 

angles. The angled brackets denote averaging of this phase difference over all time-points. The 

PSI is the absolute value of this average, and can take values between 0 and 1 (i.e., no to perfect 

synchronizations) (Leong et al., 2017). A sound with a PSI of 1 is perceived as being perfectly 

rhythmically regular (a repeating pattern of strong and weak beats), whereas a sound with a PSI 

of 0 is perceived as being random in rhythm. 

To see if the detected findings properly represent systematic characteristics of natural 

musical rhythm, we further conducted simulation analyses. We generated synthesized sounds 

that consisted of four temporal modulation envelopes (i.e., modulator) and one spectral 

frequency (carrier). That is, 2 Hz, 4 Hz, 8 Hz and 16 Hz sine waves were summarized to 

synthesize one compound tone waveform. The compound tone waveform was, then, multiplied 

by a 200 Hz sine waves. The synthesized waveform was assumed as a sound that includes 

temporal information of delta, theta, alpha and gamma rhythms, and spectral information of a 

pitch around to natural human voices. It is important to note that all of the temporal envelopes 

comprised of simple sine waves with frequencies of a power of 2. Hence, we can hypothesize 

that 1:2 integer ratios should clearly and consistently be appeared compared with other integer 
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ratios. If the PSIs of natural music show different findings from those of artificial sounds, then 

the results may indicate that natural musical rhythm has covert and systematic integer ratios in an 

AM hierarchy. 

 

Results 

Amplitude Modulation Properties of Western Music from S-AMPH 

Spectral PCA 

S3 Appendix shows the grand average as well as the loading patterns and cumulative 

contribution ratios for each music genre and instrument. The first to fifth principal component 

(PC1 to PC5) accounted for, on average, 33%, 8%, 6%, 5%, and 5% of the total variances, 

respectively. One peak (~3000 Hz) was identified from the loading pattern of PC1. Thus, PC1 

was assumed to reflect the global correlation between spectral channels. The peak of ~300 Hz 

and the “flanking” trough of ~350 Hz were identical between PC3 and PC4, providing 

corroborating evidence for a lowest spectral band at this spectral location with a potential 

boundary between the first and second spectral bands at ~350 Hz (troughs indicate potential 

boundaries between modulation rate bands). Further peaks and troughs were identified providing 

evidence for four further spectral bands, please see S3 Appendix and Methods. Based on the a 

priori criteria (see Methods), the spectral PCA thus provided evidence for the presence of 5 core 

spectral bands in the spectral modulation data (300, 500, 1000, 2500 and 5500 Hz), with at least 

2 out of 5 PCs showing peaks in each of these 5 spectral regions. Furthermore, we consistently 

observed 4 boundaries between these 5 spectral bands (350, 700, 1750 and 3900 Hz). Table a in 

the S3 Appendix provides a summary of these 5 spectral bands and their boundaries. It is 

noteworthy that these 5 spectral bands, which were consistent across musical instruments and the 
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human voice, are proportionately-scaled with respect to the logarithmic frequency sensitivity of 

human hearing. As predicted, these results are similar to the spectral bands previously revealed 

by modelling IDS and CDS (Leong et al., 2017; Leong et al., 2014; Leong & Goswami, 2015). It 

can also be noted that the loading patterns for the 5 PCA components showed roughly similar 

characteristics across the genres. There was some individual variation at each spectral 

modulation band, see Appendix S3. 

 

Temporal PCA 

S3 Appendix also shows the temporal loading patterns and cumulative contribution ratios 

for each music genre and each instrument, while Figure 3 shows the grand average loading 

patterns (absolute value) for the first three principal components arising from the temporal PCA 

of each of the 5 spectral bands determined in the spectral PCA (Table a in Appendix S3). The 

colors in Figure 3 represent the 5 spectral bands, while the types of lines (i.e., bold, dashed and 

dotted) represent PCs 1,2 and 3, respectively. As may be clearly observed, the loading showed 

consistent patterns between the 3 PCA loading patterns. 

