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[bookmark: _a21iagj7acxx]Supplementary Figure 1. Mean-variance relationship of genes across multiple datasets. 
We show the property of mean-variance relationship of genes in 11 datasets as an example to demonstrate the variability of data properties across datasets. Top panel shows four datasets of different protocols, the first two from human PBMC samples and the latter two from mouse cortex samples. Middle panel shows two datasets from tissue source and two datasets with cell line source. Bottom panel shows datasets of multiple cell types in mouse sample. 
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[bookmark: _rb78mz7dwnh6]Supplementary Figure 2. Visual representation of the evaluation criteria in properties estimation and biological signals. 
As an illustrative example, we compared the simulation data generated by POWSC and the original dataset Soumillon that was used as the reference input. In properties estimation, we compared the concordance of the data characteristics across multiple properties using the KDE statistic. In biological signals, we compared the concordance of the amount of proportion of biological signals in simulated and in real data. 
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[bookmark: _nb94s2vdlmcv]Supplementary Figure 3.  Correlation between seven measures on quantifying similarities for univariate properties. 
Top panel shows the correlation matrix for the property library size, enlarged for readability of axis labels. Bottom panel shows correlation matrix for the remaining univariate properties. The axis labels are consistent and are not shown for readability of the matrix.  
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[bookmark: _uvqcd22rbuay]Supplementary Figure 4. Run time and memory consumption of each method. 
a Runtime of each method. b Maximal memory usage of each method. The number of cells is shown in log10 scale. Methods that support parallel computing and those that only support single core are shown separately. Most methods involve a two-step process of properties estimation and dataset simulation. For those methods, we recorded and shown results for the two steps separately under the estimation and simulation panels. A solid line was used to indicate these methods. For methods that perform the two steps together in a single function, we displayed the results under the estimation panel. A dashed line was used to indicate these methods. c This shows the same result as in b, but with the y-axis in log10 scale for enhanced readability. 
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[bookmark: _z3up7cwyuzpy]Supplementary Figure 5. Impact of the number of cells on property estimation. 
The x-axis shows the number of cells in log10 scale and y-axis shows the score. The line shows the trends with increasing cell numbers. The dot indicates where a measurement is taken. Each measurement was taken three times and the average was shown in the figure. 
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[bookmark: _tcq3f8ihs4uv]Supplementary Figure 6. Proportion of biological signals in real and simulated data generated by simulation methods. 
The boxplots show the distribution of the proportion of biological signals for all datasets examined. The proportion of biological signals in the simulated data ideally should be similar to that of the real data. 
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Supplementary Table
Supplementary Table 1. Details of the scRNA-seq simulation methods evaluated in this study. 

	Methods 
	Implementation language
	Year of publication
	Approach
	Reference (doi)
	Software version
	Input data (raw/
normalised)
	Output data (raw
/normalised)
	Customise and simulate > 1 cell population * 
	Assign gene name to generated data
	Customise DE expression **

	scDD 
	R
	2016
	Dirichlet process mixture of normals
	10.1186/s13059-016-1077-y
	1.12.0 (implemented in Splatter)
	normalised
	normalised
	No, can only simulate 2 
	No
	Yes

	Splat
	R
	2017
	Gamma distribution for modelling mean expression; Poisson distribution for modelling count
	10.1186/s13059-017-1305-0
	1.12.0
	raw
	raw
	Yes, > 2
	No
	Yes

	powsimR
	R
	2017
	Negative binomial (default) or zero-inflated negative binomial model; Mean-dispersion spline  
	10.1093/bioinformatics/btx435
	1.2.3
	raw
	raw
	Yes, > 2
	Yes
	Yes

	SparseDC 
	R
	2017
	Optimization framework 
	10.1093/nar/gkx1113
	0.1.17 (implemented in Splatter)
	raw
	raw
	No, can only simulate 2 
	No
	Yes

	zingeR 
	R
	2018
	Zero-inflated negative binomial model
	10.1186/s13059-018-1406-4
	0.1.0
	raw
	raw
	Yes
	No
	Yes

