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Abstract 

Human pluripotent stem cell (hPSC)-derived cardiomyocytes provide a promising regenerative 

cell therapy for cardiovascular patients and an important model system to accelerate drug 

discovery. However, cost-effective and time-efficient platforms must be developed to evaluate 

the quality of hPSC-derived cardiomyocytes during biomanufacturing. Here, we developed a 

non-invasive label-free live cell imaging platform to predict the efficiency of hPSC 

differentiation into cardiomyocytes. Autofluorescence imaging of metabolic co-enzymes was 

performed under varying differentiation conditions (cell density, concentration of Wnt signaling 

activator) across three hPSC lines. Live cell autofluorescence imaging and multivariate 

classification models provided high accuracy to separate low (< 50%) and high (≥ 50%) 

differentiation efficiency groups (quantified by cTnT expression on day 12) within 1 day after 

initiating differentiation (area under the receiver operating characteristic curve, 0.98). This non-

invasive and label-free method could be used to avoid batch-to-batch and line-to-line variability 

in cell manufacturing from hPSCs.  
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Introduction 

Despite advances in treatment, cardiovascular disease is the leading cause of death worldwide1. 

Globally, about 12% of adults are diagnosed with cardiovascular disease and over 30% of all 

deaths are caused by cardiovascular disease1. The excessive demand of heart transplantation has 

outpaced the limited number of healthy and functional heart donors2. Cell-based regenerative 

therapy provides a promising treatment for patients suffering from cardiac tissue injury3, 4. 

However, cardiomyocytes (CMs) are terminally differentiated cells with no regenerative 

capacity5. Hence, cost-effective and time-efficient platforms to generate functional CMs with 

high quality has emerged as an urgent need for cardiac medicine in drug screening, toxicity 

testing, disease modeling, and regenerative cell therapy.  

 

Human pluripotent stem cells (hPSCs) can differentiate into cells from all three germ layers6-8.  

A variety of methods have been established to generate CMs from hPSCs9-11. These hPSC-

derived CMs exhibit similar functional phenotypes to their in vivo counterparts11, including self-

contractility and action potentials. hPSC-derived CMs have been used in disease modeling12, 13 

and drug screening14, and hold great potential for regenerative medicine15, 16. However, batch-to-

batch and line-to-line variability in the differentiation process of hPSCs into CMs has impeded 

the scale-up of CM manufacturing17. For safety, the quality of clinical-graded hPSC-derived 

CMs must be rigorously evaluated before they can be used for regenerative cell therapy in 

patients18. Current approaches to quantify CM differentiation rely on low-throughput, labor-

intensive, and destructive immunofluorescence labelling and electrophysiological 

measurements11. New technologies that can non-invasively monitor CM differentiation in real 
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time and evaluate the differentiation outcome at early stages are needed to effectively optimize 

biomanufacturing of CMs from stem cells.  

 

Previous studies indicate that hPSC-derived CMs undergo dramatic metabolic changes 

throughout differentiation19. Reduced nicotinamide adenine dinucleotide (phosphate) 

(NAD(P)H) and oxidized flavin adenine dinucleotide (FAD) are autofluorescent cellular 

metabolic co-enzymes that can be imaged to collect metabolic information at a single-cell 

level20. The ratio of NAD(P)H to FAD intensity is the “optical redox ratio”, which reflects the 

relative oxidation-reduction state of the cell. The fluorescence lifetimes of NAD(P)H and FAD 

are distinct in the free and protein-bound conformations, so changes in these fluorescence 

lifetimes reflect changes in protein-binding activity21, 22. Optical metabolic imaging (OMI) 

quantifies both NAD(P)H and FAD intensity and lifetime variables. Hence, OMI is suitable to 

detect the metabolic switches that occur during CM differentiation. 

 

Here, we demonstrate a facile method to non-invasively monitor metabolic changes during hPSC 

differentiation into CMs by combining OMI with quantitative image analysis. OMI was 

performed at multiple time points during a 12-day differentiation process under varying 

conditions (cell density, concentration of Wnt signaling activator) and different hPSC lines 

(human embryonic pluripotent stem cells and human induced pluripotent stem cells). 

Differentiation efficiency was quantified by flow cytometry with cTnT labelling on day 12. 

During the differentiation process all 13 OMI variables, including both NAD(P)H and FAD 

intensity and lifetime variables, change distinctively between low (< 50% cTnT+ on day 12) and 

high (≥ 50% cTnT+ on day 12) CM differentiation efficiency conditions. Multivariate analysis 
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found that day 1 cells (24 hours after Wnt activation) formed a distinct cluster from cells at other 

time points. Logistic regression models based on OMI variables from cells at day 1 performed 

well for separating low and high differentiation efficiency conditions with a model performance 

at 0.98 (receiver operating characteristic (ROC) area under the curve (AUC)). This label-free and 

non-destructive method could be used for quality control for CM manufacturing from hPSCs.  

