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Working memory is an essential human trait required for all
cognitive activities. Our previous model from Mongillo et al.
(1), Mi et al. (2) uses synaptic facilitation to store traces of work-
ing memory. Thus memories can be maintained without per-
sistent neural activity. A critical component of this model is a
central inhibition which prevents multiple item representations
from being active at the same time. We know from experimental
studies that multiple genetically-defined interneuron subtypes
(e.g. PV, SOM) with different excitability and connectivity prop-
erties mediate inhibition in the cortex. The role of these sub-
types in working memory however is not known. Here we de-
velop a modified model with these interneuron subtypes, and
propose their functional roles in working memory. We make
concrete testable predictions about the roles of these groups.
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Introduction

Working memory (hereafter WM) can be defined as “The en-
semble of components of the mind that hold a limited amount
of information temporarily in a heightened state of availabil-
ity for use in ongoing information processing” (3). WM is an
essential human cognitive process required for all cognitive
activities.

The standard model of working memory postulates cells that
show persistent firing during delay period encode working
memory. Mongillo et al. (1) have suggested a plausible alter-
native mechanism for working memory. In this model, the
trace of working memory is maintained by the facilitation
of synapses. Synapses, once facilitated, maintain this state
for time periods of upto a second without need for reactiva-
tion. Mi et al. (2) explain the limited capacity of WM in this
model, which emerges out of temporal multiplexing of items.
They show this model can simultaneously maintain several
working memory items without interfering with one another.
Strong recurrent inhibition in the model which prevents two
items from being active simultaneously, thus preventing them
from interfering with one another. Thus inhibition in this
model plays an important role in the operation of working
memory. However, inhibition in the cortex comes from mul-
tiple sources. In the cortex, inhibitory neurons can be roughly
partitioned into distinct non-overlaping subtypes : PV, SOM,
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Fig. 1. Schematic description of model. Our system consists of 3 types of neu-
ral populations. Pyramidal (Pyr), Parvalbumin expressing (PV), and Somatostatin
expressing (SOM) neurons. Each population has excitatory (lines with arrows) or
inhibitory (lines with dot at the end) synapses. The excitatory synapses can be sim-
ple (current proportional to firing rate, blacl lines) or dynamic (current depends on
short-term synaptic plasticity, STP, green lines)

and VIP. (4, 5). These subtypes are known to have specific
excitation and connectivity properties. They have been im-
plicated to play distinct roles in different parts of the cortex.
Experimental studies have demonstrated that these distinct
interneuron subtypes play different roles in working memory
(6–9); their particular roles however are not well understood.

Our aim here is to propose the possible role of interneurons
in working memory. To this end, we try to create and simu-
late a minimal model that illustrates the different functions of
interneuron types. Further, we make specific experimentally
testable predictions of this model.

Results

Model description. Here we consider an extended version
of the model from (1, 2) of working memory with memory
items encoded by neuronal groups with short-term synaptic
plasticity (STP).

Our model consists of multiple non-overlapping groups of
excitatory neurons (Pyr) each encoding a single memory
item. We assume that each group of neurons acts as a single
unit which can be characterized by a single ‘firing rate.’ We
incorporate two types of interneuron groups: PV and SOM,
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into our model. We have only one group of PV neurons and
a SOM neuron group assigned to every Pyr group.

Fig. 1 shows the connectivity diagram of our model. The
model has two types of connections, facilitating and simple.
In a simple connection, the postsynaptic current is a direct re-
flection of the presynaptic firing rate. In facilitating synapses,
the postsynaptic current depends on history of presynaptic
firing rates. We use the Tsodyks-Markram model (10) for fa-
cilitating connections. We use dynamic synapses only where
modeling considerations suggest synapses with STP play a
role. We also neglect some known synaptic connections to
reduce the complexity of the model.

The Pyr groups have facilitating recurrent connections to
themselves. They also have simple excitatory connection to
the PV group. The PV group in turn has inhibitory connec-
tion to all the Pyr groups. Each Pyr group has a facilitatory
excitatory connection to a single SOM group assigned to it,
which reciprocally inhibits the Pyr group.

The dynamics of the model are described by the following
equations:

Ij = Ibj + Iextj +
∑
i

Iij , (1a)

Rj = α ln
(

1+eIj/α
)
, (1b)

τij
dIij
dt

= JijuijxijRi− Iij , (1c)

duij
dt

= Uij −uij

τfij
+Uij(1−uij)Ri, (1d)

dxij
dt

= 1−xij

τdij
+xijuijRi, (1e)

The total synaptic current Ij for the group j is the sum of
all the synaptic, external and baseline currents Eq. (1a). The
firing rate Rj of a group is a non-linear function of its to-
tal input current Eq. (1b). For each synapse from group i to
group j, we have one equation for the corresponding synap-
tic current Iij Eq. (1c). If the synapse is dynamic, we have
two additional variables : uij and xij for each synapse which
represent “probability of release” and “amount of synaptic re-
sources” respectively . The equations Eq. (1d) and Eq. (1e)
describe the facilitation and depression dynamics respec-
tively. In case of a simple synapse uij and xij variables are
both fixed at 1. See Tsodyks et al. (10) for more details on
short term synaptic plasticity model.

Experimental evidence suggests that PV interneurons provide
strong and fast inhibition to Pyr cells which can implement
the winner-take-all mechanism(11). Therefore we propose
that the inhibition in the model in Mi et al. (2) is from PV
interneurons. Further, the inhibition from SOM is relatively
weak as compared to that from PV. (12). SOM interneurons

innervate the dendrites of the post synaptic cells. They are
known to receive facilitating excitatory inputs (13). Thus we
propose that SOM interneurons are involved in locally con-
trolling behavior of the working memory circuits.