The first to third principal component (PC1 to PC3) accounted for, on average, 49%, 11% 

and 6% of the total variances, respectively (for more detail, see Table b in S3 Appendix). PC1 

showed a moderate peak at acoustic frequencies of 7-9 Hz in all of the 5 spectral bands. As 

observed in the spectral PCA, PC1 in the temporal PCA might reflect the global correlation 

between temporal channels. As no troughs were detected in PC1 (indicating no potential 

boundaries), our analysis focused on PC2 and PC3. The loading patterns of PC2 resulted in 2 

strong peaks at acoustic frequencies of 1-2 Hz (evidence for a delta-rate band of AMs) and 20-30 

Hz (evidence for a beta-gamma rate band of AMs), and 1 strong flanking trough at acoustic 
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frequencies of ~7 Hz. These findings were consistent between the 5 spectral bands, suggesting 

the potential existence of at least 2 core temporal bands. Compared with PC1 and PC2, PC3 

loading patterns varied across spectral bands. As detected in PC2, all the spectral bands showed a 

peak in loading at ~30 Hz, and spectral band 2 similarly showed a peak at ~1 Hz. PC3 also 

showed an additional mid-rate peak at ~5 Hz (theta-rate band) and ~9 Hz (alpha-rate band). The 

flanking troughs for these peaks occurred 2-3 Hz and 15-18 Hz. Based on the a priori criteria 

(Methods), the temporal PCA thus provided evidence for the presence of 4 core bands with 3 

boundaries across the different musical genres and instruments (see Table 1). Perceptually, 

cycles in these AM bands may yield the experience of crotchets, quavers, demiquavers and 

onsets, as shown in Table 1.  

These AM bands in music matched those previously found in IDS, but the AM bands in 

the nature sounds did not (PC3 in Figure 4). In particular, the strong peaks in the delta and theta 

bands, along with the strong flanking trough between these bands, are clearly visible for music 

and speech compared with the nature sounds. As predicted, therefore, the results of the temporal 

PCA match prior studies of CDS and IDS (Leong et al., 2017; Leong et al., 2014; Leong & 

Goswami, 2015). 

 

(Figures 3 and 4 around here) 

 

(Table 1 around here) 

 

Amplitude Modulation Properties of Music from PAD 
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PAD ignores the logarithmic frequency sensitivity of human hearing, implementing 

amplitude demodulation by estimating the most appropriate modulator (envelope) and carrier 

based on Bayesian inference (for more detail, see Methods). Accordingly, PAD provides a good 

test of the assumption that there is a systematic hierarchy of temporal modulations underpinning 

both Western music and (English) IDS. Further, PAD is exempt from the possibility that the 

filterbank used in the S-AMPH may have partially introduced artificial modulations into the 

stimuli through “ringing”. We had hypothesized that modelling with PAD should reveal the same 

core principles as the S-AMPH modelling regarding hierarchical AM patterns. 

S3 Appendix shows the grand average for the modulation spectra of FFT as well as the 

loading patterns and cumulative contribution ratios for each music genre and instrument along 

with individual variation. Overall, low spectral frequencies (~5Hz) showed higher consistency 

across musical genres and instruments while mid-to-high spectral frequencies showed some 

individual variation, as also found for S-AMPH. Figure 3 represents the grand average 

modulation spectra of FFT for each oscillatory band. Four peak frequencies were detected at 

~2.4 Hz, ~4.8 Hz, ~9 Hz and 16 Hz. Accordingly, PAD yielded similar findings to the S-AMPH 

model, detecting peak frequencies in AM bands corresponding temporally to neural delta, theta, 

alpha and beta/gamma neural oscillatory bands (see Table 1). As predicted, the modelling 

suggests the same core principles of AM structure across musical genres as the S-AMPH model. 

Accordingly, the AM structure of music shown in Table 1 is found irrespective of the modelling 

approach adopted. 

 

Mutual Information in Both Models 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 31, 2021. ; https://doi.org/10.1101/2020.08.18.255117doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.255117


TEMPORAL STATISTICS OF MUSIC  

 

 

28

To examine whether mutual dependencies between AM bands in the temporal modulation 

structure of different musical genres was more similar to the dependencies identified in IDS 

rather than in ADS, a mutual information analysis method was employed. As noted earlier, prior 

modelling of IDS and CDS has revealed a significantly higher phase dependency between delta- 

and theta-rate AM bands compared to ADS. ADS by contrast shows a significantly higher phase 

dependency between theta- and beta/low gamma rate AM bands compared to IDS. S4 Appendix 

shows the MI for each music genre and instrument, revealing high consistency between Western 

music genres and instruments in both S-AMPH and PAD models. Therefore, to probe potentially 

ubiquitous mutual dependencies across Western genres and instruments, we focused on the grand 

average (Figure 5). The results showed that adjacent tiers of the AM hierarchy were mutually 

dependent on each other compared with nonadjacent tiers. Further, mutual dependence between 

delta- and theta-rate AM bands was the strongest of all mutual dependence in both models. This 

matched the results of the prior speech-based modelling with IDS and CDS rather than ADS 

(Leong et al., 2017; Leong et al., 2014; Leong & Goswami, 2015).  