 

Results 

NAD(P)H and FAD fluorescence change early in the cardiomyocyte differentiation process 

Metabolic state plays an important role in regulating hPSC pluripotency and differentiation23, 24, 

and can be non-invasively monitored via OMI20, 25. We recorded the autofluorescence dynamics 

of NAD(P)H and FAD by OMI during the process of hPSC differentiation into CMs. hPSCs 

were differentiated following a previous protocol11, and cells were imaged on differentiation day 

0 (immediately pre-treatment with CHIR99021, a Wnt signaling activator), day 1 (24 hours post-

treatment with CHIR99021), day 3 (immediately pre-treatment with IWP2, a Wnt signaling 

inhibitor), and day 5 (48 hours post-treatment with IWP2). OMI was performed at these time 

points based on the biphasic role of Wnt signaling activation and inhibition in the CM 

differentiation protocol11. On differentiation day 12, CM differentiation efficiencies were 

evaluated by flow cytometry with a cardiac specific marker cTnT. Differentiation of CMs from 

hPSCs critically relies on the timing and the state of Wnt signaling11. Both the concentration of 

CHIR9902126 and cell density7 are closely related to the activation level of the Wnt signaling 

pathway. In the current study, CM differentiation efficiencies ranging from nearly 0 to above 

60% were achieved by initiating CM differentiation with different CHIR99021 concentrations 

and hPSC seeding densities (Figure 1a, b, Table 1).  
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A total of 13 OMI variables, including the optical redox ratio, NAD(P)H intensity and lifetime 

variables (1, 2, α1, α2, m), FAD intensity and lifetime variables (1, 2, α1, α2, m) were 

measured by autofluorescence imaging. The short lifetime (1) corresponds to free NAD(P)H 

while the long lifetime (2) corresponds to protein-bound NAD(P)H. The converse applies to 

FAD 1 (protein-bound) and 2 (free). Weights are applied to the short (α1) and long (α2) 

lifetimes, and the mean lifetime is a weighted average (m = α11 + α22). Cells under the lowest 

differentiation efficiency condition (0.3%, Table 1) and highest differentiation efficiency 

condition (65.5%, Table 1) showed significant differences in OMI variables by day 1. Cells with 

the highest differentiation efficiency had a lower FAD m on day 0 and a higher FAD m on day 1 

compared to the lowest differentiation efficiency at the same time points (Figure 1c). Similarly, 

the fold change between day 0 and day 1 for NAD(P)H m (Figure 1d) and the optical redox ratio 

(Figure 1f) is greater for high differentiation efficiency compared to low differentiation 

efficiency conditions. Significant differences in other OMI variables were observed between day 

0 and day 1, as well as between low and high differentiation efficiency conditions (Figure S1). 

After treating H9 embryonic stem cells with an inhibitor of glycolysis (2-DG)27, the optical 

redox ratio changed oppositely compared to hPSCs undergoing CM differentiation in the first 24 

hours (Figure S2a, Figure 1e, Figure S1). However, the optical redox ratio decreased both in H9 

embryonic stem cells after rotenone treatment (an oxidative phosphorylation inhibitor)28 (Figure 

S2b) and in hPSCs undergoing CM differentiation in the first 24 hours (Figure 1e). These 

changes in autofluorescence with known metabolic inhibitors and during CM differentiation 

indicate that differentiating cells altered their metabolic activity 1 day after CHIR99021 

treatment. This observation is consistent with previous studies that found metabolism differed 
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between hPSCs and differentiated cells, and between cells differentiated into CMs and other cell 

types29. Overall, autofluorescence imaging of NAD(P)H and FAD showed significant changes at 

early time points in the differentiation process, with greater changes in higher CM differentiation 

efficiency conditions. 

 

Multivariate analysis reveals unique NAD(P)H and FAD fluorescence in cells 1 day into the 

differentiation process 

To assess differences in OMI variables across days, cells were clustered across all days (day 0, 

day 1, day 3, and day 5) and differentiation conditions (Table 1) with a Uniform Manifold 

Approximation and Projection (UMAP) dimension reduction technique30. UMAP dimensionality 

reduction was performed on all 13 OMI variables for projection onto 2D space. UMAP 

representations of all OMI variables showed a day 1 subpopulation separated from days 0, 3, 5 

(Figure 2a, Figure S3a). CM differentiation efficiency conditions were separately evaluated 

across all days by UMAP. As shown in Figure S3b, day 1 cells (light blue clusters) from high (≥ 

50%) differentiation efficiency conditions were distinctly clustered, while cells from low (< 

50%) differentiation efficiency conditions clustered together across all days. Therefore, 

differentiation conditions were separated into low differentiation efficiency (< 50% cTnT+ on 

day 12, Table 1 shaded in light gray) and high differentiation efficiency (≥ 50% cTnT+ on day 

12, Table 1 shaded in dark gray).  

 

Heatmap dendrogram clustering based on OMI variable z-scores revealed that cells under high 

differentiation efficiency conditions on day 1 were clustered closely together and distinct from 

cells under low differentiation efficiency conditions on day 1 (Figure 2b). Dendrograms of cells 
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on day 0 and day 1 together (Figure S4a) or day 0 alone (Figure S4b) did not show clear 

separation of high and low differentiation efficiency conditions, indicating that day 1 is the 

earliest time point to separate low and high differentiation efficiency conditions. In summary, 

UMAP clustering of all 13 OMI variables across all time points and z-score heatmap clustering 

from day 0 and day 1 across all differentiation conditions showed that cells under high 

differentiation efficiency conditions on day 1 clustered together and were distinct from other 

conditions and time points. Hence, we hypothesize that OMI of live cells on CM differentiation 

day 1 could predict high and low differentiation efficiencies on day 12.  