	ZINB-WAVE 
	R
	2018
	Zero-inflated negative binomial model 
	10.1038/s41467-017-02554-5
	1.10.0 (implemented in Splatter) 
	raw
	raw
	No, restricted to the population in the original data
	No
	No

	SymSim 
	R
	2019
	Kinetic model using Markov chain Monte Carlo
	10.1038/s41467-019-10500-w
	0.0.0.9000
	raw
	raw
	Yes, > 2
	No
	Yes

	scDesign
	R
	2019
	Gamma-normal mixture model; Parameter estimation (dropout, mean, standard deviation) via expectation maximisation 
	10.1093/bioinformatics/btz321
	1.0.0
	raw
	raw
	Yes, can simulate either 1 or 2 populations
	No
	Yes

	SPARSim
	R
	2020
	Gamma distribution for modelling expression; Multivariate hypergeometric distribution for modelling technical variability
	10.1093/bioinformatics/btz752
	0.9.5
	raw
	raw
	Yes, > 2
	Yes
	Yes

	SPsimSeq 
	R
	2020
	Estimation of probability distribution uses fast log-linear model-based density estimation method; Gaussian-copulas for modelling gene-gene correlation 
	10.1093/bioinformatics/btaa105
	0.99.13
	raw
	raw
	Yes, > 2
	Yes
	Yes

	POWSC 
	R
	2020
	Mixture of zero inflated Poisson for modelling inactive transcription; Log-normal Poisson for modelling the active transcription
	10.1093/bioinformatics/btaa607
	0.1.0
	raw
	raw
	Yes, > 2
	No
	Yes

	cscGAN
	Python
	2020
	Generative Adversarial Network with Wasserstein distance 
	10.1038/s41467-019-14018-z
	GitHub version 379ff6e
	raw
	normalised
	No, restricted to the population in the original data
	Yes
	No

	* meaning the method can be used to generate more than 1 cell populations and the user can define the number of cell populations 
** includes either proportion of DE or fold change










Supplementary Table 2. Details of the datasets used in this study. 

	Dataset
	Accession
	Name
	Description
	Species
	Protocol
	Number of cells
	Multiple cell types/
condition ? 
	Source

	1
	SCP425
	cortex sciRNAseq
	Comparison of four protocols using mouse cortex
	Mouse
	sci-RNA-seq
	4912
	Yes
	https://singlecell.broadinstitute.org/single_cell/study/SCP425/single-cell-comparison-cortex-data#study-download

	2
	SCP425
	cortex 10x
	
	Mouse
	10x Genomics
	5367
	Yes
	https://singlecell.broadinstitute.org/single_cell/study/SCP425/single-cell-comparison-cortex-data#study-download

	3
	SCP425
	cortex DroNc-seq
	
	Mouse
	DroNc-seq
	2345
	Yes
	https://singlecell.broadinstitute.org/single_cell/study/SCP425/single-cell-comparison-cortex-data#study-download

	4
	SCP425
	cortex Smart-seq2
	
	Mouse
	Smart-seq2
	644
	Yes
	https://singlecell.broadinstitute.org/single_cell/study/SCP425/single-cell-comparison-cortex-data#study-download

	5
	SCP424
	PBMC 10x  
	Comparison of  six protocols using Human Peripheral Blood Mononuclear Cell 
	Human
	10x Genomics
	3312
	Yes
	https://singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data#study-summary

	6
	SCP424
	PBMC CEL-seq2
	
	Human
	CEL-seq2
	526
	Yes
	https://singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data#study-summary

	7
	SCP424
	PBMC Drop-seq
	
	Human
	Drop-seq
	6357
	Yes
	https://singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data#study-summary

	8
	SCP424
	PBMC inDrops
	
	Human
	inDrops
	4184
	Yes
	https://singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data#study-summary

	9
	SCP424
	PBMC Seq-Well
	
	Human
	Seq-Well
	2908
	Yes
	https://singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data#study-summary