As an additional test, we also examined the MI between AM tiers of natural quasi-

rhythmic non-musical inputs experienced by humans (utilizing sounds such as rain, wind, fire, 

storms and rivers; see S1 Appendix), using both the S-AMPH and PAD models. The results were 

notably different to music. Inspection of the figures in S4 Appendix shows that compared with 

music, the mutual dependence between delta- and theta-rate AM bands of natural sounds was 

similar to non-adjacent tiers (S4 Appendix). The current modelling suggests that for music, 

delta-theta phase alignment of AM bands underpins metrical structure, at least for Western 

musical genres. Accordingly, metrical structure, a feature shared by both music and speech, 

depends on the same core delta-theta AM phase relations in both domains. 
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(Figure 5 around here) 

 

Multi-Timescale Phase Synchronization in Both Models 

The demonstration of mutual dependency does not by itself capture metrical structure, as 

each AM cycle at a particular timescale may encompass one or more AM cycles at a faster 

timescale. To identify how many daughter elements a parent element could encompass in 

general, we next investigated the integer ratios between “adjacent” AM bands. For example, if 

the integer ratio is 1:2, then the parent element encompasses 2 daughter elements for the rhythm. 

An example from speech would be a tongue twister like “Peter Piper picked a peck of pickled 

peppers,” which follows a 1:2 ratio (two syllables in each prosodic foot). To assess the integer 

ratios for each pair of mutually dependent AM bands in our selected musical genres, we used PSI 

indices. S5 Appendix shows the PSI for each music genre and instrument, revealing high 

consistency between music genres in both S-AMPH and PAD models. Further analysis focused 

on the grand average (shown in Figure 6). The PSI of the S-AMPH model suggested that the PSI 

of 1:2 integer ratios is the highest in all of the adjacent oscillatory bands. The PSIs of 1:3 and 2:3 

integer ratios were also higher than the other integer ratios, suggesting that the simpler integer 

ratios (i.e., m/n) were likely to synchronize in phase with each other. For spoken languages, the 

m/n ratio between two adjacent AM bands tends to vary with linguistic factors such as how many 

phonemes typically comprise a syllable (e.g. 2 phonemes per syllable for a language with a 

consonant-vowel syllable structure like Spanish, hence a theta-beta/low gamma PSI of 1:2, but 3 

phonemes per syllable for a language with largely consonant-vowel-consonant syllable structures 

like English, hence a theta-beta/low gamma PSI of 1:3). For music, the dominance of PSIs 1:3 
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and 2:3 across genres and instruments suggests more tightly controlled rhythmic dependencies 

than for speech. The PSIs of the PAD model were similar to the S-AMPH, but PAD was more 

sensitive to the simple integer ratios. In PAD, the PSIs of not only the 1:2 integer ratios, but also 

those of the 2:3, 3:4 and 4:5 integer ratios were notably higher than the other integer ratios. This 

may have arisen because the filterbank used in the S-AMPH model may partially introduce some 

artificial modulations into the stimuli through “ringing.” However, the ERBN filterbank in the S-

AMPH model is the filtering process that reflects the frequency decomposition by cochlear 

function in the normal human ear. Hence, the different findings between S-AMPH and PAD 

models regarding phase synchronization may imply that there are differences between auditory 

signals as perceived by the human brain and the purely physical and statistical structure of music. 

Nevertheless, as shown in Figure 6, the PSI between delta- and theta-rate AM bands was 

consistently the largest PSI in both the S-AMPH and PAD models. Again, this finding is 

consistent with our prior findings for IDS and rhythmic CDS (Leong et al., 2017; Leong & 

Goswami, 2015). As a further check, we also examined the PSI of sounds found in nature. The 

human hearing system has been receiving these quasi-rhythmic sounds at least as long as it has 

been receiving language and music, but unlike language and music, these sounds have not been 

produced by humans and shaped by human physiology and culture. Accordingly, it would not be 

expected that the temporal modulation structure of these natural sounds would be shared with 