 

OMI variables accurately distinguish cells under low or high differentiation efficiency 

conditions on day 1 

After identifying distinct clustering of day 1 cells in high differentiation efficiency conditions 

based on all 13 OMI variables, we further explored day 1 OMI data alone. Cells in high 

differentiation efficiency conditions (Figure 3a, dark gray, ≥ 50% cTnT+ on day 12) formed a 

distinct cluster from cells under low differentiation efficiency conditions (Figure 3a, light gray, < 

50% cTnT+ on day 12) on day 1. However, a small portion of cells from high and low 

differentiation efficiency conditions overlap. Note that the high differentiation efficiency 

conditions were not 100% and the low differentiation efficiency conditions were not 0%, so this 

could explain some of the overlap on day 1.  

 

Next, a logistic regression classifier based on all 13 OMI variables was trained on day 1 data to 

classify cells from low vs. high differentiation efficiency conditions. Variable weights indicated 

that NAD(P)H m and FAD m were important variables for discriminating low vs. high 
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differentiation efficiency conditions (Figure 3b). Logistic regression (Figure 3c, d), support 

vector machine (Figure S5a, b), and random forest (Figure S5c, d) classifiers were generated to 

test the prediction accuracy using all 13 OMI variables, yielding an accuracy score > 90% for all 

three classifiers. ROCs based on logistic regression classifiers using all 13 OMI variables and a 

subset of variables are shown in Figure 3e along with their performance defined by the AUC. 

Here, the logistic regression classifier using all 13 OMI variables achieves an AUC > 0.98 

(Figure 3e). With only NAD(P)H lifetime variables (NAD(P)H m, 2, α2, α1, 1) that can be 

collected in the NAD(P)H channel alone, the AUC is > 0.91 (Figure 3e).  The AUC with 

NAD(P)H lifetime variables is higher than the AUC of other variable subsets, including FAD 

lifetime variables, NAD(P)H m and FAD m together, and NAD(P)H m alone (Figure 3e). 

Hence, NAD(P)H lifetime variables alone are sufficient to predict low vs. high CM 

differentiation efficiency conditions. Additionally, support vector machine and random forest 

classifiers using all 13 OMI variables achieve an AUC > 0.98 and > 0.99, respectively (Figure 

S5e). These data indicate that OMI can accurately predict CM differentiation under low vs. high 

differentiation efficiency conditions at an early time point (day 1).  

 

Imaging of a cardiac reporter line confirms autofluorescence changes in cells under high 

differentiation efficiency conditions 

Given that OMI can identify CM differentiation efficiency at an early stage, we evaluated a CM 

reporter line (NKX2.5EGFP/+ hPSCs)31 to track differentiated CMs together with autofluorescence 

imaging during the entire differentiation process. The NKX2.5EGFP/+ hPSC line expresses EGFP 

when the cardiac progenitor protein NKX2.5 is expressed, indicating that the cell has 

differentiated into CM, around differentiation day 7. Although EGFP spectrally overlaps with 
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FAD autofluorescence signals, this interference does not occur until day seven31. The final 

differentiation efficiency was quantified by flow cytometry with cTnT labelling (Figure 4a). 

Approximately 0.3% and 84.1% CMs were yielded with 12 µM and 9 µM CHIR99021 

treatment, respectively.  

 

Differences in OMI variables between low (0.3%) and high (84.1%) differentiation efficiencies 

were assessed with this reporter line. Consistent with the observations in Figure 1c and d, 

NAD(P)H m (Figure 4b-d) and FAD m (Figure 4e-g) were significantly different between low 

vs. high differentiation efficiency conditions on day 0 and day 1 with the CM reporter line. In 

both conditions, NAD(P)H m gradually decreased over the first 5 days of differentiation (Figure 

S6a). Conversely, FAD m gradually increased over the first 5 days for the high differentiation 

efficiency condition and oscillated over time for the low differentiation efficiency condition 

(Figure S6b). These observations are consistent with our previous findings (Figure 1, Figure S1) 

using 11 differentiation conditions across two hPSC lines.  

 

After confirming that EGFP lifetimes do not overlap with NAD(P)H lifetimes (Figure S7), we 

then evaluated the NAD(P)H lifetimes of differentiated CMs on day 8 when the cells expressed 

NKX2.5-EGFP. As shown in Figure 4h-j, NAD(P)H lifetime variables (m, 2, α 1) were 

significantly different between low and high differentiation efficiencies on day 8. Similar 

changes in NAD(P)H lifetime variables were also observed in H9 embryonic stem cells treated 

with an inhibitor of glycolysis (2-DG)27 (Figure S8). In summary, with a cardiac reporter line, we 

further confirmed that NAD(P)H and FAD fluorescence variables reflect CM differentiation 

efficiency from hPSCs. Differentiated CMs (84.1%) exhibit dramatically different 
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autofluorescence compared to differentiated non-CMs (0.3%), which provides further evidence 

that OMI can discriminate between CMs and non-CMs after the differentiation process is 

complete.  

 

Discussion  

Here, we report a non-invasive label-free imaging method to predict the outcome of hPSC 

differentiation into CMs. By combining live cell autofluorescence lifetime imaging, single-cell 

image analysis, and machine learning, we robustly separate low (< 50%) from high (≥ 50%) CM 

differentiation efficiency conditions as early as day 1. The prediction accuracy was over 90% 

and the model performance was 0.98 (AUC of ROC) with all 13 OMI variables combined across 

11 different differentiation conditions including 3 hPSC lines.  