	10
	SCP424
	PBMC Smart-seq2
	
	Human
	Smart-seq2
	522
	Yes
	https://singlecell.broadinstitute.org/single_cell/study/SCP424/single-cell-comparison-pbmc-data#study-summary

	11
	see source
	Tabula Muris
	The 10x subset of Tabula Muris
	Mouse
	10x Genomics
	55656
	Yes
	https://tabula-muris.ds.czbiohub.org/

	12
	GSE114724
	BC09 tumor 
	Tumor of breast cancer patient ID BC09
	Human
	10x Genomics
	7000
	No
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114724

	13
	GSE114725
	BC02 tumor 
	Tumor of breast cancer patient ID BC02
	Human
	inDrops
	2437
	No
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114725

	14
	GSE114725
	BC01 blood 
	Blood of breast cancer patient ID BC01
	Human
	inDrops
	3034
	No
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114725

	15
	GSE114725
	BC02 lymph
	Lymph node of breast cancer patient ID BC02
	Human
	inDrops
	6129
	No
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114725

	16
	GSE114725
	BC01 normal
	Normal breast tissue of breast cancer patient ID BC01
	Human
	inDrops
	3607
	No
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114725

	17
	GSE106202
	breast cell line
	MDA-MB-231 cells cultured in glucose
	Human
	Drop-seq
	785
	No
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106202

	18
	GSE102827
	light endo
	Endothelial smooth muscle of primary visual cortex from  mice, exposed to light for 0h, 1h and 4h
	Mouse
	inDrops
	4071
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102827

	19
	GSE102827
	light micro
	Microglia of primary visual cortex from visually stimulated mice, exposed to light for 0h, 1h and 4h
	Mouse
	inDrops
	10158
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102827

	20
	GSE92495
	Gierahn
	human HEK293 (embryonic kidney cells)  cell line 
	Human
	Seq-Well
	1453
	No
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92495

	21
	see source
	293T
	293T (adenovirus-immortalized human embryonic kidney cells)  cell line 
	Human
	10x Genomics
	2885
	No
	https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t

	22
	see source
	Jurkat and 293T
	mixture of Jurkat (human T lymphocyte)  and 293T
	Human
	10x Genomics
	6143
	Yes
	https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat

	23
	GSE77288
	Tung
	Three iPSC (
Induced Pluripotent Stem Cells)  lines
	Human
	SMARTer
	564
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77288

	24
	GSE113660
	Chen
	Rh41(human alveolar rhabdomyosarcoma)  cell line
	Human
	10x Genomics
	6875
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113660

	25
	GSE60361
	Zeisel
	cortex of mice
	Mouse
	STRT-seq 
	3005
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60361

	26
	GSE72857
	Pual
	Bone marrow myeloid progenitors
	Mouse
	MARS-seq
	6144
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72857

	27
	GSE63472
	retina
	Mouse retina
	Mouse
	Drop-seq
	6598
	No
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63472

	28
	GSE87038
	Dong forebrain
	Forebrain cells of E9.5 to E11.5 mouse embryos
	Mouse
	Smart-seq2
	196
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87038

	29
	GSE87038
	Dong skin 
	Skin cells of E9.5 to E11.5 mouse embryos
	Mouse
	Smart-seq2
	196
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87038

	30
	GSE87038
	Dong intest
	Intestine cells of E9.5 to E11.5 mouse embryos
	Mouse
	Smart-seq2
	196
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87038

	31
	GSE87038
	Dong liver 
	Liver cells of E9.5 to E11.5 mouse embryos
	Mouse
	Smart-seq2
	196
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87038

	32
	GSE90047
	Yang liver
	Liver cells of E10.5 to E17.5 mouse embryos
	Mouse
	Smart-seq2
	447
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90047

	33
	GSE75748
	stem cell
	Human pluripotent stem cells (hPSCs)
	Human
	SMARTer
	758
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75748

	34
	GSE112004
	Francesconi
	B cell precursors from bone marrow, induced to either trans-differentiate to macrophages or to reprogram into iPSCs
	Mouse
	MARS-Seq
	3833
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112004

	35
	GSE53638
	Soumillon
	differentiating cells of human adipose-derived stem/stromal cells
	Human
	SCRB-Seq
	2968
	Yes
	https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53638

	36
	EGAS00001004571 
	COVID-19
	monocyte population of COVID-19 control, mild and severe patient 
	Human
	10x Genomics
	2999
	No
	European Genome-phenome Archive EGAS00001004571 (raw) http:fastgenomics.org (processed) 





Supplementary Table 3. Detailed simulation strategy of each method.