IDS and CDS. The results showed that compared with music, the PSI between delta- and theta-

rate AM bands was not consistently the largest PSI (S5 Appendix). This shows that the strong 

phase dependence between slower bands of AMs revealed for music and for IDS/CDS is not an 

artifact of the modelling approaches employed, but a core physical feature of their rhythmic 

structure. This shared structure is demonstrated in Figure 7, which depicts music, IDS, nature 
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sounds (averaged) and a man-made rhythmic sound (a machine) from an envelope demodulation 

perspective. Comparison of the temporal structures of these sounds for the low-frequency 

modulation rates (0 – 5 Hz) shows that only music and speech show strong delta- and theta-AM 

band patterning. The nested structure of AM patterning across the higher modulation bands (12-

40Hz) is also clearly visible for each quasi-rhythmic sound for all the natural sounds. This 

patterning is clearly absent for the man-made rhythmic sound of a machine. 

Accordingly, the strong rhythmic character and acoustic temporal regularity of both 

infant- and child-directed speech and Western music appears to be influenced by AMs in the 

delta band (a 2 Hz modulation peak, in music reflecting a 120 bpm rate) and by delta-theta AM 

phase alignment. Our modelling data for temporal frequency (i.e., “rhythm”) also map nicely to 

the Plomp and Levelt (Plomp & Levelt, 1965) modeling of the dissonance curve for spectral 

frequency (i.e., “pitch”) (shown in Figure 6, Bottom). This may imply that these physical 

properties of fast spectral frequencies are also involved in very slow temporal modulation 

envelopes below 40 Hz.  

 

Simulation Analyses 

Finally, to investigate whether the detected (dissonance curve-like) characteristics really 

represented systematic features of natural musical rhythm, we conducted simulation analyses 

with synthesized rhythmic but non-musical sounds. The final synthesized waveform comprised a 

sound that included clear rhythmic information of delta (2Hz), theta (4Hz), alpha (8Hz) and 

gamma (16Hz) rhythms, and spectral information of a pitch around that of natural human voices 

(200 Hz) (for the figure, see S5 Appendix). The percept is similar to a harsh rhythmic whisper. 

As all of the temporal envelopes were comprised of simple sine waves with frequencies of a 
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power of 2, PSI analyses of these artificial sounds should clearly and consistently reveal 1:2 

integer ratios compared with other integer ratios. This was the case. Thus, the simulation 

analyses revealed that the PSIs for natural Western musical genres were different from those for 

artificial rhythmic sounds. This suggests that natural musical rhythm has covert and systematic 

integer ratios (i.e., 2:3, 3:4 and 4:5 as well as 1:2) within the AM hierarchy, at least when 

considering Western musical genres.  

 

Discussion 

Here we tested the prediction that the physical stimulus characteristics (acoustic 

statistics) that describe IDS and CDS from a demodulation perspective would also describe the 

hierarchical rhythmic relationships that characterize music. Decomposition of the amplitude 

envelope of IDS and CDS has previously revealed that (a) the modulation peak in IDS is ~2 Hz 

(Leong et al., 2017), (b) that perceived rhythmic patterning depends on the three core AM bands 

in the amplitude envelope that are found systematically across the spectral range of speech 

(Leong & Goswami, 2015), and (c) that varying metrical patterns such as trochaic and iambic 

meters can be identified by the phase relations between two of these bands of AMs (delta- and 

theta-rate AMs) (Leong et al., 2014). The phase alignment (rhythmic synchronicity) of these 

relatively slow AM rates represents a unique statistical clue to rhythmic patterning (Goswami, 

2019b). Accordingly, we predicted that the physical stimulus characteristics of the amplitude 

envelope of different musical genres and of music produced by different instruments would yield 

similar acoustic statistics that described the underlying rhythmic structures.  

Our demodulation perspective indeed revealed an hierarchy of temporal modulations that 

systematically described the acoustic properties of musical rhythm for a range of Western 
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musical genres and instruments. The modelling indicated highly similar acoustic statistical 

properties to IDS and CDS: a 2Hz modulation peak, particularly strong phase alignment between 

delta- and theta-rate AM bands across genres, and a distinct set of preferred PSIs that indicated 

multi-timescale synchronization across different AM bands. As the brain begins learning 

language using IDS, and consolidates this learning via the rhythmic routines of the nursery 

(CDS), the present findings are consistent with the theoretical view that perceiving rhythm in 

both music and language may (at least early in development, prior to acquiring expertise) rely on 

statistical learning of the same physical stimulus characteristics. Although not tested directly 

here, it is likely that similar neural oscillatory entrainment mechanisms are used for encoding 

this hierarchical AM structure in both domains (Doelling & Poeppel, 2015; Norman-Haignere et 

al., 2015; Nozaradan et al., 2011; Baltzell et al., 2019).  