 

Recent evidence links Wnt signaling and glycolytic activities during hPSC differentiation into 

mesoderm 32, 33. Consistent with these findings, changes in OMI variables on day 1 of CM 

differentiation (24 hours after Wnt activation, Figure 1) and with known metabolic inhibitors in 

stem cells (Figure S2, Figure S8) indicate that changes in OMI variables are due to increased 

glycolytic activity on day 1 of CM differentiation. Considering the important role of Wnt 

signaling activation in mesoderm and CM differentiation11, and embryonic development34, 

greater changes in OMI variables in the high differentiation efficiency condition could indicate 

more glycolytic activity due to successful Wnt activation compared to the low  differentiation 

efficiency condition (Figure 1c-e, Figure S1). Taken together, these results reveal that 

autofluorescence imaging can separate CM differentiation efficiencies at an early stage based on 

metabolic changes (Figure 3b-e). 
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At the end of our differentiation process, some cells were not positive for cTnT and therefore 

were not CMs. Previous studies have shown that these non-CMs at the end of the differentiation 

process are primary cardiac-like fibroblasts together with a small portion of non-differentiated 

hPSCs35. hPSC-derived CMs exhibit distinct metabolism from other hPSC-derived non-CMs36. 

Co-culture of cardiac fibroblasts and CMs can induce fibroblast glycolytic activity and lactate 

secretion from fibroblasts37. Co-culture of cardiac fibroblasts and CMs also promotes a more 

mature phenotype in CMs along with increased reliance on oxidative phosphorylation35. 

Similarly, differences in NAD(P)H lifetime variables between CMs and non-CMs on day 8 

(Figure 4h) are consistent with decreased glycolytic activity in the CMs (Figure S8).These results 

further confirm that autofluorescence imaging can distinguish the distinct metabolic activities 

between hPSC-derived CMs and other non-CMs.  

 

We have demonstrated that autofluorescence imaging can resolve metabolic changes in CM 

differentiation and predict the differentiation outcome at early time points. However, our method 

has limitations. The differentiation efficiency of hPSCs is susceptible to cell line variability, cell 

culture microenvironment, and differentiation protocol38. We note that the differentiation 

efficiency measured from flow cytometry in our experiments was not higher than 90%. This may 

be due to photo-toxicity during the imaging process that may moderately interrupt CM 

differentiation. In future studies, good manufacturing practice standards could be applied to 

optimize the evaluation process and minimize the interruption on differentiation. Additionally, 

OMI relies on only two metabolites, NAD(P)H and FAD, that do not comprehensively 

characterize cellular metabolic activities. More mechanistic studies together with other assays, 

including metabolite liquid chromatography–mass spectrometry23, NMR spectrometry39, single-
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cell RNASeq40, and quantitative proteomics41, need to be performed to reveal the relationship 

between metabolic dynamics and hPSC differentiation into CMs. Additionally, alternative 

differentiation protocols will require algorithms trained on OMI data in these new conditions to 

robustly classify differentiation efficiencies.  

 

Overall, we developed a non-invasive method to predict the efficiency of hPSC differentiation 

into CMs at early differentiation stages. hPSCs hold great promise for regenerative medicine and 

pharmaceutical development, but large-scale cell manufacturing suffers from variability across 

hPSC lines and cell culture conditions. Our studies indicate that autofluorescence can predict CM 

differentiation efficiency at an early stage, which could enable real-time and/or in-line 

monitoring during cell manufacturing. This method could lower manufacturing costs and 

personnel time by flagging samples for timely interventions. Similar technologies could also 

impact other areas of regenerative cell manufacturing. 

 

Materials and methods 

hPSC culture and cardiomyocyte differentiation 

Human H9 embryonic stem cells42, human IMR90-4 induced pluripotent stem cells43, and 

NKX2.5EGFP/+ hPSCs31 were maintained on Matrigel (Corning)-coated surfaces in mTeSR1 

(STEMCELL Technologies) as previously described44. CM differentiation was performed as 

described previously11.  Different cell seeding densities and different concentrations of 

CHIR99021 were applied to manipulate differentiation efficiency. Briefly, hPSCs were 

singularized with Accutase (Thermo Fisher Scientific) and plated onto Matrigel-coated plates at 

a density ranging from of 2.9 × 104 cells/cm2 to 5.7 × 105 cells/cm2 (1.0 × 105 cells to 2.0 × 106 
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cells per well of a 12-well plate) in mTeSR1 supplemented with 10 µM Rho-associated protein 

kinase (ROCK) inhibitor Y-27632 (Selleckchem) 2 days before initiating differentiation. 

Differentiation was initiated by Wnt signaling activation with 8 µM to 12 µM CHIR99021 

(Selleckchem) on day 0, followed by inhibition of Wnt signaling with 5µM IPW2 on day 3.  

 

Flow cytometry 

Cells on differentiation day 12 were disassociated with Accutase, fixed in 1% PFA for 15 

minutes at room temperature, and then blocked with 0.5% bovine serum albumin (BSA) with 

0.1% Triton X-100. Cells were then stained with primary antibody anti-cTnT (Lab Vision; 

1:200) and secondary antibody (Thermo Fisher; goat anti-mouse, Alexa Fluor 488; 1:500) in 

0.5% BSA with 0.1% Triton X-100. Data were collected on a FACSCalibur flow cytometer and 

analyzed with FlowJo. Data were collected from three biological replicates and presented as 

means ± SEM. cTnT positive percentage was rounded up at one decimal place. 