	Methods
	Simulation Strategy for evaluating data property estimation 
	Simulation Strategy for evaluating biological signals 

	Splat
	Estimated the parameters and simulated each cell type separately. 
	Estimated parameters from the largest cell type in a dataset, set number of groups to 2 and the proportion of differential expressed (DE) genes to the proportion between the two largest cell types in the dataset (*). This is because the genes in the simulated data do not have one-to-one matching relationship with the input data and hence it is not possible to combine two simulated data generated from two cell types separately. 

	powsimR
	This method generates DE genes from a homogenous population, for example, a particular cell type from one patient to create two artificial populations. We therefore estimated the parameters and simulated each cell type separately. The proportion of DE and log fold change were set to be a null scenario to maintain the biological signals in the original cell type population. 
	This method generates DE genes from a homogenous population. We therefore esimated the parameters and simulated the largest cell type. The proportion of DE was set to the proportion between the two largest cell types in the dataset.

	SymSim
	Estimated the parameters and simulated each cell type separately. 
	Estimated the parameters and simulated the two largest cell types separately. 

	scDesign
	Estimated the parameters and simulated each cell type separately. 
	This method generates DE genes from a homogenous population. We therefore esimated the parameters and simulated the largest cell type. The proportion of DE was set to the proportion between the two largest cell types in the dataset

	SPARSim
	Estimated the parameters and simulated each cell type separately. 
	Estimated the parameters and simulated the two largest cell types separately. This is because the method returns gene names in the simulated data and therefore we can combine the two dataset and evaluate the biological signals between the two cell types.

	SPsimSeq
	Estimated the parameters and simulated each cell type separately. 
	Estimated the parameters and simulated the two largest cell types separately. 

	POWSC
	Estimated the parameters and simulated each cell type separately. 
	Estimated the parameters and simulated the two largest cell types separately. 

	zingeR
	We estimated and simulated every two cell types at a time with the proportion of DE gene set to 10%. This is the setting used by the authors of this method when comparing their simulated dataset to the original dataset.  
	We estimated and simulated the two largest cell types at a time with the proportion of DE gene set to the proportion between these two cell types.

	scDD
	We estimated and simulated every two cell types at a time with the proportion of DE genes set to 10%. This is because the method requires two cell types to be simulated at once with a given proportion of DE genes between them.
	We estimated and simulated the largest two cell types with the proportion of DE genes set to to the proportion between these two cell types.

	ZINB-WAVE
	This method takes cell types label into consideration in the parameter estimation step, thus estimation and simulation was performed directly on the entire dataset with cell type labels provided. 
	Estimation and simulation was performed directly on the entire dataset with cell type labels provided.  We then evaluated the biological signals between the two largest cell types.

	SparseDC
	This method requires two conditions such as treatment and control, with multiple cell types in each condition, as an internal clustering step is performed to differentiate the cell types. We followed the procedure in the SparseDC documentation and split half of the cell types into condition 1 and half of the cell types into condition 2, and specified the number of clusters to be the number of cell types in condition 1 and 2. 
	Due to the unique setting, we did not evaluate this method for biological signals.

	cscGAN
	This method takes cell types label into consideration in the parameter estimation step, thus estimation and simulation was performed directly on the entire dataset with cell type labels provided. 
	Estimation and simulation was performed directly on the entire dataset with cell type labels provided.  We then evaluated the biological signals between the two largest cell types.

	* We used the procedure described in "Evaluation of biological signals" of the Methods section to calculate the proportion of differential expressed genes between the two largest cell types in the real data. This proportion was then used as the input parameter in the simulation function to control the proportion generated in the simulation data. 
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