The multi-timescale synchronization found here was systematic across Western musical 

genres and instruments, suggesting that this AM hierarchy contributes to building perceived 

rhythmic structures. The nested AM hierarchies in music may yield nested musical units 

(crotchets, quavers, demiquavers and onsets), just as nested AM hierarchies in CDS yield 

linguistic units like syllables and rhymes (Leong & Goswami, 2015). The current modelling 

shows that acoustically-emergent musical units can in principle be parsed reliably from the 

temporal modulation spectra of the different musical genres examined, and that these units are 

reflected in each of delta-, theta-, alpha- and beta/gamma-rate bands of AM (Figure 8). To the 

best of our knowledge, our study is the first to reveal a shared hierarchical AM structure related 

to musical rhythm. 

The modelling further revealed strong mutual dependence (using MI estimates) between 

adjacent bands in the AM hierarchy across musical genres (Western classical, jazz, rock, 
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children’s songs) and musical instruments (piano, guitar, violin, viola, cello, bass, single-voice, 

multi-voice). In particular, the mutual dependence between delta- and theta-rate bands of AM 

was the strongest dependence identified by both models. Stronger mutual dependence between 

delta- and theta-rate AM bands characterizes IDS and CDS, but could not be detected in non-

music nature sounds that are quasi-rhythmic (e.g., fire, wind, rain, storms and rivers). By 

contrast, in ADS there is stronger mutual phase dependence between theta- and beta/low gamma-

rate AM bands (Leong et al., 2017); Araujo et al., 2018). The current modelling thus suggests 

that for music, delta-theta phase alignment of AM bands may underpin metrical rhythmic 

patterns, at least for Western musical genres. 

Convergent results from the phase synchronization analyses further showed that multi-

timescale synchronization between delta- and theta-rate AM bands was always higher than the 

other PSIs regardless of the integer ratios. This was not replicated for nature sounds. The phase 

alignment of delta- and theta-rate bands of AM has been suggested to be a key acoustic statistic 

for the language-learning brain (Flanagan & Goswami, 2018; Goswami, 2019b). For example, 

individual differences in sensitivity to delta- and theta- AM rates and their associated rise times 

are known to be implicated in disorders of language development (Goswami, 2019a; Goswami, 

2019b). In experimental studies, the phase alignment between the slower AM bands (delta and 

theta) in speech has been demonstrated to play a key role in the perception of metrical patterning 

(for example, judging whether tone-vocoded nursery rhymes were trochaic or iambic) (Leong et 

al., 2014). Perceptual data from adults showed that a strong or stressed syllable was perceived 

when delta and theta modulation peaks were in alignment. The placement of stressed syllables 

governs metrical patterning in speech (e.g., trochaic, iambic and dactyl meters). The present 

findings concerning mutual dependence and phase synchronization indicate that music may share 
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these properties: phase alignment between delta- and theta-rate AM bands may contribute to 

establishing musical metrical structure as well. 

Accordingly, prior claims that the rhythmic properties of music and language are distinct 

(Ding et al., 2017), with the modulation spectrum for music peaking at 2 Hz and the modulation 

spectrum for speech peaking at 5 Hz, appear to arise from the exclusive reliance of the speech 

modelling on ADS. By contrast, our modelling approach shows better matching with temporal 

data from studies of IDS, where the modulation spectrum also peaks at 2 Hz, as well as a similar 

set of phase relations (the latter were not explored by Ding et al., 2017). We would predict that 

the statistical regularities in temporal modulations may be the same for other forms of music, and 

for IDS and CDS in other languages, this remains to be explored. The demonstration that 

temporal modulation bands play a key role in rhythm hierarchies in music as well as in speech 

may also suggest that the same evolutionary adaptations underpin both music and language.  