 

Autofluorescence Imaging of NAD(P)H and FAD 

Fluorescence lifetime imaging (FLIM) was performed by an Ultima two-photon imaging system 

(Bruker) composed of an ultrafast tunable laser source (Insight DS+, Spectra Physics) coupled to 

a Nikon Ti-E inverted microscope with time-correlated single photon counting electronics (SPC-

150, Becker & Hickl, Berlin, Germany). The ultrafast tunable laser source enables sequential 

excitation of NAD(P)H at 750 nm and FAD at 890 nm. NAD(P)H and FAD emission was 

isolated using 440/80 nm and 550/100 nm bandpass filters (Chroma), respectively. The laser 

power at the sample for NAD(P)H and FAD excitation was approximately 2.3 mW and 7.9 mW, 

respectively. Fluorescence lifetime decays with 256 time bins were acquired across 256 × 256 
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pixel images with a pixel dwell time of 4.8 µs and an integration period of 60 seconds. All 

samples were illuminated through a 40×/1.15 NA objective (Nikon). FLIM was performed on 

differentiation day 0 (immediately pre-treatment with CHIR99021, a Wnt signaling activator), 

day 1 (24 hours post-treatment with CHIR99021), day 3 (immediately pre-treatment with IWP2, 

a Wnt signaling inhibitor), and day 5 (48 hours post-treatment with IWP2). For 

NKX2.5EGFP/+ hPSCs, day 8 NAD(P)H lifetime variables were also collected. For the 2DG 

experiment, H9 embryonic stem cells were imaged before and 2 hours after 10 mM 2DG 

treatment, respectively. For the rotenone experiment, H9 embryonic stem cells were imaged 

before and 15 minutes after 10 μM rotenone treatment, respectively. 

 

 
Image analysis 

Lifetime images of NAD(P)H and FAD were analyzed via SPCImage software (Becker & 

Hickl). Two-component decays were calculated by the following equation22: I(t) = α1𝑒−𝑡/𝜏
1 + 

𝛼2𝑒−𝑡/𝜏
2 + C. Fluorescence intensity images were generated by integrating photon counts over the 

per-pixel fluorescence decays. The per-pixel ratio of NAD(P)H fluorescence intensity to FAD 

intensity was calculated to determine optical redox ratio. A customized CellProfiler pipeline was 

used to segment individual cell cytoplasms45. Cytoplasm masks were applied to all images to 

determine single-cell optical redox ratio and NAD(P)H and FAD fluorescence lifetime variables. 

Fluorescence lifetime variables consist of the mean lifetime (τm = α1τ1 + α2τ2), free- and protein-

bound lifetime components (τ1 and τ2 for NAD(P)H, and τ2 and τ1 for FAD, respectively ), and 

their fractional contributions (α1 and α2; where α1 + α2 = 1) for each individual cell cytoplasm. A 

total 13 OMI variables were analyzed for each cell cytoplasm: FAD intensity,  FAD α1, FAD α2, 
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FAD τ1, FAD τ2, and  FAD τm; NAD(P)H intensity,  NAD(P)H α1, NAD(P)H α2, NAD(P)H τ1, 

NAD(P)H τ2, and  NAD(P)H τm; optical redox ratio=
𝑁𝐴𝐷(𝑃)𝐻 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

𝐹𝐴𝐷 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
. 

 

The phasor plot of lifetime decays for enhanced green fluorescent protein (EGFP) and NAD(P)H 

was performed as previously described46. Briefly, phasor lifetime plots are derived from a 

Fourier transformation of fluorescence lifetime decay curves by a custom algorithm. The 

fluorescence lifetime of each pixel in the image is presented in a 2D phasor plot with the unitless 

horizontal axis (G) and the vertical axis (S). 

 

UMAP clustering 

Clustering of cells across all days and differentiation efficiency conditions was represented using 

Uniform Manifold Approximation and Projection (UMAP). UMAP dimensionality reduction 

was performed on all 13 OMI variables (optical redox ratio, NAD(P)H τm, τ1, τ2, α1, α2, and 

intensity; FAD τm, τ1, τ2, α1, α2, and intensity) for projection in 2D space. The following 

parameters were used for UMAP visualizations: “n _neighbors”: 10; “min_dist”: 0.3, “metric”: 

cosine, “n_components”: 2.  

 

Classification methods 

Logistic regression classifiers were trained to distinguish cells at low (< 50% cTnT+ on day 12) 

and high (≥ 50% cTnT+ on day 12) differentiation efficiency 1 day post-treatment with 

CHIR99021. Consistent separation of day 1 UMAP clusters from all other days across 

differentiation conditions prompted classification of single-cell autofluorescence data from day 1 

differentiation.  All day 1 OMI data were randomly partitioned into training and test datasets 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.01.446615doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446615


using 15-fold cross validation for training and test proportions of 80% and 20%, respectively (n 

= 20376 cells in the training set, n = 5094 cells in the test set). Chi-squared variable selection 

was used to evaluate classification accuracy as a function of the number of training variables.  

Variable weights for OMI variables were extracted to determine the contribution of each variable 

to the trained logistic regression model.  Receiver operating characteristic (ROC) curves were 

generated to evaluate the logistic regression model performance on classification of test set data. 

Support vector machine and random forest classifiers were also trained to classify low and high 

differentiation efficiencies on day 1 to determine whether classification performance was 

dependent on the chosen model. Training and test set partitioning and variable selection methods 

for support vector machine and random forest classifiers were identical to those reported for the 

logistic regression model. 