Simulations with PV and SOM

In order to understand the role of SOM interneurons in this
system, we compare results of simulations with Mi et al. (2)
model where the SOM interneurons are absent.

In the model without the SOM the memories once loaded
stay loaded until the end of the simulation. An example of
the dynamics is presented in Fig. 2a. In this simulation the
first stimulus was loaded at 11 s to allow the network to reach
steady state. Then we load 4 memories with a gap of 100 ms
between them. The groups of neurons that represent each
of these loaded items display a short interval of high firing
rate, subsequently called population spike. These population
spikes recur, without external stimulation, and thus constitute
working memory.

In contrast, the system with SOM is capable of unloading (i.e.
forgetting) loaded memories automatically. Fig. 2b shows
an example of such dynamics. The mechanism of this for-
getting is dependent on the facilitating synapses from Pyr to
SOM. In the beginning, when these synapses are not facili-
tated, SOM neurons don’t play a big role and thus the sys-
tem behaves similar to the model without SOM. Items are
loaded into working memory and the corresponding group
of neurons have population spikes periodically. These pop-
ulation spikes provide facilitating input to SOM. The net in-
hibition received by the Pyr groups increases as facilitation
increases. Eventually the increased inhibition overcomes the
excitation and the oscillations stop. Fig. 2b5 shows the ef-
fective synaptic strength of inhibition from SOM increases
every cycle, which causes oscillations to stop after a few cy-
cles (Fig. 2b1).

Fig. 3 shows that the amount of time these oscillations per-
sist can be controlled by the baseline input to SOM interneu-
rons. This immediately suggests a mechanism for emergence
of and local control of transience of working memory.

Discussion

In this study we designed a neural network model of working
memory with the particular emphasis on the differential roles
of PV and SOM interneurons. We suggest that the PV ex-
pressing interneurons are responsible for the “winner-takes-
all” dynamics of working memory. A similar role has been
suggested in other parts of the brain recently by other stud-
ies (14). Further, we show that SOM expressing interneurons
and their facilitating excitatory inputs are responsible for the
transient nature of working memory. (6) report the effect of
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Fig. 2. Comparison of the model with and without SOM. (a) Shows the model without SOM (as in Mi et al. (2)). (b) Model with SOM. Top row shows firing rate of Pyramidal
neurons. One can observe that in the model without SOM neurons memories once loaded are oscillating for the rest of simulation, whereas in the presence of SOM population
spikes disappear after few cycles. Second row shows activity of PV neurons. Third row shows activity of SOM neurons that does not exist in Mi et al. (2) model, and in our
model show gradual increase of firing rate due to facilitatory connections from pyramidal neurons which are shown in bottom row.
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Fig. 3. The effect of different baseline input currents to SOM group. Each
row of dots corresponds to a simulation with a particular value of baseline input to
SOM. Each dot is a population spike. Below a threshold input to SOM (∼ 1.3) the
memories are stable similar to those in Mi et al. (2). Above this threshold, in a range
we get control over the duration these memories remain loaded. With a higher input
to SOM cells (∼ 3.0) the loaded memories fail to spontaneously reactivate at all.

optogenetic manipulation of SOM and PV interneurons dur-
ing a spatial working memory task. They indicate that ex-
ternal optogenetic excitation of SOM group during the delay
period affects performance, but only for long delay periods,
and for very high intensity external excitation. This is con-
sistent with our findings, as added baseline current to SOM
shortens the length of the transient oscillations responsible
for maintaining working memory. They also demonstrate
that PV neurons were active throughout the delay period, a
finding that is consistent with the idea that PV neurons are
responsible for the “winner-take-all” dynamics.

Kim et al. (6) have also indicated that SOM neuron firing was
informative about the target (i.e. item in memory), but the
PV neuron firing was not. That the PV neurons firing was not
selective to the targets is further consistent with the idea that
PV neuronal group acts as a single unit, and all the neurons
response to global activity and play a role in E-I balance and
gain control.

We know from experimental studies that PV interneurons
have strong synapses onto pyramidal neurons and have been
found to mainly synapse onto soma or the axonal initial seg-
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ment (4). Therefore they are thought to control the output of
pyramidal neurons, consistent with the winner-takes-all func-
tion assigned to them in our model. PV interneurons have
been implicated for this role in the Dentate Gyrus (14).

There is more known information about specific connectiv-
ity: PV neurons have strong self connections, and very strong
autapses (15). They also have gap junctions with other PV
neurons, and tend to act synchronously(11). Moreover, SOM
interneurons are known to avoid making synapses onto other
SOM interneurons (4). These and other features will be im-
plemented in further versions of the model.

In summary, we have made concrete and experimentally
testable predictions about the role of the different interneu-
ron subtypes in working memory.
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Pyr PV τ 8×10−3

Simple synapse PV Pyr J −1.1
PV Pyr τ 8×10−3

Simple synapse SOM Pyr J −0.375
SOM Pyr τ 15×10−3

Baseline Inputs - Pyr Ib 3.0
- PV Ib −2.2
- SOM Ib 2.2

Non linearity - - α 1.5

Table 1. Table listing parameters used in all the simulations:
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Supplementary Note 1: Methods

Parameters used for simulations are in the Table 1:

Numerical simulations were performed in Julia language
(16) using ODE solving package “DifferentialEquations.jl”
(17), implementing of “DP8” Hairer’s 8/5/3 adaption of the
Dormand-Prince 8 method Runge-Kutta method, a variable
step size Runge-Kutta solver with 7th order interpolant. The
relative and absolute errors were controlled to be less than
10−6.
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