Another interesting result from the phase synchronization analyses was the appearance of 

systematic integer ratios within the AM hierarchy. While the 1:2 integer ratio was strongest for 

both models, the PSIs for 1:3 and 2:3 were also higher than the other integer ratios explored, for 

both models. For the PAD modelling approach, which does not make any adjustments for the 

cochlea, the 2:3, 3:4 and 4:5 integer ratios were also prominent. This statistical patterning may be 

related to the different metrical structures and integer ratios that characterize music from 

different cultures (Mehr et al., 2020; McPherson et al., 2020), and even the songs of different 

species (Roeske et al., 2020). For example, even prior to the acquisition of culture-specific biases 

of musical rhythm, young infants (5-month-olds) are influenced by ratio complexity (Hannon et 

al., 2011). Our modelling further suggests that the AM bands in music are related by integer 

ratios in a similar way to the integer ratios relating notes of different fundamental frequencies 
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that create harmonicity (see the similarity between the PSIs for the two models shown in Figure 

7 and the dissonance curve measured by Plomp & Levelt, 1965). Converging prior modelling of 

speech has shown that the probability distribution of amplitude–frequency combinations in 

human speech sounds relates statistically to the harmonicity patterns that comprise musical 

universals (Schwartz et al., 2003). Our modelling appears to suggest that the simple integer ratios 

(i.e., 1:2, 1:3, and 2:3) in the AM hierarchy comprise a fundamental set of statistics for musical 

rhythm perception. This fits well with prior data from Jacoby and McDermott (2017), who 

demonstrated that certain integer ratios are prominent across music from both Western and non-

Western cultures. The modelling suggests that AM phase hierarchies may play as strong a role as 

harmonicity regarding universal mechanisms of human hearing that are important for both music 

and language.  

The modelling presented here is also relevant to the remediation of childhood language 

disorders. The possible utility of musical interventions for children with disorders of language 

learning such as developmental language disorder (DLD) and developmental dyslexia has long 

been recognized (Ladányi et al., 2020; Cumming et al., 2015; Kodály, 1974; Jacques-Dalcroze, 

1980; Elliott & Theunissen, 2009). Such interventions are likely to be most beneficial when the 

temporal hierarchy of the music corresponds to the temporal hierarchy underpinning speech 

rhythm (Goswami, 2019a; Goswami, 2019b). Careful consideration of the statistical rhythm 

structures characterizing speech in different languages may thus lead to better remedial 

outcomes. Similar interventions could be beneficial for second language learners. A caveat is 

that here we modelled musical genres that could be designated WEIRD corpora (originating 

from Westernized, educated, industrialized, rich and democratic societies). Accordingly, further 
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studies are necessary to understand how music interventions can contribute to improving speech 

processing in other languages.  

In conclusion, the present study revealed that the acoustic statistics that describe rhythm 

in Western musical genres from an amplitude envelope decomposition perspective match those 

that describe IDS and CDS. The physical stimulus characteristics that describe ADS are 

different, suggesting that studies aiming to discover commonalities between music and speech 

should not rely exclusively on adult speech corpora. The modelling demonstrates a core acoustic 

hierarchy of AMs that yield musical rhythm across the amplitude envelopes of different Western 

musical genres and instruments, with mutual dependencies between AM bands playing a key role 

in organizing rhythmic units in the musical hierarchy for each genre. Accordingly, biological 

mechanisms that exploit AM hierarchies may underpin the perception and development of both 

language and music. In terms of evolution, the novel acoustic statistics revealed here could also 

explain cross-cultural regularities in musical systems (McPherson et al., 2020); this remains to be 

tested. 
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Table 1.  

Summary of the 4 Temporal Bands Identified from PCA by Both S-AMPH and PAD 

Temporal bands  S-AMPH PAD 
Neural Oscillatory 
Rates 

Note value 

Band 1 0.9-2.5 Hz  -4 Hz Delta 
Crotchet (quarter 
note) 

Band 2 2.5-7 Hz  4-8 Hz Theta 
Quaver (eighth 
note) 

Band 3 7-17 Hz 8-12 Hz Alpha 
Demiquaver 
(sixteenth note) 

Band 4  17-40 Hz 12-30 Hz Beta/LowGamma Onset attack 
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Figure 1 

Signal Processing Steps in S-AMPH Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. (a) The original sound is a part of a sample used in this study (Beethoven Piano Sonata 

No.14, Op27 No 2 "Moonlight”). Original sound is passed through an ERBN-spaced filterbank, 
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yielding a set of high-dimensional spectral channel outputs. The envelope is extracted from each 

spectral channel output using the Hilbert transform, and these envelopes are entered into the 

spectral PCA to identify patterns of covariation across spectral channels. (b) The original sound 

is passed through a low-dimensional spectral filterbank, yielding a small set of core spectral band 

outputs. The parameters of the low-dimensional spectral filterbank were determined in the 