 

Z-score hierarchical clustering  

Z-score of each OMI variable for each condition was calculated across all 11 conditions. Z-score 

= 
𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝜇𝑟𝑜𝑤

σ𝑟𝑜𝑤
, where μobserved is the mean value of each variable for each condition; μrow is the 

mean value of each variable for all 11 conditions together, and σrow is the standard deviation of 

each variable across all 11 conditions. Heatmaps of z-scores for all OMI variables were generated 

to visualize differences in each variable between low and high differentiation efficiency conditions 

at day 0 and day 1. Dendrograms show clustering based on similarity of average Euclidean 

distances across all variable z-scores. Heatmaps and associated dendrograms were generated in R 

(heatmap.2, gplots package).  

 

Statistics 
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Data for OMI variables are presented as mean with 95% CI. Data for flow cytometry are 

presented as mean ± SEM. Statistical significance was determined by Student’s T-test (two-

tailed) between two groups. Three or more groups were analyzed by one-way analysis of 

variance (ANOVA) followed by Tukey’s post hoc tests. P < 0.05 was considered statistically 

significant and indicated in the figures. 
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Figures and figure legends 

   

Table 1.  Summary of the 11 differentiation conditions. hPSCs, including H9 embryonic stem 

cells (ESC) or IMR90-4 induced pluripotent stem cells (iPSC) with IMR90 specified, were 

differentiated into CMs following an established method11. On differentiation day 12, cells were 

verified by flow cytometry with cTnT labelling from three independent replicates to define 

differentiation efficiency. Data were collected from three biological replicates. Conditions are 

presented with condition name (seeding density, CHIR99021 concentration, IMR90 status), 

hPSC line, seeding density, CHIR99021 (Wnt activator) concentration, and differentiation 

efficiency (mean ± SEM). Low differentiation efficiencies (< 50% cTnT+ on day 12) are shaded 

in light gray and high differentiation efficiencies (≥ 50% cTnT+ on day 12) are shaded in dark 

gray. 
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Figure 1. NAD(P)H and FAD fluorescence change differently in the first 24 hours for cells 

in low vs. high cardiomyocyte differentiation efficiency conditions. hPSCs (H9 embryonic 

stem cells or IMR90-4 induced pluripotent stem cells) were differentiated into CMs following an 

established method11. On differentiation day 12, cells were verified by flow cytometry with cTnT 

labelling from three independent replicates. (a, b) Representative flow cytometry dot plots for 

(a) low, and (b) high differentiation efficiencies along with negative controls. Single-cell 

quantitative analysis of mean lifetimes (τm, reported as picoseconds) of (c) FAD and (d) 
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NAD(P)H, and (e) optical redox ratio for low differentiation (0.3% cTnT+ on day 12) and high 

differentiation (65.5% cTnT+ on day 12) efficiencies on day 0 (“D0”, immediately pre-

treatment) and day 1 (“D1”, 24 hours post-treatment with CHIR99021, a Wnt signaling 

activator), and their corresponding representative images. n = 2458, 633, 3534 and 4446 cells for 

0.3% day 0, 0.3% day 1, 65.5% day 0, and 65.5% day 1, respectively.  Data are presented as 

mean with 95% CI for each condition each day. Statistical significance was determined by one-

way analysis of variance (ANOVA) followed by Tukey’s post hoc tests. ****p< 0.0001. Color 

bars are indicated on the right. 

 
 

 

Figure 2. Multivariate analysis reveals unique metabolic profiles in cells differentiated into 

cardiomyocytes at day 1. (a) Uniform Manifold Approximation and Projection (UMAP) 

dimensionality reduction was performed on all 13 autofluorescence variables (optical redox ratio, 

NAD(P)H τm, τ1, τ2, α1, α2, and intensity; FAD τm, τ1, τ2, α1, α2, and intensity) for each cell and  

projected onto 2D space. Cells from all 11 conditions shown in Table 1 are plotted together. Data 

include cells from day 0, day 1, day 3, and day 5. Each dot represents one single cell, and n = 

25304, 25470, 26228, and 23484 cells for day 0, 1, 3, and 5, respectively. (b) Heatmap 

dendrogram clustering based on similarity of average Euclidean distances across all variable z-

scores was performed on day 1 cells across all 11 conditions. Conditions are indicated by the CM 
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differentiation efficiency percentages as noted by column labels at the top of the heatmap 

(quantified by flow cytometry cTnT+ on day 12, full conditions given in Table 1). Low 

differentiation efficiencies (< 50%) are shaded in light gray and high differentiation efficiencies 

are shaded in dark gray (≥ 50%). Z-score = 
𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝜇𝑟𝑜𝑤

σ𝑟𝑜𝑤
, where μobserved is the mean value of 

each variable for each condition; μrow is the mean value of each variable for all 11 conditions 

together, and σrow is the standard deviation of each variable across all 11 conditions. 

Autofluorescence variables are indicated on the left side as row labels. n = 25470 cells from day 

1. 

 
 

 

Figure 3. OMI variables accurately distinguish cells under low or high cardiomyocyte 

differentiation efficiency conditions on day 1. (a) UMAP dimensionality reduction was 

performed on all 13 OMI variables (optical redox ratio, NAD(P)H τm, τ1, τ2, α1, α2, and intensity; 

FAD τm, τ1, τ2, α1, α2, and intensity) for each cell on day 1 and projected onto 2D space. Day 1 

cells from all 11 conditions shown in Table 1 are plotted together with cells from low (< 50% 
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cTnT+ on day 12) and high (≥ 50% cTnT+ on day 12) CM differentiation efficiencies in light 

gray and dark gray, respectively. n = 14211 and 11259 cells for low and high differentiation 

efficiency conditions, respectively. (b-e) All OMI data from day 1 cells were randomly 

partitioned into training and test datasets using 15-fold cross validation, with training and test 

proportions of 80% and 20%, respectively (n = 20376 cells for training, n = 5094 cells for test). 

Binary classification was tested for low (< 50% cTnT+ on day 12) vs. high (≥ 50% cTnT+ on 

day 12) differentiation efficiency conditions on day 1. (b) OMI variable weights are shown 

specific to the logistic regression model. (c) Classification accuracy with respect to number of 

OMI variables was evaluated by chi-squared variable selection to separate low and high 

differentiation efficiency conditions with the logistic regression model. The number of variables 

included in the logistic regression model are indicated at bottom-axis. (d) The variables included 

for each logistic regression model [specified by numbers of variables on the x-axis in (c)] are 

defined, where the blue text indicates NAD(P)H lifetime variables and the red text indicates 

FAD lifetime variables. The OMI variables included in each instance (e.g., 3, 4) are indicated by 

a light blue + in each column. (e) Model performance of the logistic regression classifier was 

evaluated by receiver operating characteristic (ROC) curves using different OMI variable 

combinations as labelled. The area under the curve (AUC) is provided for each variable 

combination as indicated in the legend. 
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Figure 4. Imaging of a cardiac reporter line confirms autofluorescence changes in cells 

under high differentiation efficiency conditions. NKX2.5EGFP/+ hPSCs were treated with 12 

µM and 9 µM of CHIR99021 for the first 24 hours to achieve low and high differentiation 
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efficiencies, respectively. The NKX2.5EGFP/+ hPSC line expresses EGFP when the cardiac 

progenitor protein NKX2.5 is expressed, indicating that the cell has differentiated into CM, 

around differentiation day 7. (a) CM differentiation efficiencies were verified by flow cytometry 

on day 12 with cTnT labelling. Low differentiation efficiency (12 µM CHIR99021, left) and 

high differentiation efficiency (9 µM CHIR99021, right) are shown. Data were collected from 

three biological replicates and presented as mean ± SEM. Single-cell quantitative analysis of (b) 

NAD(P)H mean lifetimes (τm), (c, d) representative images, and (e) FAD mean lifetimes (τm), (f, 

g) representative images for low (0.3% cTnT+ on day 12) and high (84.1% cTnT+ on day 12) 

differentiation efficiencies on day 0 (“D0”, immediately pre-treatment) and day 1 (“D1”, 24 

hours post-treatment with CHIR99021), respectively.  n = 1618, 1017 cells for 0.3% condition 

day 0; day 1, respectively. n=1633, 1243 cells for 84.1% condition day 0; day 1, respectively. 

Data are presented as mean with 95% CI. Statistical significance was determined by one-way 

analysis of variance (ANOVA) followed by Tukey’s post hoc tests. ****p< 0.0001. (h) Single-

cell quantitative analysis of NAD(P)H τm, τ2, α1, τ1 on differentiation day 8 (Differentiation 

efficiencies are indicated at the bottom as percent cTnT+ on day 12). Statistical significance was 

determined by Student’s T-test. **p<0.01. ****p<0.0001. n = 580 and 727 cells for 0.3% and 

84.1% condition day 8, respectively. Data are presented as mean with 95% CI. Representative 

images NAD(P)H τm and EGFP fluorescence in live cells for (i) low differentiation efficiency 

(0.3% cTnT+) and (j) high differentiation efficiency (84.1% cTnT+). ps, picoseconds. 
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Supplemental figures and figure legends 
 

 

Figure S1. NAD(P)H and FAD fluorescence change differently in the first 24 hours for cells 

in low vs. high cardiomyocyte differentiation efficiency conditions. hPSCs were differentiated 

into CMs following an established method11. Single-cell quantitative analysis of OMI variables, 

including FAD intensity, NAD(P)H intensity, optical redox ratio,  FAD α1, τ1, τ2, τm,  and 

NAD(P)H α1, τ1,τ2, τm, for low differentiation (0.3% cTnT+ on day 12) and high differentiation 

(65.5% cTnT+ on day 12) efficiencies on day 0 (“D0”, immediately pre-treatment) and day 1 

(“D1”, 24 hours post-treatment with CHIR99021). n = 2458, 633, 3,534, and 4446 cells for 0.3% 

D0, 0.3% D1, 65.5% D0, and 65.5% D1, respectively. On differentiation day 12, cells were 

verified by flow cytometry with cTnT labelling. Data are presented in violin plots with middle 
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bar for the mean, lower bar for 25 percentiles, and upper bar for 75 percentiles. Statistical 

significance was determined by one-way analysis of variance (ANOVA) followed by Tukey’s 

post hoc tests. ****p< 0.0001. ps, picoseconds. 