Spectral PCA procedure (a). The envelopes are extracted from each spectral band output using 

the Hilbert transform. Each envelope is further passed through a high-dimensional modulation 

filterbank, yielding a set of high-dimensional modulation rate envelopes. This rate-filtering is 

performed for each spectral band envelope, but for simplicity, only the modulation rate 

envelopes from a single spectral band are shown in this figure. Finally, the power profiles of the 

modulation rate envelopes (bold blue line) are entered into a temporal PCA to identify patterns 

of covariation across modulation rates. 
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Figure 2 

Signal Processing Steps in PAD Model 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Example of an amplitude modulation (AM) hierarchy derived by recursive application of 

PAD. In the first demodulation round (left column), the data (a) are demodulated using PAD set 

to a fast time scale. This yields a relatively quickly-varying envelope (b) and a carrier (c). In the 

second demodulation round (middle column), the demodulation process is re-applied to the 

extracted envelope b, using a slower time scale than before. This yields a slower daughter 

envelope (d) and a faster daughter envelope (e). Daughter envelopes d and e form the two tiers of

the resulting AM hierarchy (right column). Mathematically, these two tiers (d and e) can be 

multiplied back with the very first carrier (c, bottom left) to yield the original signal (a).  
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Figure 3 

Core Temporal Modulation Rates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Grand average absolute value of temporal PCA component loading patterns in the S-

AMPH (a) model and modulation spectra of FFT in the PAD model (b). Both models showed an 

amplitude modulations (AM) hierarchy that consisted of delta-, theta-, alpha- and beta-rate AM 

bands. 
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Figure 4 

Core Temporal Modulation Rates of Music, Speech, and Nature Sounds 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Grand average absolute value of temporal PCA component loading patterns in the S-

AMPH. Red, grey, and blue color scales represent music, speech, and nature sounds, 

respectively. Individual lines represent different speakers, musical genres and nature sounds. 
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Figure 5 

Mutual Information Between Different Tiers in an Amplitude Modulation Hierarchy 

 

 

 

 

 

 

Note. Both S-AMPH (a) and PAD models (b) showed stronger dependency between each 

adjacent tier of an amplitude modulations (AM) hierarchy. Further, mutual dependence between 

delta- and theta-rate AM bands was the strongest of all mutual dependence in both models. 
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Figure 6 

Phase Synchronization Index Between Different Tiers in an Amplitude Modulation Hierarchy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Both S-AMPH (a) and PAD models (b) showed that the simpler integer ratios (i.e., m/n) 

synchronize their phase with each other. The inverted dissonance curve (c) was obtained by 

including the first five upper partials of tones with a 440 Hz (i.e., pitch standard, A4) 

fundamental frequency in calculating the total dissonance of intervals (Plomp & Levelt, 1965). It 

is of note that the peaks of PSI (a) correspond to those of the dissonance curve. 
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Figure 7 

Scalograms Depicting the Amplitude Modulation (AM) Envelopes Derived by Recursive 

Application of PAD (i.e., Carrier) 

 

 

 

 

 

 

 

 

 

 

Note. Continuous Wavelet Transform (CWT) was run on each AM envelope from randomly 

chosen 30-s excerpts of music, speech, nature sounds, and machine sounds. The x-axis denotes 

time (30 s) and the y-axis denotes modulation rate (0.1-40Hz). The maximal amplitude is 

normalized to 0 dB. It should be noted the low frequency structure (<5 Hz) visible in music and 

IDS is absent for the nature and machine sounds. 
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Figure 8 

Hierarchical Structure of Rhythm in Music 

 

 

 

 

 

 

 

 

 

Note. Left and right are the representation by musical score and the corresponding sound 

waveform of a part of the 33 Variations on a waltz by Anton Diabelli, Op. 120 (commonly 

known as the Diabelli Variations) by Ludwig van Beethoven. The musical rhythm could be 

hierarchically organized based either on note values (left) or amplitude modulations (AM, right). 

As shown by the black lines in the musical note hierarchy (left) and the dotted vertical lines in 

the AM hierarchy (right), the adjacent tiers of the hierarchy (i.e., green & blue and blue & red) 

are mutually dependent on each other compared with non-adjacent hierarchical relations (i.e., 

green-red). 
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