 

  

Figure S2. Changes of optical redox ratio after treatment with 2DG or rotenone. (a) Single-

cell quantitative analysis of optical redox ratio for H9 embryonic stem cells before and 2 hours 

after 10 mM 2DG treatment. n = 1051 and 900 cells for before and after 2DG treatment, 

respectively. (b) Single-cell quantitative analysis of optical redox ratio for H9 embryonic stem 

cells before and 15 minutes after 10 μM rotenone treatment. n = 1042 and 986 cells for before 

and after rotenone treatment, respectively. Data are presented as mean with 95% CI. Statistical 

significance was determined by Student’s T-test. ****p<0.0001. ps, picoseconds. 
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Figure S3. UMAP plotted by separate days and conditions. (a) Uniform Manifold 

Approximation and Projection (UMAP) dimensionality reduction was performed on all 13 

autofluorescence variables (optical redox ratio, NAD(P)H τm, τ1, τ2, α1, α2, and intensity; FAD 

τm, τ1, τ2, α1, α2, and intensity) for each cell and projected onto 2D space. Cells from all 11 

conditions shown in Table 1 are plotted by days separately. Each dot represents one single cell, 

and n = 25304, 25470, 26228, and 23484 cells for day 0, 1, 3, and 5, respectively. (b) Separated 

UMAP clusters for each differentiation condition. Conditions are labelled with original cell 

seeding density, CHIR99021 treatment concentration, and final cardiomyocyte differentiation 

efficiency quantified by flow cytometry (detailed in Table 1). n = 13897, 13852, 4357, 7601, 

3445, and 5526 cells for condition 65.5%, 51.8%, 19.6%, 15.1%, 0.6%, and 0.3%, respectively.  
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Figure S4. Heatmap dendrogram clustering of OMI variable z-score on day 0 and day 1. 

Heatmap dendrogram clustering based on similarity of average Euclidean distances across all 

OMI variable z-scores was performed on (a) day 0 (immediately pre-treatment) and day 1 cells 

(24 hours post-treatment with CHIR99021) across all 11 conditions together or (b) day 0 alone. 

Conditions are indicated by the CM differentiation efficiency percentages as noted by column 

labels at the top of the heatmap (quantified by flow cytometry cTnT+ on day 12, full conditions 

given in Table 1). Low differentiation efficiencies (< 50%) are shaded in light gray and high 

differentiation efficiencies are shaded in dark gray (≥ 50%). Z-score = 
𝜇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝜇𝑟𝑜𝑤

σ𝑟𝑜𝑤
, where 

μobserved is the mean value of each variable for each condition, μrow is the mean value of each 

variable for all 11 conditions together, and σrow is the standard deviation of each variable across 
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all 11 conditions. Autofluorescence variables are indicated on the left side as row labels. n = 

25304 and 25470 cells for day 0, 1, respectively. 

 

 
 

 

Figure S5. Support vector machine and random forest models for classification of cells on 

day 1. All OMI data (optical redox ratio, NAD(P)H τm, τ1, τ2, α1, α2, and intensity; FAD τm, τ1, 

τ2, α1, α2, and intensity) from day 1 cells were randomly partitioned into training and test datasets 

using 15-fold cross validation for training and test proportions of 80% and 20%, respectively (n 
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= 20376 cells for training, 5094 cells for test). Classification accuracy with respect to number of 

OMI variables was evaluated by chi-squared variable selection to separate low (< 50% cTnT+ on 

day 12) and high (≥ 50% cTnT+ on day 12) differentiation efficiency conditions  by (a) support 

vector machine (SVM). (b) The variables included for each SVM [specified by numbers of 

variables on the x-axis in (a)]. The OMI variables included in each instance (e.g., 3, 4) are 

indicated by a blue + in each column. (c) Classification accuracy with respect to number of OMI 

variables for random forest classification. (d) The variables included for each random forest 

classifier [specified by numbers of variables on the x-axis in (c)]. The OMI variables included in 

each instance are indicated by a yellow + in each column (e) Model performance was evaluated 

by receiver operating characteristic (ROC) curves displaying classification performance with the 

SVM (blue curve) or random forest model (yellow curve) using all 13 OMI variables. The area 

under the curve (AUC) is provided for SVM and random forest classifiers as indicated in the 

legend. 

 

 

Figure S6. Changes in lifetimes of NAD(P)H and FAD during the first 5-days of 

differentiation.  Single-cell quantitative analysis of mean lifetimes (τm) of (a) NAD(P)H and (b) 

FAD on days 0, 1, 3, and 5. Paired student T-test was performed between low (0.3% cTnT+) and 

high (84.1% cTnT+) differentiation efficiency conditions on each day.  #p<0.0001 for 0.3% vs. 

84.1% differentiation efficiency conditions on day 0, day 1, day 3, and day 5, respectively. Data 
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were collected from over 500 cells for each day for each condition and presented as mean ± 

SEM. ps, picoseconds. 

 

 

Figure S7. Representative phasor plots reveal separation of NAD(P)H and EGFP decays. 

Phasor plots of fluorescence decays provide a visual distribution of the molecular species in an 

image by clustering pixels with similar lifetimes, which allows assessment of overlap between 

lifetime species. The phasor fluorescence decay plots are derived from a Fourier transformation 

of the fluorescence lifetime decay46.  The fluorescence lifetime of each pixel in the image is 

presented in the 2D phasor plot with the unitless horizontal (G) and vertical (S) axes. Blue dots 

are NAD(P)H decays and green dots are EGFP decays. The lifetimes of 3 positions on the unit 

circle are given in nanoseconds for reference. 
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Figure S8. Changes of NAD(P)H lifetime variables after treatment with 2DG. Single-cell 

quantitative analysis of NAD(P)H lifetime variables (τ m, τ 2, α1, τ 1) for H9 embryonic stem cells 

before and 2 hours after 10 mM 2DG treatment. n = 1051 and 900 cells for before and after 2DG 

treatment, respectively. Data are presented as mean with 95% CI. Statistical significance was 

determined by Student’s T-test. ****p<0.0001. ps, picoseconds. 
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